libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmMath.c 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612
  1. //| Copyright: (C) 2009-2020 Kevin Larke <contact AT larke DOT org>
  2. //| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
  3. #include "cmPrefix.h"
  4. #include "cmGlobal.h"
  5. #include "cmRpt.h"
  6. #include "cmErr.h"
  7. #include "cmCtx.h"
  8. #include "cmMem.h"
  9. #include "cmMallocDebug.h"
  10. #include "cmFloatTypes.h"
  11. #include "cmMath.h"
  12. #include <sys/types.h> // u_char
  13. // TODO: rewrite to avoid copying
  14. // this code comes via csound source ...
  15. double cmX80ToDouble( unsigned char rate[10] )
  16. {
  17. char sign;
  18. short exp = 0;
  19. unsigned long mant1 = 0;
  20. unsigned long mant0 = 0;
  21. double val;
  22. unsigned char* p = (unsigned char*)rate;
  23. exp = *p++;
  24. exp <<= 8;
  25. exp |= *p++;
  26. sign = (exp & 0x8000) ? 1 : 0;
  27. exp &= 0x7FFF;
  28. mant1 = *p++;
  29. mant1 <<= 8;
  30. mant1 |= *p++;
  31. mant1 <<= 8;
  32. mant1 |= *p++;
  33. mant1 <<= 8;
  34. mant1 |= *p++;
  35. mant0 = *p++;
  36. mant0 <<= 8;
  37. mant0 |= *p++;
  38. mant0 <<= 8;
  39. mant0 |= *p++;
  40. mant0 <<= 8;
  41. mant0 |= *p++;
  42. /* special test for all bits zero meaning zero
  43. - else pow(2,-16383) bombs */
  44. if (mant1 == 0 && mant0 == 0 && exp == 0 && sign == 0)
  45. return 0.0;
  46. else {
  47. val = ((double)mant0) * pow(2.0,-63.0);
  48. val += ((double)mant1) * pow(2.0,-31.0);
  49. val *= pow(2.0,((double) exp) - 16383.0);
  50. return sign ? -val : val;
  51. }
  52. }
  53. // TODO: rewrite to avoid copying
  54. /*
  55. * Convert double to IEEE 80 bit floating point
  56. * Should be portable to all C compilers.
  57. * 19aug91 aldel/dpwe covered for MSB bug in Ultrix 'cc'
  58. */
  59. void cmDoubleToX80(double val, unsigned char rate[10])
  60. {
  61. char sign = 0;
  62. short exp = 0;
  63. unsigned long mant1 = 0;
  64. unsigned long mant0 = 0;
  65. unsigned char* p = (unsigned char*)rate;
  66. if (val < 0.0) { sign = 1; val = -val; }
  67. if (val != 0.0) /* val identically zero -> all elements zero */
  68. {
  69. exp = (short)(log(val)/log(2.0) + 16383.0);
  70. val *= pow(2.0, 31.0+16383.0-(double)exp);
  71. mant1 =((unsigned)val);
  72. val -= ((double)mant1);
  73. val *= pow(2.0, 32.0);
  74. mant0 =((double)val);
  75. }
  76. *p++ = ((sign<<7)|(exp>>8));
  77. *p++ = (u_char)(0xFF & exp);
  78. *p++ = (u_char)(0xFF & (mant1>>24));
  79. *p++ = (u_char)(0xFF & (mant1>>16));
  80. *p++ = (u_char)(0xFF & (mant1>> 8));
  81. *p++ = (u_char)(0xFF & (mant1));
  82. *p++ = (u_char)(0xFF & (mant0>>24));
  83. *p++ = (u_char)(0xFF & (mant0>>16));
  84. *p++ = (u_char)(0xFF & (mant0>> 8));
  85. *p++ = (u_char)(0xFF & (mant0));
  86. }
  87. bool cmIsPowerOfTwo( unsigned x )
  88. {
  89. return !( (x < 2) || (x & (x-1)) );
  90. }
  91. unsigned cmNextPowerOfTwo( unsigned val )
  92. {
  93. unsigned i;
  94. unsigned mask = 1;
  95. unsigned msb = 0;
  96. unsigned cnt = 0;
  97. // if val is a power of two return it
  98. if( cmIsPowerOfTwo(val) )
  99. return val;
  100. // next pow of zero is 2
  101. if( val == 0 )
  102. return 2;
  103. // if the next power of two can't be represented in 32 bits
  104. if( val > 0x80000000)
  105. {
  106. assert(0);
  107. return 0;
  108. }
  109. // find most sig. bit that is set - the number with only the next msb set is next pow 2
  110. for(i=0; i<31; i++,mask<<=1)
  111. if( mask & val )
  112. {
  113. msb = i;
  114. cnt++;
  115. }
  116. return 1 << (msb + 1);
  117. }
  118. unsigned cmNearPowerOfTwo( unsigned i )
  119. {
  120. unsigned vh = cmNextPowerOfTwo(i);
  121. if( vh == 2 )
  122. return vh;
  123. unsigned vl = vh / 2;
  124. if( vh - i < i - vl )
  125. return vh;
  126. return vl;
  127. }
  128. bool cmIsOddU( unsigned v ) { return v % 2 == 1; }
  129. bool cmIsEvenU( unsigned v ) { return !cmIsOddU(v); }
  130. unsigned cmNextOddU( unsigned v ) { return cmIsOddU(v) ? v : v+1; }
  131. unsigned cmPrevOddU( unsigned v ) { return cmIsOddU(v) ? v : v-1; }
  132. unsigned cmNextEvenU( unsigned v ) { return cmIsEvenU(v) ? v : v+1; }
  133. unsigned cmPrevEvenU( unsigned v ) { return cmIsEvenU(v) ? v : v-1; }
  134. unsigned cmModIncr(int idx, int delta, int maxN )
  135. {
  136. int sum = idx + delta;
  137. if( sum >= maxN )
  138. return sum - maxN;
  139. if( sum < 0 )
  140. return maxN + sum;
  141. return sum;
  142. }
  143. // modified bessel function of first kind, order 0
  144. // ref: orfandis appendix B io.m
  145. double cmBessel0( double x )
  146. {
  147. double eps = pow(10.0,-9.0);
  148. double n = 1.0;
  149. double S = 1.0;
  150. double D = 1.0;
  151. while(D > eps*S)
  152. {
  153. double T = x /(2.0*n);
  154. n = n+1;
  155. D = D * pow(T,2.0);
  156. S = S + D;
  157. }
  158. return S;
  159. }
  160. //=================================================================
  161. // The following elliptic-related function approximations come from
  162. // Parks & Burrus, Digital Filter Design, Appendix program 9, pp. 317-326
  163. // which in turn draws directly on other sources
  164. // calculate complete elliptic integral (quarter period) K
  165. // given *complimentary* modulus kc
  166. cmReal_t cmEllipK( cmReal_t kc )
  167. {
  168. cmReal_t a = 1, b = kc, c = 1, tmp;
  169. while( c > cmReal_EPSILON )
  170. {
  171. c = 0.5*(a-b);
  172. tmp = 0.5*(a+b);
  173. b = sqrt(a*b);
  174. a = tmp;
  175. }
  176. return M_PI/(2*a);
  177. }
  178. // calculate elliptic modulus k
  179. // given ratio of complete elliptic integrals r = K/K'
  180. // (solves the "degree equation" for fixed N = K*K1'/K'K1)
  181. cmReal_t cmEllipDeg( cmReal_t r )
  182. {
  183. cmReal_t q,a,b,c,d;
  184. a = b = c = 1;
  185. d = q = exp(-M_PI*r);
  186. while( c > cmReal_EPSILON )
  187. {
  188. a = a + 2*c*d;
  189. c = c*d*d;
  190. b = b + c;
  191. d = d*q;
  192. }
  193. return 4*sqrt(q)*pow(b/a,2);
  194. }
  195. // calculate arc elliptic tangent u (elliptic integral of the 1st kind)
  196. // given argument x = sc(u,k) and *complimentary* modulus kc
  197. cmReal_t cmEllipArcSc( cmReal_t x, cmReal_t kc )
  198. {
  199. cmReal_t a = 1, b = kc, y = 1/x, tmp;
  200. unsigned L = 0;
  201. while( true )
  202. {
  203. tmp = a*b;
  204. a += b;
  205. b = 2*sqrt(tmp);
  206. y -= tmp/y;
  207. if( y == 0 )
  208. y = sqrt(tmp) * 1E-10;
  209. if( fabs(a-b)/a < cmReal_EPSILON )
  210. break;
  211. L *= 2;
  212. if( y < 0 )
  213. L++;
  214. }
  215. if( y < 0 )
  216. L++;
  217. return (atan(a/y) + M_PI*L)/a;
  218. }
  219. // calculate Jacobi elliptic functions sn, cn, and dn
  220. // given argument u and *complimentary* modulus kc
  221. cmRC_t cmEllipJ( cmReal_t u, cmReal_t kc, cmReal_t* sn, cmReal_t* cn, cmReal_t* dn )
  222. {
  223. assert( sn != NULL || cn != NULL || dn != NULL );
  224. if( u == 0 )
  225. {
  226. if( sn != NULL ) *sn = 0;
  227. if( cn != NULL ) *cn = 1;
  228. if( dn != NULL ) *dn = 1;
  229. return cmOkRC;
  230. }
  231. int i;
  232. cmReal_t a,b,c,d,e,tmp,_sn,_cn,_dn;
  233. cmReal_t aa[16], bb[16];
  234. a = 1;
  235. b = kc;
  236. for( i = 0; i < 16; i++ )
  237. {
  238. aa[i] = a;
  239. bb[i] = b;
  240. tmp = (a+b)/2;
  241. b = sqrt(a*b);
  242. a = tmp;
  243. if( (a-b)/a < cmReal_EPSILON )
  244. break;
  245. }
  246. c = a/tan(u*a);
  247. d = 1;
  248. for( ; i >= 0; i-- )
  249. {
  250. e = c*c/a;
  251. c = c*d;
  252. a = aa[i];
  253. d = (e + bb[i]) / (e+a);
  254. }
  255. _sn = 1/sqrt(1+c*c);
  256. _cn = _sn*c;
  257. _dn = d;
  258. if( sn != NULL ) *sn = _sn;
  259. if( cn != NULL ) *cn = _cn;
  260. if( dn != NULL ) *dn = _dn;
  261. return cmOkRC;
  262. }
  263. //=================================================================
  264. // bilinear transform
  265. // z = (2*sr + s)/(2*sr - s)
  266. cmRC_t cmBlt( unsigned n, cmReal_t sr, cmReal_t* rp, cmReal_t* ip )
  267. {
  268. unsigned i;
  269. cmReal_t a = 2*sr,
  270. tr, ti, td;
  271. for( i = 0; i < n; i++ )
  272. {
  273. tr = rp[i];
  274. ti = ip[i];
  275. td = pow(a-tr, 2) + ti*ti;
  276. rp[i] = (a*a - tr*tr - ti*ti)/td;
  277. ip[i] = 2*a*ti/td;
  278. if( tr < -1E15 )
  279. rp[i] = 0;
  280. if( fabs(ti) > 1E15 )
  281. ip[i] = 0;
  282. }
  283. return cmOkRC;
  284. }
  285. unsigned cmHzToMidi( double hz )
  286. {
  287. float midi = 12.0 * log2(hz/13.75) + 9;
  288. if( midi < 0 )
  289. midi = 0;
  290. if( midi > 127 )
  291. midi = 127;
  292. return (unsigned)lround(midi);
  293. }
  294. float cmMidiToHz( unsigned midi )
  295. {
  296. double m = midi <= 127 ? midi : 127;
  297. return (float)( 13.75 * pow(2.0,(m - 9.0)/12.0));
  298. }
  299. //=================================================================
  300. // Floating point byte swapping
  301. // Unions used to type-pun the swapping functions and thereby
  302. // avoid strict aliasing problems with -O2. Using unions for
  303. // this purpose is apparently legal under C99 but not C++.
  304. typedef union
  305. {
  306. unsigned u;
  307. float f;
  308. } _cmMathU_t;
  309. typedef union
  310. {
  311. unsigned long long u;
  312. double f;
  313. } _cmMathUL_t;
  314. unsigned cmFfSwapFloatToUInt( float v )
  315. {
  316. assert( sizeof(float) == sizeof(unsigned));
  317. _cmMathU_t u;
  318. u.f=v;
  319. return cmSwap32(u.u);
  320. }
  321. float cmFfSwapUIntToFloat( unsigned v )
  322. {
  323. assert( sizeof(float) == sizeof(unsigned));
  324. _cmMathU_t u;
  325. u.u = cmSwap32(v);
  326. return u.f;
  327. }
  328. unsigned long long cmFfSwapDoubleToULLong( double v )
  329. {
  330. assert( sizeof(double) == sizeof(unsigned long long));
  331. _cmMathUL_t u;
  332. u.f = v;
  333. return cmSwap64(u.u);
  334. }
  335. double cmFfSwapULLongToDouble( unsigned long long v )
  336. {
  337. assert( sizeof(double) == sizeof(unsigned long long));
  338. _cmMathUL_t u;
  339. u.u = cmSwap64(v);
  340. return u.f;
  341. }
  342. int cmRandInt( int min, int max )
  343. {
  344. assert( min <= max );
  345. int offs = max - min;
  346. return min + cmMax(0,cmMin(offs,(int)round(offs * (double)rand() / RAND_MAX)));
  347. }
  348. unsigned cmRandUInt( unsigned min, unsigned max )
  349. {
  350. assert( min <= max );
  351. unsigned offs = max - min;
  352. return min + cmMax(0,cmMin(offs,(unsigned)round(offs * (double)rand() / RAND_MAX)));
  353. }
  354. float cmRandFloat( float min, float max )
  355. {
  356. assert( min <= max );
  357. float offs = max - min;
  358. return min + cmMax(0,cmMin(offs,(float)(offs * (double)rand() / RAND_MAX)));
  359. }
  360. double cmRandDouble( double min, double max )
  361. {
  362. assert( min <= max );
  363. double offs = max - min;
  364. return min + cmMax(0,cmMin(offs,(offs * (double)rand() / RAND_MAX)));
  365. }
  366. //=================================================================
  367. // Base on: http://stackoverflow.com/questions/3874627/floating-point-comparison-functions-for-c-sharp
  368. bool cmIsCloseD( double x0, double x1, double eps )
  369. {
  370. double d = fabs(x0-x1);
  371. if( x0 == x1 )
  372. return true;
  373. if( x0==0 || x1==0 || d<DBL_MIN )
  374. return d < (eps * DBL_MIN);
  375. return (d / cmMin( fabs(x0) + fabs(x1), DBL_MAX)) < eps;
  376. }
  377. bool cmIsCloseF( float x0, float x1, double eps_d )
  378. {
  379. float eps = (float)eps_d;
  380. float d = fabsf(x0-x1);
  381. if( x0 == x1 )
  382. return true;
  383. if( x0==0 || x1==0 || d<FLT_MIN )
  384. return d < (eps * FLT_MIN);
  385. return (d / cmMin( fabsf(x0) + fabsf(x1), FLT_MAX)) < eps;
  386. }
  387. bool cmIsCloseI( int x0, int x1, double eps )
  388. {
  389. if( x0 == x1 )
  390. return true;
  391. return abs(x0-x1)/(abs(x0)+abs(x1)) < eps;
  392. }
  393. bool cmIsCloseU( unsigned x0, unsigned x1, double eps )
  394. {
  395. if( x0 == x1 )
  396. return true;
  397. if( x0 > x1 )
  398. return (x0-x1)/(x0+x1) < eps;
  399. else
  400. return (x1-x0)/(x0+x1) < eps;
  401. }
  402. //=================================================================
  403. // cmLFSR() implementation based on note at bottom of:
  404. // http://www.ece.cmu.edu/~koopman/lfsr/index.html
  405. void cmLFSR( unsigned lfsrN, unsigned tapMask, unsigned seed, unsigned* yV, unsigned yN )
  406. {
  407. assert( 0 < lfsrN && lfsrN < 32 );
  408. unsigned i;
  409. for(i=0; i<yN; ++i)
  410. {
  411. if( (yV[i] = seed & 1)==1 )
  412. seed = (seed >> 1) ^ tapMask;
  413. else
  414. seed = (seed >> 1);
  415. }
  416. }
  417. bool cmMLS_IsBalanced( const unsigned* xV, int xN)
  418. {
  419. int a = 0;
  420. unsigned i;
  421. for(i=0; i<xN; ++i)
  422. if( xV[i] == 1 )
  423. ++a;
  424. return abs(a - (xN-a)) == 1;
  425. }
  426. unsigned _cmGenGoldCopy( int* y, unsigned yi, unsigned yN, unsigned* x, unsigned xN)
  427. {
  428. unsigned i;
  429. for(i=0; i<xN; ++i,++yi)
  430. y[yi] = x[i]==1 ? -1 : 1;
  431. assert(yi <= yN);
  432. return yi;
  433. }
  434. bool cmGenGoldCodes( unsigned lfsrN, unsigned poly_coeff0, unsigned poly_coeff1, unsigned goldN, int* yM, unsigned mlsN )
  435. {
  436. bool retFl = true;
  437. unsigned yi = 0;
  438. unsigned yN = goldN * mlsN;
  439. unsigned* mls0V = cmMemAllocZ(unsigned,mlsN);
  440. unsigned* mls1V = cmMemAllocZ(unsigned,mlsN);
  441. unsigned* xorV = cmMemAllocZ(unsigned,mlsN);
  442. unsigned i,j;
  443. cmLFSR(lfsrN, poly_coeff0, 1 << (lfsrN-1), mls0V, mlsN);
  444. cmLFSR(lfsrN, poly_coeff1, 1 << (lfsrN-1), mls1V, mlsN);
  445. if( cmMLS_IsBalanced(mls0V,mlsN) )
  446. yi = _cmGenGoldCopy(yM, yi, yN, mls0V, mlsN);
  447. if( yi<yN && cmMLS_IsBalanced(mls1V,mlsN) )
  448. yi = _cmGenGoldCopy(yM, yi, yN, mls1V, mlsN);
  449. for(i=0; yi < yN && i<mlsN-1; ++i )
  450. {
  451. for(j=0; j<mlsN; ++j)
  452. xorV[j] = (mls0V[j] + mls1V[ (i+j) % mlsN ]) % 2;
  453. if( cmMLS_IsBalanced(xorV,mlsN) )
  454. yi = _cmGenGoldCopy(yM,yi,yN,xorV,mlsN);
  455. }
  456. if(yi < yN )
  457. {
  458. //rc = cmErrMsg(err,kOpFailAtRC,"Gold code generation failed. Insuffient balanced pairs.");
  459. retFl = false;
  460. }
  461. cmMemFree(mls0V);
  462. cmMemFree(mls1V);
  463. cmMemFree(xorV);
  464. return retFl;
  465. }
  466. bool cmLFSR_Test()
  467. {
  468. // lfsrN = 5; % 5 6 7;
  469. // poly_coeff0 = 0x12; % 0x12 0x21 0x41;
  470. // poly_coeff1 = 0x1e; % 0x1e 0x36 0x72;
  471. unsigned lfsrN = 7;
  472. unsigned pc0 = 0x41;
  473. unsigned pc1 = 0x72;
  474. unsigned mlsN = (1 << lfsrN)-1;
  475. unsigned yN = mlsN*2;
  476. unsigned yV[ yN ];
  477. unsigned i;
  478. cmLFSR( lfsrN, pc0, 1 << (lfsrN-1), yV, yN );
  479. for(i=0; i<mlsN; ++i)
  480. if( yV[i] != yV[i+mlsN] )
  481. return false;
  482. //atVOU_PrintL(NULL,"0x12",yV,mlsN,2);
  483. cmLFSR( lfsrN, pc1, 1 << (lfsrN-1), yV, yN );
  484. //atVOU_PrintL(NULL,"0x17",yV,mlsN,2);
  485. for(i=0; i<mlsN; ++i)
  486. if( yV[i] != yV[i+mlsN] )
  487. return false;
  488. return true;
  489. }