//| Copyright: (C) 2009-2020 Kevin Larke //| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file. #include "cmPrefix.h" #include "cmGlobal.h" #include "cmRpt.h" #include "cmErr.h" #include "cmCtx.h" #include "cmMem.h" #include "cmMallocDebug.h" #include "cmFloatTypes.h" #include "cmMath.h" #include // u_char // TODO: rewrite to avoid copying // this code comes via csound source ... double cmX80ToDouble( unsigned char rate[10] ) { char sign; short exp = 0; unsigned long mant1 = 0; unsigned long mant0 = 0; double val; unsigned char* p = (unsigned char*)rate; exp = *p++; exp <<= 8; exp |= *p++; sign = (exp & 0x8000) ? 1 : 0; exp &= 0x7FFF; mant1 = *p++; mant1 <<= 8; mant1 |= *p++; mant1 <<= 8; mant1 |= *p++; mant1 <<= 8; mant1 |= *p++; mant0 = *p++; mant0 <<= 8; mant0 |= *p++; mant0 <<= 8; mant0 |= *p++; mant0 <<= 8; mant0 |= *p++; /* special test for all bits zero meaning zero - else pow(2,-16383) bombs */ if (mant1 == 0 && mant0 == 0 && exp == 0 && sign == 0) return 0.0; else { val = ((double)mant0) * pow(2.0,-63.0); val += ((double)mant1) * pow(2.0,-31.0); val *= pow(2.0,((double) exp) - 16383.0); return sign ? -val : val; } } // TODO: rewrite to avoid copying /* * Convert double to IEEE 80 bit floating point * Should be portable to all C compilers. * 19aug91 aldel/dpwe covered for MSB bug in Ultrix 'cc' */ void cmDoubleToX80(double val, unsigned char rate[10]) { char sign = 0; short exp = 0; unsigned long mant1 = 0; unsigned long mant0 = 0; unsigned char* p = (unsigned char*)rate; if (val < 0.0) { sign = 1; val = -val; } if (val != 0.0) /* val identically zero -> all elements zero */ { exp = (short)(log(val)/log(2.0) + 16383.0); val *= pow(2.0, 31.0+16383.0-(double)exp); mant1 =((unsigned)val); val -= ((double)mant1); val *= pow(2.0, 32.0); mant0 =((double)val); } *p++ = ((sign<<7)|(exp>>8)); *p++ = (u_char)(0xFF & exp); *p++ = (u_char)(0xFF & (mant1>>24)); *p++ = (u_char)(0xFF & (mant1>>16)); *p++ = (u_char)(0xFF & (mant1>> 8)); *p++ = (u_char)(0xFF & (mant1)); *p++ = (u_char)(0xFF & (mant0>>24)); *p++ = (u_char)(0xFF & (mant0>>16)); *p++ = (u_char)(0xFF & (mant0>> 8)); *p++ = (u_char)(0xFF & (mant0)); } bool cmIsPowerOfTwo( unsigned x ) { return !( (x < 2) || (x & (x-1)) ); } unsigned cmNextPowerOfTwo( unsigned val ) { unsigned i; unsigned mask = 1; unsigned msb = 0; unsigned cnt = 0; // if val is a power of two return it if( cmIsPowerOfTwo(val) ) return val; // next pow of zero is 2 if( val == 0 ) return 2; // if the next power of two can't be represented in 32 bits if( val > 0x80000000) { assert(0); return 0; } // find most sig. bit that is set - the number with only the next msb set is next pow 2 for(i=0; i<31; i++,mask<<=1) if( mask & val ) { msb = i; cnt++; } return 1 << (msb + 1); } unsigned cmNearPowerOfTwo( unsigned i ) { unsigned vh = cmNextPowerOfTwo(i); if( vh == 2 ) return vh; unsigned vl = vh / 2; if( vh - i < i - vl ) return vh; return vl; } bool cmIsOddU( unsigned v ) { return v % 2 == 1; } bool cmIsEvenU( unsigned v ) { return !cmIsOddU(v); } unsigned cmNextOddU( unsigned v ) { return cmIsOddU(v) ? v : v+1; } unsigned cmPrevOddU( unsigned v ) { return cmIsOddU(v) ? v : v-1; } unsigned cmNextEvenU( unsigned v ) { return cmIsEvenU(v) ? v : v+1; } unsigned cmPrevEvenU( unsigned v ) { return cmIsEvenU(v) ? v : v-1; } unsigned cmModIncr(int idx, int delta, int maxN ) { int sum = idx + delta; if( sum >= maxN ) return sum - maxN; if( sum < 0 ) return maxN + sum; return sum; } // modified bessel function of first kind, order 0 // ref: orfandis appendix B io.m double cmBessel0( double x ) { double eps = pow(10.0,-9.0); double n = 1.0; double S = 1.0; double D = 1.0; while(D > eps*S) { double T = x /(2.0*n); n = n+1; D = D * pow(T,2.0); S = S + D; } return S; } //================================================================= // The following elliptic-related function approximations come from // Parks & Burrus, Digital Filter Design, Appendix program 9, pp. 317-326 // which in turn draws directly on other sources // calculate complete elliptic integral (quarter period) K // given *complimentary* modulus kc cmReal_t cmEllipK( cmReal_t kc ) { cmReal_t a = 1, b = kc, c = 1, tmp; while( c > cmReal_EPSILON ) { c = 0.5*(a-b); tmp = 0.5*(a+b); b = sqrt(a*b); a = tmp; } return M_PI/(2*a); } // calculate elliptic modulus k // given ratio of complete elliptic integrals r = K/K' // (solves the "degree equation" for fixed N = K*K1'/K'K1) cmReal_t cmEllipDeg( cmReal_t r ) { cmReal_t q,a,b,c,d; a = b = c = 1; d = q = exp(-M_PI*r); while( c > cmReal_EPSILON ) { a = a + 2*c*d; c = c*d*d; b = b + c; d = d*q; } return 4*sqrt(q)*pow(b/a,2); } // calculate arc elliptic tangent u (elliptic integral of the 1st kind) // given argument x = sc(u,k) and *complimentary* modulus kc cmReal_t cmEllipArcSc( cmReal_t x, cmReal_t kc ) { cmReal_t a = 1, b = kc, y = 1/x, tmp; unsigned L = 0; while( true ) { tmp = a*b; a += b; b = 2*sqrt(tmp); y -= tmp/y; if( y == 0 ) y = sqrt(tmp) * 1E-10; if( fabs(a-b)/a < cmReal_EPSILON ) break; L *= 2; if( y < 0 ) L++; } if( y < 0 ) L++; return (atan(a/y) + M_PI*L)/a; } // calculate Jacobi elliptic functions sn, cn, and dn // given argument u and *complimentary* modulus kc cmRC_t cmEllipJ( cmReal_t u, cmReal_t kc, cmReal_t* sn, cmReal_t* cn, cmReal_t* dn ) { assert( sn != NULL || cn != NULL || dn != NULL ); if( u == 0 ) { if( sn != NULL ) *sn = 0; if( cn != NULL ) *cn = 1; if( dn != NULL ) *dn = 1; return cmOkRC; } int i; cmReal_t a,b,c,d,e,tmp,_sn,_cn,_dn; cmReal_t aa[16], bb[16]; a = 1; b = kc; for( i = 0; i < 16; i++ ) { aa[i] = a; bb[i] = b; tmp = (a+b)/2; b = sqrt(a*b); a = tmp; if( (a-b)/a < cmReal_EPSILON ) break; } c = a/tan(u*a); d = 1; for( ; i >= 0; i-- ) { e = c*c/a; c = c*d; a = aa[i]; d = (e + bb[i]) / (e+a); } _sn = 1/sqrt(1+c*c); _cn = _sn*c; _dn = d; if( sn != NULL ) *sn = _sn; if( cn != NULL ) *cn = _cn; if( dn != NULL ) *dn = _dn; return cmOkRC; } //================================================================= // bilinear transform // z = (2*sr + s)/(2*sr - s) cmRC_t cmBlt( unsigned n, cmReal_t sr, cmReal_t* rp, cmReal_t* ip ) { unsigned i; cmReal_t a = 2*sr, tr, ti, td; for( i = 0; i < n; i++ ) { tr = rp[i]; ti = ip[i]; td = pow(a-tr, 2) + ti*ti; rp[i] = (a*a - tr*tr - ti*ti)/td; ip[i] = 2*a*ti/td; if( tr < -1E15 ) rp[i] = 0; if( fabs(ti) > 1E15 ) ip[i] = 0; } return cmOkRC; } unsigned cmHzToMidi( double hz ) { float midi = 12.0 * log2(hz/13.75) + 9; if( midi < 0 ) midi = 0; if( midi > 127 ) midi = 127; return (unsigned)lround(midi); } float cmMidiToHz( unsigned midi ) { double m = midi <= 127 ? midi : 127; return (float)( 13.75 * pow(2.0,(m - 9.0)/12.0)); } //================================================================= // Floating point byte swapping // Unions used to type-pun the swapping functions and thereby // avoid strict aliasing problems with -O2. Using unions for // this purpose is apparently legal under C99 but not C++. typedef union { unsigned u; float f; } _cmMathU_t; typedef union { unsigned long long u; double f; } _cmMathUL_t; unsigned cmFfSwapFloatToUInt( float v ) { assert( sizeof(float) == sizeof(unsigned)); _cmMathU_t u; u.f=v; return cmSwap32(u.u); } float cmFfSwapUIntToFloat( unsigned v ) { assert( sizeof(float) == sizeof(unsigned)); _cmMathU_t u; u.u = cmSwap32(v); return u.f; } unsigned long long cmFfSwapDoubleToULLong( double v ) { assert( sizeof(double) == sizeof(unsigned long long)); _cmMathUL_t u; u.f = v; return cmSwap64(u.u); } double cmFfSwapULLongToDouble( unsigned long long v ) { assert( sizeof(double) == sizeof(unsigned long long)); _cmMathUL_t u; u.u = cmSwap64(v); return u.f; } int cmRandInt( int min, int max ) { assert( min <= max ); int offs = max - min; return min + cmMax(0,cmMin(offs,(int)round(offs * (double)rand() / RAND_MAX))); } unsigned cmRandUInt( unsigned min, unsigned max ) { assert( min <= max ); unsigned offs = max - min; return min + cmMax(0,cmMin(offs,(unsigned)round(offs * (double)rand() / RAND_MAX))); } float cmRandFloat( float min, float max ) { assert( min <= max ); float offs = max - min; return min + cmMax(0,cmMin(offs,(float)(offs * (double)rand() / RAND_MAX))); } double cmRandDouble( double min, double max ) { assert( min <= max ); double offs = max - min; return min + cmMax(0,cmMin(offs,(offs * (double)rand() / RAND_MAX))); } //================================================================= // Base on: http://stackoverflow.com/questions/3874627/floating-point-comparison-functions-for-c-sharp bool cmIsCloseD( double x0, double x1, double eps ) { double d = fabs(x0-x1); if( x0 == x1 ) return true; if( x0==0 || x1==0 || d x1 ) return (x0-x1)/(x0+x1) < eps; else return (x1-x0)/(x0+x1) < eps; } //================================================================= // cmLFSR() implementation based on note at bottom of: // http://www.ece.cmu.edu/~koopman/lfsr/index.html void cmLFSR( unsigned lfsrN, unsigned tapMask, unsigned seed, unsigned* yV, unsigned yN ) { assert( 0 < lfsrN && lfsrN < 32 ); unsigned i; for(i=0; i> 1) ^ tapMask; else seed = (seed >> 1); } } bool cmMLS_IsBalanced( const unsigned* xV, int xN) { int a = 0; unsigned i; for(i=0; i