Many documentation string additions and updates.

This commit is contained in:
kevin 2020-10-15 11:59:12 -04:00
parent a1a3ece09d
commit 7b32da2c04
32 changed files with 2131 additions and 871 deletions

View File

@ -5,6 +5,17 @@
#ifdef __cplusplus
extern "C" {
#endif
//( { file_desc:"Score follow a MIDI files." kw[score] }
//
// This function uses a CSV score file generated from cmXScoreTest() to score follow a MIDI file.
// Output filesL
// - MIDI file with velocities from the score applied to the associated notes in the MIDI file.
// - A text file, for use with cmTimeLine, which describes the bar positions as absolute times into the score.
// - An SVG file which shows the score match results over time for each note in the score.
// - A report file which lists the score match status over time.
enum
{
@ -24,6 +35,7 @@ extern "C" {
const cmChar_t* midiOutFn, // (optional) midiFn with apply sostenuto and velocities from the score to the MIDI file
const cmChar_t* tlBarOutFn // (optional) bar positions sutiable for use in a cmTimeLine description file.
);
//)
#ifdef __cplusplus
}

View File

@ -5,6 +5,8 @@
extern "C" {
#endif
//( { file_desc:"Implements the functionality of cmMidiScoreFollowMain()." kw[score] }
enum
{
kOkSmgRC = cmOkRC,
@ -34,6 +36,8 @@ extern "C" {
// from from score into MIDI file and then write the updated MIDI
// file to 'newMidiFn'.
cmSmgRC_t cmScoreMatchGraphicUpdateMidiFromScore( cmCtx_t* ctx, cmSmgH_t h, const cmChar_t* newMidiFn );
//)
#ifdef __cplusplus
}

View File

@ -5,6 +5,17 @@
extern "C" {
#endif
//( { file_desc:"Process a Music XML score in a variety of ways." kw[score] }
//$
// cmScoreTest() performs a the following functions:
// - Parses Music XML files into a text (edit) file.
// - The 'edit' file can then be manually edited to modify and add information to the score.
// - The modified 'edit' file can then be used to generate a CSV file
// suitable for use with cmScore(), a MIDI file which can render the modified score,
// and a SVG file which will display the score as a piano roll.
//
enum
{
kOkXsRC = cmOkRC,
@ -73,6 +84,8 @@ extern "C" {
// Set begMeasNumb to the first measure the to be written to the output csv, MIDI and SVG files.
// Set begBPM to 0 to use the tempo from the score otherwise set it to the tempo at begMeasNumb.
cmXsRC_t cmXScoreTest( cmCtx_t* ctx, const cmChar_t* xmlFn, const cmChar_t* reorderFn, const cmChar_t* csvOutFn, const cmChar_t* midiOutFn, const cmChar_t* svgOutFn, bool reportFl, int begMeasNumb, int begBPM, bool svgStandAloneFl, bool svgPanZoomFl, bool damperRptFl );
//)
#ifdef __cplusplus
}

View File

@ -1071,7 +1071,12 @@ void cmApBufReport( cmRpt_t* rpt )
}
}
/// [cmApBufExample]
//{ { label:cmApBufExample }
//(
// cmApBufTest() demonstrates the audio buffer usage.
//)
//(
void cmApBufTest( cmRpt_t* rpt )
{
@ -1172,6 +1177,7 @@ void cmApBufTest( cmRpt_t* rpt )
cmApBufFinalize();
}
/// [cmApBufExample]
//)
//}

View File

@ -1,4 +1,4 @@
//( { file_desc: "Cross platform audio device interface." kw:[audio rt] }
//( { file_desc: "Cross platform audio device interface." kw:[audio rt devices] }
//
// This interface provides data declarations for platform dependent
// audio I/O functions. The implementation for the functions are

View File

@ -1157,11 +1157,16 @@ unsigned cmAudioSysSubSystemCount( cmAudioSysH_t h )
//===========================================================================================================================
//
// cmAsTest()
// cmAudioSysTest()
//
/// [cmAudioSysTest]
//{ { label:cmAudioSysTest }
//(
// cmAudioSysTest() demonstrates the audio system usage.
//)
//(
typedef struct
{
double hz; // current synth frq
@ -1463,4 +1468,5 @@ void cmAudioSysTest( cmRpt_t* rpt, int argc, const char* argv[] )
}
/// [cmAudioSysTest]
//)
//}

View File

@ -3994,7 +3994,8 @@ void _cmJsonTestPrint( void* userPtr, const cmChar_t* text )
//(
// cmJsonTest() demonstrates some JSON tree operations.
//)
//[
//(
cmJsRC_t cmJsonTest( const char* fn, cmCtx_t* ctx )
{
cmJsRC_t rc = kOkJsRC;
@ -4076,5 +4077,5 @@ cmJsRC_t cmJsonTest( const char* fn, cmCtx_t* ctx )
return rc == kOkJsRC ? rc1 : rc;
}
//]
//)
//}

View File

@ -5,7 +5,7 @@
extern "C" {
#endif
//( { file_desc:"Query and get keypresses directly from the console." kw:[system] }
//( { file_desc:"Query and get keypresses directly from the console." kw:[system devices] }
enum
{

View File

@ -5,7 +5,7 @@
extern "C" {
#endif
//( { file_desc:"Device independent MIDI port related code." kw:[midi]}
//( { file_desc:"Device independent MIDI port related code." kw:[midi devices]}
typedef unsigned cmMpRC_t;

View File

@ -1,7 +1,8 @@
#ifndef cmPP_NARG_H
#define cmPP_NARG_H
//( { file_desc:"Var-args argument counter. " kw:[base] }
//
// Taken from here:
// https://groups.google.com/forum/#!topic/comp.std.c/d-6Mj5Lko_s
// and here:
@ -43,3 +44,5 @@
9,8,7,6,5,4,3,2,1,0
#endif
//)

View File

@ -5,8 +5,9 @@
extern "C" {
#endif
//( { file_desc:"Global prefix header for the 'cm' library. Currently empty." kw:[base] }
//)
#ifdef __cplusplus
}

View File

@ -28,7 +28,6 @@
#include <time.h> // time()
void cmTestPrint( cmRpt_t* rpt, const char* fmt, ... )
{
va_list vl;

View File

@ -5,10 +5,14 @@
extern "C" {
#endif
//( { file_desc: "Some obsolete test stub functions. See the cmtools project for a complete set of test and example functions." kw:[proc]}
void cmProcTestNoInit( cmCtx_t* ctx );
void cmProcTestGnuPlot( cmCtx_t* ctx );
void cmProcTest( cmCtx_t* ctx );
//)
#ifdef __cplusplus
}
#endif

View File

@ -4,6 +4,8 @@
#ifdef __cplusplus
extern "C" {
#endif
//( { file_desc: "The cmRptFile provides a cmRpt class which outputs to a file." kw:[base]}
enum
{
@ -23,6 +25,8 @@ extern "C" {
cmRpt_t* cmRptFileRpt( cmRptFileH_t h );
//)
#ifdef __cplusplus
}
#endif

View File

@ -5,6 +5,8 @@
extern "C" {
#endif
//( { file_desc:"Serial port interface." kw[system devices rt] }
typedef unsigned cmSeRC_t;
enum
@ -86,6 +88,8 @@ extern "C" {
cmSeRC_t cmSePortTest(cmCtx_t* ctx);
//)
#ifdef __cplusplus
}
#endif

View File

@ -5,6 +5,9 @@
extern "C" {
#endif
//( { file_desc:"SVG file writer." kw[file plot] }
enum
{
kOkSvgRC = cmOkRC,
@ -31,6 +34,8 @@ enum
// Both the CSS file and svg-pan-zoom.min.js should therefore be in the same directory
// as the output HTML file.
cmSvgRC_t cmSvgWriterWrite( cmSvgH_t h, const cmChar_t* cssFn, const cmChar_t* outFn, bool standaloneFl, bool panZoomFl );
//)
#ifdef __cplusplus
}

View File

@ -4,6 +4,8 @@
#ifdef __cplusplus
extern "C" {
#endif
//( { file_desc:"Generate time-alignment data between an audio and MIDI file. See cmDspSyncRecd_t." kw[proc] }
enum
{
@ -27,7 +29,8 @@ extern "C" {
cmSyRC_t cmSyncRecdTest( cmCtx_t* ctx );
//)
#ifdef __cplusplus
}
#endif

990
src/cmVectOpsDocOut.h Normal file
View File

@ -0,0 +1,990 @@
//( { file_desc:"Math vector operations." kw:[vop math] }
//)
//( { label:misc desc:"Miscellaneous vector operations." kw:[vop] }
// Compute the cummulative sum of sbp[dn]. Equivalent to Matlab cumsum().
T_t* cmVOT_CumSum(T_t* dbp, unsigned dn, const T_t* sbp );
// Returns true if all values in each vector are equal.
bool cmVOT_Equal( const T_t* s0p, const T_t* s1p, unsigned sn );
// Same as Matlab linspace() v[i] = i * (limit-1)/n
T_t* cmVOT_LinSpace( T_t* dbp, unsigned dn, T_t base, T_t limit );
//======================================================================================================================
//)
//( { label:Print desc:"Vector printing functions." kw:[vop] }
// Setting fieldWidth or decPltCnt to to negative values result in fieldWidth == 10 or decPlCnt == 4
//
void cmVOT_Printf( cmRpt_t* rpt, unsigned rn, unsigned cn, const T_t* dbp, int fieldWidth, int decPlCnt, const char* fmt, unsigned flags );
void cmVOT_Print( cmRpt_t* rpt, unsigned rn, unsigned cn, const T_t* dbp );
void cmVOT_PrintE( cmRpt_t* rpt, unsigned rn, unsigned cn, const T_t* dbp );
void cmVOT_PrintLf( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const T_t* dbp, unsigned fieldWidth, unsigned decPlCnt, const char* fmt );
void cmVOT_PrintL( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const T_t* dbp );
void cmVOT_PrintLE( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const T_t* dbp );
//======================================================================================================================
//)
//( { label:Normalization desc:"Normalization and standardization functions." kw:[vop] }
// Normalize the vector of proabilities by dividing through by the sum.
// This leaves the relative proportions of each value unchanged while producing a total probability of 1.0.
//
T_t* cmVOT_NormalizeProbabilityVV(T_t* dbp, unsigned dn, const T_t* sbp);
T_t* cmVOT_NormalizeProbability(T_t* dbp, unsigned dn);
T_t* cmVOT_NormalizeProbabilityN(T_t* dbp, unsigned dn, unsigned stride);
//
// Standardize the columns of the matrix by subtracting the mean and dividing by the standard deviation.
// uV[dcn] returns the mean of the data and is optional.
// sdV[dcn] return the standard deviation of the data and is optional.
T_t* cmVOT_StandardizeRows( T_t* dbp, unsigned drn, unsigned dcn, T_t* uV, T_t* sdV );
T_t* cmVOT_StandardizeCols( T_t* dbp, unsigned drn, unsigned dcn, T_t* uV, T_t* sdV );
//
// Normalize by dividing through by the max. value.
// dp[] ./= max(dp). Returns the index of the max value.
unsigned cmVOT_NormToMax( T_t* dp, unsigned dn );
//
// Normalize by dividing through by the max. absolute value.
// db[] .*= fact / abs(max(dp));
unsigned cmVOT_NormToAbsMax( T_t* dp, unsigned dn, T_t fact );
//======================================================================================================================
//)
//( { label:"Mean and variance" desc:"Compute mean and variance." kw:[vop] }
T_t cmVOT_Mean( const T_t* sp, unsigned sn );
T_t cmVOT_MeanN( const T_t* sp, unsigned sn, unsigned stride );
//
// Take the mean of each column/row of a matrix.
// Set 'dim' to 0 to return mean of columns else return mean of rows.
T_t* cmVOT_MeanM( T_t* dp, const T_t* sp, unsigned srn, unsigned scn, unsigned dim );
//
// Take the mean of the first 'cnt' element of each column/row of a matrix.
// Set 'dim' to 0 to return mean of columns else return mean of rows.
// If 'cnt' is greater than the number of elements in the column/row then 'cnt' is
// reduced to the number of elements in the column/row.
T_t* cmVOT_MeanM2( T_t* dp, const T_t* sp, unsigned srn, unsigned scn, unsigned dim, unsigned cnt );
//
// Find the mean of the data points returned by srcFuncPtr(argPtr,i) and return it in dp[dim].
// 'dim' is both the size of dp[] and the length of each data point returned by srcFuncPtr().
// srcFuncPtr() will be called 'cnt' times but it may return NULL on some calls if the associated
// data point should not be included in the mean calculation.
T_t* cmVOT_Mean2( T_t* dp, const T_t* (*srcFuncPtr)(void* arg, unsigned idx ), unsigned dim, unsigned cnt, void* argPtr );
//
// avgPtr is optional - set to NULL to compute the average
T_t cmVOT_Variance( const T_t* sp, unsigned sn, const T_t* avgPtr );
T_t cmVOT_VarianceN(const T_t* sp, unsigned sn, unsigned stride, const T_t* avgPtr );
//
// Set dim=0 to return variance of columns otherwise return variance or rows.
T_t* cmVOT_VarianceM(T_t* dp, const T_t* sp, unsigned srn, unsigned scn, const T_t* avgPtr, unsigned dim );
//======================================================================================================================
//)
//( { label:"Covariance" desc:"Matrix covariance" kw:[vop] }
// Calculate the sample covariance matrix from a set of Gaussian distributed multidimensional data.
// sp[dn,scn] is the data set.
// dn is the dimensionality of the data.
// scn is the count of data points
// up[dn] is an optional mean vector. If up == NULL then the mean of the data is calculated internally.
// selIdxV[scn] can be used to select a subset of datapoints to process.
// If selIdxV[] is non-NULL then only columns where selIdxV[i]==selKey will be processed.
//
// dp[dn,dn] = covar( sp[dn,scn], u[dn] )
void cmVOT_GaussCovariance(T_t* dp, unsigned dn, const T_t* sp, unsigned scn, const T_t* up, const unsigned* selIdxV, unsigned selKey );
// Calculate the sample covariance matrix.
// dp[ dn*dn ] - output matrix
// dn - dimensionality of the data
// srcFuncPtr - User defined function which is called to return a pointer to a data vector at index 'idx'.
// The returned data vector must contain 'dn' elements. The function should return NULL
// if the data point associated with 'idx' should not be included in the covariance calculation.
// sn - count of data vectors
// userPtr - User arg. passed to srcFuncPtr.
// uV[ dn ] - mean of the data set (optional)
// Note that this function computes the covariance matrix in 2 serial passes (1 if the mean vector is given)
// through the 'sn' data points.
// The result of this function are identical to the octave cov() function.
void cmVOT_GaussCovariance2(T_t* dp, unsigned dn, const T_t* (*srcFuncPtr)(void* userPtr, unsigned idx), unsigned sn, void* userPtr, const T_t* uV, const unsigned* selIdxV, unsigned selKey );
//======================================================================================================================
//)
//( { label:"Float point normal" desc:"Evaluate the 'normalness of floating point values." kw:[vop] }
// Returns true if all values are 'normal' according the the C macro 'isnormal'.
// This function will return false if any of the values are zero.
bool cmVOT_IsNormal( const T_t* sp, unsigned sn );
// Returns true if all values are 'normal' or zero according the the C macro 'isnormal'.
// This function accepts zeros as normal.
bool cmVOT_IsNormalZ(const T_t* sp, unsigned sn );
// Set dp[dn] to the indexes of the non-normal numbers in sp[dn].
// Returns the count of indexes stored in dp[].
unsigned cmVOT_FindNonNormal( unsigned* dp, unsigned dn, const T_t* sp );
unsigned cmVOT_FindNonNormalZ( unsigned* dp, unsigned dn, const T_t* sp );
//======================================================================================================================
//)
//( { label:"Measure" desc:"Measure features of a vector." kw:[vop] }
// Successive call to to ZeroCrossCount should preserve the value pointed to by delaySmpPtr.
unsigned cmVOT_ZeroCrossCount( const T_t* sp, unsigned n, T_t* delaySmpPtr);
// Calculuate the sum of the squares of all elements in bp[bn].
T_t cmVOT_SquaredSum( const T_t* bp, unsigned bn );
// sn must be <= wndSmpCnt. If sn < wndSmpCnt then sp[sn] is treated as a
// a partially filled buffer padded with wndSmpCnt-sn zeros.
// rms = sqrt( sum(sp[1:sn] .* sp[1:sn]) / wndSmpCnt )
T_t cmVOT_RMS( const T_t* sp, unsigned sn, unsigned wndSmpCnt );
// This function handles the case were sn is not an integer multiple of
// wndSmpCnt or hopSmpCnt. In this case the function computes zero
// padded RMS values for windows which go past the end of sp[sn].
T_t* cmVOT_RmsV( T_t* dp, unsigned dn, const T_t* sp, unsigned sn, unsigned wndSmpCnt, unsigned hopSmpCnt );
// Return the magnitude (Euclidean Norm) of a vector.
T_t cmVOT_EuclidNorm( const T_t* sp, unsigned sn );
T_t cmVOT_AlphaNorm(const T_t* sp, unsigned sn, T_t alpha );
//======================================================================================================================
//)
//( { label:"Distance" desc:"Calculate various vector distances." kw:[vop] }
// Return the Itakura-Saito distance between a modelled power spectrum (up) and another power spectrum (sp).
T_t cmVOT_ItakuraDistance( const T_t* up, const T_t* sp, unsigned sn );
// Return the cosine distance between two vectors.
T_t cmVOT_CosineDistance( const T_t* s0P, const T_t* s1p, unsigned sn );
// Return the Euclidean distance between two vectors
T_t cmVOT_EuclidDistance( const T_t* s0p, const T_t* s1p, unsigned sn );
// Return the Manhattan distance between two vectors
T_t cmVOT_L1Distance( const T_t* s0p, const T_t* s1p, unsigned sn );
// Return the Mahalanobis distance between a vector and the mean of the distribution.
// The mean vector could be replaced with another vector drawn from the same distribution in which
// case the returned value would reflect the distance between the two vectors.
// 'sn' is the dimensionality of the data.
// up[D] and invCovM[sn,sn] are the mean and inverse of the covariance matrix of the distribution from
// which sp[D] is drawn.
T_t cmVOT_MahalanobisDistance( const T_t* sp, unsigned sn, const T_t* up, const T_t* invCovM );
// Return the KL distance between two probability distributions up[sn] and sp[sn].
// Since up[] and sp[] are probability distributions they must sum to 1.0.
T_t cmVOT_KL_Distance( const T_t* up, const T_t* sp, unsigned sn );
// Return the KL distance between a prototype vector up[sn] and another vector sp[sn].
// This function first normalizes the two vectors to sum to 1.0 before calling
// cmVOT_KL_Distance(up,sp,sn);
T_t cmVOT_KL_Distance2( const T_t* up, const T_t* sp, unsigned sn );
// Measure the Euclidean distance between a vector and all the columns in a matrix.
// If dv[scn] is no NULL then return the Euclidean distance from sv[scn] to each column of sm[srn,scn].
// The function returns the index of the closest data point (column) in sm[].
unsigned cmVOT_EuclidDistanceVM( T_t* dv, const T_t* sv, const T_t* sm, unsigned srn, unsigned scn );
// Measure the distance between each column in s0M[ rn, s0cn ] and
// each column in s1M[rn, s1cn ]. If dM is non-NULL store the
// result in dM[s1cn, s0cn]. The difference between s0M[:,0] and s1M[:,0]
// is stored in dM[0,0], the diff. between s0M[:,1] and s1M[:,1] is stored
// in dM[1,0], etc. If mvV[s0cn] is non-NULL then minV[i] is set with
// the distance from s0M[:,i] to the nearest column in s1M[]. If miV[s0cn]
// is non-NULL then it is set with the column index of s1M[] which is
// closest to s0M[:,i]. In other words mvV[i] gives the distance to column
// miV[i] from column s0M[:,i].
// In those cases where the distane from a prototype (centroid) to the data point
// is not the same as from the data point to the centroid then s1M[] is considered
// to hold the prototypes and s0M[] is considered to hold the data points.
// The distance function returns the distance from a prototype 'cV[dimN]' to
// an datapoint dV[dimN]. 'dimN' is the dimensionality of the data vector
// and is threfore equal to 'rn'.
void cmVOT_DistVMM(
T_t* dM, // dM[s1cn,s0cn] return distance mtx (optional)
T_t* mvV, // mvV[s0cn] distance to closest data point in s0M[]. (optional)
unsigned* miV, // miV[s0cn] column index into s1M[] of closest data point to s0M[:,i]. (optional)
unsigned rn, // dimensionality of the data and the row count for s0M[] and s1M[]
const T_t* s0M, // s0M[rn,s0cn] contains one data point per column
unsigned s0cn, // count of data points (count of columns in s0M[]
const T_t* s1M, // s1M[rn,s1cn] contains one prototype per column
unsigned s1cn, // count of prototypes (count of columns in s1m[]
T_t (*distFunc)( void* userPtr, const T_t* cV, const T_t* dV, unsigned dimN ),
void* userPtr );
//======================================================================================================================
//)
//( { label:"Select columns" desc:"Select columns based on distance." kw:[vop] }
// Select 'selIdxN' columns from sM[srn,scn].
// dM[srn,selIdxN] receives copies of the selected columns.
// selIdxV[selIdxN] receives the column indexes of the selected columns.
// Both dM[] and selIdxV[] are optional.
// In each case the first selected point is chosen at random.
// SelectRandom() then selects the following selIdxN-1 points at random.
// SelectMaxDist() selects the next selIdxN-1 points by selecting
// the point whose combined distance to the previously selected points
// is greatest. SelectMaxAvgDist() selectes the points whose combined
// average distance is greatest relative the the previously selected
// points.
void cmVOT_SelectRandom( T_t* dM, unsigned* selIdxV, unsigned selIdxN, const T_t* sM, unsigned srn, unsigned scn );
void cmVOT_SelectMaxDist( T_t* dM, unsigned* selIdxV, unsigned selIdxN, const T_t* sM, unsigned srn, unsigned scn, T_t (*distFunc)( void* userPtr, const T_t* s0V, const T_t* s1V, unsigned sn ), void* distUserPtr );
void cmVOT_SelectMaxAvgDist( T_t* dM, unsigned* selIdxV, unsigned selIdxN, const T_t* sM, unsigned srn, unsigned scn, T_t (*distFunc)( void* userPtr, const T_t* s0V, const T_t* s1V, unsigned sn ), void* distUserPtr );
//======================================================================================================================
//)
//( { label:"Matrix multiplication" desc:"Various matrix multiplication operations." kw:[vop] }
// Return the sum of the products (dot product)
T_t cmVOT_MultSumVV( const T_t* s0p, const T_t* s1p, unsigned sn );
T_t cmVOT_MultSumVS( const T_t* s0p, unsigned sn, T_t s );
// Number of elements in the dest vector is expected to be the same
// as the number of source matrix rows.
// mcn gives the number of columns in the source matrix which is
// expected to match the number of elements in the source vector.
// dbp[dn,1] = mp[dn,mcn] * vp[mcn,1]
T_t* cmVOT_MultVMV( T_t* dbp, unsigned dn, const T_t* mp, unsigned mcn, const T_t* vp );
// Multiply a row vector with a matrix to produce a row vector.
// dbp[1,dn] = v[1,vn] * m[vn,dn]
T_t* cmVOT_MultVVM( T_t* dbp, unsigned dn, const T_t* vp, unsigned vn, const T_t* mp );
// Same as MultVMtV() except M is transposed as part of the multiply.
// mrn gives the number of rows in m[] and number of elements in vp[]
// dpb[dn] = mp[mrn,dn] * vp[mrn]
T_t* cmVOT_MultVMtV( T_t* dbp, unsigned dn, const T_t* mp, unsigned mrn, const T_t* vp );
// Same as MultVMV() but where the matrix is diagonal.
T_t* cmVOT_MultDiagVMV( T_t* dbp, unsigned dn, const T_t* mp, unsigned mcn, const T_t* vp );
// Generalized matrix multiply.
// If transposition is selected for M0 or M1 then the given dimension represent the size of the matrix 'after' the transposion.
// d[drn,dcn] = alpha * op(m0[drn,m0cn_m1rn]) * op(m1[m0cn_m1rn,dcn]) + beta * d[drn,dcn]
/// See enum { kTranpsoseM0Fl=0x01, kTransposeM1Fl=0x02 } in cmVectOps for flags.
T_t* cmVOT_MultMMM1(T_t* dbp, unsigned drn, unsigned dcn, T_t alpha, const T_t* m0, const T_t* m1, unsigned m0cn_m1rn, T_t beta, unsigned flags );
// Same a cmVOT_MultMMM1 except allows the operation on a sub-matrix by providing the physical (memory) row count rather than the logical (matrix) row count.
T_t* cmVOT_MultMMM2(T_t* dbp, unsigned drn, unsigned dcn, T_t alpha, const T_t* m0, const T_t* m1, unsigned m0cn_m1rn, T_t beta, unsigned flags, unsigned dprn, unsigned m0prn, unsigned m1prn );
// d[drn,dcn] = m0[drn,m0cn] * m1[m1rn,dcn]
T_t* cmVOT_MultMMM( T_t* dbp, unsigned drn, unsigned dcn, const T_t* m0, const T_t* m1, unsigned m0cn_m1rn );
// same as MultMMM() except second source matrix is transposed prior to the multiply
T_t* cmVOT_MultMMMt(T_t* dbp, unsigned drn, unsigned dcn, const T_t* m0, const T_t* m1, unsigned m0cn_m1rn );
//======================================================================================================================
//)
//( { label:"Linear algebra" desc:"Miscellaneous linear algebra operations. Determinant, Inversion, Cholesky decompostion. Linear system solver." kw:[vop] }
// Initialize dbp[dn,dn] as a square symetric positive definite matrix using values
// from a random uniform distribution. This is useful for initializing random
// covariance matrices as used by multivariate Gaussian distributions
// If t is non-NULL it must point to a block of scratch memory of t[dn,dn].
// If t is NULL then scratch memory is internally allocated and deallocated.
T_t* cmVOT_RandSymPosDef( T_t* dbp, unsigned dn, T_t* t );
// Compute the determinant of any square matrix.
T_t cmVOT_DetM( const T_t* sp, unsigned srn );
// Compute the determinant of a diagonal matrix.
T_t cmVOT_DetDiagM( const T_t* sp, unsigned srn);
// Compute the log determinant of any square matrix.
T_t cmVOT_LogDetM( const T_t* sp, unsigned srn );
// Compute the log determinant of a diagonal matrix.
T_t cmVOT_LogDetDiagM( const T_t* sp, unsigned srn);
// Compute the inverse of a square matrix. Returns NULL if the matrix is not invertable.
// 'drn' is the dimensionality of the data.
T_t* cmVOT_InvM( T_t* dp, unsigned drn );
// Compute the inverse of a diagonal matrix. Returns NULL if the matrix is not invertable.
T_t* cmVOT_InvDiagM( T_t* dp, unsigned drn );
// Solve a linear system of the form AX=B where A[an,an] is square.
// Since A is square B must have 'an' rows.
// Result is returned in B.
// Returns a pointer to B on success or NULL on fail.
// NOTE: Both A and B are overwritten by this operation.
T_t* cmVOT_SolveLS( T_t* A, unsigned an, T_t* B, unsigned bcn );
// Perform a Cholesky decomposition of the square symetric matrix U[un,un].
// The factorization has the form: A=U'TU.
// If the factorization is successful A is set to U and a pointer to A is returned.
// Note that the lower triangle of A is not overwritten. See CholZ().
// If the factorization fails NULL is returned.
T_t* cmVOT_Chol(T_t* A, unsigned an );
// Same as Chol() but sets the lower triangle of U to zero.
// This is equivalent ot the Matlab version.
T_t* cmVOT_CholZ(T_t* U, unsigned un );
// Calculate the best fit line: b0 + b1*x_i through the points x_i,y_i.
// Set x to NULL if it uses sequential integers [0,1,2,3...]
void cmVOT_Lsq1(const T_t* x, const T_t* y, unsigned n, T_t* b0, T_t* b1 );
//======================================================================================================================
//)
//( { label:"Stretch/Shrink" desc:"Stretch or shrink a vector by resampling." kw:[vop] }
// Return the average value of the contents of sbp[] between two fractional indexes
T_t cmVOT_FracAvg( double bi, double ei, const T_t* sbp, unsigned sn );
// Shrinking function - Decrease the size of sbp[] by averaging blocks of values into single values in dbp[]
T_t* cmVOT_DownSampleAvg( T_t* dbp, unsigned dn, const T_t* sbp, unsigned sn );
// Stretching function - linear interpolate between points in sbp[] to fill dbp[] ... where dn > sn
T_t* cmVOT_UpSampleInterp( T_t* dbp, unsigned dn, const T_t* sbp, unsigned sn );
// Stretch or shrink the sbp[] to fit into dbp[]
T_t* cmVOT_FitToSize( T_t* dbp, unsigned dn, const T_t* sbp, unsigned sn );
// Stretch or shrink sV[] to fit into dV[] using a simple linear mapping.
// When stretching (sn<dn) each source element is repeated dn/sn times
// and the last fraction position is interpolated. When shrinking
// (sn>dn) each dest value is formed by the average of sequential segments
// of sn/dn source elements. Fractional values are used at the beginning
// and end of each segment.
T_t* cmVOT_LinearMap(T_t* dV, unsigned dn, T_t* sV, unsigned sn );
//======================================================================================================================
//)
//( { label:"Random number generation" desc:"Generate random numbers." kw:[vop] }
// Generate a vector of uniformly distributed random numbers in the range minVal to maxVal.
T_t* cmVOT_Random( T_t* dbp, unsigned dn, T_t minVal, T_t maxVal );
// Generate dn random numbers integers between 0 and wn-1 based on a the relative
// weights in wp[wn]. Note thtat the weights do not have to sum to 1.0.
unsigned* cmVOT_WeightedRandInt( unsigned* dbp, unsigned dn, const T_t* wp, unsigned wn );
// Generate a vector of normally distributed univariate random numbers
T_t* cmVOT_RandomGauss( T_t* dbp, unsigned dn, T_t mean, T_t var );
// Generate a vector of normally distributed univariate random numbers where each value has been drawn from a
// seperately parameterized Gaussian distribution. meanV[] and varV[] must both contain dn velues.
T_t* cmVOT_RandomGaussV( T_t* dbp, unsigned dn, const T_t* meanV, const T_t* varV );
// Generate a matrix of multi-dimensional random values. Each column represents a single vector value and each row contains a dimension.
// meanV[] and varV[] must both contain drn elements where each meanV[i],varV[i] pair parameterize one dimensions Gaussian distribution.
T_t* cmVOT_RandomGaussM( T_t* dbp, unsigned drn, unsigned dcn, const T_t* meanV, const T_t* varV );
T_t* cmVOT_RandomGaussDiagM( T_t* dbp, unsigned drn, unsigned dcn, const T_t* meanV, const T_t* diagCovarM );
// Generate a matrix of multivariate random values drawn from a normal distribution.
// The dimensionality of the values are 'drn'.
// The count of returned values is 'dcn'.
// meanV[drn] and covarM[drn,drn] parameterize the normal distribution.
// The covariance matrix must be symetric and positive definite.
// t[(drn*drn) ] points to scratch memory or is set to NULL if the function should
// allocate the memory internally.
// Based on octave function mvrnd.m.
T_t* cmVOT_RandomGaussNonDiagM( T_t* dbp, unsigned drn, unsigned dcn, const T_t* meanV, const T_t* covarM, T_t* t );
// Same as RandomGaussNonDiagM() except requires the upper trianglular
// Cholesky factor of the covar matrix in 'uM'.
T_t* cmVOT_RandomGaussNonDiagM2( T_t* dbp, unsigned drn, unsigned dcn, const T_t* meanV, const T_t* uM );
// Generate a matrix of N*K multi-dimensional data points.
// Where D is the dimensionality of the data. (D == drn).
// K is the number of multi-dimensional PDF's (clusters).
// N is the number of data points to generate per cluster.
// dbp[ D, N*K ] contains the returned data point.
// The first N columns is associated with the cluster 0,
// the next N columns is associated with cluster 1, ...
// meanM[ D, K ] and varM[D,K] parameterize the generating PDF.s for each cluster
T_t* cmVOT_RandomGaussMM( T_t* dbp, unsigned drn, unsigned dcn, const T_t* meanM, const T_t* varM, unsigned K );
// Evaluate the univariate normal distribution defined by 'mean' and 'stdDev'.
T_t* cmVOT_GaussPDF( T_t* dbp, unsigned dn, const T_t* sbp, T_t mean, T_t stdDev );
// Evaluate a multivariate normal distribution defined by meanV[D] and covarM[D,D]
// at the data points held in the columns of xM[D,N]. Return the evaluation
// results in the vector yV[N]. D is the dimensionality of the data. N is the number of
// data points to evaluate and values to return in yV[N].
// Set diagFl to true if covarM is diagonal.
// The function fails and returns false if the covariance matrix is singular.
bool cmVOT_MultVarGaussPDF( T_t* yV, const T_t* xM, const T_t* meanV, const T_t* covarM, unsigned D, unsigned N, bool diagFl );
// Same as multVarGaussPDF[] except takes the inverse covar mtx invCovarM[D,D]
// and log determinant of covar mtx.
// Always returns yV[].
T_t* cmVOT_MultVarGaussPDF2( T_t* yV, const T_t* xM, const T_t* meanV, const T_t* invCovarM, T_t logDet, unsigned D, unsigned N, bool diagFl );
// Same as multVarGaussPDF[] except uses a function to obtain the data vectors.
// srcFunc() can filter the data points by returning NULL if the data vector at frmIdx should
// not be evaluated against the PDF. In this case yV[frmIdx] will be set to 0.
T_t* cmVOT_MultVarGaussPDF3(
T_t* yV,
const T_t* (*srcFunc)(void* funcDataPtr, unsigned frmIdx ),
void* funcDataPtr,
const T_t* meanV,
const T_t* invCovarM,
T_t logDet,
unsigned D,
unsigned N,
bool diagFl );
//======================================================================================================================
//)
//( { label:"Signal generators" desc:"Generate periodic signals." kw:[vop] }
// The following functions all return the phase of the next value.
unsigned cmVOT_SynthSine( T_t* dbp, unsigned dn, unsigned phase, double srate, double hz );
unsigned cmVOT_SynthCosine( T_t* dbp, unsigned dn, unsigned phase, double srate, double hz );
unsigned cmVOT_SynthSquare( T_t* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt );
unsigned cmVOT_SynthTriangle( T_t* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt );
unsigned cmVOT_SynthSawtooth( T_t* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt );
unsigned cmVOT_SynthPulseCos( T_t* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt );
unsigned cmVOT_SynthImpulse( T_t* dbp, unsigned dn, unsigned phase, double srate, double hz );
unsigned cmVOT_SynthPhasor( T_t* dbp, unsigned dn, unsigned phase, double srate, double hz );
// Return value should be passed back via delaySmp on the next call.
T_t cmVOT_SynthPinkNoise( T_t* dbp, unsigned dn, T_t delaySmp );
//======================================================================================================================
//)
//( { label:"Exponential conversion" desc:"pow() and log() functions." kw:[vop] }
// Raise dbp[] to the power 'expon'
T_t* cmVOT_PowVS( T_t* dbp, unsigned dn, T_t expon );
T_t* cmVOT_PowVVS( T_t* dbp, unsigned dn, const T_t* sp, T_t expon );
// Take the natural log of all values in sbp[dn]. It is allowable for sbp point to the same array as dbp=.
T_t* cmVOT_LogV( T_t* dbp, unsigned dn, const T_t* sbp );
//======================================================================================================================
//)
//( { label:"dB Conversions" desc:"Convert vectors between dB,linear and power representations." kw:[vop] }
// Convert a magnitude (amplitude) spectrum to/from decibels.
// It is allowable for dbp==sbp.
T_t* cmVOT_AmplToDbVV( T_t* dbp, unsigned dn, const T_t* sbp, T_t minDb );
T_t* cmVOT_DbToAmplVV( T_t* dbp, unsigned dn, const T_t* sbp);
T_t* cmVOT_PowToDbVV( T_t* dbp, unsigned dn, const T_t* sbp, T_t minDb );
T_t* cmVOT_DbToPowVV( T_t* dbp, unsigned dn, const T_t* sbp);
T_t* cmVOT_LinearToDb( T_t* dbp, unsigned dn, const T_t* sp, T_t mult );
T_t* cmVOT_dBToLinear( T_t* dbp, unsigned dn, const T_t* sp, T_t mult );
T_t* cmVOT_AmplitudeToDb( T_t* dbp, unsigned dn, const T_t* sp );
T_t* cmVOT_PowerToDb( T_t* dbp, unsigned dn, const T_t* sp );
T_t* cmVOT_dBToAmplitude( T_t* dbp, unsigned dn, const T_t* sp );
T_t* cmVOT_dBToPower( T_t* dbp, unsigned dn, const T_t* sp );
//======================================================================================================================
//)
//( { label:"DSP Windows" desc:"DSP windowing functions." kw:[vop] }
T_t cmVOT_KaiserBetaFromSidelobeReject( double sidelobeRejectDb );
T_t cmVOT_KaiserFreqResolutionFactor( double sidelobeRejectDb );
T_t* cmVOT_Kaiser( T_t* dbp, unsigned dn, double beta );
T_t* cmVOT_Gaussian(T_t* dbp, unsigned dn, double mean, double variance );
T_t* cmVOT_Hamming( T_t* dbp, unsigned dn );
T_t* cmVOT_Hann( T_t* dbp, unsigned dn );
T_t* cmVOT_Triangle(T_t* dbp, unsigned dn );
// The MATLAB equivalent Hamming and Hann windows.
//T_t* cmVOT_HammingMatlab(T_t* dbp, unsigned dn );
T_t* cmVOT_HannMatlab( T_t* dbp, unsigned dn );
// Simulates the MATLAB GaussWin function. Set arg to 2.5 to simulate the default arg
// as used by MATLAB.
T_t* cmVOT_GaussWin( T_t* dbp, unsigned dn, double arg );
//======================================================================================================================
//)
//( { label:"DSP Filters" desc:"DSP filtering functions." kw:[vop] }
// Direct form II algorithm based on the MATLAB implmentation
// http://www.mathworks.com/access/helpdesk/help/techdoc/ref/filter.html#f83-1015962
// The only difference between this function and the equivalent MATLAB filter() function
// is that the first feedforward coeff is given as a seperate value. The first b coefficient
// in this function is therefore the same as the second coefficient in the MATLAB function.
// and the first a[] coefficient (which is generally set to 1.0) is skipped.
// Example:
// Matlab: b=[.5 .4 .3] a=[1 .2 .1]
// Equiv: b0 = .5 b=[ .4 .3] a=[ .2 .1];
//
// y[yn] - output vector
// x[xn] - input vector. xn must be <= yn. if xn < yn then the end of y[] is set to zero.
// b0 - signal scale. This can also be seen as b[0] (which is not included in b[])
// b[dn] - feedforward coeff's b[1..dn-1]
// a[dn] - feedback coeff's a[1..dn-1]
// d[dn+1] - delay registers - note that this array must be one element longer than the coeff arrays.
//
T_t* cmVOT_Filter( T_t* y, unsigned yn, const T_t* x, unsigned xn, cmReal_t b0, const cmReal_t* b, const cmReal_t* a, cmReal_t* d, unsigned dn );
struct cmFilter_str;
//typedef cmRC_t (*cmVOT_FiltExecFunc_t)( struct acFilter_str* f, const T_t* x, unsigned xn, T_t* y, unsigned yn );
T_t* cmVOT_FilterFilter(struct cmFilter_str* f, cmRC_t (*func)( struct cmFilter_str* f, const T_t* x, unsigned xn, T_t* y, unsigned yn ), const cmReal_t bb[], unsigned bn, const cmReal_t aa[], unsigned an, const T_t* x, unsigned xn, T_t* y, unsigned yn );
// Compute the coefficients of a low/high pass FIR filter
// wndV[dn] gives the window function used to truncate the ideal low-pass impulse response.
// Set wndV to NULL to use a unity window.
// See enum { kHighPass_LPSincFl=0x01, kNormalize_LPSincFl=0x02 } in cmVectOps.h
T_t* cmVOT_LP_Sinc(T_t* dp, unsigned dn, const T_t* wndV, double srate, double fcHz, unsigned flags );
//======================================================================================================================
//)
//( { label:"Spectral Masking" desc:"A collection of spectral masking functions." kw:[vop] }
// Compute a set of filterCnt mel filter masks for wieghting magnitude spectra consisting of binCnt bins.
// The spectrum is divided into bandCnt equal bands in the mel domain
// Each row of the matrix contains the mask for a single filter band consisting of binCnt elements.
// See enum{ kShiftMelFl=0x01, kNormalizeMelFl=0x02 } in cmVectOps.h
// Set kShiftMelFl to shift the mel bands onto the nearest FFT bin.
// Set kNormalizeMelFl to normalize the combined filters for unity gain.
T_t* cmVOT_MelMask( T_t* maskMtx, unsigned bandCnt, unsigned binCnt, double srate, unsigned flags );
// Fill binIdxV[bandCnt] and cntV[bandCnt] with a bin to band map.
// binIdx[] contains the first (minimum) bin index for a given band.
// cntV[] contains the count of bins for each band.
// bandCnt is the number of bark bands to return
// The function returns the actual number of bands mapped which will always be <= 23.
unsigned cmVOT_BarkMap(unsigned* binIdxV, unsigned* cntV, unsigned bandCnt, unsigned binCnt, double srate );
// Calc a set of triangle fitler masks into each row of maskMtx.
// maskMtx[ bandCnt, binCnt ] - result matrix
// binHz - freq resolution of the output filters.
// stSpread - Semi-tone spread above and below each center frequency (stSpread*2) is the total bandwidth.
// (Only used if lowHzV or uprHzV are NULL)
// lowHz[ bandCnt ] - set of upper frequency limits for each band.
// ctrHz[ bandCnt ] set to the center value in Hz for each band
// uprHz[ bandCnt ] - set of lower frequency limits for each band.
// Note if lowHz[] and uprHz[] are set to NULL then stSpread is used to set the bandwidth of each band.
T_t* cmVOT_TriangleMask(T_t* maskMtx, unsigned bandCnt, unsigned binCnt, const T_t* ctrHzV, T_t binHz, T_t stSpread, const T_t* lowHzV, const T_t* uprHzV );
// Calculate a set of Bark band triangle filters into maskMtx.
// Each row of maskMtx contains the filter for one band.
// maskMtx[ bandCnt, binCnt ]
// bandCnt - the number of triangle bankds. If bandCnt is > 24 it will be reduced to 24.
// binCnt - the number of bins in the filters.
// binHz - the width of each bin in Hz.
T_t* cmVOT_BarkMask(T_t* maskMtx, unsigned bandCnt, unsigned binCnt, double binHz );
// Terhardt 1979 (Calculating virtual pitch, Hearing Research #1, pp 155-182)
// See enum { kNoTtmFlags=0, kModifiedTtmFl=0x01 } in cmVectOps.h
T_t* cmVOT_TerhardtThresholdMask(T_t* maskV, unsigned binCnt, double srate, unsigned flags);
//Schroeder et al., 1979, JASA, Optimizing digital speech coders by exploiting masking properties of the human ear
T_t* cmVOT_ShroederSpreadingFunc(T_t* m, unsigned bandCnt, double srate);
//======================================================================================================================
//)
//( { label:"Machine learning" desc:"K-means clustering and Viterbi algorithms." kw:[vop] }
// Assign each data point to one of k clusters using an expectation-maximization algorithm.
// k gives the number of clusters to identify
// Each column of sp[ srn, scn ] contains a multidimensional data point.
// srn therefore defines the dimensionality of the data.
// Each column of centroidV[ srn, k ] is set to the centroid of each of k clusters.
// classIdxV[ scn ] assigns the index (0 to k-1) of a cluster to each soure data point
// The function returns the number of iterations required for the EM process to converge.
// selIdxV[ scn ] is optional and contains a list of id's assoc'd with each column of sM.
// selKey is a integer value.
// If selIdxV is non-NULL then only columns of sM[] where selIdxV[] == selKey will be clustered.
// All columns of sM[] where the associated column in selIdxV[] do not match will be ignored.
// Set 'initFromCentroidFl' to true if the initial centroids should be taken from centroidM[].
// otherwise the initial centroids are selected from 'k' random data points in sp[].
// The distance function distFunc(cV,dV,dN) is called to determine the distance from a
// centroid the centroid 'cV[dN]' to a data point 'dV[dN]'. 'dN' is the dimensionality of the
// feature vector and is therefore equal to 'srn'.
unsigned cmVOT_Kmeans(
unsigned* classIdxV,
T_t* centroidM,
unsigned k,
const T_t* sp,
unsigned srn,
unsigned scn,
const unsigned* selIdxV,
unsigned selKey,
bool initFromCentroidFl,
T_t (*distFunc)( void* userPtr, const T_t* cV, const T_t* dV, unsigned dN ),
void* userDistPtr );
// 'srcFunc() should return NULL if the data point located at 'frmIdx' should not be included in the clustering.
// Clustering is considered to be complete after 'maxIterCnt' iterations or when
// 'deltaStopCnt' or fewer data points change class on a single iteration
unsigned cmVOT_Kmeans2(
unsigned* classIdxV, // classIdxV[scn] - data point class assignments
T_t* centroidM, // centroidM[srn,K] - cluster centroids
unsigned K, // count of clusters
const T_t* (*srcFunc)(void* userPtr, unsigned frmIdx ),
unsigned srn, // dimensionality of each data point
unsigned scn, // count of data points
void* userSrcPtr, // callback data for srcFunc
T_t (*distFunc)( void* userPtr, const T_t* cV, const T_t* dV, unsigned dN ),
void* userDistPtr, // arg. to distFunc()
int iterCnt, // max. number of iterations (-1 to ignore)
int deltaStopCnt); // if less than deltaStopCnt data points change classes on a given iteration then convergence occurs.
// Determine the most likely state sequece stateV[timeN] given a
// transition matrix a[stateN,stateN],
// observation probability matrix b[stateN,timeN] and
// initial state probability vector phi[stateN].
// a[i,j] is the probability of transitioning from state i to state j.
// b[i,t] is the probability of state i emitting the obj t.
void cmVOT_DiscreteViterbi(unsigned* stateV, unsigned timeN, unsigned stateN, const T_t* phi, const T_t* a, const T_t* b );
//======================================================================================================================
//)
//( { label:"Graphics" desc:"Graphics related algorithms." kw:[vop] }
// Generate the set of coordinates which describe a circle with a center at x,y.
// dbp[dn,2] must contain 2*dn elements. The first column holds the x coord and and the second holds the y coord.
T_t* cmVOT_CircleCoords( T_t* dbp, unsigned dn, T_t x, T_t y, T_t varX, T_t varY );
// Clip the line defined by x0,y0 to x1,y1 into the rect defined by xMin,yMin xMax,yMax.
bool cmVOT_ClipLine( T_t* x0, T_t* y0, T_t* x1, T_t* y1, T_t xMin, T_t yMin, T_t xMax, T_t yMax );
// Return true if the line defined by x0,y0 to x1,y1 intersects with
// the rectangle formed by xMin,yMin - xMax,yMax
bool cmVOT_IsLineInRect( T_t x0, T_t y0, T_t x1, T_t y1, T_t xMin, T_t yMin, T_t xMax, T_t yMax );
// Return the perpendicular distance from the line formed by x0,y0 and x1,y1
// and the point px,py
T_t cmVOT_PtToLineDistance( T_t x0, T_t y0, T_t x1, T_t y1, T_t px, T_t py);
//======================================================================================================================
//)
//( { label:"Miscellaneous DSP" desc:"Common DSP algorithms." kw:[vop] }
// Compute the complex transient detection function from successive spectral frames.
// The spectral magntidue mag0V precedes mag1V and the phase (radians) spectrum phs0V precedes the phs1V which precedes phs2V.
// binCnt gives the length of each of the spectral vectors.
T_t cmVOT_ComplexDetect(const T_t* mag0V, const T_t* mag1V, const T_t* phs0V, const T_t* phs1V, const T_t* phs2V, unsigned binCnt );
// Compute a set of DCT-II coefficients. Result dp[ coeffCnt, filtCnt ]
T_t* cmVOT_DctMatrix( T_t* dp, unsigned coeffCnt, unsigned filtCnt );
// Set the indexes of local peaks greater than threshold in dbp[].
// Returns the number of peaks in dbp[]
// The maximum number of peaks from n source values is max(0,floor((n-1)/2)).
// Note that peaks will never be found at index 0 or index sn-1.
unsigned cmVOT_PeakIndexes( unsigned* dbp, unsigned dn, const T_t* sbp, unsigned sn, T_t threshold );
// Return the index of the bin containing v otherwise return kInvalidIdx if v is below sbp[0] or above sbp[ n-1 ]
// The bin limits are contained in sbp[].
// The value in spb[] are therefore expected to be in increasing order.
// The value returned will be in the range 0:sn-1.
unsigned cmVOT_BinIndex( const T_t* sbp, unsigned sn, T_t v );
// Given the points x0[xy0N],y0[xy0N] fill y1[i] with the interpolated value of y0[] at
// x1[i]. Note that x0[] and x1[] must be increasing monotonic.
// This function is similar to the octave interp1() function.
void cmVOT_Interp1(T_t* y1, const T_t* x1, unsigned xy1N, const T_t* x0, const T_t* y0, unsigned xy0N );
//======================================================================================================================
//)
//( { label:"Matrix ops" desc:"Common 2D matrix operations and accessors." kw:[vop] }
// 2D matrix accessors
T_t* cmVOT_Col( T_t* m, unsigned ci, unsigned rn, unsigned cn );
T_t* cmVOT_Row( T_t* m, unsigned ri, unsigned rn, unsigned cn );
T_t* cmVOT_ElePtr( T_t* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn );
T_t cmVOT_Ele( T_t* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn );
void cmVOT_Set( T_t* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn, T_t v );
const T_t* cmVOT_CCol( const T_t* m, unsigned ci, unsigned rn, unsigned cn );
const T_t* cmVOT_CRow( const T_t* m, unsigned ri, unsigned rn, unsigned cn );
const T_t* cmVOT_CElePtr( const T_t* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn );
T_t cmVOT_CEle( const T_t* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn );
// Set only the diagonal of a square mtx to sbp.
T_t* cmVOT_Diag( T_t* dbp, unsigned n, const T_t* sbp );
// Set the diagonal of a square mtx to db to sbp and set all other values to zero.
T_t* cmVOT_DiagZ( T_t* dbp, unsigned n, const T_t* sbp );
// Create an identity matrix (only sets 1's not zeros).
T_t* cmVOT_Identity( T_t* dbp, unsigned rn, unsigned cn );
// Zero the matrix and then fill it as an identity matrix.
T_t* cmVOT_IdentityZ( T_t* dbp, unsigned rn, unsigned cn );
// Transpose the matrix sbp[srn,scn] into dbp[scn,srn]
T_t* cmVOT_Transpose( T_t* dbp, const T_t* sbp, unsigned srn, unsigned scn );
//======================================================================================================================
//)
//( { label:"Fill,move,copy" desc:"Basic data movement and initialization." kw:[vop] }
// Fill a vector with a value. If value is 0 then the function is accellerated via memset().
T_t* cmVOT_Fill( T_t* dbp, unsigned dn, T_t value );
// Fill a vector with zeros
T_t* cmVOT_Zero( T_t* dbp, unsigned dn );
// Analogous to memmove()
T_t* cmVOT_Move( T_t* dbp, unsigned dn, const T_t* sp );
// Fill the vector from various sources
T_t* cmVOT_Copy( T_t* dbp, unsigned dn, const T_t* sp );
T_t* cmVOT_CopyN( T_t* dbp, unsigned dn, unsigned d_stride, const T_t* sp, unsigned s_stride );
T_t* cmVOT_CopyU( T_t* dbp, unsigned dn, const unsigned* sp );
T_t* cmVOT_CopyI( T_t* dbp, unsigned dn, const int* sp );
T_t* cmVOT_CopyF( T_t* dbp, unsigned dn, const float* sp );
T_t* cmVOT_CopyD( T_t* dbp, unsigned dn, const double* sp );
T_t* cmVOT_CopyS( T_t* dbp, unsigned dn, const cmSample_t* sp );
T_t* cmVOT_CopyR( T_t* dbp, unsigned dn, const cmReal_t* sp );
// Fill the the destination vector from a source vector where the source vector contains
// srcStride interleaved elements to be ignored.
T_t* cmVOT_CopyStride( T_t* dbp, unsigned dn, const T_t* sp, unsigned srcStride );
//======================================================================================================================
//)
//( { label:"Shrink/Expand/Replace" desc:"Change the size of a vector." kw:[vop] }
// Shrink the elemetns of dbp[dn] by copying all elements past t+tn to t.
// This operation results in overwriting the elements in the range t[tn].
// t[tn] must be entirely inside dbp[dn].
T_t* cmVOT_Shrink( T_t* dbp, unsigned dn, const T_t* t, unsigned tn );
// Expand dbp[[dn] by shifting all elements past t to t+tn.
// This produces a set of empty elements in t[tn].
// t must be inside or at the end of dbp[dn].
// This results in a reallocation of dbp[]. Be sure to call cmMemFree(dbp)
// to release the returned pointer.
T_t* cmVOT_Expand( T_t* dbp, unsigned dn, const T_t* t, unsigned tn );
// Replace the elements t[tn] with the elements in u[un].
// t must be inside or at the end of dbp[dn].
// This operation may result in a reallocation of dbp[]. Be sure to call cmMemFree(dbp)
// to release the returned pointer.
// IF dbp==NULL and tn==0 then the dbp[un] is allocated and returned
// with the contents of u[un].
T_t* cmVOT_Replace(T_t* dbp, unsigned* dn, const T_t* t, unsigned tn, const T_t* u, unsigned un );
//======================================================================================================================
//)
//( { label:"Rotate/Shift/Flip/Sequence" desc:"Modify/generate the vector sequence." kw:[vop] }
// Assuming a row vector positive shiftCnt rotates right, negative shiftCnt rotates left.
T_t* cmVOT_Rotate( T_t* dbp, unsigned dn, int shiftCnt );
// Equivalent to Matlab circshift().
T_t* cmVOT_RotateM( T_t* dbp, unsigned drn, unsigned dcn, const T_t* sbp, int rShift, int cShift );
// Assuming a row vector positive shiftCnt shifts right, negative shiftCnt shifts left.
T_t* cmVOT_Shift( T_t* dbp, unsigned dn, int shiftCnt, T_t fill );
// Reverse the contents of the vector.
T_t* cmVOT_Flip( T_t* dbp, unsigned dn);
// Fill dbp[] with a sequence of values. Returns next value.
T_t cmVOT_Seq( T_t* dbp, unsigned dn, T_t beg, T_t incr );
//======================================================================================================================
//)
//( { label:"Arithmetic" desc:"Add,Sub,Mult,Divde" kw:[vop] }
T_t* cmVOT_SubVS( T_t* dp, unsigned dn, T_t v );
T_t* cmVOT_SubVV( T_t* dp, unsigned dn, const T_t* v );
T_t* cmVOT_SubVVS( T_t* dp, unsigned dn, const T_t* v, T_t s );
T_t* cmVOT_SubVVNN(T_t* dp, unsigned dn, unsigned dnn, const T_t* sp, unsigned snn );
T_t* cmVOT_SubVVV( T_t* dp, unsigned dn, const T_t* sb0p, const T_t* sb1p );
T_t* cmVOT_SubVSV( T_t* dp, unsigned dn, const T_t s0, const T_t* sb1p );
T_t* cmVOT_AddVS( T_t* dp, unsigned dn, T_t v );
T_t* cmVOT_AddVV( T_t* dp, unsigned dn, const T_t* v );
T_t* cmVOT_AddVVS( T_t* dp, unsigned dn, const T_t* v, T_t s );
T_t* cmVOT_AddVVNN(T_t* dp, unsigned dn, unsigned dnn, const T_t* sp, unsigned snn );
T_t* cmVOT_AddVVV( T_t* dp, unsigned dn, const T_t* sb0p, const T_t* sb1p );
T_t* cmVOT_MultVVV( T_t* dbp, unsigned dn, const T_t* sb0p, const T_t* sb1p );
T_t* cmVOT_MultVV( T_t* dbp, unsigned dn, const T_t* sbp );
T_t* cmVOT_MultVVNN(T_t* dp, unsigned dn, unsigned dnn, const T_t* sp, unsigned snn );
T_t* cmVOT_MultVS( T_t* dbp, unsigned dn, T_t s );
T_t* cmVOT_MultVVS( T_t* dbp, unsigned dn, const T_t* sbp, T_t s );
T_t* cmVOT_MultVaVS( T_t* dbp, unsigned dn, const T_t* sbp, T_t s );
T_t* cmVOT_MultSumVVS(T_t* dbp, unsigned dn, const T_t* sbp, T_t s );
T_t* cmVOT_DivVVS( T_t* dbp, unsigned dn, const T_t* sb0p, T_t sb1 );
T_t* cmVOT_DivVVV( T_t* dbp, unsigned dn, const T_t* sb0p, const T_t* sb1p );
T_t* cmVOT_DivVV( T_t* dbp, unsigned dn, const T_t* sb0p );
T_t* cmVOT_DivVVNN(T_t* dp, unsigned dn, unsigned dnn, const T_t* sp, unsigned snn );
T_t* cmVOT_DivVS( T_t* dbp, unsigned dn, T_t s );
T_t* cmVOT_DivVSV( T_t* dp, unsigned dn, const T_t s0, const T_t* sb1p );
// Set dest to 0 if denominator is 0.
T_t* cmVOT_DivVVVZ( T_t* dbp, unsigned dn, const T_t* sb0p, const T_t* sb1p );
T_t* cmVOT_DivVVZ( T_t* dbp, unsigned dn, const T_t* sb0p );
// Divide columns of dp[:,i] by each value in the source vector sp[i].
T_t* cmVOT_DivMS( T_t* dp, unsigned drn, unsigned dcn, const T_t* sp );
//======================================================================================================================
//)
//( { label:"Sum vectors" desc:"Operations which take sum vector elements." kw:[vop] }
T_t cmVOT_Sum( const T_t* sp, unsigned sn );
T_t cmVOT_SumN( const T_t* sp, unsigned sn, unsigned stride );
// Sum the columns of sp[srn,scn] into dp[scn].
// dp[] is zeroed prior to computing the sum.
T_t* cmVOT_SumM( const T_t* sp, unsigned srn, unsigned scn, T_t* dp );
// Sum the rows of sp[srn,scn] into dp[srn]
// dp[] is zeroed prior to computing the sum.
T_t* cmVOT_SumMN( const T_t* sp, unsigned srn, unsigned scn, T_t* dp );
//======================================================================================================================
//)
//( { label:"Min/max/median/mode" desc:"Simple descriptive statistics." kw:[vop] }
T_t cmVOT_Median( const T_t* sp, unsigned sn );
unsigned cmVOT_MinIndex( const T_t* sp, unsigned sn, unsigned stride );
unsigned cmVOT_MaxIndex( const T_t* sp, unsigned sn, unsigned stride );
T_t cmVOT_Min( const T_t* sp, unsigned sn, unsigned stride );
T_t cmVOT_Max( const T_t* sp, unsigned sn, unsigned stride );
T_t* cmVOT_MinVV( T_t* dp, unsigned dn, const T_t* sp );
T_t* cmVOT_MaxVV( T_t* dp, unsigned dn, const T_t* sp );
// Return index of max/min value into dp[scn] of each column of sp[srn,scn]
unsigned* cmVOT_MinIndexM( unsigned* dp, const T_t* sp, unsigned srn, unsigned scn );
unsigned* cmVOT_MaxIndexM( unsigned* dp, const T_t* sp, unsigned srn, unsigned scn );
// Return the most frequently occuring element in sp.
T_t cmVOT_Mode( const T_t* sp, unsigned sn );
//======================================================================================================================
//)
//( { label:"Compare/Find" desc:"Compare, find, replace and count elements in a vector." kw:[vop] }
// Return true if s0p[sn] is equal to s1p[sn]
bool cmVOT_IsEqual( const T_t* s0p, const T_t* s1p, unsigned sn );
// Return true if all elements of s0p[sn] are within 'eps' of s1p[sn].
// This function is based on cmMath.h:cmIsCloseX()
bool cmVOT_IsClose( const T_t* s0p, const T_t* s1p, unsigned sn, double eps );
// Replace all values <= lteKeyVal with replaceVal. sp==dp is legal.
T_t* cmVOT_ReplaceLte( T_t* dp, unsigned dn, const T_t* sp, T_t lteKeyVal, T_t replaceVal );
// Return the index of 'key' in sp[sn] or cmInvalidIdx if 'key' does not exist.
unsigned cmVOT_Find( const T_t* sp, unsigned sn, T_t key );
// Count the number of times 'key' occurs in sp[sn].
unsigned cmVOT_Count(const T_t* sp, unsigned sn, T_t key );
//======================================================================================================================
//)
//( { label:"Absolute value" desc:"Absolute value and signal rectification." kw:[vop] }
T_t* cmVOT_Abs( T_t* dbp, unsigned dn );
// Half wave rectify the source vector.
// dbp[] = sbp<0 .* sbp
// Overlapping the source and dest is allowable as long as dbp <= sbp.
T_t* cmVOT_HalfWaveRectify(T_t* dbp, unsigned dn, const T_t* sp );
//======================================================================================================================
//)
//( { label:"Filter" desc:"Apply filtering to a vector taking into account vector begin/end conditions." kw:[vop] }
// Apply a median or other filter of order wndN to xV[xN] and store the result in yV[xN].
// When the window goes off either side of the vector the window is shortened.
// This algorithm produces the same result as the fn_thresh function in MATLAB fv codebase.
void cmVOT_FnThresh( const T_t* xV, unsigned xN, unsigned wndN, T_t* yV, unsigned yStride, T_t (*fnPtr)(const T_t*, unsigned) );
// Apply a median filter of order wndN to xV[xN] and store the result in yV[xN].
// When the window goes off either side of the vector the missing elements are considered
// to be 0.
// This algorithm produces the same result as the MATLAB medfilt1() function.
void cmVOT_MedianFilt( const T_t* xV, unsigned xN, unsigned wndN, T_t* yV, unsigned yStride );
//======================================================================================================================
//)
//( { label:"Edit distance" desc:"Calculate the Levenshtein edit distance between vectors." kw:[vop] }
// Allocate and initialize a matrix for use by LevEditDist().
// This matrix can be released with a call to cmMemFree().
unsigned* cmVOT_LevEditDistAllocMtx(unsigned mtxMaxN);
// Return the Levenshtein edit distance between two vectors.
// m must point to a matrix pre-allocated by cmVOT_InitiLevEditDistMtx(maxN).
double cmVOT_LevEditDist(unsigned mtxMaxN, unsigned* m, const T_t* s0, int n0, const T_t* s1, int n1, unsigned maxN );
// Return the Levenshtein edit distance between two vectors.
// Edit distance with a max cost threshold. This version of the algorithm
// will run faster than LevEditDist() because it will stop execution as soon
// as the distance exceeds 'maxCost'.
// 'maxCost' must be between 0.0 and 1.0 or it is forced into this range.
// The maximum distance returned will be 'maxCost'.
// m must point to a matrix pre-allocated by cmVOT_InitiLevEditDistMtx(maxN).
double cmVOT_LevEditDistWithCostThresh( int mtxMaxN, unsigned* m, const T_t* s0, int n0, const T_t* s1, int n1, double maxCost, unsigned maxN );
//======================================================================================================================
//)

View File

@ -5,6 +5,8 @@
extern "C" {
#endif
//( { file_desc:"XML file reader." kw[file] }
enum
{
kOkXmlRC = cmOkRC,
@ -101,6 +103,8 @@ extern "C" {
cmXmlRC_t cmXmlTest( cmCtx_t* ctx, const cmChar_t* fn );
//)
#ifdef __cpluspus
}

View File

@ -6,9 +6,13 @@
extern "C" {
#endif
//( { file_desc:"Dataflow built-in process interface." kw:[snap] }
// Returns NULL if index is outside of valid range.
cmDspClassConsFunc_t cmDspClassGetBuiltIn( unsigned index );
//)
#ifdef __cplusplus

View File

@ -5,6 +5,8 @@
extern "C" {
#endif
//( { file_desc:"Dataflow global context interface." kw:[snap] }
typedef cmHandle_t cmDspSysH_t;
typedef cmHandle_t cmDspStoreH_t;
@ -34,6 +36,8 @@ extern "C" {
unsigned execDurUsecs;
} cmDspCtx_t;
//)
#ifdef __cplusplus
}
#endif

View File

@ -5,6 +5,8 @@
extern "C" {
#endif
//( { file_desc:"Large collection of real-time audio processing dataflow class descriptions originally developed for 'fluxo'." kw:[snap fluxo] }
struct cmDspClass_str* cmDelayClassCons( cmDspCtx_t* ctx );
struct cmDspClass_str* cmPShiftClassCons( cmDspCtx_t* ctx );
struct cmDspClass_str* cmLoopRecdClassCons( cmDspCtx_t* ctx );
@ -43,6 +45,8 @@ extern "C" {
struct cmDspClass_str* cmBcastSymClassCons( cmDspCtx_t* ctx );
struct cmDspClass_str* cmSegLineClassCons( cmDspCtx_t* ctx );
//)
#ifdef __cplusplus
}
#endif

View File

@ -5,6 +5,8 @@
extern "C" {
#endif
//( { file_desc:"Dataflow program instance interface." kw:[snap] }
typedef cmDspRC_t (*cmDspPgmFunc_t)( cmDspSysH_t h, void** userPtrPtr );
typedef struct
@ -20,7 +22,7 @@ extern "C" {
_cmDspSysPgm_t* _cmDspSysPgmArrayBase();
//)
#ifdef __cplusplus
}

View File

@ -5,11 +5,15 @@
extern "C" {
#endif
//( { file_desc:"Dataflow pgm interfaces for 'GUTIM'." kw:[gutim snap] }
cmDspRC_t _cmDspSysPgm_TimeLine( cmDspSysH_t h, void** userPtrPtr );
cmDspRC_t _cmDspSysPgm_TimeLineLite( cmDspSysH_t h, void** userPtrPtr );
cmDspRC_t _cmDspSysPgm_TimeLineLiteAf( cmDspSysH_t h, void** userPtrPtr );
cmDspRC_t _cmDspSysPgm_Tksb(cmDspSysH_t h, void** userPtrPtr );
cmDspRC_t _cmDspSysPgm_TksbLite(cmDspSysH_t h, void** userPtrPtr );
//)
#ifdef __cplusplus
}

View File

@ -6,6 +6,8 @@
extern "C" {
#endif
//( { file_desc:"Signal processing chain implementation for 'GUTIM'." kw:[snap gutim] }
typedef struct
{
const cmChar_t* tlFn;
@ -44,6 +46,7 @@ void _cmDspSys_TlXformChain(
unsigned ach,
unsigned mch );
//)
#ifdef __cplusplus
}

View File

@ -1,6 +1,7 @@
#ifndef cmDspPgmPPMain_h
#define cmDspPgmPPMain_h
//( { file_desc:"'fluxo' implementation header." kw:[fluxo] }
cmDspInst_t* _cmDspSys_PresetMgmt( cmDspSysH_t h, const cmChar_t* preLbl, unsigned presetGroupSymId );
@ -44,6 +45,8 @@ const _cmDspPP_CircDesc_t* _cmDspPP_CircuitDesc( unsigned idx );
cmDspRC_t _cmDspPP_CircuitSwitchAlloc( cmDspSysH_t h, _cmDspPP_Ctx_t* ctx, cmDspPP_CircuitSwitch_t* p, cmDspInst_t* reset, cmDspInst_t** csel, cmDspInst_t** ain, cmDspInst_t** ef );
cmDspRC_t _cmDspPP_CircuitSwitchFree( cmDspSysH_t h, cmDspPP_CircuitSwitch_t* p);
//)
#ifdef __cplusplus
extern "C" {
#endif

View File

@ -8,7 +8,9 @@
extern "C" {
#endif
//( { file_desc:"Dataflow UI interfaces." kw:[snap] }
//)
#ifdef __cplusplus

View File

@ -5,8 +5,9 @@
// is generated using the gcc preprocessor.
// switches: -E : Stop after preprocess
// -C : Do not strip comments.
// -P : Do not generate line markers
// gcc -E -C -P -o cmVectOpsDocOut.h cmVectOpsDoc.h
// -P : Do not generate line markers
// -traditional-cpp : preserve white space
// gcc -E -C -P -traditional-cpp -o cmVectOpsDocOut.h cmVectOpsDoc.h
#include "cmVectOpsTemplateUndef.h"
@ -17,11 +18,9 @@
#define VECT_OP_MIN FLT_MIN
#define VECT_OP_LAP_FUNC(F) s##F
#define VECT_OP_BLAS_FUNC(F) cblas_s##F
//{
//[
//end_cut
//( { file_desc:"Math vector operations." kw:[vop math] }
//)
#include "cmVectOpsTemplateHdr.h"
#include "cmVectOpsRIHdr.h"
//]
//}

View File

@ -46,6 +46,57 @@ VECT_OP_TYPE VECT_OP_FUNC(CEle)( const VECT_OP_TYPE* m, unsigned ri, unsigned ci
{ return *VECT_OP_FUNC(CElePtr)(m,ri,ci,rn,cn); }
VECT_OP_TYPE* VECT_OP_FUNC(Diag)( VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
{
unsigned i,j;
for(i=0,j=0; i<n && j<n; ++i,++j)
dbp[ (i*n) + j ] = sbp[i];
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(DiagZ)(VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
{
VECT_OP_FUNC(Fill)(dbp,n*n,0);
return VECT_OP_FUNC(Diag)(dbp,n,sbp);
}
VECT_OP_TYPE* VECT_OP_FUNC(Identity)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
{
unsigned i,j;
for(i=0,j=0; i<cn && j<rn; ++i,++j)
dbp[ (i*rn) + j ] = 1;
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(IdentityZ)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
{
VECT_OP_FUNC(Fill)(dbp,rn*cn,0);
return VECT_OP_FUNC(Identity)(dbp,rn,cn);
}
VECT_OP_TYPE* VECT_OP_FUNC(Transpose)( VECT_OP_TYPE* dbp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
{
VECT_OP_TYPE* dp = dbp;
const VECT_OP_TYPE* dep = dbp + (srn*scn);
while( dbp < dep )
{
const VECT_OP_TYPE* sbp = sp++;
const VECT_OP_TYPE* sep = sbp + (srn*scn);
for(; sbp < sep; sbp+=srn )
*dbp++ = *sbp;
}
return dp;
}
VECT_OP_TYPE* VECT_OP_FUNC(Fill)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE value )
@ -364,6 +415,17 @@ VECT_OP_TYPE* VECT_OP_FUNC(Flip)( VECT_OP_TYPE* dbp, unsigned dn)
return dbp;
}
VECT_OP_TYPE VECT_OP_FUNC(Seq)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE beg, VECT_OP_TYPE incr )
{
const VECT_OP_TYPE* dep = dbp + dn;
unsigned i = 0;
for(; dbp<dep; ++i)
*dbp++ = beg + (incr*i);
return beg + (incr*i);
}
VECT_OP_TYPE* VECT_OP_FUNC(SubVS)( VECT_OP_TYPE* bp, unsigned n, VECT_OP_TYPE v )
{
@ -660,15 +722,6 @@ VECT_OP_TYPE* VECT_OP_FUNC(SumMN)(const VECT_OP_TYPE* sp, unsigned srn, unsigne
return dp;
}
VECT_OP_TYPE* VECT_OP_FUNC(Abs)( VECT_OP_TYPE* dbp, unsigned dn )
{
unsigned i;
for(i=0; i<dn; ++i)
if( dbp[i]<0 )
dbp[i] = -dbp[i];
return dbp;
}
// mi is a target value - it holds the number of elements in ap[an] which must be be less than the median value.
// If the initial array contains an even number of values then the median value is formed by averaging the two center values.
@ -880,27 +933,6 @@ unsigned* VECT_OP_FUNC(MaxIndexM)( unsigned* dp, const VECT_OP_TYPE* sp, unsign
return dp;
}
bool VECT_OP_FUNC(IsEqual)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
{
const VECT_OP_TYPE* ep = s0p + sn;
for(; s0p < ep; ++s0p,++s1p )
if( *s0p != *s1p )
return false;
return true;
}
bool VECT_OP_FUNC(IsClose)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn, double eps )
{
const VECT_OP_TYPE* ep = s0p + sn;
for(; s0p < ep; ++s0p,++s1p )
{
if( !cmIsClose(*s0p,*s1p,eps) )
return false;
}
return true;
}
VECT_OP_TYPE VECT_OP_FUNC(Mode)( const VECT_OP_TYPE* sp, unsigned sn )
{
unsigned n[sn];
@ -965,6 +997,49 @@ VECT_OP_TYPE VECT_OP_FUNC(Mode)( const VECT_OP_TYPE* sp, unsigned sn )
return v[j];
}
VECT_OP_TYPE* VECT_OP_FUNC(Abs)( VECT_OP_TYPE* dbp, unsigned dn )
{
unsigned i;
for(i=0; i<dn; ++i)
if( dbp[i]<0 )
dbp[i] = -dbp[i];
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(HalfWaveRectify)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
{
VECT_OP_TYPE* dp = dbp;
VECT_OP_TYPE* ep = dbp + dn;
for(; dp < ep; ++dp,++sp )
*dp = *sp < 0 ? 0 : *sp;
return dbp;
}
bool VECT_OP_FUNC(IsEqual)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
{
const VECT_OP_TYPE* ep = s0p + sn;
for(; s0p < ep; ++s0p,++s1p )
if( *s0p != *s1p )
return false;
return true;
}
bool VECT_OP_FUNC(IsClose)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn, double eps )
{
const VECT_OP_TYPE* ep = s0p + sn;
for(; s0p < ep; ++s0p,++s1p )
{
if( !cmIsClose(*s0p,*s1p,eps) )
return false;
}
return true;
}
unsigned VECT_OP_FUNC(Find)( const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE key )
{
const VECT_OP_TYPE* sbp = sp;
@ -1003,67 +1078,6 @@ VECT_OP_TYPE* VECT_OP_FUNC(ReplaceLte)( VECT_OP_TYPE* dp, unsigned dn, const VEC
return rp;
}
VECT_OP_TYPE* VECT_OP_FUNC(Diag)( VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
{
unsigned i,j;
for(i=0,j=0; i<n && j<n; ++i,++j)
dbp[ (i*n) + j ] = sbp[i];
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(DiagZ)(VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
{
VECT_OP_FUNC(Fill)(dbp,n*n,0);
return VECT_OP_FUNC(Diag)(dbp,n,sbp);
}
VECT_OP_TYPE* VECT_OP_FUNC(Identity)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
{
unsigned i,j;
for(i=0,j=0; i<cn && j<rn; ++i,++j)
dbp[ (i*rn) + j ] = 1;
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(IdentityZ)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
{
VECT_OP_FUNC(Fill)(dbp,rn*cn,0);
return VECT_OP_FUNC(Identity)(dbp,rn,cn);
}
VECT_OP_TYPE* VECT_OP_FUNC(Transpose)( VECT_OP_TYPE* dbp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
{
VECT_OP_TYPE* dp = dbp;
const VECT_OP_TYPE* dep = dbp + (srn*scn);
while( dbp < dep )
{
const VECT_OP_TYPE* sbp = sp++;
const VECT_OP_TYPE* sep = sbp + (srn*scn);
for(; sbp < sep; sbp+=srn )
*dbp++ = *sbp;
}
return dp;
}
VECT_OP_TYPE VECT_OP_FUNC(Seq)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE beg, VECT_OP_TYPE incr )
{
const VECT_OP_TYPE* dep = dbp + dn;
unsigned i = 0;
for(; dbp<dep; ++i)
*dbp++ = beg + (incr*i);
return beg + (incr*i);
}
void VECT_OP_FUNC(FnThresh)( const VECT_OP_TYPE* xV, unsigned xN, unsigned wndN, VECT_OP_TYPE* yV, unsigned yStride, VECT_OP_TYPE (*fnPtr)(const VECT_OP_TYPE*, unsigned) )
{
int i0 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2;

View File

@ -1,4 +1,8 @@
//( { label:"Matrix ops" desc:"Common 2D matrix operations and accessors." kw:[vop] }
// 2D matrix accessors
VECT_OP_TYPE* VECT_OP_FUNC(Col)( VECT_OP_TYPE* m, unsigned ci, unsigned rn, unsigned cn );
VECT_OP_TYPE* VECT_OP_FUNC(Row)( VECT_OP_TYPE* m, unsigned ri, unsigned rn, unsigned cn );
VECT_OP_TYPE* VECT_OP_FUNC(ElePtr)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn );
@ -11,17 +15,37 @@ const VECT_OP_TYPE* VECT_OP_FUNC(CElePtr)( const VECT_OP_TYPE* m, unsigned ri, u
VECT_OP_TYPE VECT_OP_FUNC(CEle)( const VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn );
// Set only the diagonal of a square mtx to sbp.
VECT_OP_TYPE* VECT_OP_FUNC(Diag)( VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp );
/// Fill a vector with a value. If value is 0 then the function is accellerated via memset().
// Set the diagonal of a square mtx to db to sbp and set all other values to zero.
VECT_OP_TYPE* VECT_OP_FUNC(DiagZ)( VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp );
// Create an identity matrix (only sets 1's not zeros).
VECT_OP_TYPE* VECT_OP_FUNC(Identity)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn );
// Zero the matrix and then fill it as an identity matrix.
VECT_OP_TYPE* VECT_OP_FUNC(IdentityZ)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn );
// Transpose the matrix sbp[srn,scn] into dbp[scn,srn]
VECT_OP_TYPE* VECT_OP_FUNC(Transpose)( VECT_OP_TYPE* dbp, const VECT_OP_TYPE* sbp, unsigned srn, unsigned scn );
//======================================================================================================================
//)
//( { label:"Fill,move,copy" desc:"Basic data movement and initialization." kw:[vop] }
// Fill a vector with a value. If value is 0 then the function is accellerated via memset().
VECT_OP_TYPE* VECT_OP_FUNC(Fill)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE value );
// Fill a vector with zeros
VECT_OP_TYPE* VECT_OP_FUNC(Zero)( VECT_OP_TYPE* dbp, unsigned dn );
// analogous to memmove()
// Analogous to memmove()
VECT_OP_TYPE* VECT_OP_FUNC(Move)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp );
/// Fill the vector from various sources
// Fill the vector from various sources
VECT_OP_TYPE* VECT_OP_FUNC(Copy)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp );
VECT_OP_TYPE* VECT_OP_FUNC(CopyN)( VECT_OP_TYPE* dbp, unsigned dn, unsigned d_stride, const VECT_OP_TYPE* sp, unsigned s_stride );
VECT_OP_TYPE* VECT_OP_FUNC(CopyU)( VECT_OP_TYPE* dbp, unsigned dn, const unsigned* sp );
@ -31,6 +55,17 @@ VECT_OP_TYPE* VECT_OP_FUNC(CopyD)( VECT_OP_TYPE* dbp, unsigned dn, const double*
VECT_OP_TYPE* VECT_OP_FUNC(CopyS)( VECT_OP_TYPE* dbp, unsigned dn, const cmSample_t* sp );
VECT_OP_TYPE* VECT_OP_FUNC(CopyR)( VECT_OP_TYPE* dbp, unsigned dn, const cmReal_t* sp );
// Fill the the destination vector from a source vector where the source vector contains
// srcStride interleaved elements to be ignored.
VECT_OP_TYPE* VECT_OP_FUNC(CopyStride)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, unsigned srcStride );
//======================================================================================================================
//)
//( { label:"Shrink/Expand/Replace" desc:"Change the size of a vector." kw:[vop] }
// Shrink the elemetns of dbp[dn] by copying all elements past t+tn to t.
// This operation results in overwriting the elements in the range t[tn].
// t[tn] must be entirely inside dbp[dn].
@ -51,25 +86,36 @@ VECT_OP_TYPE* VECT_OP_FUNC(Expand)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_O
// with the contents of u[un].
VECT_OP_TYPE* VECT_OP_FUNC(Replace)(VECT_OP_TYPE* dbp, unsigned* dn, const VECT_OP_TYPE* t, unsigned tn, const VECT_OP_TYPE* u, unsigned un );
/// Fill the the destination vector from a source vector where the source vector contains
/// srcStride interleaved elements to be ignored.
VECT_OP_TYPE* VECT_OP_FUNC(CopyStride)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, unsigned srcStride );
//======================================================================================================================
//)
/// Assuming a row vector positive shiftCnt rotates right, negative shiftCnt rotates left.
//( { label:"Rotate/Shift/Flip/Sequence" desc:"Modify/generate the vector sequence." kw:[vop] }
// Assuming a row vector positive shiftCnt rotates right, negative shiftCnt rotates left.
VECT_OP_TYPE* VECT_OP_FUNC(Rotate)( VECT_OP_TYPE* dbp, unsigned dn, int shiftCnt );
/// Equivalent to Matlab circshift().
// Equivalent to Matlab circshift().
VECT_OP_TYPE* VECT_OP_FUNC(RotateM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* sbp, int rShift, int cShift );
/// Assuming a row vector positive shiftCnt shifts right, negative shiftCnt shifts left.
// Assuming a row vector positive shiftCnt shifts right, negative shiftCnt shifts left.
VECT_OP_TYPE* VECT_OP_FUNC(Shift)( VECT_OP_TYPE* dbp, unsigned dn, int shiftCnt, VECT_OP_TYPE fill );
/// Reverse the contents of the vector.
// Reverse the contents of the vector.
VECT_OP_TYPE* VECT_OP_FUNC(Flip)( VECT_OP_TYPE* dbp, unsigned dn);
// Fill dbp[] with a sequence of values. Returns next value.
VECT_OP_TYPE VECT_OP_FUNC(Seq)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE beg, VECT_OP_TYPE incr );
//======================================================================================================================
//)
//( { label:"Arithmetic" desc:"Add,Sub,Mult,Divde" kw:[vop] }
VECT_OP_TYPE* VECT_OP_FUNC(SubVS)( VECT_OP_TYPE* dp, unsigned dn, VECT_OP_TYPE v );
VECT_OP_TYPE* VECT_OP_FUNC(SubVV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* v );
VECT_OP_TYPE* VECT_OP_FUNC(SubVVS)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* v, VECT_OP_TYPE s );
@ -105,6 +151,10 @@ VECT_OP_TYPE* VECT_OP_FUNC(DivVVZ)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_
// Divide columns of dp[:,i] by each value in the source vector sp[i].
VECT_OP_TYPE* VECT_OP_FUNC(DivMS)( VECT_OP_TYPE* dp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* sp );
//======================================================================================================================
//)
//( { label:"Sum vectors" desc:"Operations which take sum vector elements." kw:[vop] }
VECT_OP_TYPE VECT_OP_FUNC(Sum)( const VECT_OP_TYPE* sp, unsigned sn );
VECT_OP_TYPE VECT_OP_FUNC(SumN)( const VECT_OP_TYPE* sp, unsigned sn, unsigned stride );
@ -117,9 +167,12 @@ VECT_OP_TYPE* VECT_OP_FUNC(SumM)( const VECT_OP_TYPE* sp, unsigned srn, uns
// dp[] is zeroed prior to computing the sum.
VECT_OP_TYPE* VECT_OP_FUNC(SumMN)( const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, VECT_OP_TYPE* dp );
VECT_OP_TYPE* VECT_OP_FUNC(Abs)( VECT_OP_TYPE* dbp, unsigned dn );
//======================================================================================================================
//)
//( { label:"Min/max/median/mode" desc:"Simple descriptive statistics." kw:[vop] }
VECT_OP_TYPE VECT_OP_FUNC(Median)( const VECT_OP_TYPE* sp, unsigned sn );
unsigned VECT_OP_FUNC(MinIndex)( const VECT_OP_TYPE* sp, unsigned sn, unsigned stride );
unsigned VECT_OP_FUNC(MaxIndex)( const VECT_OP_TYPE* sp, unsigned sn, unsigned stride );
@ -130,75 +183,88 @@ VECT_OP_TYPE* VECT_OP_FUNC(MinVV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP
VECT_OP_TYPE* VECT_OP_FUNC(MaxVV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp );
/// Return index of max/min value into dp[scn] of each column of sp[srn,scn]
// Return index of max/min value into dp[scn] of each column of sp[srn,scn]
unsigned* VECT_OP_FUNC(MinIndexM)( unsigned* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn );
unsigned* VECT_OP_FUNC(MaxIndexM)( unsigned* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn );
/// Return true if s0p[sn] is equal to s1p[sn]
bool VECT_OP_FUNC(IsEqual)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn );
/// Return true if all elements of s0p[sn] are within 'eps' of s1p[sn].
/// This function is based on cmMath.h:cmIsCloseX()
bool VECT_OP_FUNC(IsClose)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn, double eps );
/// Return the most frequently occuring element in sp.
// Return the most frequently occuring element in sp.
VECT_OP_TYPE VECT_OP_FUNC(Mode)( const VECT_OP_TYPE* sp, unsigned sn );
/// Replace all values <= lteKeyVal with replaceVal. sp==dp is legal.
//======================================================================================================================
//)
//( { label:"Compare/Find" desc:"Compare, find, replace and count elements in a vector." kw:[vop] }
// Return true if s0p[sn] is equal to s1p[sn]
bool VECT_OP_FUNC(IsEqual)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn );
// Return true if all elements of s0p[sn] are within 'eps' of s1p[sn].
// This function is based on cmMath.h:cmIsCloseX()
bool VECT_OP_FUNC(IsClose)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn, double eps );
// Replace all values <= lteKeyVal with replaceVal. sp==dp is legal.
VECT_OP_TYPE* VECT_OP_FUNC(ReplaceLte)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE lteKeyVal, VECT_OP_TYPE replaceVal );
/// Return the index of 'key' in sp[sn] or cmInvalidIdx if 'key' does not exist.
// Return the index of 'key' in sp[sn] or cmInvalidIdx if 'key' does not exist.
unsigned VECT_OP_FUNC(Find)( const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE key );
/// Count the number of times 'key' occurs in sp[sn].
// Count the number of times 'key' occurs in sp[sn].
unsigned VECT_OP_FUNC(Count)(const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE key );
/// Set only the diagonal of a square mtx to sbp.
VECT_OP_TYPE* VECT_OP_FUNC(Diag)( VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp );
/// Set the diagonal of a square mtx to db to sbp and set all other values to zero.
VECT_OP_TYPE* VECT_OP_FUNC(DiagZ)( VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp );
/// Create an identity matrix (only sets 1's not zeros).
VECT_OP_TYPE* VECT_OP_FUNC(Identity)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn );
/// Zero the matrix and then fill it as an identity matrix.
VECT_OP_TYPE* VECT_OP_FUNC(IdentityZ)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn );
/// Transpose the matrix sbp[srn,scn] into dbp[scn,srn]
VECT_OP_TYPE* VECT_OP_FUNC(Transpose)( VECT_OP_TYPE* dbp, const VECT_OP_TYPE* sbp, unsigned srn, unsigned scn );
/// Fill dbp[] with a sequence of values. Returns next value.
VECT_OP_TYPE VECT_OP_FUNC(Seq)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE beg, VECT_OP_TYPE incr );
//======================================================================================================================
//)
/// Apply a median or other filter of order wndN to xV[xN] and store the result in yV[xN].
/// When the window goes off either side of the vector the window is shortened.
/// This algorithm produces the same result as the fn_thresh function in MATLAB fv codebase.
//( { label:"Absolute value" desc:"Absolute value and signal rectification." kw:[vop] }
VECT_OP_TYPE* VECT_OP_FUNC(Abs)( VECT_OP_TYPE* dbp, unsigned dn );
// Half wave rectify the source vector.
// dbp[] = sbp<0 .* sbp
// Overlapping the source and dest is allowable as long as dbp <= sbp.
VECT_OP_TYPE* VECT_OP_FUNC(HalfWaveRectify)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp );
//======================================================================================================================
//)
//( { label:"Filter" desc:"Apply filtering to a vector taking into account vector begin/end conditions." kw:[vop] }
// Apply a median or other filter of order wndN to xV[xN] and store the result in yV[xN].
// When the window goes off either side of the vector the window is shortened.
// This algorithm produces the same result as the fn_thresh function in MATLAB fv codebase.
void VECT_OP_FUNC(FnThresh)( const VECT_OP_TYPE* xV, unsigned xN, unsigned wndN, VECT_OP_TYPE* yV, unsigned yStride, VECT_OP_TYPE (*fnPtr)(const VECT_OP_TYPE*, unsigned) );
/// Apply a median filter of order wndN to xV[xN] and store the result in yV[xN].
/// When the window goes off either side of the vector the missing elements are considered
/// to be 0.
/// This algorithm produces the same result as the MATLAB medfilt1() function.
// Apply a median filter of order wndN to xV[xN] and store the result in yV[xN].
// When the window goes off either side of the vector the missing elements are considered
// to be 0.
// This algorithm produces the same result as the MATLAB medfilt1() function.
void VECT_OP_FUNC(MedianFilt)( const VECT_OP_TYPE* xV, unsigned xN, unsigned wndN, VECT_OP_TYPE* yV, unsigned yStride );
//======================================================================================================================
//)
//( { label:"Edit distance" desc:"Calculate the Levenshtein edit distance between vectors." kw:[vop] }
/// Allocate and initialize a matrix for use by LevEditDist().
/// This matrix can be released with a call to cmMemFree().
// Allocate and initialize a matrix for use by LevEditDist().
// This matrix can be released with a call to cmMemFree().
unsigned* VECT_OP_FUNC(LevEditDistAllocMtx)(unsigned mtxMaxN);
/// Return the Levenshtein edit distance between two vectors.
/// m must point to a matrix pre-allocated by VECT_OP_FUNC(InitiLevEditDistMtx)(maxN).
// Return the Levenshtein edit distance between two vectors.
// m must point to a matrix pre-allocated by VECT_OP_FUNC(InitiLevEditDistMtx)(maxN).
double VECT_OP_FUNC(LevEditDist)(unsigned mtxMaxN, unsigned* m, const VECT_OP_TYPE* s0, int n0, const VECT_OP_TYPE* s1, int n1, unsigned maxN );
/// Return the Levenshtein edit distance between two vectors.
/// Edit distance with a max cost threshold. This version of the algorithm
/// will run faster than LevEditDist() because it will stop execution as soon
/// as the distance exceeds 'maxCost'.
/// 'maxCost' must be between 0.0 and 1.0 or it is forced into this range.
/// The maximum distance returned will be 'maxCost'.
/// m must point to a matrix pre-allocated by VECT_OP_FUNC(InitiLevEditDistMtx)(maxN).
// Return the Levenshtein edit distance between two vectors.
// Edit distance with a max cost threshold. This version of the algorithm
// will run faster than LevEditDist() because it will stop execution as soon
// as the distance exceeds 'maxCost'.
// 'maxCost' must be between 0.0 and 1.0 or it is forced into this range.
// The maximum distance returned will be 'maxCost'.
// m must point to a matrix pre-allocated by VECT_OP_FUNC(InitiLevEditDistMtx)(maxN).
double VECT_OP_FUNC(LevEditDistWithCostThresh)( int mtxMaxN, unsigned* m, const VECT_OP_TYPE* s0, int n0, const VECT_OP_TYPE* s1, int n1, double maxCost, unsigned maxN );
//======================================================================================================================
//)

View File

@ -1,5 +1,38 @@
#ifdef cmVectOpsTemplateCode_h
VECT_OP_TYPE* VECT_OP_FUNC(CumSum)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
{
VECT_OP_TYPE* dep = dbp + dn;
VECT_OP_TYPE* rp = dbp;
VECT_OP_TYPE sum = 0;
while( dbp < dep )
{
sum += *sbp++;
*dbp++ = sum;
}
return rp;
}
bool VECT_OP_FUNC(Equal)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
{
const VECT_OP_TYPE* ep = s0p + sn;
while( s0p < ep )
if( *s0p++ != *s1p++ )
return false;
return true;
}
VECT_OP_TYPE* VECT_OP_FUNC(LinSpace)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE base, VECT_OP_TYPE limit )
{
unsigned i = 0;
for(; i<dn; ++i)
dbp[i] = base + i*(limit-base)/(dn-1);
return dbp;
}
void VECT_OP_FUNC(VPrint)( cmRpt_t* rpt, const char* fmt, ... )
{
va_list vl;
@ -189,31 +222,43 @@ VECT_OP_TYPE* VECT_OP_FUNC(StandardizeCols)( VECT_OP_TYPE* dbp, unsigned drn, un
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(HalfWaveRectify)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
unsigned VECT_OP_FUNC(NormToMax)( VECT_OP_TYPE* dp, unsigned dn )
{
VECT_OP_TYPE* dp = dbp;
VECT_OP_TYPE* ep = dbp + dn;
for(; dp < ep; ++dp,++sp )
*dp = *sp < 0 ? 0 : *sp;
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(CumSum)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
{
VECT_OP_TYPE* dep = dbp + dn;
VECT_OP_TYPE* rp = dbp;
VECT_OP_TYPE sum = 0;
while( dbp < dep )
{
sum += *sbp++;
*dbp++ = sum;
unsigned i = VECT_OP_FUNC(MaxIndex)(dp,dn,1);
if( i != cmInvalidIdx )
{
VECT_OP_TYPE v = dp[i];
VECT_OP_FUNC(DivVS)(dp,dn,v);
}
return rp;
return i;
}
unsigned VECT_OP_FUNC(NormToAbsMax)( VECT_OP_TYPE* dp, unsigned dn, VECT_OP_TYPE fact )
{
if( dn == 0 )
return cmInvalidIdx;
unsigned i = 0;
unsigned mi = 0;
VECT_OP_TYPE mx = cmAbs(dp[0]);
for(i=1; i<dn; ++i)
if( cmAbs(dp[i])>mx )
{
mi = i;
mx = cmAbs(dp[i]);
}
VECT_OP_FUNC(MultVS)(dp,dn,fact/mx);
return mi;
}
VECT_OP_TYPE VECT_OP_FUNC(Mean)( const VECT_OP_TYPE* bp, unsigned n )
{ return VECT_OP_FUNC(Sum)(bp,n)/n; }
@ -312,52 +357,6 @@ VECT_OP_TYPE* VECT_OP_FUNC(VarianceM)(VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp
return dp;
}
unsigned VECT_OP_FUNC(NormToMax)( VECT_OP_TYPE* dp, unsigned dn )
{
unsigned i = VECT_OP_FUNC(MaxIndex)(dp,dn,1);
if( i != cmInvalidIdx )
{
VECT_OP_TYPE v = dp[i];
VECT_OP_FUNC(DivVS)(dp,dn,v);
}
return i;
}
unsigned VECT_OP_FUNC(NormToAbsMax)( VECT_OP_TYPE* dp, unsigned dn, VECT_OP_TYPE fact )
{
if( dn == 0 )
return cmInvalidIdx;
unsigned i = 0;
unsigned mi = 0;
VECT_OP_TYPE mx = cmAbs(dp[0]);
for(i=1; i<dn; ++i)
if( cmAbs(dp[i])>mx )
{
mi = i;
mx = cmAbs(dp[i]);
}
VECT_OP_FUNC(MultVS)(dp,dn,fact/mx);
return mi;
}
VECT_OP_TYPE VECT_OP_FUNC(AlphaNorm)(const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE alpha )
{
double sum = 0;
const VECT_OP_TYPE* bp = sp;
const VECT_OP_TYPE* ep = sp + sn;
while( bp < ep )
sum += pow(fabs(*bp++),alpha);
return (VECT_OP_TYPE)pow(sum/sn,1.0/alpha);
}
void VECT_OP_FUNC(GaussCovariance)(VECT_OP_TYPE* yM, unsigned D, const VECT_OP_TYPE* xM, unsigned xN, const VECT_OP_TYPE* uV, const unsigned* selIdxV, unsigned selKey )
{
@ -468,14 +467,6 @@ void VECT_OP_FUNC(GaussCovariance2)(VECT_OP_TYPE* yM, unsigned D, const VECT_OP
}
bool VECT_OP_FUNC(Equal)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
{
const VECT_OP_TYPE* ep = s0p + sn;
while( s0p < ep )
if( *s0p++ != *s1p++ )
return false;
return true;
}
bool VECT_OP_FUNC(IsNormal)( const VECT_OP_TYPE* sp, unsigned sn )
{
@ -584,6 +575,19 @@ VECT_OP_TYPE* VECT_OP_FUNC(RmsV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_T
VECT_OP_TYPE VECT_OP_FUNC(EuclidNorm)( const VECT_OP_TYPE* sp, unsigned sn )
{ return (VECT_OP_TYPE)sqrt( VECT_OP_FUNC(MultSumVV)(sp,sp,sn)); }
VECT_OP_TYPE VECT_OP_FUNC(AlphaNorm)(const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE alpha )
{
double sum = 0;
const VECT_OP_TYPE* bp = sp;
const VECT_OP_TYPE* ep = sp + sn;
while( bp < ep )
sum += pow(fabs(*bp++),alpha);
return (VECT_OP_TYPE)pow(sum/sn,1.0/alpha);
}
/*
From:http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/doc/voicebox/distitpf.html
[nf1,p2]=size(pf1);
@ -1150,47 +1154,6 @@ VECT_OP_TYPE* VECT_OP_FUNC(LogV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(AmplToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
{
VECT_OP_TYPE minVal = pow(10.0,minDb/20.0);
VECT_OP_TYPE* dp = dbp;
VECT_OP_TYPE* ep = dp + dn;
for(; dp<ep; ++dp,++sbp)
*dp = *sbp<minVal ? minDb : 20.0 * log10(*sbp);
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(DbToAmplVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
{
VECT_OP_TYPE* dp = dbp;
VECT_OP_TYPE* ep = dp + dn;
for(; dp<ep; ++dp,++sbp)
*dp = pow(10.0,*sbp/20.0);
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(PowToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
{
VECT_OP_TYPE minVal = pow(10.0,minDb/10.0);
VECT_OP_TYPE* dp = dbp;
VECT_OP_TYPE* ep = dp + dn;
for(; dp<ep; ++dp,++sbp)
*dp = *sbp<minVal ? minDb : 10.0 * log10(*sbp);
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(DbToPowVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
{
VECT_OP_TYPE* dp = dbp;
VECT_OP_TYPE* ep = dp + dn;
for(; dp<ep; ++dp,++sbp)
*dp = pow(10.0,*sbp/10.0);
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(RandSymPosDef)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE* t )
{
unsigned i,j;
@ -1420,6 +1383,43 @@ VECT_OP_TYPE* VECT_OP_FUNC(CholZ)(VECT_OP_TYPE* A, unsigned an )
return A;
}
void VECT_OP_FUNC(Lsq1)(const VECT_OP_TYPE* x, const VECT_OP_TYPE* y, unsigned n, VECT_OP_TYPE* b0, VECT_OP_TYPE* b1 )
{
VECT_OP_TYPE sx = 0;
VECT_OP_TYPE sy = 0;
VECT_OP_TYPE sx_2 = 0;
VECT_OP_TYPE sxy = 0;
unsigned i;
if( x == NULL )
{
for(i=0; i<n; ++i)
{
VECT_OP_TYPE xx = i;
sx += xx;
sx_2 += xx * xx;
sxy += xx * y[i];
sy += y[i];
}
}
else
{
for(i=0; i<n; ++i)
{
sx += x[i];
sx_2 += x[i] * x[i];
sxy += x[i] * y[i];
sy += y[i];
}
}
*b1 = (sxy * n - sx * sy) / (sx_2 * n - sx*sx);
*b0 = (sy - (*b1) * sx) / n;
}
VECT_OP_TYPE VECT_OP_FUNC(FracAvg)( double bi, double ei, const VECT_OP_TYPE* sbp, unsigned sn )
{
unsigned bii = cmMax(0,cmMin(sn-1,(unsigned)ceil(bi)));
@ -1739,21 +1739,137 @@ VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussMM)( VECT_OP_TYPE* dbp, unsigned drn, unsi
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(CircleCoords)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE x, VECT_OP_TYPE y, VECT_OP_TYPE varX, VECT_OP_TYPE varY )
VECT_OP_TYPE* VECT_OP_FUNC(GaussPDF)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE mean, VECT_OP_TYPE stdDev )
{
VECT_OP_TYPE* rp = dbp;
const VECT_OP_TYPE* dep = dbp + dn;
VECT_OP_TYPE var = stdDev * stdDev;
VECT_OP_TYPE fact0 = 1.0/sqrt(2*M_PI*var);
VECT_OP_TYPE fact1 = 2.0 * var;
for(; dbp < dep; ++sbp )
*dbp++ = fact0 * exp( -((*sbp-mean)*(*sbp-mean))/ fact1 );
return rp;
}
/// Evaluate a multivariate normal distribution defined by meanV[D] and covarM[D,D]
/// at the data points held in the columns of xM[D,N]. Return the evaluation
/// results in the vector yV[N].
bool VECT_OP_FUNC(MultVarGaussPDF)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, unsigned D, unsigned N, bool diagFl )
{
VECT_OP_TYPE det0;
// calc the determinant of the covariance matrix
if( diagFl )
// kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetDiagM)(covarM,D);
det0 = VECT_OP_FUNC(DetDiagM)(covarM,D);
else
// kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetM)(covarM,D);
det0 = VECT_OP_FUNC(DetM)(covarM,D);
assert(det0 != 0 );
if( det0 == 0 )
return false;
// calc the inverse of the covariance matrix
VECT_OP_TYPE icM[D*D];
VECT_OP_FUNC(Copy)(icM,D*D,covarM);
VECT_OP_TYPE* r;
if( diagFl )
r = VECT_OP_FUNC(InvDiagM)(icM,D);
else
r = VECT_OP_FUNC(InvM)(icM,D);
if( r == NULL )
return false;
VECT_OP_FUNC(MultVarGaussPDF2)( yV, xM, meanV, icM, det0, D, N, diagFl );
return true;
}
VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF2)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* icM, VECT_OP_TYPE logDet, unsigned D, unsigned N, bool diagFl )
{
unsigned i;
for(i=0; i<dn; ++i)
{
double a = 2.0*M_PI*i/(dn-1);
dbp[ i ] = (VECT_OP_TYPE)(varX * cos(a) + x);
dbp[ i+dn ] = (VECT_OP_TYPE)(varY * sin(a) + y);
double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
for(i=0; i<N; ++i)
{
VECT_OP_TYPE dx[D];
VECT_OP_TYPE t[D];
// dx[] difference between mean and ith data point
VECT_OP_FUNC(SubVVV)(dx,D, xM + (i*D), meanV);
// t[] = dx[] * inv(covarM);
if( diagFl )
VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
else
VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
// dist = sum(dx[] * t[])
cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
yV[i] = exp( fact - (0.5*dist) );
}
return dbp;
return yV;
}
VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF3)(
VECT_OP_TYPE* yV,
const VECT_OP_TYPE* (*srcFunc)(void* funcDataPtr, unsigned frmIdx ),
void* funcDataPtr,
const VECT_OP_TYPE* meanV,
const VECT_OP_TYPE* icM,
VECT_OP_TYPE logDet,
unsigned D,
unsigned N,
bool diagFl )
{
unsigned i;
double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
for(i=0; i<N; ++i)
{
VECT_OP_TYPE dx[D];
VECT_OP_TYPE t[D];
const VECT_OP_TYPE* xV = srcFunc( funcDataPtr, i );
if( xV == NULL )
yV[i] = 0;
else
{
// dx[] difference between mean and ith data point
VECT_OP_FUNC(SubVVV)(dx, D, xV, meanV);
// t[] = dx[] * inv(covarM);
if( diagFl )
VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
else
VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
// dist = sum(dx[] * t[])
cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
yV[i] = exp( fact - (0.5*dist) );
}
}
return yV;
}
unsigned VECT_OP_FUNC(SynthSine)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
{
const VECT_OP_TYPE* dep = dbp + dn;
@ -1929,14 +2045,47 @@ VECT_OP_TYPE VECT_OP_FUNC(SynthPinkNoise)( VECT_OP_TYPE* dbp, unsigned n, VECT_O
return *sp;
}
VECT_OP_TYPE* VECT_OP_FUNC(LinSpace)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE base, VECT_OP_TYPE limit )
VECT_OP_TYPE* VECT_OP_FUNC(AmplToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
{
unsigned i = 0;
for(; i<dn; ++i)
dbp[i] = base + i*(limit-base)/(dn-1);
VECT_OP_TYPE minVal = pow(10.0,minDb/20.0);
VECT_OP_TYPE* dp = dbp;
VECT_OP_TYPE* ep = dp + dn;
for(; dp<ep; ++dp,++sbp)
*dp = *sbp<minVal ? minDb : 20.0 * log10(*sbp);
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(DbToAmplVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
{
VECT_OP_TYPE* dp = dbp;
VECT_OP_TYPE* ep = dp + dn;
for(; dp<ep; ++dp,++sbp)
*dp = pow(10.0,*sbp/20.0);
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(PowToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
{
VECT_OP_TYPE minVal = pow(10.0,minDb/10.0);
VECT_OP_TYPE* dp = dbp;
VECT_OP_TYPE* ep = dp + dn;
for(; dp<ep; ++dp,++sbp)
*dp = *sbp<minVal ? minDb : 10.0 * log10(*sbp);
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(DbToPowVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
{
VECT_OP_TYPE* dp = dbp;
VECT_OP_TYPE* ep = dp + dn;
for(; dp<ep; ++dp,++sbp)
*dp = pow(10.0,*sbp/10.0);
return dbp;
}
VECT_OP_TYPE* VECT_OP_FUNC(LinearToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE mult )
{
@ -2371,41 +2520,6 @@ VECT_OP_TYPE* VECT_OP_FUNC(LP_Sinc)(VECT_OP_TYPE* dp, unsigned dn, const VECT_OP
return rp;
}
VECT_OP_TYPE VECT_OP_FUNC(ComplexDetect)(const VECT_OP_TYPE* mag0V, const VECT_OP_TYPE* mag1V, const VECT_OP_TYPE* phs0V, const VECT_OP_TYPE* phs1V, const VECT_OP_TYPE* phs2V, unsigned binCnt )
{
double sum = 0;
const VECT_OP_TYPE* ep = mag0V + binCnt;
unsigned i = 0;
for(; mag0V < ep; ++i )
{
// calc phase deviation from expected
double dev_rads = *phs0V++ - (2 * *phs1V++) + *phs2V++;
// map deviation into range: -pi to pi
//double dev_rads1 = mod(dev_rads0 + M_PI, -2*M_PI ) + M_PI;
while( dev_rads > M_PI)
dev_rads -= 2*M_PI;
while( dev_rads < -M_PI)
dev_rads += 2*M_PI;
// convert into rect coord's
double m1r = *mag1V++;
double m0r = *mag0V * cos(dev_rads);
double m0i = *mag0V++ * sin(dev_rads);
// calc the combined amplitude and phase deviation
// sum += hypot( m1 - (m0 * e^(-1*dev_rads)));
sum += hypot( m1r-m0r, -m0i );
}
return (VECT_OP_TYPE)sum;
}
VECT_OP_TYPE* VECT_OP_FUNC(MelMask)( VECT_OP_TYPE* maskMtx, unsigned filterCnt, unsigned binCnt, double srate, unsigned flags )
{
@ -2614,68 +2728,6 @@ VECT_OP_TYPE* VECT_OP_FUNC(ShroederSpreadingFunc)(VECT_OP_TYPE* m, unsigned band
return m;
}
VECT_OP_TYPE* VECT_OP_FUNC(DctMatrix)( VECT_OP_TYPE* dp, unsigned coeffCnt, unsigned filtCnt )
{
VECT_OP_TYPE* dbp = dp;
double c0 = 1.0/sqrt(filtCnt/2); // row 1-coeffCnt factor
double c1 = c0 * sqrt(2)/2; // row 0 factor
unsigned i,j;
// for each column
for(i=0; i<filtCnt; ++i)
// for each row
for(j=0; j<coeffCnt; ++j)
*dp++ = (j==0 ? c1 : c0) * cos( (0.5 + i) * M_PI * j / filtCnt);
return dbp;
}
unsigned VECT_OP_FUNC(PeakIndexes)( unsigned* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE threshold )
{
unsigned pkCnt = 0;
const unsigned* dep = dbp + dn;
const VECT_OP_TYPE* sep = sbp + sn;
const VECT_OP_TYPE* s2p = sbp;
const VECT_OP_TYPE* s0p = s2p++;
const VECT_OP_TYPE* s1p = s2p++;
while( dbp < dep && s2p < sep )
{
if( (*s0p < *s1p) && (*s1p > *s2p) && (*s1p >= threshold) )
{
*dbp++ = s1p - sbp;
s0p = s2p++;
s1p = s2p++;
++pkCnt;
}
else
{
s0p = s1p;
s1p = s2p++;
}
}
return pkCnt;
}
unsigned VECT_OP_FUNC(BinIndex)( const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE v )
{
const VECT_OP_TYPE* sep = sbp + sn;
const VECT_OP_TYPE* bp = sbp;
sep--;
for(; sbp < sep; ++sbp )
if( *sbp <= v && v < *(sbp+1) )
return sbp - bp;
return cmInvalidIdx;
}
unsigned VECT_OP_FUNC(Kmeans)(
unsigned* classIdxV, // classIdxV[scn] - data point class assignments
VECT_OP_TYPE* centroidM, // centroidM[srn,K] - cluster centroids
@ -2913,136 +2965,6 @@ unsigned VECT_OP_FUNC(Kmeans2)(
return iterCnt;
}
VECT_OP_TYPE* VECT_OP_FUNC(GaussPDF)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE mean, VECT_OP_TYPE stdDev )
{
VECT_OP_TYPE* rp = dbp;
const VECT_OP_TYPE* dep = dbp + dn;
VECT_OP_TYPE var = stdDev * stdDev;
VECT_OP_TYPE fact0 = 1.0/sqrt(2*M_PI*var);
VECT_OP_TYPE fact1 = 2.0 * var;
for(; dbp < dep; ++sbp )
*dbp++ = fact0 * exp( -((*sbp-mean)*(*sbp-mean))/ fact1 );
return rp;
}
/// Evaluate a multivariate normal distribution defined by meanV[D] and covarM[D,D]
/// at the data points held in the columns of xM[D,N]. Return the evaluation
/// results in the vector yV[N].
bool VECT_OP_FUNC(MultVarGaussPDF)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, unsigned D, unsigned N, bool diagFl )
{
VECT_OP_TYPE det0;
// calc the determinant of the covariance matrix
if( diagFl )
// kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetDiagM)(covarM,D);
det0 = VECT_OP_FUNC(DetDiagM)(covarM,D);
else
// kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetM)(covarM,D);
det0 = VECT_OP_FUNC(DetM)(covarM,D);
assert(det0 != 0 );
if( det0 == 0 )
return false;
// calc the inverse of the covariance matrix
VECT_OP_TYPE icM[D*D];
VECT_OP_FUNC(Copy)(icM,D*D,covarM);
VECT_OP_TYPE* r;
if( diagFl )
r = VECT_OP_FUNC(InvDiagM)(icM,D);
else
r = VECT_OP_FUNC(InvM)(icM,D);
if( r == NULL )
return false;
VECT_OP_FUNC(MultVarGaussPDF2)( yV, xM, meanV, icM, det0, D, N, diagFl );
return true;
}
VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF2)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* icM, VECT_OP_TYPE logDet, unsigned D, unsigned N, bool diagFl )
{
unsigned i;
double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
for(i=0; i<N; ++i)
{
VECT_OP_TYPE dx[D];
VECT_OP_TYPE t[D];
// dx[] difference between mean and ith data point
VECT_OP_FUNC(SubVVV)(dx,D, xM + (i*D), meanV);
// t[] = dx[] * inv(covarM);
if( diagFl )
VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
else
VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
// dist = sum(dx[] * t[])
cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
yV[i] = exp( fact - (0.5*dist) );
}
return yV;
}
VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF3)(
VECT_OP_TYPE* yV,
const VECT_OP_TYPE* (*srcFunc)(void* funcDataPtr, unsigned frmIdx ),
void* funcDataPtr,
const VECT_OP_TYPE* meanV,
const VECT_OP_TYPE* icM,
VECT_OP_TYPE logDet,
unsigned D,
unsigned N,
bool diagFl )
{
unsigned i;
double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
for(i=0; i<N; ++i)
{
VECT_OP_TYPE dx[D];
VECT_OP_TYPE t[D];
const VECT_OP_TYPE* xV = srcFunc( funcDataPtr, i );
if( xV == NULL )
yV[i] = 0;
else
{
// dx[] difference between mean and ith data point
VECT_OP_FUNC(SubVVV)(dx, D, xV, meanV);
// t[] = dx[] * inv(covarM);
if( diagFl )
VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
else
VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
// dist = sum(dx[] * t[])
cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
yV[i] = exp( fact - (0.5*dist) );
}
}
return yV;
}
/// stateV[timeN]
/// a[stateN,stateN],
/// b[stateN,timeN]
@ -3117,6 +3039,22 @@ void VECT_OP_FUNC(DiscreteViterbi)(unsigned* stateV, unsigned tN, unsigned sN, c
cmMemPtrFree( &dV );
}
VECT_OP_TYPE* VECT_OP_FUNC(CircleCoords)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE x, VECT_OP_TYPE y, VECT_OP_TYPE varX, VECT_OP_TYPE varY )
{
unsigned i;
for(i=0; i<dn; ++i)
{
double a = 2.0*M_PI*i/(dn-1);
dbp[ i ] = (VECT_OP_TYPE)(varX * cos(a) + x);
dbp[ i+dn ] = (VECT_OP_TYPE)(varY * sin(a) + y);
}
return dbp;
}
bool VECT_OP_FUNC(ClipLine2)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax, VECT_OP_TYPE* t0, VECT_OP_TYPE* t1 )
{
@ -3226,41 +3164,104 @@ VECT_OP_TYPE VECT_OP_FUNC(PtToLineDistance)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, V
return (VECT_OP_TYPE)fabs((px - x0) * (y1 - y0) - (py - y0) * (x1 - x0)) / normalLength;
}
void VECT_OP_FUNC(Lsq1)(const VECT_OP_TYPE* x, const VECT_OP_TYPE* y, unsigned n, VECT_OP_TYPE* b0, VECT_OP_TYPE* b1 )
VECT_OP_TYPE VECT_OP_FUNC(ComplexDetect)(const VECT_OP_TYPE* mag0V, const VECT_OP_TYPE* mag1V, const VECT_OP_TYPE* phs0V, const VECT_OP_TYPE* phs1V, const VECT_OP_TYPE* phs2V, unsigned binCnt )
{
VECT_OP_TYPE sx = 0;
VECT_OP_TYPE sy = 0;
VECT_OP_TYPE sx_2 = 0;
VECT_OP_TYPE sxy = 0;
unsigned i;
double sum = 0;
const VECT_OP_TYPE* ep = mag0V + binCnt;
if( x == NULL )
unsigned i = 0;
for(; mag0V < ep; ++i )
{
for(i=0; i<n; ++i)
{
VECT_OP_TYPE xx = i;
sx += xx;
sx_2 += xx * xx;
sxy += xx * y[i];
sy += y[i];
}
}
else
{
for(i=0; i<n; ++i)
{
sx += x[i];
sx_2 += x[i] * x[i];
sxy += x[i] * y[i];
sy += y[i];
}
// calc phase deviation from expected
double dev_rads = *phs0V++ - (2 * *phs1V++) + *phs2V++;
// map deviation into range: -pi to pi
//double dev_rads1 = mod(dev_rads0 + M_PI, -2*M_PI ) + M_PI;
while( dev_rads > M_PI)
dev_rads -= 2*M_PI;
while( dev_rads < -M_PI)
dev_rads += 2*M_PI;
// convert into rect coord's
double m1r = *mag1V++;
double m0r = *mag0V * cos(dev_rads);
double m0i = *mag0V++ * sin(dev_rads);
// calc the combined amplitude and phase deviation
// sum += hypot( m1 - (m0 * e^(-1*dev_rads)));
sum += hypot( m1r-m0r, -m0i );
}
*b1 = (sxy * n - sx * sy) / (sx_2 * n - sx*sx);
*b0 = (sy - (*b1) * sx) / n;
return (VECT_OP_TYPE)sum;
}
VECT_OP_TYPE* VECT_OP_FUNC(DctMatrix)( VECT_OP_TYPE* dp, unsigned coeffCnt, unsigned filtCnt )
{
VECT_OP_TYPE* dbp = dp;
double c0 = 1.0/sqrt(filtCnt/2); // row 1-coeffCnt factor
double c1 = c0 * sqrt(2)/2; // row 0 factor
unsigned i,j;
// for each column
for(i=0; i<filtCnt; ++i)
// for each row
for(j=0; j<coeffCnt; ++j)
*dp++ = (j==0 ? c1 : c0) * cos( (0.5 + i) * M_PI * j / filtCnt);
return dbp;
}
unsigned VECT_OP_FUNC(PeakIndexes)( unsigned* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE threshold )
{
unsigned pkCnt = 0;
const unsigned* dep = dbp + dn;
const VECT_OP_TYPE* sep = sbp + sn;
const VECT_OP_TYPE* s2p = sbp;
const VECT_OP_TYPE* s0p = s2p++;
const VECT_OP_TYPE* s1p = s2p++;
while( dbp < dep && s2p < sep )
{
if( (*s0p < *s1p) && (*s1p > *s2p) && (*s1p >= threshold) )
{
*dbp++ = s1p - sbp;
s0p = s2p++;
s1p = s2p++;
++pkCnt;
}
else
{
s0p = s1p;
s1p = s2p++;
}
}
return pkCnt;
}
unsigned VECT_OP_FUNC(BinIndex)( const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE v )
{
const VECT_OP_TYPE* sep = sbp + sn;
const VECT_OP_TYPE* bp = sbp;
sep--;
for(; sbp < sep; ++sbp )
if( *sbp <= v && v < *(sbp+1) )
return sbp - bp;
return cmInvalidIdx;
}
void VECT_OP_FUNC(Interp1)(VECT_OP_TYPE* y1, const VECT_OP_TYPE* x1, unsigned xy1N, const VECT_OP_TYPE* x0, const VECT_OP_TYPE* y0, unsigned xy0N )

View File

@ -1,7 +1,21 @@
// \file cmVectOpsTemplateHdr.h
/// Vector operations interface.
//( { label:misc desc:"Miscellaneous vector operations." kw:[vop] }
/// Setting fieldWidth or decPltCnt to to negative values result in fieldWidth == 10 or decPlCnt == 4
// Compute the cummulative sum of sbp[dn]. Equivalent to Matlab cumsum().
VECT_OP_TYPE* VECT_OP_FUNC(CumSum)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp );
// Returns true if all values in each vector are equal.
bool VECT_OP_FUNC(Equal)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn );
// Same as Matlab linspace() v[i] = i * (limit-1)/n
VECT_OP_TYPE* VECT_OP_FUNC(LinSpace)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE base, VECT_OP_TYPE limit );
//======================================================================================================================
//)
//( { label:Print desc:"Vector printing functions." kw:[vop] }
// Setting fieldWidth or decPltCnt to to negative values result in fieldWidth == 10 or decPlCnt == 4
//
void VECT_OP_FUNC(Printf)( cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp, int fieldWidth, int decPlCnt, const char* fmt, unsigned flags );
void VECT_OP_FUNC(Print)( cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp );
void VECT_OP_FUNC(PrintE)( cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp );
@ -9,64 +23,68 @@ void VECT_OP_FUNC(PrintE)( cmRpt_t* rpt, unsigned rn, unsigned cn, cons
void VECT_OP_FUNC(PrintLf)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp, unsigned fieldWidth, unsigned decPlCnt, const char* fmt );
void VECT_OP_FUNC(PrintL)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp );
void VECT_OP_FUNC(PrintLE)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp );
//======================================================================================================================
//)
//( { label:Normalization desc:"Normalization and standardization functions." kw:[vop] }
/// Normalize the vector of proabilities by dividing through by the sum.
/// This leaves the relative proportions of each value unchanged while producing a total probability of 1.0.
// Normalize the vector of proabilities by dividing through by the sum.
// This leaves the relative proportions of each value unchanged while producing a total probability of 1.0.
//
VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbabilityVV)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp);
VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbability)(VECT_OP_TYPE* dbp, unsigned dn);
VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbabilityN)(VECT_OP_TYPE* dbp, unsigned dn, unsigned stride);
/// Standardize the columns of the matrix by subtracting the mean and dividing by the standard deviation.
/// uV[dcn] returns the mean of the data and is optional.
/// sdV[dcn] return the standard deviation of the data and is optional.
//
// Standardize the columns of the matrix by subtracting the mean and dividing by the standard deviation.
// uV[dcn] returns the mean of the data and is optional.
// sdV[dcn] return the standard deviation of the data and is optional.
VECT_OP_TYPE* VECT_OP_FUNC(StandardizeRows)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE* uV, VECT_OP_TYPE* sdV );
VECT_OP_TYPE* VECT_OP_FUNC(StandardizeCols)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE* uV, VECT_OP_TYPE* sdV );
//
// Normalize by dividing through by the max. value.
// dp[] ./= max(dp). Returns the index of the max value.
unsigned VECT_OP_FUNC(NormToMax)( VECT_OP_TYPE* dp, unsigned dn );
//
// Normalize by dividing through by the max. absolute value.
// db[] .*= fact / abs(max(dp));
unsigned VECT_OP_FUNC(NormToAbsMax)( VECT_OP_TYPE* dp, unsigned dn, VECT_OP_TYPE fact );
//======================================================================================================================
//)
/// dbp[] = sbp<0 .* sbp
/// Overlapping the source and dest is allowable as long as dbp <= sbp.
VECT_OP_TYPE* VECT_OP_FUNC(HalfWaveRectify)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp );
/// Compute the cummulative sum of sbp[dn]. Equivalent to Matlab cumsum().
VECT_OP_TYPE* VECT_OP_FUNC(CumSum)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp );
//( { label:"Mean and variance" desc:"Compute mean and variance." kw:[vop] }
VECT_OP_TYPE VECT_OP_FUNC(Mean)( const VECT_OP_TYPE* sp, unsigned sn );
VECT_OP_TYPE VECT_OP_FUNC(MeanN)( const VECT_OP_TYPE* sp, unsigned sn, unsigned stride );
//
// Take the mean of each column/row of a matrix.
// Set 'dim' to 0 to return mean of columns else return mean of rows.
VECT_OP_TYPE* VECT_OP_FUNC(MeanM)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, unsigned dim );
//
// Take the mean of the first 'cnt' element of each column/row of a matrix.
// Set 'dim' to 0 to return mean of columns else return mean of rows.
// If 'cnt' is greater than the number of elements in the column/row then 'cnt' is
// reduced to the number of elements in the column/row.
VECT_OP_TYPE* VECT_OP_FUNC(MeanM2)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, unsigned dim, unsigned cnt );
//
// Find the mean of the data points returned by srcFuncPtr(argPtr,i) and return it in dp[dim].
// 'dim' is both the size of dp[] and the length of each data point returned by srcFuncPtr().
// srcFuncPtr() will be called 'cnt' times but it may return NULL on some calls if the associated
// data point should not be included in the mean calculation.
VECT_OP_TYPE* VECT_OP_FUNC(Mean2)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* (*srcFuncPtr)(void* arg, unsigned idx ), unsigned dim, unsigned cnt, void* argPtr );
//
// avgPtr is optional - set to NULL to compute the average
VECT_OP_TYPE VECT_OP_FUNC(Variance)( const VECT_OP_TYPE* sp, unsigned sn, const VECT_OP_TYPE* avgPtr );
VECT_OP_TYPE VECT_OP_FUNC(VarianceN)(const VECT_OP_TYPE* sp, unsigned sn, unsigned stride, const VECT_OP_TYPE* avgPtr );
//
// Set dim=0 to return variance of columns otherwise return variance or rows.
VECT_OP_TYPE* VECT_OP_FUNC(VarianceM)(VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, const VECT_OP_TYPE* avgPtr, unsigned dim );
// dp[] ./= max(dp). Returns the index of the max value.
unsigned VECT_OP_FUNC(NormToMax)( VECT_OP_TYPE* dp, unsigned dn );
// db[] .*= fact / abs(max(dp));
unsigned VECT_OP_FUNC(NormToAbsMax)( VECT_OP_TYPE* dp, unsigned dn, VECT_OP_TYPE fact );
//======================================================================================================================
//)
VECT_OP_TYPE VECT_OP_FUNC(AlphaNorm)(const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE alpha );
//( { label:"Covariance" desc:"Matrix covariance" kw:[vop] }
// Calculate the sample covariance matrix from a set of Gaussian distributed multidimensional data.
// sp[dn,scn] is the data set.
@ -92,8 +110,10 @@ void VECT_OP_FUNC(GaussCovariance)(VECT_OP_TYPE* dp, unsigned dn, const VECT_OP
// through the 'sn' data points.
// The result of this function are identical to the octave cov() function.
void VECT_OP_FUNC(GaussCovariance2)(VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* (*srcFuncPtr)(void* userPtr, unsigned idx), unsigned sn, void* userPtr, const VECT_OP_TYPE* uV, const unsigned* selIdxV, unsigned selKey );
//======================================================================================================================
//)
bool VECT_OP_FUNC(Equal)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn );
//( { label:"Float point normal" desc:"Evaluate the 'normalness of floating point values." kw:[vop] }
// Returns true if all values are 'normal' according the the C macro 'isnormal'.
// This function will return false if any of the values are zero.
@ -107,80 +127,90 @@ bool VECT_OP_FUNC(IsNormalZ)(const VECT_OP_TYPE* sp, unsigned sn );
// Returns the count of indexes stored in dp[].
unsigned VECT_OP_FUNC(FindNonNormal)( unsigned* dp, unsigned dn, const VECT_OP_TYPE* sp );
unsigned VECT_OP_FUNC(FindNonNormalZ)( unsigned* dp, unsigned dn, const VECT_OP_TYPE* sp );
//======================================================================================================================
//)
/// Successive call to to ZeroCrossCount should preserve the value pointed to by delaySmpPtr.
//( { label:"Measure" desc:"Measure features of a vector." kw:[vop] }
// Successive call to to ZeroCrossCount should preserve the value pointed to by delaySmpPtr.
unsigned VECT_OP_FUNC(ZeroCrossCount)( const VECT_OP_TYPE* sp, unsigned n, VECT_OP_TYPE* delaySmpPtr);
// Calculuate the sum of the squares of all elements in bp[bn].
VECT_OP_TYPE VECT_OP_FUNC(SquaredSum)( const VECT_OP_TYPE* bp, unsigned bn );
/// sn must be <= wndSmpCnt. If sn < wndSmpCnt then sp[sn] is treated as a
/// a partially filled buffer padded with wndSmpCnt-sn zeros.
/// rms = sqrt( sum(sp[1:sn] .* sp[1:sn]) / wndSmpCnt )
// sn must be <= wndSmpCnt. If sn < wndSmpCnt then sp[sn] is treated as a
// a partially filled buffer padded with wndSmpCnt-sn zeros.
// rms = sqrt( sum(sp[1:sn] .* sp[1:sn]) / wndSmpCnt )
VECT_OP_TYPE VECT_OP_FUNC(RMS)( const VECT_OP_TYPE* sp, unsigned sn, unsigned wndSmpCnt );
/// This function handles the case were sn is not an integer multiple of
/// wndSmpCnt or hopSmpCnt. In this case the function computes zero
/// padded RMS values for windows which go past the end of sp[sn].
// This function handles the case were sn is not an integer multiple of
// wndSmpCnt or hopSmpCnt. In this case the function computes zero
// padded RMS values for windows which go past the end of sp[sn].
VECT_OP_TYPE* VECT_OP_FUNC(RmsV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp, unsigned sn, unsigned wndSmpCnt, unsigned hopSmpCnt );
/// Return the magnitude (Euclidean Norm) of a vector.
// Return the magnitude (Euclidean Norm) of a vector.
VECT_OP_TYPE VECT_OP_FUNC(EuclidNorm)( const VECT_OP_TYPE* sp, unsigned sn );
VECT_OP_TYPE VECT_OP_FUNC(AlphaNorm)(const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE alpha );
//======================================================================================================================
//)
//( { label:"Distance" desc:"Calculate various vector distances." kw:[vop] }
// Return the Itakura-Saito distance between a modelled power spectrum (up) and another power spectrum (sp).
VECT_OP_TYPE VECT_OP_FUNC(ItakuraDistance)( const VECT_OP_TYPE* up, const VECT_OP_TYPE* sp, unsigned sn );
/// Return the cosine distance between two vectors.
// Return the cosine distance between two vectors.
VECT_OP_TYPE VECT_OP_FUNC(CosineDistance)( const VECT_OP_TYPE* s0P, const VECT_OP_TYPE* s1p, unsigned sn );
/// Return the Euclidean distance between two vectors
// Return the Euclidean distance between two vectors
VECT_OP_TYPE VECT_OP_FUNC(EuclidDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn );
/// Return the Manhattan distance between two vectors
// Return the Manhattan distance between two vectors
VECT_OP_TYPE VECT_OP_FUNC(L1Distance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn );
/// Return the Mahalanobis distance between a vector and the mean of the distribution.
/// The mean vector could be replaced with another vector drawn from the same distribution in which
/// case the returned value would reflect the distance between the two vectors.
/// 'sn' is the dimensionality of the data.
/// up[D] and invCovM[sn,sn] are the mean and inverse of the covariance matrix of the distribution from
/// which sp[D] is drawn.
// Return the Mahalanobis distance between a vector and the mean of the distribution.
// The mean vector could be replaced with another vector drawn from the same distribution in which
// case the returned value would reflect the distance between the two vectors.
// 'sn' is the dimensionality of the data.
// up[D] and invCovM[sn,sn] are the mean and inverse of the covariance matrix of the distribution from
// which sp[D] is drawn.
VECT_OP_TYPE VECT_OP_FUNC(MahalanobisDistance)( const VECT_OP_TYPE* sp, unsigned sn, const VECT_OP_TYPE* up, const VECT_OP_TYPE* invCovM );
/// Return the KL distance between two probability distributions up[sn] and sp[sn].
/// Since up[] and sp[] are probability distributions they must sum to 1.0.
// Return the KL distance between two probability distributions up[sn] and sp[sn].
// Since up[] and sp[] are probability distributions they must sum to 1.0.
VECT_OP_TYPE VECT_OP_FUNC(KL_Distance)( const VECT_OP_TYPE* up, const VECT_OP_TYPE* sp, unsigned sn );
/// Return the KL distance between a prototype vector up[sn] and another vector sp[sn].
/// This function first normalizes the two vectors to sum to 1.0 before calling
// Return the KL distance between a prototype vector up[sn] and another vector sp[sn].
// This function first normalizes the two vectors to sum to 1.0 before calling
// VECT_OP_FUNC(KL_Distance)(up,sp,sn);
VECT_OP_TYPE VECT_OP_FUNC(KL_Distance2)( const VECT_OP_TYPE* up, const VECT_OP_TYPE* sp, unsigned sn );
/// Measure the Euclidean distance between a vector and all the columns in a matrix.
/// If dv[scn] is no NULL then return the Euclidean distance from sv[scn] to each column of sm[srn,scn].
/// The function returns the index of the closest data point (column) in sm[].
// Measure the Euclidean distance between a vector and all the columns in a matrix.
// If dv[scn] is no NULL then return the Euclidean distance from sv[scn] to each column of sm[srn,scn].
// The function returns the index of the closest data point (column) in sm[].
unsigned VECT_OP_FUNC(EuclidDistanceVM)( VECT_OP_TYPE* dv, const VECT_OP_TYPE* sv, const VECT_OP_TYPE* sm, unsigned srn, unsigned scn );
/// Measure the distance between each column in s0M[ rn, s0cn ] and
/// each column in s1M[rn, s1cn ]. If dM is non-NULL store the
/// result in dM[s1cn, s0cn]. The difference between s0M[:,0] and s1M[:,0]
/// is stored in dM[0,0], the diff. between s0M[:,1] and s1M[:,1] is stored
/// in dM[1,0], etc. If mvV[s0cn] is non-NULL then minV[i] is set with
/// the distance from s0M[:,i] to the nearest column in s1M[]. If miV[s0cn]
/// is non-NULL then it is set with the column index of s1M[] which is
/// closest to s0M[:,i]. In other words mvV[i] gives the distance to column
/// miV[i] from column s0M[:,i].
/// In those cases where the distane from a prototype (centroid) to the data point
/// is not the same as from the data point to the centroid then s1M[] is considered
/// to hold the prototypes and s0M[] is considered to hold the data points.
/// The distance function returns the distance from a prototype 'cV[dimN]' to
/// an datapoint dV[dimN]. 'dimN' is the dimensionality of the data vector
/// and is threfore equal to 'rn'.
// Measure the distance between each column in s0M[ rn, s0cn ] and
// each column in s1M[rn, s1cn ]. If dM is non-NULL store the
// result in dM[s1cn, s0cn]. The difference between s0M[:,0] and s1M[:,0]
// is stored in dM[0,0], the diff. between s0M[:,1] and s1M[:,1] is stored
// in dM[1,0], etc. If mvV[s0cn] is non-NULL then minV[i] is set with
// the distance from s0M[:,i] to the nearest column in s1M[]. If miV[s0cn]
// is non-NULL then it is set with the column index of s1M[] which is
// closest to s0M[:,i]. In other words mvV[i] gives the distance to column
// miV[i] from column s0M[:,i].
// In those cases where the distane from a prototype (centroid) to the data point
// is not the same as from the data point to the centroid then s1M[] is considered
// to hold the prototypes and s0M[] is considered to hold the data points.
// The distance function returns the distance from a prototype 'cV[dimN]' to
// an datapoint dV[dimN]. 'dimN' is the dimensionality of the data vector
// and is threfore equal to 'rn'.
void VECT_OP_FUNC(DistVMM)(
VECT_OP_TYPE* dM, // dM[s1cn,s0cn] return distance mtx (optional)
VECT_OP_TYPE* mvV, // mvV[s0cn] distance to closest data point in s0M[]. (optional)
@ -193,192 +223,238 @@ void VECT_OP_FUNC(DistVMM)(
VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* cV, const VECT_OP_TYPE* dV, unsigned dimN ),
void* userPtr );
/// Select 'selIdxN' columns from sM[srn,scn].
/// dM[srn,selIdxN] receives copies of the selected columns.
/// selIdxV[selIdxN] receives the column indexes of the selected columns.
/// Both dM[] and selIdxV[] are optional.
/// In each case the first selected point is chosen at random.
/// SelectRandom() then selects the following selIdxN-1 points at random.
/// SelectMaxDist() selects the next selIdxN-1 points by selecting
/// the point whose combined distance to the previously selected points
/// is greatest. SelectMaxAvgDist() selectes the points whose combined
/// average distance is greatest relative the the previously selected
/// points.
//======================================================================================================================
//)
//( { label:"Select columns" desc:"Select columns based on distance." kw:[vop] }
// Select 'selIdxN' columns from sM[srn,scn].
// dM[srn,selIdxN] receives copies of the selected columns.
// selIdxV[selIdxN] receives the column indexes of the selected columns.
// Both dM[] and selIdxV[] are optional.
// In each case the first selected point is chosen at random.
// SelectRandom() then selects the following selIdxN-1 points at random.
// SelectMaxDist() selects the next selIdxN-1 points by selecting
// the point whose combined distance to the previously selected points
// is greatest. SelectMaxAvgDist() selectes the points whose combined
// average distance is greatest relative the the previously selected
// points.
void VECT_OP_FUNC(SelectRandom)( VECT_OP_TYPE* dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn );
void VECT_OP_FUNC(SelectMaxDist)( VECT_OP_TYPE* dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* distUserPtr );
void VECT_OP_FUNC(SelectMaxAvgDist)( VECT_OP_TYPE* dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* distUserPtr );
/// Return the sum of the products (dot product)
//======================================================================================================================
//)
//( { label:"Matrix multiplication" desc:"Various matrix multiplication operations." kw:[vop] }
// Return the sum of the products (dot product)
VECT_OP_TYPE VECT_OP_FUNC(MultSumVV)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn );
VECT_OP_TYPE VECT_OP_FUNC(MultSumVS)( const VECT_OP_TYPE* s0p, unsigned sn, VECT_OP_TYPE s );
/// Number of elements in the dest vector is expected to be the same
/// as the number of source matrix rows.
/// mcn gives the number of columns in the source matrix which is
// Number of elements in the dest vector is expected to be the same
// as the number of source matrix rows.
// mcn gives the number of columns in the source matrix which is
// expected to match the number of elements in the source vector.
/// dbp[dn,1] = mp[dn,mcn] * vp[mcn,1]
// dbp[dn,1] = mp[dn,mcn] * vp[mcn,1]
VECT_OP_TYPE* VECT_OP_FUNC(MultVMV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp );
/// Multiply a row vector with a matrix to produce a row vector.
/// dbp[1,dn] = v[1,vn] * m[vn,dn]
// Multiply a row vector with a matrix to produce a row vector.
// dbp[1,dn] = v[1,vn] * m[vn,dn]
VECT_OP_TYPE* VECT_OP_FUNC(MultVVM)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* vp, unsigned vn, const VECT_OP_TYPE* mp );
/// Same as MultVMtV() except M is transposed as part of the multiply.
/// mrn gives the number of rows in m[] and number of elements in vp[]
/// dpb[dn] = mp[mrn,dn] * vp[mrn]
// Same as MultVMtV() except M is transposed as part of the multiply.
// mrn gives the number of rows in m[] and number of elements in vp[]
// dpb[dn] = mp[mrn,dn] * vp[mrn]
VECT_OP_TYPE* VECT_OP_FUNC(MultVMtV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* mp, unsigned mrn, const VECT_OP_TYPE* vp );
/// Same as MultVMV() but where the matrix is diagonal.
// Same as MultVMV() but where the matrix is diagonal.
VECT_OP_TYPE* VECT_OP_FUNC(MultDiagVMV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp );
/// Generalized matrix multiply.
/// If transposition is selected for M0 or M1 then the given dimension represent the size of the matrix 'after' the transposion.
/// d[drn,dcn] = alpha * op(m0[drn,m0cn_m1rn]) * op(m1[m0cn_m1rn,dcn]) + beta * d[drn,dcn]
//// See enum { kTranpsoseM0Fl=0x01, kTransposeM1Fl=0x02 } in cmVectOps for flags.
// Generalized matrix multiply.
// If transposition is selected for M0 or M1 then the given dimension represent the size of the matrix 'after' the transposion.
// d[drn,dcn] = alpha * op(m0[drn,m0cn_m1rn]) * op(m1[m0cn_m1rn,dcn]) + beta * d[drn,dcn]
/// See enum { kTranpsoseM0Fl=0x01, kTransposeM1Fl=0x02 } in cmVectOps for flags.
VECT_OP_TYPE* VECT_OP_FUNC(MultMMM1)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE alpha, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn, VECT_OP_TYPE beta, unsigned flags );
/// Same a VECT_OP_FUNC(MultMMM1) except allows the operation on a sub-matrix by providing the physical (memory) row count rather than the logical (matrix) row count.
// Same a VECT_OP_FUNC(MultMMM1) except allows the operation on a sub-matrix by providing the physical (memory) row count rather than the logical (matrix) row count.
VECT_OP_TYPE* VECT_OP_FUNC(MultMMM2)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE alpha, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn, VECT_OP_TYPE beta, unsigned flags, unsigned dprn, unsigned m0prn, unsigned m1prn );
/// d[drn,dcn] = m0[drn,m0cn] * m1[m1rn,dcn]
// d[drn,dcn] = m0[drn,m0cn] * m1[m1rn,dcn]
VECT_OP_TYPE* VECT_OP_FUNC(MultMMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn );
/// same as MultMMM() except second source matrix is transposed prior to the multiply
// same as MultMMM() except second source matrix is transposed prior to the multiply
VECT_OP_TYPE* VECT_OP_FUNC(MultMMMt)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn );
// Raise dbp[] to the power 'expon'
VECT_OP_TYPE* VECT_OP_FUNC(PowVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE expon );
VECT_OP_TYPE* VECT_OP_FUNC(PowVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE expon );
//======================================================================================================================
//)
// Take the natural log of all values in sbp[dn]. It is allowable for sbp point to the same array as dbp=.
VECT_OP_TYPE* VECT_OP_FUNC(LogV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp );
//( { label:"Linear algebra" desc:"Miscellaneous linear algebra operations. Determinant, Inversion, Cholesky decompostion. Linear system solver." kw:[vop] }
// Convert a magnitude (amplitude) spectrum to/from decibels.
// It is allowable for dbp==sbp.
VECT_OP_TYPE* VECT_OP_FUNC(AmplToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb );
VECT_OP_TYPE* VECT_OP_FUNC(DbToAmplVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp);
VECT_OP_TYPE* VECT_OP_FUNC(PowToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb );
VECT_OP_TYPE* VECT_OP_FUNC(DbToPowVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp);
/// Initialize dbp[dn,dn] as a square symetric positive definite matrix using values
/// from a random uniform distribution. This is useful for initializing random
/// covariance matrices as used by multivariate Gaussian distributions
/// If t is non-NULL it must point to a block of scratch memory of t[dn,dn].
/// If t is NULL then scratch memory is internally allocated and deallocated.
// Initialize dbp[dn,dn] as a square symetric positive definite matrix using values
// from a random uniform distribution. This is useful for initializing random
// covariance matrices as used by multivariate Gaussian distributions
// If t is non-NULL it must point to a block of scratch memory of t[dn,dn].
// If t is NULL then scratch memory is internally allocated and deallocated.
VECT_OP_TYPE* VECT_OP_FUNC(RandSymPosDef)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE* t );
/// Compute the determinant of any square matrix.
// Compute the determinant of any square matrix.
VECT_OP_TYPE VECT_OP_FUNC(DetM)( const VECT_OP_TYPE* sp, unsigned srn );
/// Compute the determinant of a diagonal matrix.
// Compute the determinant of a diagonal matrix.
VECT_OP_TYPE VECT_OP_FUNC(DetDiagM)( const VECT_OP_TYPE* sp, unsigned srn);
/// Compute the log determinant of any square matrix.
// Compute the log determinant of any square matrix.
VECT_OP_TYPE VECT_OP_FUNC(LogDetM)( const VECT_OP_TYPE* sp, unsigned srn );
/// Compute the log determinant of a diagonal matrix.
// Compute the log determinant of a diagonal matrix.
VECT_OP_TYPE VECT_OP_FUNC(LogDetDiagM)( const VECT_OP_TYPE* sp, unsigned srn);
/// Compute the inverse of a square matrix. Returns NULL if the matrix is not invertable.
/// 'drn' is the dimensionality of the data.
// Compute the inverse of a square matrix. Returns NULL if the matrix is not invertable.
// 'drn' is the dimensionality of the data.
VECT_OP_TYPE* VECT_OP_FUNC(InvM)( VECT_OP_TYPE* dp, unsigned drn );
/// Compute the inverse of a diagonal matrix. Returns NULL if the matrix is not invertable.
// Compute the inverse of a diagonal matrix. Returns NULL if the matrix is not invertable.
VECT_OP_TYPE* VECT_OP_FUNC(InvDiagM)( VECT_OP_TYPE* dp, unsigned drn );
/// Solve a linear system of the form AX=B where A[an,an] is square.
/// Since A is square B must have 'an' rows.
/// Result is returned in B.
/// Returns a pointer to B on success or NULL on fail.
/// NOTE: Both A and B are overwritten by this operation.
// Solve a linear system of the form AX=B where A[an,an] is square.
// Since A is square B must have 'an' rows.
// Result is returned in B.
// Returns a pointer to B on success or NULL on fail.
// NOTE: Both A and B are overwritten by this operation.
VECT_OP_TYPE* VECT_OP_FUNC(SolveLS)( VECT_OP_TYPE* A, unsigned an, VECT_OP_TYPE* B, unsigned bcn );
/// Perform a Cholesky decomposition of the square symetric matrix U[un,un].
/// The factorization has the form: A=U'TU.
/// If the factorization is successful A is set to U and a pointer to A is returned.
/// Note that the lower triangle of A is not overwritten. See CholZ().
/// If the factorization fails NULL is returned.
// Perform a Cholesky decomposition of the square symetric matrix U[un,un].
// The factorization has the form: A=U'TU.
// If the factorization is successful A is set to U and a pointer to A is returned.
// Note that the lower triangle of A is not overwritten. See CholZ().
// If the factorization fails NULL is returned.
VECT_OP_TYPE* VECT_OP_FUNC(Chol)(VECT_OP_TYPE* A, unsigned an );
/// Same as Chol() but sets the lower triangle of U to zero.
/// This is equivalent ot the Matlab version.
// Same as Chol() but sets the lower triangle of U to zero.
// This is equivalent ot the Matlab version.
VECT_OP_TYPE* VECT_OP_FUNC(CholZ)(VECT_OP_TYPE* U, unsigned un );
// Calculate the best fit line: b0 + b1*x_i through the points x_i,y_i.
// Set x to NULL if it uses sequential integers [0,1,2,3...]
void VECT_OP_FUNC(Lsq1)(const VECT_OP_TYPE* x, const VECT_OP_TYPE* y, unsigned n, VECT_OP_TYPE* b0, VECT_OP_TYPE* b1 );
/// Return the average value of the contents of sbp[] between two fractional indexes
//======================================================================================================================
//)
//( { label:"Stretch/Shrink" desc:"Stretch or shrink a vector by resampling." kw:[vop] }
// Return the average value of the contents of sbp[] between two fractional indexes
VECT_OP_TYPE VECT_OP_FUNC(FracAvg)( double bi, double ei, const VECT_OP_TYPE* sbp, unsigned sn );
/// Shrinking function - Decrease the size of sbp[] by averaging blocks of values into single values in dbp[]
// Shrinking function - Decrease the size of sbp[] by averaging blocks of values into single values in dbp[]
VECT_OP_TYPE* VECT_OP_FUNC(DownSampleAvg)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn );
/// Stretching function - linear interpolate between points in sbp[] to fill dbp[] ... where dn > sn
// Stretching function - linear interpolate between points in sbp[] to fill dbp[] ... where dn > sn
VECT_OP_TYPE* VECT_OP_FUNC(UpSampleInterp)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn );
/// Stretch or shrink the sbp[] to fit into dbp[]
// Stretch or shrink the sbp[] to fit into dbp[]
VECT_OP_TYPE* VECT_OP_FUNC(FitToSize)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn );
/// Stretch or shrink sV[] to fit into dV[] using a simple linear mapping.
/// When stretching (sn<dn) each source element is repeated dn/sn times
/// and the last fraction position is interpolated. When shrinking
/// (sn>dn) each dest value is formed by the average of sequential segments
/// of sn/dn source elements. Fractional values are used at the beginning
/// and end of each segment.
// Stretch or shrink sV[] to fit into dV[] using a simple linear mapping.
// When stretching (sn<dn) each source element is repeated dn/sn times
// and the last fraction position is interpolated. When shrinking
// (sn>dn) each dest value is formed by the average of sequential segments
// of sn/dn source elements. Fractional values are used at the beginning
// and end of each segment.
VECT_OP_TYPE* VECT_OP_FUNC(LinearMap)(VECT_OP_TYPE* dV, unsigned dn, VECT_OP_TYPE* sV, unsigned sn );
/// Generate a vector of uniformly distributed random numbers in the range minVal to maxVal.
//======================================================================================================================
//)
//( { label:"Random number generation" desc:"Generate random numbers." kw:[vop] }
// Generate a vector of uniformly distributed random numbers in the range minVal to maxVal.
VECT_OP_TYPE* VECT_OP_FUNC(Random)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE minVal, VECT_OP_TYPE maxVal );
/// Generate dn random numbers integers between 0 and wn-1 based on a the relative
/// weights in wp[wn]. Note thtat the weights do not have to sum to 1.0.
// Generate dn random numbers integers between 0 and wn-1 based on a the relative
// weights in wp[wn]. Note thtat the weights do not have to sum to 1.0.
unsigned* VECT_OP_FUNC(WeightedRandInt)( unsigned* dbp, unsigned dn, const VECT_OP_TYPE* wp, unsigned wn );
/// Generate a vector of normally distributed univariate random numbers
// Generate a vector of normally distributed univariate random numbers
VECT_OP_TYPE* VECT_OP_FUNC(RandomGauss)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE mean, VECT_OP_TYPE var );
/// Generate a vector of normally distributed univariate random numbers where each value has been drawn from a
/// seperately parameterized Gaussian distribution. meanV[] and varV[] must both contain dn velues.
// Generate a vector of normally distributed univariate random numbers where each value has been drawn from a
// seperately parameterized Gaussian distribution. meanV[] and varV[] must both contain dn velues.
VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* varV );
/// Generate a matrix of multi-dimensional random values. Each column represents a single vector value and each row contains a dimension.
/// meanV[] and varV[] must both contain drn elements where each meanV[i],varV[i] pair parameterize one dimensions Gaussian distribution.
// Generate a matrix of multi-dimensional random values. Each column represents a single vector value and each row contains a dimension.
// meanV[] and varV[] must both contain drn elements where each meanV[i],varV[i] pair parameterize one dimensions Gaussian distribution.
VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* varV );
VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussDiagM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* diagCovarM );
/// Generate a matrix of multivariate random values drawn from a normal distribution.
/// The dimensionality of the values are 'drn'.
/// The count of returned values is 'dcn'.
/// meanV[drn] and covarM[drn,drn] parameterize the normal distribution.
/// The covariance matrix must be symetric and positive definite.
/// t[(drn*drn) ] points to scratch memory or is set to NULL if the function should
/// allocate the memory internally.
/// Based on octave function mvrnd.m.
// Generate a matrix of multivariate random values drawn from a normal distribution.
// The dimensionality of the values are 'drn'.
// The count of returned values is 'dcn'.
// meanV[drn] and covarM[drn,drn] parameterize the normal distribution.
// The covariance matrix must be symetric and positive definite.
// t[(drn*drn) ] points to scratch memory or is set to NULL if the function should
// allocate the memory internally.
// Based on octave function mvrnd.m.
VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussNonDiagM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, VECT_OP_TYPE* t );
/// Same as RandomGaussNonDiagM() except requires the upper trianglular
/// Cholesky factor of the covar matrix in 'uM'.
// Same as RandomGaussNonDiagM() except requires the upper trianglular
// Cholesky factor of the covar matrix in 'uM'.
VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussNonDiagM2)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* uM );
/// Generate a matrix of N*K multi-dimensional data points.
/// Where D is the dimensionality of the data. (D == drn).
/// K is the number of multi-dimensional PDF's (clusters).
/// N is the number of data points to generate per cluster.
/// dbp[ D, N*K ] contains the returned data point.
/// The first N columns is associated with the cluster 0,
/// the next N columns is associated with cluster 1, ...
/// meanM[ D, K ] and varM[D,K] parameterize the generating PDF.s for each cluster
// Generate a matrix of N*K multi-dimensional data points.
// Where D is the dimensionality of the data. (D == drn).
// K is the number of multi-dimensional PDF's (clusters).
// N is the number of data points to generate per cluster.
// dbp[ D, N*K ] contains the returned data point.
// The first N columns is associated with the cluster 0,
// the next N columns is associated with cluster 1, ...
// meanM[ D, K ] and varM[D,K] parameterize the generating PDF.s for each cluster
VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanM, const VECT_OP_TYPE* varM, unsigned K );
/// Generate the set of coordinates which describe a circle with a center at x,y.
/// dbp[dn,2] must contain 2*dn elements. The first column holds the x coord and and the second holds the y coord.
VECT_OP_TYPE* VECT_OP_FUNC(CircleCoords)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE x, VECT_OP_TYPE y, VECT_OP_TYPE varX, VECT_OP_TYPE varY );
/// The following functions all return the phase of the next value.
// Evaluate the univariate normal distribution defined by 'mean' and 'stdDev'.
VECT_OP_TYPE* VECT_OP_FUNC(GaussPDF)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE mean, VECT_OP_TYPE stdDev );
// Evaluate a multivariate normal distribution defined by meanV[D] and covarM[D,D]
// at the data points held in the columns of xM[D,N]. Return the evaluation
// results in the vector yV[N]. D is the dimensionality of the data. N is the number of
// data points to evaluate and values to return in yV[N].
// Set diagFl to true if covarM is diagonal.
// The function fails and returns false if the covariance matrix is singular.
bool VECT_OP_FUNC(MultVarGaussPDF)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, unsigned D, unsigned N, bool diagFl );
// Same as multVarGaussPDF[] except takes the inverse covar mtx invCovarM[D,D]
// and log determinant of covar mtx.
// Always returns yV[].
VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF2)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* invCovarM, VECT_OP_TYPE logDet, unsigned D, unsigned N, bool diagFl );
// Same as multVarGaussPDF[] except uses a function to obtain the data vectors.
// srcFunc() can filter the data points by returning NULL if the data vector at frmIdx should
// not be evaluated against the PDF. In this case yV[frmIdx] will be set to 0.
VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF3)(
VECT_OP_TYPE* yV,
const VECT_OP_TYPE* (*srcFunc)(void* funcDataPtr, unsigned frmIdx ),
void* funcDataPtr,
const VECT_OP_TYPE* meanV,
const VECT_OP_TYPE* invCovarM,
VECT_OP_TYPE logDet,
unsigned D,
unsigned N,
bool diagFl );
//======================================================================================================================
//)
//( { label:"Signal generators" desc:"Generate periodic signals." kw:[vop] }
// The following functions all return the phase of the next value.
unsigned VECT_OP_FUNC(SynthSine)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz );
unsigned VECT_OP_FUNC(SynthCosine)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz );
unsigned VECT_OP_FUNC(SynthSquare)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt );
@ -389,11 +465,33 @@ unsigned VECT_OP_FUNC(SynthImpulse)( VECT_OP_TYPE* dbp, unsigned dn, unsi
unsigned VECT_OP_FUNC(SynthPhasor)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz );
/// Return value should be passed back via delaySmp on the next call.
// Return value should be passed back via delaySmp on the next call.
VECT_OP_TYPE VECT_OP_FUNC(SynthPinkNoise)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE delaySmp );
/// Same as Matlab linspace() v[i] = i * (limit-1)/n
VECT_OP_TYPE* VECT_OP_FUNC(LinSpace)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE base, VECT_OP_TYPE limit );
//======================================================================================================================
//)
//( { label:"Exponential conversion" desc:"pow() and log() functions." kw:[vop] }
// Raise dbp[] to the power 'expon'
VECT_OP_TYPE* VECT_OP_FUNC(PowVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE expon );
VECT_OP_TYPE* VECT_OP_FUNC(PowVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE expon );
// Take the natural log of all values in sbp[dn]. It is allowable for sbp point to the same array as dbp=.
VECT_OP_TYPE* VECT_OP_FUNC(LogV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp );
//======================================================================================================================
//)
//( { label:"dB Conversions" desc:"Convert vectors between dB,linear and power representations." kw:[vop] }
// Convert a magnitude (amplitude) spectrum to/from decibels.
// It is allowable for dbp==sbp.
VECT_OP_TYPE* VECT_OP_FUNC(AmplToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb );
VECT_OP_TYPE* VECT_OP_FUNC(DbToAmplVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp);
VECT_OP_TYPE* VECT_OP_FUNC(PowToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb );
VECT_OP_TYPE* VECT_OP_FUNC(DbToPowVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp);
VECT_OP_TYPE* VECT_OP_FUNC(LinearToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE mult );
VECT_OP_TYPE* VECT_OP_FUNC(dBToLinear)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE mult );
@ -401,6 +499,10 @@ VECT_OP_TYPE* VECT_OP_FUNC(AmplitudeToDb)( VECT_OP_TYPE* dbp, unsigned dn, const
VECT_OP_TYPE* VECT_OP_FUNC(PowerToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp );
VECT_OP_TYPE* VECT_OP_FUNC(dBToAmplitude)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp );
VECT_OP_TYPE* VECT_OP_FUNC(dBToPower)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp );
//======================================================================================================================
//)
//( { label:"DSP Windows" desc:"DSP windowing functions." kw:[vop] }
VECT_OP_TYPE VECT_OP_FUNC(KaiserBetaFromSidelobeReject)( double sidelobeRejectDb );
VECT_OP_TYPE VECT_OP_FUNC(KaiserFreqResolutionFactor)( double sidelobeRejectDb );
@ -410,84 +512,86 @@ VECT_OP_TYPE* VECT_OP_FUNC(Hamming)( VECT_OP_TYPE* dbp, unsigned dn );
VECT_OP_TYPE* VECT_OP_FUNC(Hann)( VECT_OP_TYPE* dbp, unsigned dn );
VECT_OP_TYPE* VECT_OP_FUNC(Triangle)(VECT_OP_TYPE* dbp, unsigned dn );
/// The MATLAB equivalent Hamming and Hann windows.
// The MATLAB equivalent Hamming and Hann windows.
//VECT_OP_TYPE* VECT_OP_FUNC(HammingMatlab)(VECT_OP_TYPE* dbp, unsigned dn );
VECT_OP_TYPE* VECT_OP_FUNC(HannMatlab)( VECT_OP_TYPE* dbp, unsigned dn );
/// Simulates the MATLAB GaussWin function. Set arg to 2.5 to simulate the default arg
/// as used by MATLAB.
// Simulates the MATLAB GaussWin function. Set arg to 2.5 to simulate the default arg
// as used by MATLAB.
VECT_OP_TYPE* VECT_OP_FUNC(GaussWin)( VECT_OP_TYPE* dbp, unsigned dn, double arg );
//======================================================================================================================
//)
//( { label:"DSP Filters" desc:"DSP filtering functions." kw:[vop] }
/// Direct form II algorithm based on the MATLAB implmentation
/// http://www.mathworks.com/access/helpdesk/help/techdoc/ref/filter.html#f83-1015962
/// The only difference between this function and the equivalent MATLAB filter() function
/// is that the first feedforward coeff is given as a seperate value. The first b coefficient
/// in this function is therefore the same as the second coefficient in the MATLAB function.
/// and the first a[] coefficient (which is generally set to 1.0) is skipped.
/// Example:
/// Matlab: b=[.5 .4 .3] a=[1 .2 .1]
/// Equiv: b0 = .5 b=[ .4 .3] a=[ .2 .1];
///
/// y[yn] - output vector
/// x[xn] - input vector. xn must be <= yn. if xn < yn then the end of y[] is set to zero.
/// b0 - signal scale. This can also be seen as b[0] (which is not included in b[])
/// b[dn] - feedforward coeff's b[1..dn-1]
/// a[dn] - feedback coeff's a[1..dn-1]
/// d[dn+1] - delay registers - note that this array must be one element longer than the coeff arrays.
///
// Direct form II algorithm based on the MATLAB implmentation
// http://www.mathworks.com/access/helpdesk/help/techdoc/ref/filter.html#f83-1015962
// The only difference between this function and the equivalent MATLAB filter() function
// is that the first feedforward coeff is given as a seperate value. The first b coefficient
// in this function is therefore the same as the second coefficient in the MATLAB function.
// and the first a[] coefficient (which is generally set to 1.0) is skipped.
// Example:
// Matlab: b=[.5 .4 .3] a=[1 .2 .1]
// Equiv: b0 = .5 b=[ .4 .3] a=[ .2 .1];
//
// y[yn] - output vector
// x[xn] - input vector. xn must be <= yn. if xn < yn then the end of y[] is set to zero.
// b0 - signal scale. This can also be seen as b[0] (which is not included in b[])
// b[dn] - feedforward coeff's b[1..dn-1]
// a[dn] - feedback coeff's a[1..dn-1]
// d[dn+1] - delay registers - note that this array must be one element longer than the coeff arrays.
//
VECT_OP_TYPE* VECT_OP_FUNC(Filter)( VECT_OP_TYPE* y, unsigned yn, const VECT_OP_TYPE* x, unsigned xn, cmReal_t b0, const cmReal_t* b, const cmReal_t* a, cmReal_t* d, unsigned dn );
struct cmFilter_str;
//typedef cmRC_t (*VECT_OP_FUNC(FiltExecFunc_t))( struct acFilter_str* f, const VECT_OP_TYPE* x, unsigned xn, VECT_OP_TYPE* y, unsigned yn );
VECT_OP_TYPE* VECT_OP_FUNC(FilterFilter)(struct cmFilter_str* f, cmRC_t (*func)( struct cmFilter_str* f, const VECT_OP_TYPE* x, unsigned xn, VECT_OP_TYPE* y, unsigned yn ), const cmReal_t bb[], unsigned bn, const cmReal_t aa[], unsigned an, const VECT_OP_TYPE* x, unsigned xn, VECT_OP_TYPE* y, unsigned yn );
/// Compute the coefficients of a low/high pass FIR filter
/// wndV[dn] gives the window function used to truncate the ideal low-pass impulse response.
/// Set wndV to NULL to use a unity window.
/// See enum { kHighPass_LPSincFl=0x01, kNormalize_LPSincFl=0x02 } in cmVectOps.h
// Compute the coefficients of a low/high pass FIR filter
// wndV[dn] gives the window function used to truncate the ideal low-pass impulse response.
// Set wndV to NULL to use a unity window.
// See enum { kHighPass_LPSincFl=0x01, kNormalize_LPSincFl=0x02 } in cmVectOps.h
VECT_OP_TYPE* VECT_OP_FUNC(LP_Sinc)(VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* wndV, double srate, double fcHz, unsigned flags );
/// Compute the complex transient detection function from successive spectral frames.
/// The spectral magntidue mag0V precedes mag1V and the phase (radians) spectrum phs0V precedes the phs1V which precedes phs2V.
/// binCnt gives the length of each of the spectral vectors.
VECT_OP_TYPE VECT_OP_FUNC(ComplexDetect)(const VECT_OP_TYPE* mag0V, const VECT_OP_TYPE* mag1V, const VECT_OP_TYPE* phs0V, const VECT_OP_TYPE* phs1V, const VECT_OP_TYPE* phs2V, unsigned binCnt );
/// Compute a set of filterCnt mel filter masks for wieghting magnitude spectra consisting of binCnt bins.
/// The spectrum is divided into bandCnt equal bands in the mel domain
/// Each row of the matrix contains the mask for a single filter band consisting of binCnt elements.
/// See enum{ kShiftMelFl=0x01, kNormalizeMelFl=0x02 } in cmVectOps.h
/// Set kShiftMelFl to shift the mel bands onto the nearest FFT bin.
/// Set kNormalizeMelFl to normalize the combined filters for unity gain.
//======================================================================================================================
//)
//( { label:"Spectral Masking" desc:"A collection of spectral masking functions." kw:[vop] }
// Compute a set of filterCnt mel filter masks for wieghting magnitude spectra consisting of binCnt bins.
// The spectrum is divided into bandCnt equal bands in the mel domain
// Each row of the matrix contains the mask for a single filter band consisting of binCnt elements.
// See enum{ kShiftMelFl=0x01, kNormalizeMelFl=0x02 } in cmVectOps.h
// Set kShiftMelFl to shift the mel bands onto the nearest FFT bin.
// Set kNormalizeMelFl to normalize the combined filters for unity gain.
VECT_OP_TYPE* VECT_OP_FUNC(MelMask)( VECT_OP_TYPE* maskMtx, unsigned bandCnt, unsigned binCnt, double srate, unsigned flags );
/// Fill binIdxV[bandCnt] and cntV[bandCnt] with a bin to band map.
/// binIdx[] contains the first (minimum) bin index for a given band.
/// cntV[] contains the count of bins for each band.
/// bandCnt is the number of bark bands to return
/// The function returns the actual number of bands mapped which will always be <= 23.
// Fill binIdxV[bandCnt] and cntV[bandCnt] with a bin to band map.
// binIdx[] contains the first (minimum) bin index for a given band.
// cntV[] contains the count of bins for each band.
// bandCnt is the number of bark bands to return
// The function returns the actual number of bands mapped which will always be <= 23.
unsigned VECT_OP_FUNC(BarkMap)(unsigned* binIdxV, unsigned* cntV, unsigned bandCnt, unsigned binCnt, double srate );
/// Calc a set of triangle fitler masks into each row of maskMtx.
/// maskMtx[ bandCnt, binCnt ] - result matrix
/// binHz - freq resolution of the output filters.
/// stSpread - Semi-tone spread above and below each center frequency (stSpread*2) is the total bandwidth.
/// (Only used if lowHzV or uprHzV are NULL)
/// lowHz[ bandCnt ] - set of upper frequency limits for each band.
/// ctrHz[ bandCnt ] set to the center value in Hz for each band
/// uprHz[ bandCnt ] - set of lower frequency limits for each band.
/// Note if lowHz[] and uprHz[] are set to NULL then stSpread is used to set the bandwidth of each band.
// Calc a set of triangle fitler masks into each row of maskMtx.
// maskMtx[ bandCnt, binCnt ] - result matrix
// binHz - freq resolution of the output filters.
// stSpread - Semi-tone spread above and below each center frequency (stSpread*2) is the total bandwidth.
// (Only used if lowHzV or uprHzV are NULL)
// lowHz[ bandCnt ] - set of upper frequency limits for each band.
// ctrHz[ bandCnt ] set to the center value in Hz for each band
// uprHz[ bandCnt ] - set of lower frequency limits for each band.
// Note if lowHz[] and uprHz[] are set to NULL then stSpread is used to set the bandwidth of each band.
VECT_OP_TYPE* VECT_OP_FUNC(TriangleMask)(VECT_OP_TYPE* maskMtx, unsigned bandCnt, unsigned binCnt, const VECT_OP_TYPE* ctrHzV, VECT_OP_TYPE binHz, VECT_OP_TYPE stSpread, const VECT_OP_TYPE* lowHzV, const VECT_OP_TYPE* uprHzV );
/// Calculate a set of Bark band triangle filters into maskMtx.
/// Each row of maskMtx contains the filter for one band.
/// maskMtx[ bandCnt, binCnt ]
/// bandCnt - the number of triangle bankds. If bandCnt is > 24 it will be reduced to 24.
/// binCnt - the number of bins in the filters.
/// binHz - the width of each bin in Hz.
// Calculate a set of Bark band triangle filters into maskMtx.
// Each row of maskMtx contains the filter for one band.
// maskMtx[ bandCnt, binCnt ]
// bandCnt - the number of triangle bankds. If bandCnt is > 24 it will be reduced to 24.
// binCnt - the number of bins in the filters.
// binHz - the width of each bin in Hz.
VECT_OP_TYPE* VECT_OP_FUNC(BarkMask)(VECT_OP_TYPE* maskMtx, unsigned bandCnt, unsigned binCnt, double binHz );
// Terhardt 1979 (Calculating virtual pitch, Hearing Research #1, pp 155-182)
@ -497,39 +601,27 @@ VECT_OP_TYPE* VECT_OP_FUNC(TerhardtThresholdMask)(VECT_OP_TYPE* maskV, unsigned
//Schroeder et al., 1979, JASA, Optimizing digital speech coders by exploiting masking properties of the human ear
VECT_OP_TYPE* VECT_OP_FUNC(ShroederSpreadingFunc)(VECT_OP_TYPE* m, unsigned bandCnt, double srate);
/// Compute a set of DCT-II coefficients. Result dp[ coeffCnt, filtCnt ]
VECT_OP_TYPE* VECT_OP_FUNC(DctMatrix)( VECT_OP_TYPE* dp, unsigned coeffCnt, unsigned filtCnt );
//======================================================================================================================
//)
//( { label:"Machine learning" desc:"K-means clustering and Viterbi algorithms." kw:[vop] }
/// Set the indexes of local peaks greater than threshold in dbp[].
/// Returns the number of peaks in dbp[]
/// The maximum number of peaks from n source values is max(0,floor((n-1)/2)).
/// Note that peaks will never be found at index 0 or index sn-1.
unsigned VECT_OP_FUNC(PeakIndexes)( unsigned* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE threshold );
/// Return the index of the bin containing v or acInvalidIdx if v is below sbp[0] or above sbp[ n-1 ]
/// The bin limits are contained in sbp[].
/// The value in spb[] are therefore expected to be in increasing order.
/// The value returned will be in the range 0:sn-1.
unsigned VECT_OP_FUNC(BinIndex)( const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE v );
/// Assign each data point to one of k clusters using an expectation-maximization algorithm.
/// k gives the number of clusters to identify
/// Each column of sp[ srn, scn ] contains a multidimensional data point.
/// srn therefore defines the dimensionality of the data.
/// Each column of centroidV[ srn, k ] is set to the centroid of each of k clusters.
/// classIdxV[ scn ] assigns the index (0 to k-1) of a cluster to each soure data point
/// The function returns the number of iterations required for the EM process to converge.
/// selIdxV[ scn ] is optional and contains a list of id's assoc'd with each column of sM.
/// selKey is a integer value.
/// If selIdxV is non-NULL then only columns of sM[] where selIdxV[] == selKey will be clustered.
/// All columns of sM[] where the associated column in selIdxV[] do not match will be ignored.
/// Set 'initFromCentroidFl' to true if the initial centroids should be taken from centroidM[].
/// otherwise the initial centroids are selected from 'k' random data points in sp[].
/// The distance function distFunc(cV,dV,dN) is called to determine the distance from a
/// centroid the centroid 'cV[dN]' to a data point 'dV[dN]'. 'dN' is the dimensionality of the
/// feature vector and is therefore equal to 'srn'.
// Assign each data point to one of k clusters using an expectation-maximization algorithm.
// k gives the number of clusters to identify
// Each column of sp[ srn, scn ] contains a multidimensional data point.
// srn therefore defines the dimensionality of the data.
// Each column of centroidV[ srn, k ] is set to the centroid of each of k clusters.
// classIdxV[ scn ] assigns the index (0 to k-1) of a cluster to each soure data point
// The function returns the number of iterations required for the EM process to converge.
// selIdxV[ scn ] is optional and contains a list of id's assoc'd with each column of sM.
// selKey is a integer value.
// If selIdxV is non-NULL then only columns of sM[] where selIdxV[] == selKey will be clustered.
// All columns of sM[] where the associated column in selIdxV[] do not match will be ignored.
// Set 'initFromCentroidFl' to true if the initial centroids should be taken from centroidM[].
// otherwise the initial centroids are selected from 'k' random data points in sp[].
// The distance function distFunc(cV,dV,dN) is called to determine the distance from a
// centroid the centroid 'cV[dN]' to a data point 'dV[dN]'. 'dN' is the dimensionality of the
// feature vector and is therefore equal to 'srn'.
unsigned VECT_OP_FUNC(Kmeans)(
unsigned* classIdxV,
VECT_OP_TYPE* centroidM,
@ -543,9 +635,9 @@ unsigned VECT_OP_FUNC(Kmeans)(
VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* cV, const VECT_OP_TYPE* dV, unsigned dN ),
void* userDistPtr );
/// 'srcFunc() should return NULL if the data point located at 'frmIdx' should not be included in the clustering.
/// Clustering is considered to be complete after 'maxIterCnt' iterations or when
/// 'deltaStopCnt' or fewer data points change class on a single iteration
// 'srcFunc() should return NULL if the data point located at 'frmIdx' should not be included in the clustering.
// Clustering is considered to be complete after 'maxIterCnt' iterations or when
// 'deltaStopCnt' or fewer data points change class on a single iteration
unsigned VECT_OP_FUNC(Kmeans2)(
unsigned* classIdxV, // classIdxV[scn] - data point class assignments
VECT_OP_TYPE* centroidM, // centroidM[srn,K] - cluster centroids
@ -559,64 +651,67 @@ unsigned VECT_OP_FUNC(Kmeans2)(
int iterCnt, // max. number of iterations (-1 to ignore)
int deltaStopCnt); // if less than deltaStopCnt data points change classes on a given iteration then convergence occurs.
/// Evaluate the univariate normal distribution defined by 'mean' and 'stdDev'.
VECT_OP_TYPE* VECT_OP_FUNC(GaussPDF)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE mean, VECT_OP_TYPE stdDev );
/// Evaluate a multivariate normal distribution defined by meanV[D] and covarM[D,D]
/// at the data points held in the columns of xM[D,N]. Return the evaluation
/// results in the vector yV[N]. D is the dimensionality of the data. N is the number of
/// data points to evaluate and values to return in yV[N].
/// Set diagFl to true if covarM is diagonal.
/// The function fails and returns false if the covariance matrix is singular.
bool VECT_OP_FUNC(MultVarGaussPDF)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, unsigned D, unsigned N, bool diagFl );
/// Same as multVarGaussPDF[] except takes the inverse covar mtx invCovarM[D,D]
/// and log determinant of covar mtx.
/// Always returns yV[].
VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF2)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* invCovarM, VECT_OP_TYPE logDet, unsigned D, unsigned N, bool diagFl );
/// Same as multVarGaussPDF[] except uses a function to obtain the data vectors.
/// srcFunc() can filter the data points by returning NULL if the data vector at frmIdx should
/// not be evaluated against the PDF. In this case yV[frmIdx] will be set to 0.
VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF3)(
VECT_OP_TYPE* yV,
const VECT_OP_TYPE* (*srcFunc)(void* funcDataPtr, unsigned frmIdx ),
void* funcDataPtr,
const VECT_OP_TYPE* meanV,
const VECT_OP_TYPE* invCovarM,
VECT_OP_TYPE logDet,
unsigned D,
unsigned N,
bool diagFl );
/// Determine the most likely state sequece stateV[timeN] given a
/// transition matrix a[stateN,stateN],
/// observation probability matrix b[stateN,timeN] and
/// initial state probability vector phi[stateN].
/// a[i,j] is the probability of transitioning from state i to state j.
/// b[i,t] is the probability of state i emitting the obj t.
// Determine the most likely state sequece stateV[timeN] given a
// transition matrix a[stateN,stateN],
// observation probability matrix b[stateN,timeN] and
// initial state probability vector phi[stateN].
// a[i,j] is the probability of transitioning from state i to state j.
// b[i,t] is the probability of state i emitting the obj t.
void VECT_OP_FUNC(DiscreteViterbi)(unsigned* stateV, unsigned timeN, unsigned stateN, const VECT_OP_TYPE* phi, const VECT_OP_TYPE* a, const VECT_OP_TYPE* b );
/// Clip the line defined by x0,y0 to x1,y1 into the rect defined by xMin,yMin xMax,yMax.
//======================================================================================================================
//)
//( { label:"Graphics" desc:"Graphics related algorithms." kw:[vop] }
// Generate the set of coordinates which describe a circle with a center at x,y.
// dbp[dn,2] must contain 2*dn elements. The first column holds the x coord and and the second holds the y coord.
VECT_OP_TYPE* VECT_OP_FUNC(CircleCoords)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE x, VECT_OP_TYPE y, VECT_OP_TYPE varX, VECT_OP_TYPE varY );
// Clip the line defined by x0,y0 to x1,y1 into the rect defined by xMin,yMin xMax,yMax.
bool VECT_OP_FUNC(ClipLine)( VECT_OP_TYPE* x0, VECT_OP_TYPE* y0, VECT_OP_TYPE* x1, VECT_OP_TYPE* y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax );
/// Return true if the line defined by x0,y0 to x1,y1 intersects with
/// the rectangle formed by xMin,yMin - xMax,yMax
// Return true if the line defined by x0,y0 to x1,y1 intersects with
// the rectangle formed by xMin,yMin - xMax,yMax
bool VECT_OP_FUNC(IsLineInRect)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax );
/// Return the perpendicular distance from the line formed by x0,y0 and x1,y1
/// and the point px,py
// Return the perpendicular distance from the line formed by x0,y0 and x1,y1
// and the point px,py
VECT_OP_TYPE VECT_OP_FUNC(PtToLineDistance)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE px, VECT_OP_TYPE py);
/// Calculate the best fit line: b0 + b1*x_i through the points x_i,y_i.
/// Set x to NULL if it uses sequential integers [0,1,2,3...]
void VECT_OP_FUNC(Lsq1)(const VECT_OP_TYPE* x, const VECT_OP_TYPE* y, unsigned n, VECT_OP_TYPE* b0, VECT_OP_TYPE* b1 );
//======================================================================================================================
//)
//( { label:"Miscellaneous DSP" desc:"Common DSP algorithms." kw:[vop] }
// Compute the complex transient detection function from successive spectral frames.
// The spectral magntidue mag0V precedes mag1V and the phase (radians) spectrum phs0V precedes the phs1V which precedes phs2V.
// binCnt gives the length of each of the spectral vectors.
VECT_OP_TYPE VECT_OP_FUNC(ComplexDetect)(const VECT_OP_TYPE* mag0V, const VECT_OP_TYPE* mag1V, const VECT_OP_TYPE* phs0V, const VECT_OP_TYPE* phs1V, const VECT_OP_TYPE* phs2V, unsigned binCnt );
// Compute a set of DCT-II coefficients. Result dp[ coeffCnt, filtCnt ]
VECT_OP_TYPE* VECT_OP_FUNC(DctMatrix)( VECT_OP_TYPE* dp, unsigned coeffCnt, unsigned filtCnt );
/// Given the points x0[xy0N],y0[xy0N] fill y1[i] with the interpolated value of y0[] at
/// x1[i]. Note that x0[] and x1[] must be increasing monotonic.
/// This function is similar to the octave interp1() function.
// Set the indexes of local peaks greater than threshold in dbp[].
// Returns the number of peaks in dbp[]
// The maximum number of peaks from n source values is max(0,floor((n-1)/2)).
// Note that peaks will never be found at index 0 or index sn-1.
unsigned VECT_OP_FUNC(PeakIndexes)( unsigned* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE threshold );
// Return the index of the bin containing v otherwise return kInvalidIdx if v is below sbp[0] or above sbp[ n-1 ]
// The bin limits are contained in sbp[].
// The value in spb[] are therefore expected to be in increasing order.
// The value returned will be in the range 0:sn-1.
unsigned VECT_OP_FUNC(BinIndex)( const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE v );
// Given the points x0[xy0N],y0[xy0N] fill y1[i] with the interpolated value of y0[] at
// x1[i]. Note that x0[] and x1[] must be increasing monotonic.
// This function is similar to the octave interp1() function.
void VECT_OP_FUNC(Interp1)(VECT_OP_TYPE* y1, const VECT_OP_TYPE* x1, unsigned xy1N, const VECT_OP_TYPE* x0, const VECT_OP_TYPE* y0, unsigned xy0N );
//======================================================================================================================
//)