picadae/control/tiny/i2c_timer_pwm.c

580 lines
15 KiB
C
Raw Normal View History

// w 60 0 1 10 : w i2c_addr SetPWM enable duty_val
// w 60 5 12 8 32 : w i2c_addr write addrFl|src coarse_val
// w 60 4 0 5 : w i2c_addr read src read_addr (set the read address to register 5)
// r 60 4 3 : r i2c_addr <dum> cnt (read the first 3 reg's beginning w/ 5)
/*
AT TINY 85
+--\/--+
RESET _| 1 8 |_ +5V
~OC1B HOLD DDB3 _| 2 7 |_ SCL yellow
OC1B ONSET DDB4 _| 3 6 |_ DDB1 LED
GND _| 4 5 |_ SDA orange
+------+
* = Serial and/or programming pins on Arduino as ISP
*/
2019-07-07 01:59:39 +00:00
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
#define F_CPU 8000000L
2019-07-07 01:59:39 +00:00
#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include "usiTwiSlave.h"
#define HOLD_DIR DDB3
#define ATTK_DIR DDB4
#define LED_DIR DDB1
#define HOLD_PIN PINB3
#define ATTK_PIN PINB4
#define LED_PIN PINB1
// Opcodes
enum
{
kSetPwm_Op = 0, // Set PWM registers 0 {<enable> {<duty> {<freq>}}}
kNoteOnVel_Op = 1, // Turn on note 1 {<vel>}
kNoteOnUsec_Op = 2, // Turn on note 2 {<coarse> {<fine> {<prescale>}}}
kNoteOff_Op = 3, // Turn off note 3
kRead_Op = 4, // Read a value 4 {<src>} {<addr>} } src: 0=reg 1=table 2=eeprom
kWrite_Op = 5, // Set write 5 {<addrfl|src> {addr} {<value0> ... {<valueN>}}
kInvalid_Op = 6 // addrFl:0x80 src: 4=reg 5=table 6=eeprom
};
2019-07-07 01:59:39 +00:00
2019-07-07 01:59:39 +00:00
enum
{
kReg_Rd_Addr_idx = 0, // Next Reg Address to read
kTable_Rd_Addr_idx = 1, // Next Table Address to read
kEE_Rd_Addr_idx = 2, // Next EEPROM address to read
kRead_Src_idx = 3, // kReg_Rd_Addr_idx=reg, kTable_Rd_Addr_idx=table, kEE_Rd_Addr_idx=eeprom
kReg_Wr_Addr_idx = 4, // Next Reg Address to write
kTable_Wr_Addr_idx = 5, // Next Table Address to write
kEE_Wr_Addr_idx = 6, // Next EEPROM address to write
kWrite_Dst_idx = 7, // kReg_Wr_Addr_idx=reg, kTable_Wr_Addr_idx=table, kEE_Wr_Addr_idx=eeprom
kTmr_Coarse_idx = 8, //
kTmr_Fine_idx = 9, //
kTmr_Prescale_idx = 10, // Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024 Default: 8 (32us)
kPwm_Enable_idx = 11, //
kPwm_Duty_idx = 12, //
kPwm_Freq_idx = 13, //
kMode_idx = 14, // 1=repeat 2=pwm
kState_idx = 15, // 1=attk 2=hold
kError_Code_idx = 16, // Error Code
kMax_idx
2019-07-07 01:59:39 +00:00
};
enum
{
kTmr_Repeat_Fl= 1,
kTmr_Pwm_Fl = 2,
kAttk_Fl = 1,
kHold_Fl = 2
};
// Flags:
// 1=Repeat: 1=Timer and PWM are free running. This allows testing with LED's. 0=Timer triggers does not reset on time out.
// 2=PWM: On timer timeout 1=PWM HOLD 0=Set HOLD
2019-07-07 01:59:39 +00:00
volatile uint8_t ctl_regs[] =
{
0, // 0 (0-(kMax_idx-1)) Reg Read Addr
0, // 1 (0-255) Table Read Addr
0, // 2 (0-255) EE Read Addr
kReg_Rd_Addr_idx, // 3 (0-2) Read source
0, // 4 (0-(kMax_idx-1)) Reg Write Addr
0, // 5 (0-255) Table Write Addr
0, // 6 (0-255) EE Write Addr
kReg_Wr_Addr_idx, // 7 (0-2) Write source
123, // 8 (0-255) Timer 0 Coarse Value
8, // 9 (0-255) Timer 0 Fine Value
4, // 10 (1-5) 4=32us per tick
1, // 11 (0-1) Pwm Enable Flag
127, // 12 (0-255) Pwm Duty cycle
254, // 13 (0-255) Pwm Frequency (123 hz)
0, // 14 mode flags 1=Repeat 2=PWM
0, // 15 state flags 1=attk 2=hold
0, // 16 (0-255) Error bit field
2019-07-07 01:59:39 +00:00
};
#define tableN 256
uint8_t table[ tableN ]; // [ coarse_0,fine_0, coarse_1, fine_1, .... coarse_127,fine_127]
enum
{
kInvalid_Read_Src_ErrFl = 0x01,
kInvalid_Write_Dst_ErrFl = 0x02
};
#define set_error( flag ) ctl_regs[ kError_Code_idx ] |= (flag)
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// EEPROM
//
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
EEAR = ucAddress; // Set up address and data registers
EEDR = ucData;
EECR |= (1<<EEMPE); // Write logical one to EEMPE
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
}
uint8_t EEPROM_read(uint8_t ucAddress)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EEAR = ucAddress; // Set up address register
EECR |= (1<<EERE); // Start eeprom read by writing EERE
return EEDR; // Return data from data register
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Read/Write table
//
// To write table value 42 to 127 (coarse) 64 (fine)
//
// w 8 kTable_Addr_idx 42
// w 8 kTable_Coarse_idx 127
// w 8 kTable_fine_idx 64
//
// TO read table value 42
// w 8 kTable_Addr_idx 42
// r 8 kTable_Coarse_idx -> 127
// r 8 kTable_Fine_idx -> 64
/*
#define eeprom_addr( addr ) (kMax_idx + (addr))
void table_write_cur_value( void )
{
uint8_t tbl_addr = ctl_regs[ kTable_Addr_idx ] * 2;
table[ tbl_addr+0 ] = ctl_regs[ kTable_Coarse_idx ];
table[ tbl_addr+1 ] = ctl_regs[ kTable_Fine_idx ];
EEPROM_write( eeprom_addr( tbl_addr+0 ), ctl_regs[ kTable_Coarse_idx ] );
EEPROM_write( eeprom_addr( tbl_addr+1 ), ctl_regs[ kTable_Fine_idx ]);
}
void table_load( void )
{
uint8_t i = 0;
for(; i<128; ++i)
{
uint8_t tbl_addr = i*2;
table[tbl_addr+0] = EEPROM_read( eeprom_addr(tbl_addr+0) );
table[tbl_addr+1] = EEPROM_read( eeprom_addr(tbl_addr+1) );
}
}
*/
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Timer0
//
2019-07-07 01:59:39 +00:00
volatile uint8_t tmr0_state = 0; // 0=disabled 1=coarse mode, 2=fine mode
volatile uint8_t tmr0_coarse_cur = 0;
#define set_attack() do { ctl_regs[kState_idx] |= kAttk_Fl; PORTB |= _BV(ATTK_PIN); } while(0)
#define clear_attack() do { PORTB &= ~_BV(ATTK_PIN); ctl_regs[kState_idx] &= ~kAttk_Fl; } while(0)
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
void tmr0_reset()
{
// if a coarse count exists then go into coarse mode
if( ctl_regs[kTmr_Coarse_idx] > 0 )
{
tmr0_state = 1;
OCR0A = 0xff;
}
else // otherwise go into fine mode
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx];
}
tmr0_coarse_cur = 0;
ctl_regs[kState_idx] |= kAttk_Fl; // set the attack state
PORTB |= _BV(ATTK_PIN); // set the attack pin
TIMSK |= _BV(OCIE0A); // enable the timer interrupt
}
ISR(TIMER0_COMPA_vect)
2019-07-07 01:59:39 +00:00
{
switch( tmr0_state )
{
case 0:
// disabled
break;
case 1:
// coarse mode
if( ++tmr0_coarse_cur >= ctl_regs[kTmr_Coarse_idx] )
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx];
}
break;
case 2:
// fine mode
// If in repeat mode
if(ctl_regs[kMode_idx] & kTmr_Repeat_Fl)
{
uint8_t fl = ctl_regs[kState_idx] & kAttk_Fl;
tmr0_reset(); // restart the timer
// ATTK_PIN is always set after tmr0_reset() but we need to toggle in 'repeat' mode
if( fl )
{
clear_attack();
}
// In repeat mode we run the PWM output continuously
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // Enable PWM interrupts
}
else // not in repeat mode
{
clear_attack();
if( ctl_regs[kMode_idx] & kTmr_Pwm_Fl)
{
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // PWM interupt Enable interrupts
}
else
{
PORTB |= _BV(HOLD_PIN); // set the HOLD pin
}
TIMSK &= ~_BV(OCIE0A); // clear timer interrupt
}
break;
}
2019-07-07 01:59:39 +00:00
}
void timer0_init()
2019-07-07 01:59:39 +00:00
{
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF
TCCR0A |= 0x02; // CTC mode
TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
//tmr0_reset(); // set the timers starting state
2019-07-07 01:59:39 +00:00
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Pwm
//
// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B
// but since these pins are not available this code uses
// ISR's to redirect the output to PIN3
void pwm1_update()
{
OCR1B = ctl_regs[kPwm_Duty_idx]; // control duty cycle
OCR1C = ctl_regs[kPwm_Freq_idx]; // PWM frequency pre-scaler
}
ISR(TIMER1_OVF_vect)
{
PORTB |= _BV(HOLD_PIN); // set PWM pin
}
ISR(TIMER1_COMPB_vect)
{
PORTB &= ~(_BV(HOLD_PIN)); // clear PWM pin
}
void pwm1_init()
{
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
DDRB |= _BV(HOLD_DIR); // setup PB3 as output
// set on TCNT1 == 0 // happens when TCNT1 matches OCR1C
// clr on OCR1B == TCNT // happens when TCNT1 matches OCR1B
// // COM1B1=1 COM1B0=0 (enable output on ~OC1B)
TCCR1 |= 9; // 32us period (256 divider) prescaler
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
pwm1_update();
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Tracks the current register pointer position
volatile uint8_t reg_position = 0;
const uint8_t reg_size = sizeof(ctl_regs);
//
// Read Request Handler
//
// This is called for each read request we receive, never put more
// than one byte of data (with TinyWireS.send) to the send-buffer when
// using this callback
//
2019-07-07 01:59:39 +00:00
void on_request()
{
uint8_t val = 0;
switch( ctl_regs[ kRead_Src_idx ] )
{
case kReg_Rd_Addr_idx:
val = ctl_regs[ ctl_regs[kReg_Rd_Addr_idx] ];
break;
case kTable_Rd_Addr_idx:
val = table[ ctl_regs[kTable_Rd_Addr_idx] ];
break;
case kEE_Rd_Addr_idx:
val = EEPROM_read(ctl_regs[kEE_Rd_Addr_idx]);
break;
2019-07-07 01:59:39 +00:00
default:
set_error( kInvalid_Read_Src_ErrFl );
return;
}
usiTwiTransmitByte(val);
ctl_regs[ ctl_regs[ kRead_Src_idx ] ] += 1;
}
void _write_op( uint8_t* stack, uint8_t stackN )
{
uint8_t stack_idx = 0;
2019-07-07 01:59:39 +00:00
if( stackN > 0 )
2019-07-07 01:59:39 +00:00
{
uint8_t src = stack[0] & 0x07;
uint8_t addr_fl = stack[0] & 0x08;
// verify the source value
if( src < kReg_Wr_Addr_idx || src > kEE_Wr_Addr_idx )
{
set_error( kInvalid_Write_Dst_ErrFl );
return;
}
// set the write source
stack_idx = 1;
ctl_regs[ kWrite_Dst_idx ] = src;
// if an address value was passed also ....
if( addr_fl && stackN > 1 )
{
stack_idx = 2;
ctl_regs[ src ] = stack[1];
}
2019-07-07 01:59:39 +00:00
}
//
for(; stack_idx<stackN; ++stack_idx)
{
uint8_t addr_idx = ctl_regs[ ctl_regs[kWrite_Dst_idx] ]++;
uint8_t val = stack[ stack_idx ];
switch( ctl_regs[ kWrite_Dst_idx ] )
{
case kReg_Wr_Addr_idx: ctl_regs[ addr_idx ] = val; break;
case kTable_Wr_Addr_idx: table[ addr_idx ] = val; break;
case kEE_Wr_Addr_idx: EEPROM_write( table[ addr_idx ], val); break;
default:
set_error( kInvalid_Write_Dst_ErrFl );
break;
}
}
}
2019-07-07 01:59:39 +00:00
//
// The I2C data received -handler
//
// This needs to complete before the next incoming transaction (start,
// data, restart/stop) on the bus does so be quick, set flags for long
// running tasks to be called from the mainloop instead of running
// them directly,
//
2019-07-07 01:59:39 +00:00
void on_receive( uint8_t byteN )
2019-07-07 01:59:39 +00:00
{
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
const uint8_t stackN = 16;
uint8_t stack_idx = 0;
uint8_t stack[ stackN ];
uint8_t i;
if (byteN < 1 || byteN > TWI_RX_BUFFER_SIZE)
{
// Sanity-check
return;
}
2019-07-07 01:59:39 +00:00
// get the register index to read/write
uint8_t op_id = usiTwiReceiveByte();
2019-07-07 01:59:39 +00:00
byteN--;
2019-07-07 01:59:39 +00:00
// If only one byte was received then this was a read request
// and the buffer pointer (reg_position) is now set to return the byte
// at this location on the subsequent call to on_request() ...
if(byteN)
{
while( byteN-- )
{
stack[stack_idx] = usiTwiReceiveByte();
++stack_idx;
2019-07-07 01:59:39 +00:00
}
}
switch( op_id )
{
case kSetPwm_Op:
for(i=0; i<stack_idx; ++i)
ctl_regs[ kPwm_Enable_idx + i ] = stack[i];
pwm1_update();
break;
case kNoteOnUsec_Op:
for(i=0; i<stack_idx; ++i)
ctl_regs[ kTmr_Coarse_idx + i ] = stack[i];
tmr0_reset();
break;
2019-07-07 01:59:39 +00:00
case kNoteOff_Op:
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // PWM interupt disable interrupts
PORTB &= ~_BV(HOLD_PIN); // clear the HOLD pin
break;
case kRead_Op:
if( stack_idx > 0 )
{
ctl_regs[ kRead_Src_idx ] = stack[0];
if( stack_idx > 1 )
ctl_regs[ ctl_regs[ kRead_Src_idx ] ] = stack[1];
}
break;
case kWrite_Op:
_write_op( stack, stack_idx );
break;
}
2019-07-07 01:59:39 +00:00
}
int main(void)
{
cli(); // mask all interupts
DDRB |= _BV(ATTK_DIR) + _BV(HOLD_DIR) + _BV(LED_DIR); // setup PB4,PB3,PB1 as output
PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN) + _BV(LED_PIN)); // clear output pins
timer0_init();
pwm1_init();
2019-07-07 01:59:39 +00:00
// setup i2c library
usi_onReceiverPtr = on_receive;
usi_onRequestPtr = on_request;
2019-07-07 01:59:39 +00:00
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
sei();
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
2019-07-07 01:59:39 +00:00
_delay_ms(1000);
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
2019-07-07 01:59:39 +00:00
while(1)
{
//_delay_ms(1000);
if (!usi_onReceiverPtr)
{
// no onReceive callback, nothing to do...
continue;
}
if (!(USISR & ( 1 << USIPF )))
{
// Stop not detected
continue;
}
uint8_t amount = usiTwiAmountDataInReceiveBuffer();
if (amount == 0)
{
// no data in buffer
continue;
}
usi_onReceiverPtr(amount);
}
return 0;
}