picadae/control/app/picadae_api.py

415 lines
14 KiB
Python
Raw Normal View History

##| Copyright: (C) 2018-2020 Kevin Larke <contact AT larke DOT org>
##| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
import os,sys,argparse,yaml,types,select,serial,logging,time,datetime
from enum import Enum
from multiprocessing import Process, Pipe
# Message header id's for messages passed between the application
# process and the microcontroller and video processes
class TinyOp(Enum):
setPwmOp = 0
noteOnVelOp = 1
noteOnUsecOp = 2
noteOffOp = 3
setReadAddr = 4
writeOp = 5
writeTableOp = 6
holdDelayOp = 7
flagsOp = 8
invalidOp = 9
class TinyRegAddr(Enum):
kRdRegAddrAddr = 0
kRdTableAddrAddr = 1
kRdEEAddrAddr = 2
kRdSrcAddr = 3
kWrRegAddrAddr = 4
kWrTableAddrAddr = 5
kWrEEAddrAddr = 6
kWrDstAddr = 7
kTmrCoarseAddr = 8
kTmrFineAddr = 9
kTmrPrescaleAddr = 10
kPwmDutyAddr = 11
kPwmFreqAddr = 12
kPwmDivAddr = 13
kStateAddr = 14
kErrorCodeAddr = 15
kMaxAllowTmrAddr = 16
kDelayCoarseAddr = 17
kDelayFineAddr = 18
kFlagsAddr = 19
class TinyRegAddr0(Enum):
kRdRegAddrAddr = 0
kRdSrcAddr = 1
kWrRegAddrAddr = 2
kWrDstAddr = 3
kAttkDutyAddr = 4
kAttkDurHiAddr = 5
kAttkDurLoAddr = 6
kDecayStepAddr = 7
kDecayDecrAddr = 8
kPwmDutyAddr = 9
kErrorCodeAddr = 10
class TinyConst(Enum):
kRdRegSrcId = TinyRegAddr.kRdRegAddrAddr.value # 0
kRdTableSrcId = TinyRegAddr.kRdTableAddrAddr.value # 1
kRdEESrcId = TinyRegAddr.kRdEEAddrAddr.value # 2
kWrRegDstId = TinyRegAddr.kWrRegAddrAddr.value # 4
kWrTableDstId = TinyRegAddr.kWrTableAddrAddr.value # 5
kWrEEDstId = TinyRegAddr.kWrEEAddrAddr.value # 6
kWrAddrFl = 0x08 # first avail bit above kWrEEAddr
class SerialMsgId(Enum):
QUIT_MSG = 0xffff
DATA_MSG = 0xfffe
class Result(object):
def __init__( self, value=None, msg=None ):
self.value = value
self.msg = msg
def set_error( self, msg ):
if self.msg is None:
self.msg = ""
self.msg += " " + msg
def __bool__( self ):
return self.msg is None
def _serial_process_func( serial_dev, baud, pipe ):
reset_N = 0
drop_N = 0
noSync_N = 0
with serial.Serial(serial_dev, baud) as port:
while True:
# get the count of available bytes in the serial port buffer
bytes_waiting_N = port.in_waiting
# if no serial port bytes are available then sleep ....
if bytes_waiting_N == 0:
time.sleep(0.01) # ... for 10 ms
else: # read the serial port ...
v = port.read(bytes_waiting_N)
pipe.send((SerialMsgId.DATA_MSG,v)) # ... and send it to the parent
msg = None
if pipe.poll(): # non-blocking check for parent process messages
try:
msg = pipe.recv()
except EOFError:
break
# if an incoming message was received
if msg != None:
# this is a shutdown msg
if msg[0] == SerialMsgId.QUIT_MSG:
pipe.send(msg) # ... send quit msg back
break
# this is a data xmit msg
elif msg[0] == SerialMsgId.DATA_MSG:
port.write(msg[1])
class SerialProcess(Process):
def __init__(self,serial_dev,serial_baud):
self.parent_end, child_end = Pipe()
super(SerialProcess, self).__init__(target=_serial_process_func, name="Serial", args=(serial_dev,serial_baud,child_end,))
self.doneFl = False
def quit(self):
# send quit msg to the child process
self.parent_end.send((SerialMsgId.QUIT_MSG,0))
def send(self,msg_id,value):
# send a msg to the child process
self.parent_end.send((msg_id,value))
return Result()
def recv(self):
#
x = None
if not self.doneFl and self.parent_end.poll():
x = self.parent_end.recv()
if x[0] == SerialMsgId.QUIT_MSG:
self.doneFl = True
return x
def is_done(self):
return self.doneFl
class Picadae:
def __init__( self, key_mapL, i2c_base_addr=21, serial_dev='/dev/ttyACM0', serial_baud=38400, prescaler_usec=16 ):
"""
key_mapL = [{ index, board, ch, type, midi, class }]
serial_dev = /dev/ttyACM0
serial_baud = 38400
i2c_base_addr = 1
"""
self.serialProc = SerialProcess( serial_dev, serial_baud )
self.keyMapD = { d['midi']:d for d in key_mapL }
self.i2c_base_addr = i2c_base_addr
self.prescaler_usec = prescaler_usec
self.log_level = 0
self.serialProc.start()
def close( self ):
self.serialProc.quit()
def wait_for_serial_sync(self, timeoutMs=10000):
# wait for the letter 'a' to come back from the serial port
result = self.block_on_serial_read(1,timeoutMs)
if result and len(result.value)>0 and result.value[0] == ord('a'):
pass
else:
result.set_error("Serial sync failed.")
return result
def write_tiny_reg( self, i2c_addr, reg_addr, byteL ):
return self._send( 'w', i2c_addr, reg_addr, [ len(byteL) ] + byteL )
def call_op( self, midi_pitch, op_code, argL ):
return self.write_tiny_reg( self._pitch_to_i2c_addr( midi_pitch ), op_code, argL )
def set_read_addr( self, i2c_addr, mem_id, addr ):
# mem_id: 0=reg_array 1=vel_table 2=eeprom
return self.write_tiny_reg(i2c_addr, TinyOp.setReadAddr.value,[ mem_id, addr ])
def read_request( self, i2c_addr, reg_addr, byteOutN ):
return self._send( 'r', i2c_addr, reg_addr,[ byteOutN ] )
def block_on_serial_read( self, byteOutN, time_out_ms=250 ):
ts = datetime.datetime.now() + datetime.timedelta(milliseconds=time_out_ms)
retL = []
while datetime.datetime.now() < ts and len(retL) < byteOutN:
# If a value is available at the serial port return is otherwise return None.
x = self.serialProc.recv()
if x is not None and x[0] == SerialMsgId.DATA_MSG:
for b in x[1]:
retL.append(int(b))
time.sleep(0.01)
result = Result(value=retL)
if len(retL) < byteOutN:
result.set_error("Serial port time out on read.")
return result
def block_on_picadae_read( self, midi_pitch, mem_id, reg_addr, byteOutN, time_out_ms=250 ):
i2c_addr = self._pitch_to_i2c_addr( midi_pitch )
result = self.set_read_addr( i2c_addr, mem_id, reg_addr )
if result:
result = self.read_request( i2c_addr, TinyOp.setReadAddr.value, byteOutN )
if result:
result = self.block_on_serial_read( byteOutN, time_out_ms )
return result
def block_on_picadae_read_reg( self, midi_pitch, reg_addr, byteOutN=1, time_out_ms=250 ):
return self.block_on_picadae_read( midi_pitch,
TinyRegAddr.kRdRegAddrAddr.value,
reg_addr,
byteOutN,
time_out_ms )
def note_on_vel( self, midi_pitch, midi_vel ):
return self.call_op( midi_pitch, TinyOp.noteOnVelOp.value, [self._validate_vel(midi_vel)] )
def note_on_us( self, midi_pitch, pulse_usec ):
return self.call_op( midi_pitch, TinyOp.noteOnUsecOp.value, list(self._usec_to_coarse_and_fine(pulse_usec)) )
def note_off( self, midi_pitch ):
return self.call_op( midi_pitch, TinyOp.noteOffOp.value,
[0] ) # TODO: sending a dummy byte because we can't handle sending a command with no data bytes.
def set_hold_delay( self, midi_pitch, pulse_usec ):
return self.call_op( midi_pitch, TinyOp.holdDelayOp.value, list(self._usec_to_coarse_and_fine(pulse_usec)) )
def get_hold_delay( self, midi_pitch, time_out_ms=250 ):
res = self.block_on_picadae_read_reg( midi_pitch, TinyRegAddr.kDelayCoarseAddr.value, byteOutN=2, time_out_ms=time_out_ms )
if len(res.value) == 2:
res.value = [ self.prescaler_usec*255*res.value[0] + self.prescaler_usec*res.value[1] ]
return res
def set_flags( self, midi_pitch, flags ):
return self.call_op( midi_pitch, TinyOp.flagsOp.value, [int(flags)] )
#return self.call_op( midi_pitch, 5, [int(flags)] )
def get_flags( self, midi_pitch, time_out_ms=250 ):
return self.block_on_picadae_read_reg( midi_pitch, TinyRegAddr.kFlagsAddr.value, byteOutN=1, time_out_ms=time_out_ms )
#return self.block_on_picadae_read_reg( midi_pitch, TinyRegAddr.kAttkDutyAddr.value, byteOutN=1, time_out_ms=time_out_ms )
def set_velocity_map( self, midi_pitch, midi_vel, pulse_usec ):
coarse,fine = self._usec_to_coarse_and_fine( pulse_usec )
src = TinyConst.kWrAddrFl.value | TinyConst.kWrTableDstId.value
addr = midi_vel*2
return self.call_op( midi_pitch, TinyOp.writeOp.value, [ src, addr, coarse, fine ] )
def get_velocity_map( self, midi_pitch, midi_vel, time_out_ms=250 ):
byteOutN = 2
return self.block_on_picadae_read( midi_pitch, TinyConst.kRdTableSrcId.value, midi_vel*2, byteOutN, time_out_ms )
def set_pwm_duty( self, midi_pitch, duty_cycle_pct ):
if 0 <= duty_cycle_pct and duty_cycle_pct <= 100:
# duty_cycle_pct = 100.0 - duty_cycle_pct
return self.call_op( midi_pitch, TinyOp.setPwmOp.value, [ int( duty_cycle_pct * 255.0 /100.0 )])
else:
return Result(msg="Duty cycle (%f) out of range 0-100." % (duty_cycle_pct))
def get_pwm_duty( self, midi_pitch, time_out_ms=250 ):
return self.block_on_picadae_read_reg( midi_pitch, TinyRegAddr.kPwmDutyAddr.value, time_out_ms=time_out_ms )
def set_pwm_freq( self, midi_pitch, freq ):
res = self.get_pwm_duty( midi_pitch )
if res:
print("duty",int(res.value[0]))
res = self.call_op( midi_pitch, TinyOp.setPwmOp.value, [ int(res.value[0]), int(freq) ])
return res
def get_pwm_freq( self, midi_pitch, time_out_ms=250 ):
return self.block_on_picadae_read_reg( midi_pitch, TinyRegAddr.kPwmFreqAddr.value, time_out_ms=time_out_ms )
def get_pwm_div( self, midi_pitch, time_out_ms=250 ):
return self.block_on_picadae_read_reg( midi_pitch, TinyRegAddr.kPwmDivAddr.value, time_out_ms=time_out_ms )
def set_pwm_div( self, midi_pitch, div, time_out_ms=250 ):
res = self.get_pwm_duty( midi_pitch )
if res:
duty = res.value[0]
res = self.get_pwm_freq( midi_pitch )
if res:
res = self.call_op( midi_pitch, TinyOp.setPwmOp.value, [ int(duty), int(res.value[0]), int(div) ])
return res
def write_table( self, midi_pitch, time_out_ms=250 ):
# TODO: sending a dummy byte because we can't handle sending a command with no data bytes.
return self.call_op( midi_pitch, TinyOp.writeTableOp.value,[0])
def make_note( self, midi_pitch, atk_us, dur_ms ):
# TODO: handle error on note_on_us()
self.note_on_us(midi_pitch, atk_us);
time.sleep( dur_ms / 1000.0 )
return self.note_off(midi_pitch)
def make_seq( self, midi_pitch, base_atk_us, dur_ms, delta_us, note_cnt ):
for i in range(note_cnt):
self.make_note( midi_pitch, base_atk_us + i*delta_us, dur_ms )
time.sleep( dur_ms / 1000.0 )
return Result()
def make_scale( self, pitch0, pitch1, atk_us, dur_ms ):
if pitch0>pitch1:
printf("pitch0 must be <= pitch1")
else:
for pitch in range(pitch0,pitch1+1):
self.make_note( pitch, atk_us, dur_ms )
time.sleep( dur_ms / 1000.0 )
return Result()
def set_log_level( self, log_level ):
self.log_level = log_level
return Result()
def _pitch_to_i2c_addr( self, pitch ):
return self.keyMapD[ pitch ]['index'] + self.i2c_base_addr
def _validate_vel( self, vel ):
return vel
def _usec_to_coarse_and_fine( self, usec ):
coarse_usec = self.prescaler_usec*255 # usec's in one coarse tick
coarse = int( usec / coarse_usec )
fine = int(round((usec - coarse*coarse_usec) / self.prescaler_usec))
assert( coarse <= 255 )
assert( fine <= 255)
x = coarse*coarse_usec + fine*self.prescaler_usec
#####
# n = int(16e6*usec/(256*1e6))
# coarse = n >> 8;
# fine = n & 0xff;
# x = usec
####
print("C:%i F:%i : %i %i (%i)" % (coarse,fine, x, usec, usec-x ))
return coarse,fine
def _send( self, opcode, i2c_addr, reg_addr, byteL ):
self._print( opcode, i2c_addr, reg_addr, byteL )
byteA = bytearray( [ord(opcode), i2c_addr, reg_addr ] + byteL )
return self.serialProc.send(SerialMsgId.DATA_MSG, byteA )
def _print( self, opcode, i2c_addr, reg_addr, byteL ):
if self.log_level:
s = "{} {} {}".format( opcode, i2c_addr, reg_addr )
for x in byteL:
s += " {}".format(x)
print(s)