libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmVectOpsTemplateCode.h 80KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295
  1. #ifdef cmVectOpsTemplateCode_h
  2. VECT_OP_TYPE* VECT_OP_FUNC(CumSum)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  3. {
  4. VECT_OP_TYPE* dep = dbp + dn;
  5. VECT_OP_TYPE* rp = dbp;
  6. VECT_OP_TYPE sum = 0;
  7. while( dbp < dep )
  8. {
  9. sum += *sbp++;
  10. *dbp++ = sum;
  11. }
  12. return rp;
  13. }
  14. bool VECT_OP_FUNC(Equal)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  15. {
  16. const VECT_OP_TYPE* ep = s0p + sn;
  17. while( s0p < ep )
  18. if( *s0p++ != *s1p++ )
  19. return false;
  20. return true;
  21. }
  22. VECT_OP_TYPE* VECT_OP_FUNC(LinSpace)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE base, VECT_OP_TYPE limit )
  23. {
  24. unsigned i = 0;
  25. for(; i<dn; ++i)
  26. dbp[i] = base + i*(limit-base)/(dn-1);
  27. return dbp;
  28. }
  29. void VECT_OP_FUNC(VPrint)( cmRpt_t* rpt, const char* fmt, ... )
  30. {
  31. va_list vl;
  32. va_start(vl,fmt);
  33. if( rpt != NULL )
  34. cmRptVPrintf(rpt,fmt,vl);
  35. else
  36. vprintf(fmt,vl);
  37. va_end(vl);
  38. }
  39. void VECT_OP_FUNC(Printf)( cmRpt_t* rpt, unsigned rowCnt, unsigned colCnt, const VECT_OP_TYPE* sbp, int fieldWidth, int decPlCnt, const char* fmt, unsigned flags )
  40. {
  41. unsigned cci;
  42. unsigned outColCnt = 10;
  43. if( fieldWidth < 0 )
  44. fieldWidth = 10;
  45. if( decPlCnt < 0 )
  46. decPlCnt = 4;
  47. if( outColCnt == -1 )
  48. outColCnt = colCnt;
  49. for(cci=0; cci<colCnt; cci+=outColCnt)
  50. {
  51. unsigned ci0 = cci;
  52. unsigned cn = cci + outColCnt;
  53. unsigned ri;
  54. if(cn > colCnt)
  55. cn = colCnt;
  56. if( colCnt > outColCnt )
  57. {
  58. if( cmIsFlag(flags,cmPrintMatlabLabelsFl) )
  59. VECT_OP_FUNC(VPrint)(rpt,"Columns:%i to %i\n",ci0,cn-1);
  60. else
  61. if( cmIsFlag(flags,cmPrintShortLabelsFl) )
  62. VECT_OP_FUNC(VPrint)(rpt,"%3i: ",ci0);
  63. }
  64. if( rowCnt > 1 )
  65. VECT_OP_FUNC(VPrint)(rpt,"\n");
  66. for(ri=0; ri<rowCnt; ++ri)
  67. {
  68. unsigned ci;
  69. for(ci=ci0; ci<cn; ++ci )
  70. VECT_OP_FUNC(VPrint)(rpt,fmt,fieldWidth,decPlCnt,sbp[ (ci*rowCnt) + ri ]);
  71. if( cn > 0 )
  72. VECT_OP_FUNC(VPrint)(rpt,"\n");
  73. }
  74. }
  75. }
  76. void VECT_OP_FUNC(Print)( cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* sbp )
  77. { VECT_OP_FUNC(Printf)(rpt,rn,cn,sbp,cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*f ",cmPrintShortLabelsFl); }
  78. void VECT_OP_FUNC(PrintE)( cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* sbp )
  79. { VECT_OP_FUNC(Printf)(rpt,rn,cn,sbp,cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*e ",cmPrintShortLabelsFl); }
  80. void VECT_OP_FUNC(PrintLf)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp, unsigned fieldWidth, unsigned decPlCnt, const char* fmt )
  81. {
  82. VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
  83. VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, fieldWidth, decPlCnt,fmt,cmPrintShortLabelsFl );
  84. }
  85. void VECT_OP_FUNC(PrintL)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp )
  86. {
  87. VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
  88. VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*f ",cmPrintShortLabelsFl );
  89. }
  90. void VECT_OP_FUNC(PrintLE)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp )
  91. {
  92. VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
  93. VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*e ",cmPrintShortLabelsFl );
  94. }
  95. VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbabilityVV)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  96. {
  97. VECT_OP_TYPE sum = VECT_OP_FUNC(Sum)(sbp,dn);
  98. if( sum == 0 )
  99. sum = 1;
  100. return VECT_OP_FUNC(DivVVS)(dbp,dn,sbp,sum);
  101. }
  102. VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbability)(VECT_OP_TYPE* dbp, unsigned dn)
  103. { return VECT_OP_FUNC(NormalizeProbabilityVV)(dbp,dn,dbp); }
  104. VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbabilityN)(VECT_OP_TYPE* dbp, unsigned dn, unsigned stride)
  105. {
  106. VECT_OP_TYPE sum = VECT_OP_FUNC(SumN)(dbp,dn,stride);
  107. if( sum == 0 )
  108. return dbp;
  109. VECT_OP_TYPE* dp = dbp;
  110. VECT_OP_TYPE* ep = dp + (dn*stride);
  111. for(; dp < ep; dp+=stride )
  112. *dp /= sum;
  113. return dbp;
  114. }
  115. VECT_OP_TYPE* VECT_OP_FUNC(StandardizeRows)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE* uV, VECT_OP_TYPE* sdV )
  116. {
  117. bool uFl = false;
  118. bool sFl = false;
  119. unsigned i;
  120. if( uV == NULL )
  121. {
  122. uV = cmMemAllocZ(VECT_OP_TYPE,drn);
  123. uFl = true;
  124. }
  125. if( sdV == NULL )
  126. {
  127. sdV = cmMemAllocZ(VECT_OP_TYPE,drn);
  128. sFl = true;
  129. }
  130. VECT_OP_FUNC(MeanM)(uV, dbp, drn, dcn, 1 );
  131. VECT_OP_FUNC(VarianceM)(sdV, dbp, drn, dcn, uV, 1 );
  132. for(i=0; i<dcn; ++i)
  133. {
  134. VECT_OP_FUNC(SubVV)(dbp + i * drn, drn, uV );
  135. VECT_OP_FUNC(DivVV)(dbp + i * drn, drn, sdV );
  136. }
  137. if(uFl)
  138. cmMemFree(uV);
  139. if(sFl)
  140. cmMemFree(sdV);
  141. return dbp;
  142. }
  143. VECT_OP_TYPE* VECT_OP_FUNC(StandardizeCols)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE* uV, VECT_OP_TYPE* sdV )
  144. {
  145. bool uFl = false;
  146. bool sFl = false;
  147. unsigned i;
  148. if( uV == NULL )
  149. {
  150. uV = cmMemAllocZ(VECT_OP_TYPE,dcn);
  151. uFl = true;
  152. }
  153. if( sdV == NULL )
  154. {
  155. sdV = cmMemAllocZ(VECT_OP_TYPE,dcn);
  156. sFl = true;
  157. }
  158. VECT_OP_FUNC(MeanM)(uV, dbp, drn, dcn, 0 );
  159. VECT_OP_FUNC(VarianceM)(sdV, dbp, drn, dcn, uV, 0 );
  160. for(i=0; i<drn; ++i)
  161. {
  162. VECT_OP_FUNC(SubVVNN)(dbp + i, dcn, drn, uV, 1 );
  163. VECT_OP_FUNC(DivVVNN)(dbp + i, dcn, drn, sdV, 1 );
  164. }
  165. if(uFl)
  166. cmMemFree(uV);
  167. if(sFl)
  168. cmMemFree(sdV);
  169. return dbp;
  170. }
  171. unsigned VECT_OP_FUNC(NormToMax)( VECT_OP_TYPE* dp, unsigned dn )
  172. {
  173. unsigned i = VECT_OP_FUNC(MaxIndex)(dp,dn,1);
  174. if( i != cmInvalidIdx )
  175. {
  176. VECT_OP_TYPE v = dp[i];
  177. VECT_OP_FUNC(DivVS)(dp,dn,v);
  178. }
  179. return i;
  180. }
  181. unsigned VECT_OP_FUNC(NormToAbsMax)( VECT_OP_TYPE* dp, unsigned dn, VECT_OP_TYPE fact )
  182. {
  183. if( dn == 0 )
  184. return cmInvalidIdx;
  185. unsigned i = 0;
  186. unsigned mi = 0;
  187. VECT_OP_TYPE mx = cmAbs(dp[0]);
  188. for(i=1; i<dn; ++i)
  189. if( cmAbs(dp[i])>mx )
  190. {
  191. mi = i;
  192. mx = cmAbs(dp[i]);
  193. }
  194. VECT_OP_FUNC(MultVS)(dp,dn,fact/mx);
  195. return mi;
  196. }
  197. VECT_OP_TYPE VECT_OP_FUNC(Mean)( const VECT_OP_TYPE* bp, unsigned n )
  198. { return VECT_OP_FUNC(Sum)(bp,n)/n; }
  199. VECT_OP_TYPE VECT_OP_FUNC(MeanN)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  200. { return VECT_OP_FUNC(SumN)(bp,n,stride)/n; }
  201. VECT_OP_TYPE* VECT_OP_FUNC(MeanM)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, unsigned dim )
  202. {
  203. unsigned i;
  204. unsigned cn = dim == 0 ? scn : srn;
  205. unsigned rn = dim == 0 ? srn : scn;
  206. unsigned inc = dim == 0 ? srn : 1;
  207. unsigned stride = dim == 0 ? 1 : srn;
  208. unsigned d0 = 0;
  209. for(i=0; i<cn; ++i, d0+=inc)
  210. dp[i] = VECT_OP_FUNC(MeanN)(sp + d0, rn, stride );
  211. return dp;
  212. }
  213. VECT_OP_TYPE* VECT_OP_FUNC(MeanM2)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, unsigned dim, unsigned cnt )
  214. {
  215. unsigned i;
  216. unsigned cn = dim == 0 ? scn : srn;
  217. unsigned rn = dim == 0 ? srn : scn;
  218. unsigned inc = dim == 0 ? srn : 1;
  219. unsigned stride = dim == 0 ? 1 : srn;
  220. unsigned d0 = 0;
  221. for(i=0; i<cn; ++i, d0+=inc)
  222. dp[i] = VECT_OP_FUNC(MeanN)(sp + d0, cmMin(rn,cnt), stride );
  223. return dp;
  224. }
  225. VECT_OP_TYPE* VECT_OP_FUNC(Mean2)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* (*srcFuncPtr)(void* arg, unsigned idx ), unsigned D, unsigned N, void* argPtr )
  226. {
  227. unsigned i,n;
  228. const VECT_OP_TYPE* sp;
  229. VECT_OP_FUNC(Zero)(dp,D);
  230. if( N > 1 )
  231. {
  232. n = 0;
  233. for(i=0; i<N; ++i)
  234. if((sp = srcFuncPtr(argPtr,i)) != NULL )
  235. {
  236. VECT_OP_FUNC(AddVV)(dp,D,sp);
  237. ++n;
  238. }
  239. VECT_OP_FUNC(DivVS)(dp,D,n);
  240. }
  241. return dp;
  242. }
  243. VECT_OP_TYPE VECT_OP_FUNC(Variance)( const VECT_OP_TYPE* sp, unsigned sn, const VECT_OP_TYPE* avgPtr )
  244. { return VECT_OP_FUNC(VarianceN)(sp,sn,1,avgPtr); }
  245. VECT_OP_TYPE VECT_OP_FUNC(VarianceN)( const VECT_OP_TYPE* sp, unsigned sn, unsigned stride, const VECT_OP_TYPE* meanPtr )
  246. {
  247. VECT_OP_TYPE mean = 0;
  248. if( sn <= 1 )
  249. return 0;
  250. if( meanPtr == NULL )
  251. mean = VECT_OP_FUNC(MeanN)( sp, sn, stride );
  252. else
  253. mean = *meanPtr;
  254. const VECT_OP_TYPE* ep = sp + (sn*stride);
  255. VECT_OP_TYPE sum = 0;
  256. for(; sp < ep; sp += stride )
  257. sum += (*sp-mean) * (*sp-mean);
  258. return sum / (sn-1);
  259. }
  260. VECT_OP_TYPE* VECT_OP_FUNC(VarianceM)(VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, const VECT_OP_TYPE* avgPtr, unsigned dim )
  261. {
  262. unsigned i;
  263. unsigned cn = dim == 0 ? scn : srn;
  264. unsigned rn = dim == 0 ? srn : scn;
  265. unsigned inc = dim == 0 ? srn : 1;
  266. unsigned stride = dim == 0 ? 1 : srn;
  267. unsigned d0 = 0;
  268. for(i=0; i<cn; ++i, d0+=inc)
  269. dp[i] = VECT_OP_FUNC(VarianceN)(sp + d0, rn, stride, avgPtr==NULL ? NULL : avgPtr+i );
  270. return dp;
  271. }
  272. void VECT_OP_FUNC(GaussCovariance)(VECT_OP_TYPE* yM, unsigned D, const VECT_OP_TYPE* xM, unsigned xN, const VECT_OP_TYPE* uV, const unsigned* selIdxV, unsigned selKey )
  273. {
  274. unsigned i,j,k,n = 0;
  275. VECT_OP_TYPE tV[ D ];
  276. VECT_OP_FUNC(Fill)(yM,D*D,0);
  277. // if the mean was not given - then calculate it
  278. if( uV == NULL )
  279. {
  280. VECT_OP_FUNC(Fill)(tV,D,0);
  281. // sum each row of xM[] into uM[]
  282. for(i=0; i<D; ++i)
  283. {
  284. n = 0;
  285. for(j=0; j<xN; ++j)
  286. if( selIdxV==NULL || selIdxV[j]==selKey )
  287. {
  288. tV[i] += xM[ (j*D) + i ];
  289. ++n;
  290. }
  291. }
  292. // form an average from the sum in tV[]
  293. VECT_OP_FUNC(DivVS)(tV,D,n);
  294. uV = tV;
  295. }
  296. for(i=0; i<D; ++i)
  297. for(j=i; j<D; ++j)
  298. {
  299. n = 0;
  300. for(k=0; k<xN; ++k)
  301. if( selIdxV==NULL || selIdxV[k]==selKey)
  302. {
  303. unsigned yi = (i*D)+j;
  304. yM[ yi ] += ((xM[ (k*D)+j ]-uV[j]) * (xM[ (k*D) + i ]-uV[i]));
  305. if( i != j )
  306. yM[ (j*D)+i ] = yM[ yi ];
  307. ++n;
  308. }
  309. }
  310. if( n>1 )
  311. VECT_OP_FUNC(DivVS)( yM, D*D, n-1 );
  312. }
  313. void VECT_OP_FUNC(GaussCovariance2)(VECT_OP_TYPE* yM, unsigned D, const VECT_OP_TYPE* (*srcFunc)(void* userPtr, unsigned idx), unsigned xN, void* userPtr, const VECT_OP_TYPE* uV, const unsigned* selIdxV, unsigned selKey )
  314. {
  315. unsigned i,j,k = 0,n;
  316. VECT_OP_TYPE tV[ D ];
  317. const VECT_OP_TYPE* sp;
  318. VECT_OP_FUNC(Fill)(yM,D*D,0);
  319. // if the mean was not given - then calculate it
  320. if( uV == NULL )
  321. {
  322. VECT_OP_FUNC(Fill)(tV,D,0);
  323. n = 0;
  324. // sum each row of xM[] into uM[]
  325. for(i=0; i<xN; ++i)
  326. if( (selIdxV==NULL || selIdxV[i]==selKey) && ((sp=srcFunc(userPtr,i))!=NULL) )
  327. {
  328. VECT_OP_FUNC(AddVV)(tV,D,sp);
  329. ++n;
  330. }
  331. // form an average from the sum in tV[]
  332. VECT_OP_FUNC(DivVS)(tV,D,n);
  333. uV = tV;
  334. }
  335. for(i=0; i<xN; ++i)
  336. if( selIdxV==NULL || selIdxV[i]==selKey )
  337. {
  338. // get a pointer to the ith data point
  339. const VECT_OP_TYPE* sV = srcFunc(userPtr,i);
  340. // note: this algorithm works because when a data point element (scalar)
  341. // is multiplied by another data point element those two elements
  342. // are always part of the same data point (vector). Two elements
  343. // from different data points are never multiplied.
  344. if( sV != NULL )
  345. for(j=0; j<D; ++j)
  346. for(k=j; k<D; ++k)
  347. yM[j + k*D] += (sV[j]-uV[j]) * (sV[k]-uV[k]);
  348. }
  349. if( n > 1 )
  350. VECT_OP_FUNC(DivVS)( yM, D*D, n-1 );
  351. // fill in the lower triangle
  352. for(j=0; j<D; ++j)
  353. for(k=j; k<D; ++k)
  354. yM[k + j*D] = yM[j + k*D];
  355. }
  356. bool VECT_OP_FUNC(IsNormal)( const VECT_OP_TYPE* sp, unsigned sn )
  357. {
  358. const VECT_OP_TYPE* ep = sp + sn;
  359. for(; sp<ep; ++sp)
  360. if( !isnormal(*sp) )
  361. return false;
  362. return true;
  363. }
  364. bool VECT_OP_FUNC(IsNormalZ)(const VECT_OP_TYPE* sp, unsigned sn )
  365. {
  366. const VECT_OP_TYPE* ep = sp + sn;
  367. for(; sp<ep; ++sp)
  368. if( (*sp != 0) && (!isnormal(*sp)) )
  369. return false;
  370. return true;
  371. }
  372. unsigned VECT_OP_FUNC(FindNonNormal)( unsigned* dp, unsigned dn, const VECT_OP_TYPE* sbp )
  373. {
  374. const VECT_OP_TYPE* sp = sbp;
  375. const VECT_OP_TYPE* ep = sp + dn;
  376. unsigned n = 0;
  377. for(; sp<ep; ++sp)
  378. if( !isnormal(*sp) )
  379. dp[n++] = sp - sbp;
  380. return n;
  381. }
  382. unsigned VECT_OP_FUNC(FindNonNormalZ)( unsigned* dp, unsigned dn, const VECT_OP_TYPE* sbp )
  383. {
  384. const VECT_OP_TYPE* sp = sbp;
  385. const VECT_OP_TYPE* ep = sp + dn;
  386. unsigned n = 0;
  387. for(; sp<ep; ++sp)
  388. if( (*sp!=0) && (!isnormal(*sp)) )
  389. dp[n++] = sp - sbp;
  390. return n;
  391. }
  392. unsigned VECT_OP_FUNC(ZeroCrossCount)( const VECT_OP_TYPE* bp, unsigned bn, VECT_OP_TYPE* delaySmpPtr)
  393. {
  394. unsigned n = delaySmpPtr != NULL ? ((*delaySmpPtr >= 0) != (*bp >= 0)) : 0 ;
  395. const VECT_OP_TYPE* ep = bp + bn;
  396. for(; bp<ep-1; ++bp)
  397. if( (*bp >= 0) != (*(bp+1) >= 0) )
  398. ++n;
  399. if( delaySmpPtr != NULL )
  400. *delaySmpPtr = *bp;
  401. return n;
  402. }
  403. VECT_OP_TYPE VECT_OP_FUNC(SquaredSum)( const VECT_OP_TYPE* bp, unsigned bn )
  404. {
  405. VECT_OP_TYPE sum = 0;
  406. const VECT_OP_TYPE* ep = bp + bn;
  407. for(; bp < ep; ++bp )
  408. sum += *bp * *bp;
  409. return sum;
  410. }
  411. VECT_OP_TYPE VECT_OP_FUNC(RMS)( const VECT_OP_TYPE* bp, unsigned bn, unsigned wndSmpCnt )
  412. {
  413. const VECT_OP_TYPE* ep = bp + bn;
  414. if( bn==0 )
  415. return 0;
  416. assert( bn <= wndSmpCnt );
  417. double sum = 0;
  418. for(; bp < ep; ++bp )
  419. sum += *bp * *bp;
  420. return (VECT_OP_TYPE)sqrt(sum/wndSmpCnt);
  421. }
  422. VECT_OP_TYPE* VECT_OP_FUNC(RmsV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp, unsigned sn, unsigned wndSmpCnt, unsigned hopSmpCnt )
  423. {
  424. const VECT_OP_TYPE* dep = dp + dn;
  425. const VECT_OP_TYPE* sep = sp + sn;
  426. VECT_OP_TYPE* rp = dp;
  427. for(; dp<dep && sp<sep; sp+=hopSmpCnt)
  428. *dp++ = VECT_OP_FUNC(RMS)( sp, cmMin(wndSmpCnt,sep-sp), wndSmpCnt );
  429. VECT_OP_FUNC(Zero)(dp,dep-dp);
  430. return rp;
  431. }
  432. VECT_OP_TYPE VECT_OP_FUNC(EuclidNorm)( const VECT_OP_TYPE* sp, unsigned sn )
  433. { return (VECT_OP_TYPE)sqrt( VECT_OP_FUNC(MultSumVV)(sp,sp,sn)); }
  434. VECT_OP_TYPE VECT_OP_FUNC(AlphaNorm)(const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE alpha )
  435. {
  436. double sum = 0;
  437. const VECT_OP_TYPE* bp = sp;
  438. const VECT_OP_TYPE* ep = sp + sn;
  439. while( bp < ep )
  440. sum += pow(fabs(*bp++),alpha);
  441. return (VECT_OP_TYPE)pow(sum/sn,1.0/alpha);
  442. }
  443. /*
  444. From:http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/doc/voicebox/distitpf.html
  445. [nf1,p2]=size(pf1);
  446. p1=p2-1;
  447. nf2=size(pf2,1);
  448. nx= min(nf1,nf2);
  449. r = pf1(1:nx,:)./pf2(1:nx,:);
  450. q = r-log(r);
  451. s = sum( q(:,2:p1),2) + 0.5 * (q(:,1)+q(:,p2))
  452. d= s/p1-1;
  453. */
  454. VECT_OP_TYPE VECT_OP_FUNC(ItakuraDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  455. {
  456. VECT_OP_TYPE d = 0;
  457. VECT_OP_TYPE r[ sn ];
  458. VECT_OP_TYPE q[ sn ];
  459. // r = pf1(1:nx,:)./pf2(1:nx,:);
  460. VECT_OP_FUNC(DivVVV)(r,sn,s0p,s1p);
  461. //q=log(r);
  462. VECT_OP_FUNC(LogV)(q,sn,r);
  463. //r = r - q = r - log(r)
  464. VECT_OP_FUNC(SubVV)(r,sn,q);
  465. //r = r - sn = r - log(r) - 1
  466. VECT_OP_FUNC(SubVS)(r,sn,sn);
  467. // d = sum(r);
  468. d = VECT_OP_FUNC(Sum)(r,sn);
  469. return (VECT_OP_TYPE)(d / sn);
  470. //d = log( VECT_OP_FUNC(Sum)(r,sn) /sn );
  471. //d -= VECT_OP_FUNC(Sum)(q,sn)/sn;
  472. return d;
  473. }
  474. VECT_OP_TYPE VECT_OP_FUNC(CosineDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  475. {
  476. VECT_OP_TYPE d0 = VECT_OP_FUNC(EuclidNorm)(s0p,sn);
  477. VECT_OP_TYPE d1 = VECT_OP_FUNC(EuclidNorm)(s1p,sn);
  478. if( d0 == 0 )
  479. d0 = cmReal_MIN;
  480. if( d1 == 0 )
  481. d1 = cmReal_MIN;
  482. return (VECT_OP_TYPE)(VECT_OP_FUNC(MultSumVV)(s0p,s1p,sn) / (d0 * d1));
  483. }
  484. VECT_OP_TYPE VECT_OP_FUNC(EuclidDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  485. {
  486. double d = 0;
  487. const VECT_OP_TYPE* sep = s0p + sn;
  488. for(; s0p<sep; ++s0p,++s1p)
  489. d += (*s0p - *s1p) * (*s0p - *s1p);
  490. return (VECT_OP_TYPE)(sqrt(d));
  491. }
  492. VECT_OP_TYPE VECT_OP_FUNC(L1Distance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  493. {
  494. double d = 0;
  495. const VECT_OP_TYPE* sep = s0p + sn;
  496. for(; s0p<sep; ++s0p,++s1p)
  497. d += (VECT_OP_TYPE)fabs(*s0p - *s1p);
  498. return d;
  499. }
  500. VECT_OP_TYPE VECT_OP_FUNC(MahalanobisDistance)( const VECT_OP_TYPE* x, unsigned D, const VECT_OP_TYPE* u, const VECT_OP_TYPE* invCovM )
  501. {
  502. VECT_OP_TYPE t[ D ];
  503. VECT_OP_TYPE d[ D ];
  504. // t[] = x[] - u[];
  505. VECT_OP_FUNC(SubVVV)(t,D,x,u);
  506. // d[1,D] = t[1,D] * covM[D,D]
  507. VECT_OP_FUNC(MultVVM)( d, D, t, D, invCovM );
  508. // d = sum(d[].*t[])
  509. VECT_OP_TYPE dist = VECT_OP_FUNC(MultSumVV)(d,t,D);
  510. return (VECT_OP_TYPE)sqrt(dist);
  511. }
  512. VECT_OP_TYPE VECT_OP_FUNC(KL_Distance)( const VECT_OP_TYPE* up, const VECT_OP_TYPE* sp, unsigned sn )
  513. {
  514. VECT_OP_TYPE v[ sn ];
  515. VECT_OP_FUNC(DivVVV)(v,sn,up,sp); // v = up ./ sp
  516. VECT_OP_FUNC(LogV)(v,sn,v); // v = log(v)
  517. VECT_OP_FUNC(MultVV)(v,sn,up); // v *= up;
  518. return VECT_OP_FUNC(Sum)(v,sn); // sum(v)
  519. }
  520. VECT_OP_TYPE VECT_OP_FUNC(KL_Distance2)( const VECT_OP_TYPE* up, const VECT_OP_TYPE* sp, unsigned sn )
  521. {
  522. VECT_OP_TYPE v0[ sn ];
  523. VECT_OP_TYPE v1[ sn ];
  524. VECT_OP_FUNC(NormalizeProbabilityVV)(v0,sn,up);
  525. VECT_OP_FUNC(NormalizeProbabilityVV)(v1,sn,sp);
  526. return VECT_OP_FUNC(KL_Distance)(v0,v1,sn);
  527. }
  528. /// If dv[scn] is non NULL then return the Euclidean distance from sv[scn] to each column of sm[srn,scn].
  529. /// The function returns the index of the closest data point (column) in sm[].
  530. unsigned VECT_OP_FUNC(EuclidDistanceVM)( VECT_OP_TYPE* dv, const VECT_OP_TYPE* sv, const VECT_OP_TYPE* sm, unsigned srn, unsigned scn )
  531. {
  532. unsigned minIdx = cmInvalidIdx;
  533. VECT_OP_TYPE minDist = 0;
  534. unsigned i = 0;
  535. for(; i<scn; ++i )
  536. {
  537. VECT_OP_TYPE dist = VECT_OP_FUNC(EuclidDistance)(sv, sm + (i*srn), srn );
  538. if( dv != NULL )
  539. *dv++ = dist;
  540. if( dist < minDist || minIdx == cmInvalidIdx )
  541. {
  542. minIdx = i;
  543. minDist = dist;
  544. }
  545. }
  546. return minIdx;
  547. }
  548. void VECT_OP_FUNC(DistVMM)( VECT_OP_TYPE* dM, VECT_OP_TYPE* mvV, unsigned* miV, unsigned rn, const VECT_OP_TYPE* s0M, unsigned s0cn, const VECT_OP_TYPE* s1M, unsigned s1cn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
  549. {
  550. unsigned i,j,k;
  551. // for each col in s0M[];
  552. for(i=0,k=0; i<s0cn; ++i)
  553. {
  554. VECT_OP_TYPE min_val = VECT_OP_MAX;
  555. unsigned min_idx = cmInvalidIdx;
  556. // for each col in s1M[]
  557. for(j=0; j<s1cn; ++j,++k)
  558. {
  559. // v = distance(s0M[:,i],s1M[:,j]
  560. VECT_OP_TYPE v = distFunc( userPtr, s1M + (j*rn), s0M + (i*rn), rn );
  561. if( dM != NULL )
  562. dM[k] = v; // store distance
  563. // track closest col in s1M[]
  564. if( v < min_val || min_idx==cmInvalidIdx )
  565. {
  566. min_val = v;
  567. min_idx = j;
  568. }
  569. }
  570. if( mvV != NULL )
  571. mvV[i] = min_val;
  572. if( miV != NULL )
  573. miV[i] = min_idx;
  574. }
  575. }
  576. void VECT_OP_FUNC(SelectRandom) ( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn )
  577. {
  578. bool freeFl = false;
  579. unsigned i;
  580. assert( selIdxN != 0 );
  581. // if no selIdxV[] was given then create one
  582. if( selIdxV == NULL )
  583. {
  584. selIdxV = cmMemAlloc( unsigned, selIdxN );
  585. freeFl = true;
  586. }
  587. // select datapoints at random
  588. cmVOU_UniqueRandom(selIdxV,selIdxN,scn);
  589. // copy the data points into the output matrix
  590. if( dM != NULL )
  591. for(i=0; i<selIdxN; ++i)
  592. {
  593. assert( selIdxV[i] < scn );
  594. VECT_OP_FUNC(Copy)( dM + (i*srn), srn, sM + selIdxV[i]*srn );
  595. }
  596. if( freeFl )
  597. cmMemPtrFree(&selIdxV);
  598. }
  599. void VECT_OP_FUNC(_SelectDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr, bool avgFl )
  600. {
  601. unsigned i;
  602. unsigned dcn = 0;
  603. bool freeFl = false;
  604. assert( selIdxN > 0 );
  605. if( dM == NULL )
  606. {
  607. dM = cmMemAllocZ( VECT_OP_TYPE, srn*selIdxN );
  608. freeFl = true;
  609. }
  610. // allocate distM[scn,selIdxN] to hold the distances from each selected column to all columns in sM[]
  611. VECT_OP_TYPE* distM = cmMemAllocZ( VECT_OP_TYPE, scn*selIdxN );
  612. // sumV[] is a temp vector to hold the summed distances to from the selected columns to each column in sM[]
  613. VECT_OP_TYPE* sumV = cmMemAllocZ( VECT_OP_TYPE, scn );
  614. // select a random point from sM[] and copy it to the first column of dM[]
  615. cmVOU_Random(&i,1,scn);
  616. VECT_OP_FUNC(Copy)(dM, srn, sM + (i*srn));
  617. if( selIdxV != NULL )
  618. selIdxV[0] = i;
  619. for(dcn=1; dcn<selIdxN; ++dcn)
  620. {
  621. // set distM[scn,dcn] with the dist from dM[dcn,srn] to each column in sM[]
  622. VECT_OP_FUNC(DistVMM)( distM, NULL, NULL, srn, dM, dcn, sM, scn, distFunc, userPtr );
  623. // sum the rows of distM[ scn, dcn ] into sumV[scn]
  624. VECT_OP_FUNC(SumMN)( distM, scn, dcn, sumV );
  625. if( avgFl )
  626. VECT_OP_FUNC(DivVS)( sumV, scn, dcn );
  627. // find the point in sM[] which has the greatest combined distance to all previously selected points.
  628. unsigned maxIdx = VECT_OP_FUNC(MaxIndex)(sumV, scn, 1 );
  629. // copy the point into dM[]
  630. VECT_OP_FUNC(Copy)(dM + (dcn*srn), srn, sM + (maxIdx*srn));
  631. if( selIdxV != NULL )
  632. selIdxV[dcn] = maxIdx;
  633. }
  634. cmMemPtrFree(&distM);
  635. cmMemPtrFree(&sumV);
  636. if( freeFl )
  637. cmMemPtrFree(&dM);
  638. }
  639. void VECT_OP_FUNC(SelectMaxDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
  640. { VECT_OP_FUNC(_SelectDist)(dM,selIdxV,selIdxN,sM,srn,scn,distFunc,userPtr,false); }
  641. void VECT_OP_FUNC(SelectMaxAvgDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
  642. { VECT_OP_FUNC(_SelectDist)(dM,selIdxV,selIdxN,sM,srn,scn,distFunc,userPtr,true); }
  643. #ifdef CM_VECTOP
  644. VECT_OP_TYPE VECT_OP_FUNC(MultSumVV)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  645. { return VECT_OP_BLAS_FUNC(dot)(sn, s0p, 1, s1p, 1); }
  646. #else
  647. VECT_OP_TYPE VECT_OP_FUNC(MultSumVV)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  648. {
  649. VECT_OP_TYPE sum = 0;
  650. const VECT_OP_TYPE* sep = s0p + sn;
  651. while(s0p<sep)
  652. sum += *s0p++ * *s1p++;
  653. return sum;
  654. }
  655. #endif
  656. VECT_OP_TYPE VECT_OP_FUNC(MultSumVS)( const VECT_OP_TYPE* s0p, unsigned sn, VECT_OP_TYPE s1 )
  657. {
  658. VECT_OP_TYPE sum = 0;
  659. const VECT_OP_TYPE* sep = s0p + sn;
  660. while(s0p<sep)
  661. sum += *s0p++ * s1;
  662. return sum;
  663. }
  664. #ifdef CM_VECTOP
  665. VECT_OP_TYPE* VECT_OP_FUNC(MultVMV)( VECT_OP_TYPE* dbp, unsigned mrn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
  666. {
  667. VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasNoTrans, mrn, mcn, 1.0, mp, mrn, vp, 1, 0.0, dbp, 1 );
  668. return dbp;
  669. }
  670. #else
  671. VECT_OP_TYPE* VECT_OP_FUNC(MultVMV)( VECT_OP_TYPE* dbp, unsigned mrn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
  672. {
  673. const VECT_OP_TYPE* dep = dbp + mrn;
  674. VECT_OP_TYPE* dp = dbp;
  675. const VECT_OP_TYPE* vep = vp + mcn;
  676. // for each dest element
  677. for(; dbp < dep; ++dbp )
  678. {
  679. const VECT_OP_TYPE* vbp = vp;
  680. const VECT_OP_TYPE* mbp = mp++;
  681. *dbp = 0;
  682. // for each source vector row and src mtx col
  683. while( vbp < vep )
  684. {
  685. *dbp += *mbp * *vbp++;
  686. mbp += mrn;
  687. }
  688. }
  689. return dp;
  690. }
  691. #endif
  692. #ifdef CM_VECTOP
  693. VECT_OP_TYPE* VECT_OP_FUNC(MultVVM)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* vp, unsigned vn, const VECT_OP_TYPE* mp )
  694. {
  695. VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasTrans, vn, dn, 1.0, mp, vn, vp, 1, 0.0, dbp, 1 );
  696. return dbp;
  697. }
  698. #else
  699. VECT_OP_TYPE* VECT_OP_FUNC(MultVVM)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* vp, unsigned vn, const VECT_OP_TYPE* mp )
  700. {
  701. unsigned i;
  702. for(i=0; i<dn; ++i)
  703. dbp[i] = VECT_OP_FUNC(MultSumVV)(vp,mp + (i*vn),vn);
  704. return dbp;
  705. }
  706. #endif
  707. #ifdef CM_VECTOP
  708. VECT_OP_TYPE* VECT_OP_FUNC(MultVMtV)( VECT_OP_TYPE* dbp, unsigned mcn, const VECT_OP_TYPE* mp, unsigned mrn, const VECT_OP_TYPE* vp )
  709. {
  710. VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasTrans, mrn, mcn, 1.0, mp, mrn, vp, 1, 0.0, dbp, 1 );
  711. return dbp;
  712. }
  713. #else
  714. VECT_OP_TYPE* VECT_OP_FUNC(MultVMtV)( VECT_OP_TYPE* dbp, unsigned mcn, const VECT_OP_TYPE* mp, unsigned mrn, const VECT_OP_TYPE* vp )
  715. {
  716. const VECT_OP_TYPE* dep = dbp + mcn;
  717. VECT_OP_TYPE* dp = dbp;
  718. const VECT_OP_TYPE* vep = vp + mrn;
  719. // for each dest element
  720. for(; dbp < dep; ++dbp )
  721. {
  722. const VECT_OP_TYPE* vbp = vp;
  723. *dbp = 0;
  724. // for each source vector row and src mtx col
  725. while( vbp < vep )
  726. *dbp += *mp++ * *vbp++;
  727. }
  728. return dp;
  729. }
  730. #endif
  731. VECT_OP_TYPE* VECT_OP_FUNC(MultDiagVMV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
  732. {
  733. VECT_OP_TYPE* rp = dbp;
  734. const VECT_OP_TYPE* mep = mp + (dn*mcn);
  735. // for each dest element
  736. for(; mp < mep; mp += dn+1 )
  737. *dbp++ = *vp++ * *mp;
  738. return rp;
  739. }
  740. /*
  741. Fortran Doc: http://www.netlib.org/blas/cgemm.f
  742. C Doc: http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?cmd=getdoc&coll=0650&db=man&fname=3%20INTRO_CBLAS
  743. C = alpha * op(A) * op(B) + beta * C
  744. cblas_Xgemm(
  745. order, enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};
  746. transposeA, enum CBLAS_TRANSPOSE { CblasNoTrans, CblasTrans, CBlasConjTrans }
  747. transposeB,
  748. M, row op(A) and rows C (i.e. rows of A 'after' optional transpose)
  749. N, col op(B) and cols C (i.e. rows of B 'after' optional transpose)
  750. K, col op(A) and rows op(B)
  751. alpha, A scalar
  752. A, pointer to source matrix A
  753. lda, number of rows in A as it is stored in memory (assuming col major order)
  754. B, pointer to source matrix B
  755. ldb, number of rows in B as it is stored in memory (assuming col major order)
  756. beta C scalar
  757. C, pointer to destination matrix C
  758. ldc number of rows in C as it is stored in memory (assuming col major order)
  759. )
  760. */
  761. #ifdef CM_VECTOP
  762. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM1)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE alpha, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n, VECT_OP_TYPE beta, unsigned flags )
  763. {
  764. bool t0fl = cmIsFlag(flags,kTransposeM0Fl);
  765. bool t1fl = cmIsFlag(flags,kTransposeM1Fl);
  766. VECT_OP_BLAS_FUNC(gemm)(
  767. CblasColMajor,
  768. t0fl ? CblasTrans : CblasNoTrans,
  769. t1fl ? CblasTrans : CblasNoTrans,
  770. drn, dcn, n,
  771. alpha,
  772. m0, t0fl ? n : drn,
  773. m1, t1fl ? dcn : n,
  774. beta,
  775. dbp, drn );
  776. return dbp;
  777. }
  778. #else
  779. // Not implemented.
  780. #endif
  781. #ifdef CM_VECTOP
  782. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM2)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE alpha, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n, VECT_OP_TYPE beta, unsigned flags, unsigned dprn, unsigned m0prn, unsigned m1prn )
  783. {
  784. VECT_OP_BLAS_FUNC(gemm)(
  785. CblasColMajor,
  786. cmIsFlag(flags,kTransposeM0Fl) ? CblasTrans : CblasNoTrans,
  787. cmIsFlag(flags,kTransposeM1Fl) ? CblasTrans : CblasNoTrans,
  788. drn, dcn, n,
  789. alpha,
  790. m0, m0prn,
  791. m1, m1prn,
  792. beta,
  793. dbp, dprn );
  794. return dbp;
  795. }
  796. #else
  797. // Not implemented.
  798. #endif
  799. #ifdef CM_VECTOP
  800. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n )
  801. {
  802. VECT_OP_BLAS_FUNC(gemm)(
  803. CblasColMajor,
  804. CblasNoTrans, CblasNoTrans,
  805. drn, dcn, n,
  806. 1.0, m0, drn,
  807. m1, n,
  808. 0.0, dbp, drn );
  809. return dbp;
  810. }
  811. #else
  812. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
  813. {
  814. unsigned i;
  815. for(i=0; i<dcn; ++i)
  816. VECT_OP_FUNC(MultVMV)(dbp+(i*drn),drn,m0,m0cn_m1rn,m1+(i*m0cn_m1rn));
  817. return dbp;
  818. }
  819. #endif
  820. #ifdef CM_VECTOP
  821. VECT_OP_TYPE* VECT_OP_FUNC(MultMMMt)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
  822. {
  823. VECT_OP_BLAS_FUNC(gemm)( CblasColMajor, CblasNoTrans, CblasTrans,
  824. drn, dcn, m0cn_m1rn,
  825. 1.0, m0, drn,
  826. m1, dcn,
  827. 0.0, dbp, drn );
  828. return dbp;
  829. }
  830. #else
  831. VECT_OP_TYPE* VECT_OP_FUNC(MultMMMt)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
  832. {
  833. unsigned i,j,k;
  834. VECT_OP_FUNC(Zero)(dbp,drn*dcn);
  835. for(i=0; i<dcn; ++i)
  836. for(j=0; j<drn; ++j)
  837. for(k=0; k<m0cn_m1rn; ++k)
  838. dbp[ i*drn + j ] += m0[ k*drn + j ] * m1[ k*dcn + i ];
  839. return dbp;
  840. }
  841. #endif
  842. VECT_OP_TYPE* VECT_OP_FUNC(PowVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE expo )
  843. {
  844. VECT_OP_TYPE* dp = dbp;
  845. VECT_OP_TYPE* ep = dp + dn;
  846. for(; dp < ep; ++dp )
  847. *dp = (VECT_OP_TYPE)pow(*dp,expo);
  848. return dbp;
  849. }
  850. VECT_OP_TYPE* VECT_OP_FUNC(PowVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE expo )
  851. {
  852. VECT_OP_TYPE* dp = dbp;
  853. VECT_OP_TYPE* ep = dp + dn;
  854. for(; dp < ep; ++dp,++sp )
  855. *dp = (VECT_OP_TYPE)pow(*sp,expo);
  856. return dbp;
  857. }
  858. VECT_OP_TYPE* VECT_OP_FUNC(LogV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp )
  859. {
  860. VECT_OP_TYPE* dp = dbp;
  861. VECT_OP_TYPE* ep = dp + dn;
  862. for(; dp <ep; ++dp,++sbp)
  863. *dp = (VECT_OP_TYPE)log(*sbp);
  864. return dbp;
  865. }
  866. VECT_OP_TYPE* VECT_OP_FUNC(RandSymPosDef)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE* t )
  867. {
  868. unsigned i,j;
  869. bool fl = t == NULL;
  870. if( fl )
  871. t = cmMemAlloc( VECT_OP_TYPE , dn*dn );
  872. do
  873. {
  874. // intialize t[] as a square symetric matrix with random values
  875. for(i=0; i<dn; ++i)
  876. for(j=i; j<dn; ++j)
  877. {
  878. VECT_OP_TYPE v = (VECT_OP_TYPE)rand()/RAND_MAX;
  879. t[ (i*dn) + j ] = v;
  880. if( i != j )
  881. t[ (j*dn) + i ] = v;
  882. }
  883. // square t[] to force the eigenvalues to be positive
  884. VECT_OP_FUNC(MultMMM)(dbp,dn,dn,t,t,dn);
  885. VECT_OP_FUNC(Copy)(t,dn*dn,dbp);
  886. // test that func is positive definite
  887. }while( VECT_OP_FUNC(Chol)(t,dn)==NULL );
  888. if( fl )
  889. cmMemFree(t);
  890. return dbp;
  891. }
  892. // Calculate the determinant of a matrix previously factored by
  893. // the lapack function dgetrf_()
  894. VECT_OP_TYPE VECT_OP_FUNC(LUDet)( const VECT_OP_TYPE* lu, const int_lap_t* ipiv, int rn )
  895. {
  896. VECT_OP_TYPE det1 = 1;
  897. int det2 = 0;
  898. int i;
  899. for(i=0; i<rn; ++i)
  900. {
  901. if( ipiv != NULL && ipiv[i] != (i+1) )
  902. det1 = -det1;
  903. det1 = lu[ (i*rn) + i ] * det1;
  904. if( det1 == 0 )
  905. break;
  906. while( fabs(det1) <= 1 )
  907. {
  908. det1 *= 10;
  909. det2 -= 1;
  910. }
  911. //continue;
  912. while( fabs(det1) >= 10 )
  913. {
  914. det1 /= 10;
  915. det2 += 1;
  916. }
  917. }
  918. // Here's where underflow or overflow might happen.
  919. // Enable floating point exception handling to trap.
  920. det1 *= pow(10.0,det2);
  921. return det1;
  922. }
  923. // take the inverse of a matrix factored via lapack dgetrf_()
  924. VECT_OP_TYPE* VECT_OP_FUNC(LUInverse)(VECT_OP_TYPE* dp, int_lap_t* ipiv, int drn )
  925. {
  926. int_lap_t ispec = 1;
  927. int_lap_t rn = drn;
  928. int_lap_t n1 = drn;
  929. int_lap_t n2 = drn;
  930. int_lap_t n3 = drn;
  931. int_lap_t n4 = drn;
  932. char funcNameStr[] = {"DGETRI"};
  933. // Calculate the NB factor for LWORK -
  934. // The two args are length of string args 'funcNameStr' and ' '.
  935. // It is not clear how many 'n' args are requred so all are passed set to 'drn'
  936. #ifdef OS_OSX
  937. int nb = ilaenv_(&ispec, funcNameStr, " ", &n1,&n2,&n3,&n4 );
  938. #else
  939. int nb = ilaenv_(&ispec, funcNameStr, " ", &n1,&n2,&n3,&n4, strlen(funcNameStr), 1 );
  940. #endif
  941. VECT_OP_TYPE w[drn * nb]; // allocate working memory
  942. int_lap_t info;
  943. // calculate inv(A) base on LU factorization
  944. VECT_OP_LAP_FUNC(getri_)(&rn,dp,&rn,ipiv,w,&rn,&info);
  945. assert(info==0);
  946. return info ==0 ? dp : NULL;
  947. }
  948. VECT_OP_TYPE VECT_OP_FUNC(DetM)( const VECT_OP_TYPE* sp, unsigned srn )
  949. {
  950. int_lap_t arn = srn;
  951. VECT_OP_TYPE A[ arn * arn ];
  952. int_lap_t ipiv[ arn ];
  953. int_lap_t info;
  954. VECT_OP_FUNC(Copy)(A,arn*arn,sp);
  955. // PLU factor
  956. VECT_OP_LAP_FUNC(getrf_)(&arn,&arn,A,&arn,ipiv,&info);
  957. if( info == 0 )
  958. return VECT_OP_FUNC(LUDet)(A,ipiv,arn);
  959. return 0;
  960. }
  961. VECT_OP_TYPE VECT_OP_FUNC(DetDiagM)( const VECT_OP_TYPE* sp, unsigned srn )
  962. { return VECT_OP_FUNC(LUDet)(sp,NULL,srn); }
  963. VECT_OP_TYPE VECT_OP_FUNC(LogDetM)( const VECT_OP_TYPE* sp, unsigned srn )
  964. {
  965. cmReal_t det = 0;
  966. unsigned ne2 = srn * srn;
  967. VECT_OP_TYPE U[ne2];
  968. const VECT_OP_TYPE* up = U;
  969. const VECT_OP_TYPE* ep = up + ne2;
  970. VECT_OP_FUNC(Copy)(U,ne2,sp);
  971. VECT_OP_FUNC(Chol)(U,srn);
  972. for(; up<ep; up += (srn+1) )
  973. det += log(*up);
  974. return 2*det;
  975. }
  976. VECT_OP_TYPE VECT_OP_FUNC(LogDetDiagM)( const VECT_OP_TYPE* sp, unsigned srn )
  977. { return log(VECT_OP_FUNC(DetDiagM)(sp,srn)); }
  978. VECT_OP_TYPE* VECT_OP_FUNC(InvM)( VECT_OP_TYPE* dp, unsigned drn )
  979. {
  980. int_lap_t rn = drn;
  981. int_lap_t ipiv[ rn ];
  982. int_lap_t info;
  983. // PLU factor
  984. VECT_OP_LAP_FUNC(getrf_)(&rn,&rn,dp,&rn,ipiv,&info);
  985. if( info == 0 )
  986. return VECT_OP_FUNC(LUInverse)(dp,ipiv,rn );
  987. return NULL;
  988. }
  989. VECT_OP_TYPE* VECT_OP_FUNC(InvDiagM)( VECT_OP_TYPE* dp, unsigned drn )
  990. {
  991. const VECT_OP_TYPE* dep = dp + (drn*drn);
  992. VECT_OP_TYPE* rp = dp;
  993. for(; dp < dep; dp += drn+1 )
  994. {
  995. *dp = 1.0 / *dp;
  996. // if any element on the diagonal is zero then the
  997. // determinant is zero and the matrix is not invertable
  998. if( *dp == 0 )
  999. break;
  1000. }
  1001. return dp < dep ? NULL : rp;
  1002. }
  1003. VECT_OP_TYPE* VECT_OP_FUNC(SolveLS)( VECT_OP_TYPE* A, unsigned an, VECT_OP_TYPE* B, unsigned bcn )
  1004. {
  1005. int_lap_t aN = an;
  1006. int_lap_t bcN = bcn;
  1007. int_lap_t ipiv[ an ];
  1008. int_lap_t info = 0;
  1009. VECT_OP_LAP_FUNC(gesv_)(&aN,&bcN,(VECT_OP_TYPE*)A,&aN,ipiv,B,&aN,&info);
  1010. return info == 0 ? B : NULL;
  1011. }
  1012. VECT_OP_TYPE* VECT_OP_FUNC(Chol)(VECT_OP_TYPE* A, unsigned an )
  1013. {
  1014. char uplo = 'U';
  1015. int_lap_t N = an;
  1016. int_lap_t lda = an;
  1017. int_lap_t info = 0;
  1018. VECT_OP_LAP_FUNC(potrf_(&uplo,&N,(VECT_OP_TYPE*)A,&lda,&info));
  1019. return info == 0 ? A : NULL;
  1020. }
  1021. VECT_OP_TYPE* VECT_OP_FUNC(CholZ)(VECT_OP_TYPE* A, unsigned an )
  1022. {
  1023. unsigned i,j;
  1024. VECT_OP_FUNC(Chol)(A,an);
  1025. // zero the lower triangle of A
  1026. for(i=0; i<an; ++i)
  1027. for(j=i+1; j<an; ++j)
  1028. A[ (i*an) + j ] = 0;
  1029. return A;
  1030. }
  1031. void VECT_OP_FUNC(Lsq1)(const VECT_OP_TYPE* x, const VECT_OP_TYPE* y, unsigned n, VECT_OP_TYPE* b0, VECT_OP_TYPE* b1 )
  1032. {
  1033. VECT_OP_TYPE sx = 0;
  1034. VECT_OP_TYPE sy = 0;
  1035. VECT_OP_TYPE sx_2 = 0;
  1036. VECT_OP_TYPE sxy = 0;
  1037. unsigned i;
  1038. if( x == NULL )
  1039. {
  1040. for(i=0; i<n; ++i)
  1041. {
  1042. VECT_OP_TYPE xx = i;
  1043. sx += xx;
  1044. sx_2 += xx * xx;
  1045. sxy += xx * y[i];
  1046. sy += y[i];
  1047. }
  1048. }
  1049. else
  1050. {
  1051. for(i=0; i<n; ++i)
  1052. {
  1053. sx += x[i];
  1054. sx_2 += x[i] * x[i];
  1055. sxy += x[i] * y[i];
  1056. sy += y[i];
  1057. }
  1058. }
  1059. *b1 = (sxy * n - sx * sy) / (sx_2 * n - sx*sx);
  1060. *b0 = (sy - (*b1) * sx) / n;
  1061. }
  1062. VECT_OP_TYPE VECT_OP_FUNC(FracAvg)( double bi, double ei, const VECT_OP_TYPE* sbp, unsigned sn )
  1063. {
  1064. unsigned bii = cmMax(0,cmMin(sn-1,(unsigned)ceil(bi)));
  1065. unsigned eii = cmMax(0,cmMin(sn,(unsigned)floor(ei)+1));
  1066. double begW = bii - bi;
  1067. double endW = eii - floor(ei);
  1068. double cnt = eii - bii;
  1069. double sum = (double)VECT_OP_FUNC(Sum)(sbp+bii,eii-bii);
  1070. if( begW>0 && bii > 0 )
  1071. {
  1072. cnt += begW;
  1073. sum += begW * sbp[ bii-1 ];
  1074. }
  1075. if( endW>0 && eii+1 < sn )
  1076. {
  1077. cnt += endW;
  1078. sum += endW * sbp[ eii+1 ];
  1079. }
  1080. return (VECT_OP_TYPE)(sum / cnt);
  1081. }
  1082. VECT_OP_TYPE* VECT_OP_FUNC(DownSampleAvg)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
  1083. {
  1084. const VECT_OP_TYPE* dep = dbp + dn;
  1085. VECT_OP_TYPE* rp = dbp;
  1086. unsigned i = 0;
  1087. double fact = (double)sn / dn;
  1088. assert( sn >= dn );
  1089. for(i=0; dbp < dep; ++i )
  1090. *dbp++ = VECT_OP_FUNC(FracAvg)( fact*i, fact*(i+1), sbp, sn );
  1091. return rp;
  1092. }
  1093. VECT_OP_TYPE* VECT_OP_FUNC(UpSampleInterp)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
  1094. {
  1095. const VECT_OP_TYPE* dep = dbp + dn;
  1096. const VECT_OP_TYPE* sep = sbp + sn;
  1097. VECT_OP_TYPE* rp = dbp;
  1098. double fact = (double)sn / dn;
  1099. double phs = 0;
  1100. assert( sn <= dn );
  1101. while( dbp<dep )
  1102. {
  1103. if( sbp < sep )
  1104. *dbp++ = (VECT_OP_TYPE)((*sbp) + (phs * ((*(sbp+1)) - (*sbp))));
  1105. else
  1106. *dbp++ = (*(sep-1));
  1107. phs += fact;
  1108. while( phs > 1.0 )
  1109. {
  1110. phs -= 1.0;
  1111. sbp++;
  1112. }
  1113. }
  1114. return rp;
  1115. }
  1116. VECT_OP_TYPE* VECT_OP_FUNC(FitToSize)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
  1117. {
  1118. if( dn == sn )
  1119. return VECT_OP_FUNC(Copy)(dbp,dn,sbp);
  1120. if( dn < sn )
  1121. return VECT_OP_FUNC(DownSampleAvg)(dbp,dn,sbp,sn);
  1122. return VECT_OP_FUNC(UpSampleInterp)(dbp,dn,sbp,sn);
  1123. }
  1124. VECT_OP_TYPE* VECT_OP_FUNC(LinearMap)(VECT_OP_TYPE* dV, unsigned dn, VECT_OP_TYPE* sV, unsigned sn )
  1125. {
  1126. if( dn == sn )
  1127. {
  1128. memcpy(dV,sV,dn*sizeof(VECT_OP_TYPE));
  1129. return dV;
  1130. }
  1131. unsigned i,j,k;
  1132. // if stretching
  1133. if( dn > sn )
  1134. {
  1135. VECT_OP_TYPE f_n = (VECT_OP_TYPE)dn/sn;
  1136. VECT_OP_TYPE f_nn = f_n;
  1137. unsigned i_n = floor(f_n);
  1138. k = 0;
  1139. i = 0;
  1140. // for each set of ceiling(dn/sn) dst values
  1141. while(1)
  1142. {
  1143. // repeat floor(dn/sn) src val into dst
  1144. for(j=0; j<i_n; ++j,++i)
  1145. dV[i] = sV[k];
  1146. if( k + 1 == sn )
  1147. break;
  1148. // interpolate between the cur and nxt source value
  1149. VECT_OP_TYPE w = f_nn - floor(f_nn);
  1150. dV[i] = sV[k] + w * (sV[k+1]-sV[k]);
  1151. ++i;
  1152. ++k;
  1153. i_n = floor(f_n - (1.0-w));
  1154. f_nn += f_n;
  1155. }
  1156. }
  1157. else // if shrinking
  1158. {
  1159. VECT_OP_TYPE f_n = (VECT_OP_TYPE)sn/dn;
  1160. VECT_OP_TYPE f_nn = f_n;
  1161. unsigned i_n = floor(f_n);
  1162. k = 0;
  1163. i = 0;
  1164. VECT_OP_TYPE acc = 0;
  1165. // for each seq of ceil(sn/dn) src values
  1166. while(1)
  1167. {
  1168. // accum first floor(sn/dn) src values
  1169. for(j=0; j<i_n; ++j,++i)
  1170. acc += sV[i];
  1171. if( k == dn-1 )
  1172. {
  1173. dV[k] = acc/f_n;
  1174. break;
  1175. }
  1176. // interpolate frac of last src value
  1177. VECT_OP_TYPE w = f_nn - floor(f_nn);
  1178. // form avg
  1179. dV[k] = (acc + (w*sV[i]))/f_n;
  1180. // reload acc with inverse frac of src value
  1181. acc = (1.0-w) * sV[i];
  1182. ++i;
  1183. ++k;
  1184. i_n = floor(f_n-(1.0-w));
  1185. f_nn += f_n;
  1186. }
  1187. }
  1188. return dV;
  1189. }
  1190. VECT_OP_TYPE* VECT_OP_FUNC(Random)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE minVal, VECT_OP_TYPE maxVal )
  1191. {
  1192. const VECT_OP_TYPE* dep = dbp + dn;
  1193. VECT_OP_TYPE* dp =dbp;
  1194. double fact = (maxVal - minVal)/RAND_MAX;
  1195. while( dbp < dep )
  1196. *dbp++ = fact * rand() + minVal;
  1197. return dp;
  1198. }
  1199. unsigned* VECT_OP_FUNC(WeightedRandInt)( unsigned *dbp, unsigned dn, const VECT_OP_TYPE* wp, unsigned wn )
  1200. {
  1201. unsigned i,j;
  1202. VECT_OP_TYPE a[ wn ];
  1203. // form bin boundaries by taking a cum. sum of the weight values.
  1204. VECT_OP_FUNC(CumSum)(a,wn,wp);
  1205. for(j=0; j<dn; ++j)
  1206. {
  1207. // gen a random number from a uniform distribution betwen 0 and the max value from the cumsum.
  1208. VECT_OP_TYPE rv = (VECT_OP_TYPE)rand() * a[wn-1] / RAND_MAX;
  1209. // find the bin the rv falls into
  1210. for(i=0; i<wn-1; ++i)
  1211. if( rv <= a[i] )
  1212. {
  1213. dbp[j] = i;
  1214. break;
  1215. }
  1216. if(i==wn-1)
  1217. dbp[j]= wn-1;
  1218. }
  1219. return dbp;
  1220. }
  1221. VECT_OP_TYPE* VECT_OP_FUNC(RandomGauss)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE mean, VECT_OP_TYPE var )
  1222. {
  1223. const VECT_OP_TYPE* dep = dbp + dn;
  1224. VECT_OP_TYPE* rp = dbp;
  1225. // The code below implements the Box-Muller uniform to
  1226. // Gaussian distribution transformation. In rectangular
  1227. // coordinates this transform is defined as:
  1228. // y1 = sqrt( - 2.0 * log(x1) ) * cos( 2.0*M_PI*x2 )
  1229. // y2 = sqrt( - 2.0 * log(x1) ) * sin( 2.0*M_PI*x2 )
  1230. //
  1231. while( dbp < dep )
  1232. *dbp++ = sqrt( -2.0 * log((VECT_OP_TYPE)rand()/RAND_MAX)) * cos(2.0*M_PI*((VECT_OP_TYPE)rand()/RAND_MAX)) * var + mean;
  1233. return rp;
  1234. }
  1235. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* varV )
  1236. {
  1237. VECT_OP_TYPE* rp = dbp;
  1238. const VECT_OP_TYPE* dep = dbp + dn;
  1239. while( dbp < dep )
  1240. VECT_OP_FUNC(RandomGauss)( dbp++, 1, *meanV++, *varV++ );
  1241. return rp;
  1242. }
  1243. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussM)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* varV )
  1244. {
  1245. unsigned i;
  1246. for(i=0; i<cn; ++i)
  1247. VECT_OP_FUNC(RandomGaussV)( dbp+(i*rn), rn, meanV, varV );
  1248. return dbp;
  1249. }
  1250. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussDiagM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM )
  1251. {
  1252. unsigned i,j;
  1253. for(i=0; i<dcn; ++i)
  1254. for(j=0; j<drn; ++j)
  1255. VECT_OP_FUNC(RandomGauss)(dbp + (i*drn)+j, 1, meanV[j], covarM[ (j*drn) + j]);
  1256. return dbp;
  1257. }
  1258. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussNonDiagM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, VECT_OP_TYPE* t )
  1259. {
  1260. bool fl = t == NULL;
  1261. if( fl )
  1262. t = cmMemAlloc(VECT_OP_TYPE, drn * drn );
  1263. VECT_OP_FUNC(Copy)(t,drn*drn,covarM);
  1264. if( VECT_OP_FUNC(CholZ)(t,drn) == NULL )
  1265. {
  1266. // Cholesky decomposition failed - should try eigen analysis next
  1267. // From octave mvnrnd.m
  1268. // [E,Lambda]=eig(Sigma);
  1269. // if (min(diag(Lambda))<0),error('Sigma must be positive semi-definite.'),end
  1270. // U = sqrt(Lambda)*E';
  1271. assert(0);
  1272. }
  1273. /*
  1274. unsigned i,j;
  1275. for(i=0; i<drn; ++i)
  1276. {
  1277. for(j=0; j<drn; ++j)
  1278. printf("%f ",t[ (j*drn) + i]);
  1279. printf("\n");
  1280. }
  1281. */
  1282. VECT_OP_FUNC(RandomGaussNonDiagM2)(dbp,drn,dcn,meanV,t);
  1283. if(fl)
  1284. cmMemFree(t);
  1285. return dbp;
  1286. }
  1287. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussNonDiagM2)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* uM )
  1288. {
  1289. unsigned i;
  1290. for(i=0; i<dcn; ++i)
  1291. {
  1292. VECT_OP_TYPE r[ drn ];
  1293. VECT_OP_FUNC(RandomGauss)(r,drn,0,1); // r = randn(drn,1);
  1294. VECT_OP_FUNC(MultVVM)( dbp+(i*drn),drn,r,drn,uM); // dbp[:i] = r * uM;
  1295. VECT_OP_FUNC(AddVV)( dbp+(i*drn),drn,meanV); // dbp[:,i] += meanV;
  1296. }
  1297. return dbp;
  1298. }
  1299. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanM, const VECT_OP_TYPE* varM, unsigned K )
  1300. {
  1301. unsigned k;
  1302. unsigned D = drn;
  1303. unsigned N = dcn/K;
  1304. for(k=0; k<K; ++k)
  1305. VECT_OP_FUNC(RandomGaussM)( dbp + (k*N*D), drn, N, meanM + (k*D), varM + (k*D) );
  1306. return dbp;
  1307. }
  1308. VECT_OP_TYPE* VECT_OP_FUNC(GaussPDF)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE mean, VECT_OP_TYPE stdDev )
  1309. {
  1310. VECT_OP_TYPE* rp = dbp;
  1311. const VECT_OP_TYPE* dep = dbp + dn;
  1312. VECT_OP_TYPE var = stdDev * stdDev;
  1313. VECT_OP_TYPE fact0 = 1.0/sqrt(2*M_PI*var);
  1314. VECT_OP_TYPE fact1 = 2.0 * var;
  1315. for(; dbp < dep; ++sbp )
  1316. *dbp++ = fact0 * exp( -((*sbp-mean)*(*sbp-mean))/ fact1 );
  1317. return rp;
  1318. }
  1319. /// Evaluate a multivariate normal distribution defined by meanV[D] and covarM[D,D]
  1320. /// at the data points held in the columns of xM[D,N]. Return the evaluation
  1321. /// results in the vector yV[N].
  1322. bool VECT_OP_FUNC(MultVarGaussPDF)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, unsigned D, unsigned N, bool diagFl )
  1323. {
  1324. VECT_OP_TYPE det0;
  1325. // calc the determinant of the covariance matrix
  1326. if( diagFl )
  1327. // kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetDiagM)(covarM,D);
  1328. det0 = VECT_OP_FUNC(DetDiagM)(covarM,D);
  1329. else
  1330. // kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetM)(covarM,D);
  1331. det0 = VECT_OP_FUNC(DetM)(covarM,D);
  1332. assert(det0 != 0 );
  1333. if( det0 == 0 )
  1334. return false;
  1335. // calc the inverse of the covariance matrix
  1336. VECT_OP_TYPE icM[D*D];
  1337. VECT_OP_FUNC(Copy)(icM,D*D,covarM);
  1338. VECT_OP_TYPE* r;
  1339. if( diagFl )
  1340. r = VECT_OP_FUNC(InvDiagM)(icM,D);
  1341. else
  1342. r = VECT_OP_FUNC(InvM)(icM,D);
  1343. if( r == NULL )
  1344. return false;
  1345. VECT_OP_FUNC(MultVarGaussPDF2)( yV, xM, meanV, icM, det0, D, N, diagFl );
  1346. return true;
  1347. }
  1348. VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF2)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* icM, VECT_OP_TYPE logDet, unsigned D, unsigned N, bool diagFl )
  1349. {
  1350. unsigned i;
  1351. double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
  1352. for(i=0; i<N; ++i)
  1353. {
  1354. VECT_OP_TYPE dx[D];
  1355. VECT_OP_TYPE t[D];
  1356. // dx[] difference between mean and ith data point
  1357. VECT_OP_FUNC(SubVVV)(dx,D, xM + (i*D), meanV);
  1358. // t[] = dx[] * inv(covarM);
  1359. if( diagFl )
  1360. VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
  1361. else
  1362. VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
  1363. // dist = sum(dx[] * t[])
  1364. cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
  1365. yV[i] = exp( fact - (0.5*dist) );
  1366. }
  1367. return yV;
  1368. }
  1369. VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF3)(
  1370. VECT_OP_TYPE* yV,
  1371. const VECT_OP_TYPE* (*srcFunc)(void* funcDataPtr, unsigned frmIdx ),
  1372. void* funcDataPtr,
  1373. const VECT_OP_TYPE* meanV,
  1374. const VECT_OP_TYPE* icM,
  1375. VECT_OP_TYPE logDet,
  1376. unsigned D,
  1377. unsigned N,
  1378. bool diagFl )
  1379. {
  1380. unsigned i;
  1381. double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
  1382. for(i=0; i<N; ++i)
  1383. {
  1384. VECT_OP_TYPE dx[D];
  1385. VECT_OP_TYPE t[D];
  1386. const VECT_OP_TYPE* xV = srcFunc( funcDataPtr, i );
  1387. if( xV == NULL )
  1388. yV[i] = 0;
  1389. else
  1390. {
  1391. // dx[] difference between mean and ith data point
  1392. VECT_OP_FUNC(SubVVV)(dx, D, xV, meanV);
  1393. // t[] = dx[] * inv(covarM);
  1394. if( diagFl )
  1395. VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
  1396. else
  1397. VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
  1398. // dist = sum(dx[] * t[])
  1399. cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
  1400. yV[i] = exp( fact - (0.5*dist) );
  1401. }
  1402. }
  1403. return yV;
  1404. }
  1405. unsigned VECT_OP_FUNC(SynthSine)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1406. {
  1407. const VECT_OP_TYPE* dep = dbp + dn;
  1408. double rps = 2.0*M_PI*hz/srate;
  1409. while( dbp < dep )
  1410. *dbp++ = (VECT_OP_TYPE)sin( rps * phase++ );
  1411. return phase;
  1412. }
  1413. unsigned VECT_OP_FUNC(SynthCosine)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1414. {
  1415. const VECT_OP_TYPE* dep = dbp + dn;
  1416. double rps = 2.0*M_PI*hz/srate;
  1417. while( dbp < dep )
  1418. *dbp++ = (VECT_OP_TYPE)cos( rps * phase++ );
  1419. return phase;
  1420. }
  1421. unsigned VECT_OP_FUNC(SynthSquare)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1422. {
  1423. const VECT_OP_TYPE* dep = dbp + dn;
  1424. if( otCnt > 0 )
  1425. {
  1426. unsigned i;
  1427. // initialize the buffer with the fundamental
  1428. VECT_OP_FUNC(SynthSine)( dbp, dn, phase, srate, hz );
  1429. otCnt *= 2;
  1430. // sum in each additional harmonic
  1431. for(i=3; i<otCnt; i+=2)
  1432. {
  1433. VECT_OP_TYPE* dp = dbp;
  1434. double rps = 2.0 * M_PI * i * hz / srate;
  1435. unsigned phs = phase;
  1436. double g = 1.0/i;
  1437. while( dp < dep )
  1438. *dp++ += (VECT_OP_TYPE)(g * sin( rps * phs++ ));
  1439. }
  1440. }
  1441. return phase + (dep - dbp);
  1442. }
  1443. unsigned VECT_OP_FUNC(SynthTriangle)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1444. {
  1445. const VECT_OP_TYPE* dep = dbp + dn;
  1446. if( otCnt > 0 )
  1447. {
  1448. unsigned i;
  1449. // initialize the buffer with the fundamental
  1450. VECT_OP_FUNC(SynthCosine)( dbp, dn, phase, srate, hz );
  1451. otCnt *= 2;
  1452. // sum in each additional harmonic
  1453. for(i=3; i<otCnt; i+=2)
  1454. {
  1455. VECT_OP_TYPE* dp = dbp;
  1456. double rps = 2.0 * M_PI * i * hz / srate;
  1457. unsigned phs = phase;
  1458. double g = 1.0/(i*i);
  1459. while( dp < dep )
  1460. *dp++ += (VECT_OP_TYPE)(g * cos( rps * phs++ ));
  1461. }
  1462. }
  1463. return phase + (dep - dbp);
  1464. }
  1465. unsigned VECT_OP_FUNC(SynthSawtooth)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1466. {
  1467. const VECT_OP_TYPE* dep = dbp + dn;
  1468. if( otCnt > 0 )
  1469. {
  1470. unsigned i;
  1471. // initialize the buffer with the fundamental
  1472. VECT_OP_FUNC(SynthSine)( dbp, dn, phase, srate, hz );
  1473. // sum in each additional harmonic
  1474. for(i=2; i<otCnt; ++i)
  1475. {
  1476. VECT_OP_TYPE* dp = dbp;
  1477. double rps = 2.0 * M_PI * i * hz / srate;
  1478. unsigned phs = phase;
  1479. double g = 1.0/i;
  1480. while( dp < dep )
  1481. *dp++ += (VECT_OP_TYPE)(g * sin( rps * phs++ ));
  1482. }
  1483. VECT_OP_FUNC(MultVS)(dbp,dn,2.0/M_PI);
  1484. }
  1485. return phase + (dep - dbp);
  1486. }
  1487. unsigned VECT_OP_FUNC(SynthPulseCos)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1488. {
  1489. const VECT_OP_TYPE* dep = dbp + dn;
  1490. if( otCnt > 0 )
  1491. {
  1492. unsigned i;
  1493. // initialize the buffer with the fundamental
  1494. VECT_OP_FUNC(SynthCosine)( dbp, dn, phase, srate, hz );
  1495. // sum in each additional harmonic
  1496. for(i=1; i<otCnt; ++i)
  1497. {
  1498. VECT_OP_TYPE* dp = dbp;
  1499. double rps = 2.0 * M_PI * i * hz / srate;
  1500. unsigned phs = phase;
  1501. while( dp < dep )
  1502. *dp++ += (VECT_OP_TYPE)cos( rps * phs++ );
  1503. }
  1504. VECT_OP_FUNC(MultVS)(dbp,dn,1.0/otCnt);
  1505. }
  1506. return phase + (dep - dbp);
  1507. }
  1508. unsigned VECT_OP_FUNC(SynthImpulse)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1509. {
  1510. VECT_OP_FUNC(Zero)(dbp,dn);
  1511. unsigned i=0;
  1512. unsigned j=dn;
  1513. while(1)
  1514. {
  1515. //double samplesPerCycle = srate / hz;
  1516. j = round( (srate * i + phase) / hz);
  1517. if( j >= dn )
  1518. break;
  1519. dbp[j] = 1;
  1520. ++i;
  1521. }
  1522. // Note that returning an integer value here loses precision
  1523. // since j was rounded to the nearest integer.
  1524. return j - dn;
  1525. }
  1526. VECT_OP_TYPE VECT_OP_FUNC(SynthPinkNoise)( VECT_OP_TYPE* dbp, unsigned n, VECT_OP_TYPE delaySmp )
  1527. {
  1528. const VECT_OP_TYPE* dep = dbp + n;
  1529. VECT_OP_TYPE tmp[ n ];
  1530. VECT_OP_FUNC(Random)(tmp,n,-1.0,1.0);
  1531. VECT_OP_TYPE* sp = tmp;
  1532. VECT_OP_TYPE reg = delaySmp;
  1533. for(; dbp < dep; ++sp)
  1534. {
  1535. *dbp++ = (*sp + reg)/2.0;
  1536. reg = *sp;
  1537. }
  1538. return *sp;
  1539. }
  1540. VECT_OP_TYPE* VECT_OP_FUNC(AmplToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
  1541. {
  1542. VECT_OP_TYPE minVal = pow(10.0,minDb/20.0);
  1543. VECT_OP_TYPE* dp = dbp;
  1544. VECT_OP_TYPE* ep = dp + dn;
  1545. for(; dp<ep; ++dp,++sbp)
  1546. *dp = *sbp<minVal ? minDb : 20.0 * log10(*sbp);
  1547. return dbp;
  1548. }
  1549. VECT_OP_TYPE* VECT_OP_FUNC(DbToAmplVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  1550. {
  1551. VECT_OP_TYPE* dp = dbp;
  1552. VECT_OP_TYPE* ep = dp + dn;
  1553. for(; dp<ep; ++dp,++sbp)
  1554. *dp = pow(10.0,*sbp/20.0);
  1555. return dbp;
  1556. }
  1557. VECT_OP_TYPE* VECT_OP_FUNC(PowToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
  1558. {
  1559. VECT_OP_TYPE minVal = pow(10.0,minDb/10.0);
  1560. VECT_OP_TYPE* dp = dbp;
  1561. VECT_OP_TYPE* ep = dp + dn;
  1562. for(; dp<ep; ++dp,++sbp)
  1563. *dp = *sbp<minVal ? minDb : 10.0 * log10(*sbp);
  1564. return dbp;
  1565. }
  1566. VECT_OP_TYPE* VECT_OP_FUNC(DbToPowVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  1567. {
  1568. VECT_OP_TYPE* dp = dbp;
  1569. VECT_OP_TYPE* ep = dp + dn;
  1570. for(; dp<ep; ++dp,++sbp)
  1571. *dp = pow(10.0,*sbp/10.0);
  1572. return dbp;
  1573. }
  1574. VECT_OP_TYPE* VECT_OP_FUNC(LinearToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE mult )
  1575. {
  1576. const VECT_OP_TYPE* dep = dbp + dn;
  1577. VECT_OP_TYPE* rp = dbp;
  1578. while( dbp < dep )
  1579. *dbp++ = (VECT_OP_TYPE)(mult * log10( VECT_OP_EPSILON + *sp++ ));
  1580. return rp;
  1581. }
  1582. VECT_OP_TYPE* VECT_OP_FUNC(dBToLinear)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE mult )
  1583. {
  1584. const VECT_OP_TYPE* dep = dbp + dn;
  1585. VECT_OP_TYPE* rp = dbp;
  1586. while( dbp < dep )
  1587. *dbp++ = (VECT_OP_TYPE)pow(10.0, *sp++ / mult );
  1588. return rp;
  1589. }
  1590. VECT_OP_TYPE* VECT_OP_FUNC(AmplitudeToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1591. { return VECT_OP_FUNC(LinearToDb)(dbp,dn,sp,20.0); }
  1592. VECT_OP_TYPE* VECT_OP_FUNC(PowerToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1593. { return VECT_OP_FUNC(LinearToDb)(dbp,dn,sp,10.0); }
  1594. VECT_OP_TYPE* VECT_OP_FUNC(dBToAmplitude)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1595. { return VECT_OP_FUNC(dBToLinear)( dbp,dn,sp,20); }
  1596. VECT_OP_TYPE* VECT_OP_FUNC(dBToPower)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1597. { return VECT_OP_FUNC(dBToLinear)( dbp,dn,sp,10); }
  1598. unsigned VECT_OP_FUNC(SynthPhasor)(VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1599. {
  1600. const VECT_OP_TYPE* dep = dbp + dn;
  1601. while( dbp < dep )
  1602. *dbp++ = (VECT_OP_TYPE)fmod( (hz * phase++)/srate, 1.0 );
  1603. return phase;
  1604. }
  1605. VECT_OP_TYPE VECT_OP_FUNC(KaiserBetaFromSidelobeReject)( double sidelobeRejectDb )
  1606. {
  1607. double beta;
  1608. if( sidelobeRejectDb < 13.26 )
  1609. sidelobeRejectDb = 13.26;
  1610. else
  1611. if( sidelobeRejectDb > 120.0)
  1612. sidelobeRejectDb = 120.0;
  1613. if( sidelobeRejectDb < 60.0 )
  1614. beta = (0.76609 * pow(sidelobeRejectDb - 13.26,0.4)) + (0.09834*(sidelobeRejectDb-13.26));
  1615. else
  1616. beta = 0.12438 * (sidelobeRejectDb + 6.3);
  1617. return (VECT_OP_TYPE)beta;
  1618. }
  1619. VECT_OP_TYPE VECT_OP_FUNC(KaiserFreqResolutionFactor)( double sidelobeRejectDb )
  1620. { return (6.0 * (sidelobeRejectDb + 12.0))/155.0; }
  1621. VECT_OP_TYPE* VECT_OP_FUNC(Kaiser)( VECT_OP_TYPE* dbp, unsigned n, double beta )
  1622. {
  1623. bool zeroFl = false;
  1624. int M = 0;
  1625. double den = cmBessel0(beta); // wnd func denominator
  1626. int cnt = n;
  1627. int i;
  1628. assert( n >= 3 );
  1629. // force ele cnt to be odd
  1630. if( cmIsEvenU(cnt) )
  1631. {
  1632. cnt--;
  1633. zeroFl = true;
  1634. }
  1635. // at this point cnt is odd and >= 3
  1636. // calc half the window length
  1637. M = (int)((cnt - 1.0)/2.0);
  1638. double Msqrd = M*M;
  1639. for(i=0; i<cnt; i++)
  1640. {
  1641. double v0 = (double)(i - M);
  1642. double num = cmBessel0(beta * sqrt(1.0 - ((v0*v0)/Msqrd)));
  1643. dbp[i] = (VECT_OP_TYPE)(num/den);
  1644. }
  1645. if( zeroFl )
  1646. dbp[cnt] = 0.0; // zero the extra element in the output array
  1647. return dbp;
  1648. }
  1649. VECT_OP_TYPE* VECT_OP_FUNC(Gaussian)( VECT_OP_TYPE* dbp, unsigned dn, double mean, double variance )
  1650. {
  1651. int M = dn-1;
  1652. double sqrt2pi = sqrt(2.0*M_PI);
  1653. unsigned i;
  1654. for(i=0; i<dn; i++)
  1655. {
  1656. double arg = ((((double)i/M) - 0.5) * M);
  1657. arg = pow( (double)(arg-mean), 2.0);
  1658. arg = exp( -arg / (2.0*variance));
  1659. dbp[i] = (VECT_OP_TYPE)(arg / (sqrt(variance) * sqrt2pi));
  1660. }
  1661. return dbp;
  1662. }
  1663. VECT_OP_TYPE* VECT_OP_FUNC(Hamming)( VECT_OP_TYPE* dbp, unsigned dn )
  1664. {
  1665. const VECT_OP_TYPE* dep = dbp + dn;
  1666. VECT_OP_TYPE* dp = dbp;
  1667. double fact = 2.0 * M_PI / (dn-1);
  1668. unsigned i;
  1669. for(i=0; dbp < dep; ++i )
  1670. *dbp++ = (VECT_OP_TYPE)(.54 - (.46 * cos(fact*i)));
  1671. return dp;
  1672. }
  1673. VECT_OP_TYPE* VECT_OP_FUNC(Hann)( VECT_OP_TYPE* dbp, unsigned dn )
  1674. {
  1675. const VECT_OP_TYPE* dep = dbp + dn;
  1676. VECT_OP_TYPE* dp = dbp;
  1677. double fact = 2.0 * M_PI / (dn-1);
  1678. unsigned i;
  1679. for(i=0; dbp < dep; ++i )
  1680. *dbp++ = (VECT_OP_TYPE)(.5 - (.5 * cos(fact*i)));
  1681. return dp;
  1682. }
  1683. VECT_OP_TYPE* VECT_OP_FUNC(HannMatlab)( VECT_OP_TYPE* dbp, unsigned dn )
  1684. {
  1685. const VECT_OP_TYPE* dep = dbp + dn;
  1686. VECT_OP_TYPE* dp = dbp;
  1687. double fact = 2.0 * M_PI / (dn+1);
  1688. unsigned i;
  1689. for(i=0; dbp < dep; ++i )
  1690. *dbp++ = (VECT_OP_TYPE)(0.5*(1.0-cos(fact*(i+1))));
  1691. return dp;
  1692. }
  1693. VECT_OP_TYPE* VECT_OP_FUNC(Triangle)( VECT_OP_TYPE* dbp, unsigned dn )
  1694. {
  1695. unsigned n = dn/2;
  1696. VECT_OP_TYPE incr = 1.0/n;
  1697. VECT_OP_FUNC(Seq)(dbp,n,0,incr);
  1698. VECT_OP_FUNC(Seq)(dbp+n,dn-n,1,-incr);
  1699. return dbp;
  1700. }
  1701. VECT_OP_TYPE* VECT_OP_FUNC(GaussWin)( VECT_OP_TYPE* dbp, unsigned dn, double arg )
  1702. {
  1703. const VECT_OP_TYPE* dep = dbp + dn;
  1704. VECT_OP_TYPE* rp = dbp;
  1705. int N = (dep - dbp) - 1;
  1706. int n = -N/2;
  1707. if( N == 0 )
  1708. *dbp = 1.0;
  1709. else
  1710. {
  1711. while( dbp < dep )
  1712. {
  1713. double a = (arg * n++) / (N/2);
  1714. *dbp++ = (VECT_OP_TYPE)exp( -(a*a)/2 );
  1715. }
  1716. }
  1717. return rp;
  1718. }
  1719. VECT_OP_TYPE* VECT_OP_FUNC(Filter)(
  1720. VECT_OP_TYPE* y,
  1721. unsigned yn,
  1722. const VECT_OP_TYPE* x,
  1723. unsigned xn,
  1724. cmReal_t b0,
  1725. const cmReal_t* b,
  1726. const cmReal_t* a,
  1727. cmReal_t* d,
  1728. unsigned dn )
  1729. {
  1730. int i,j;
  1731. VECT_OP_TYPE y0 = 0;
  1732. unsigned n = cmMin( yn, xn );
  1733. // This is a direct form II algorithm based on the MATLAB implmentation
  1734. // http://www.mathworks.com/access/helpdesk/help/techdoc/ref/filter.html#f83-1015962
  1735. for(i=0; i<n; ++i)
  1736. {
  1737. y[i] = (x[i] * b0) + d[0];
  1738. y0 = y[i];
  1739. for(j=0; j<dn; ++j)
  1740. d[j] = (b[j] * x[i]) - (a[j] * y0) + d[j+1];
  1741. }
  1742. // if fewer input samples than output samples - zero the end of the output buffer
  1743. if( yn > xn )
  1744. VECT_OP_FUNC(Fill)(y+i,yn-i,0);
  1745. return y;
  1746. }
  1747. VECT_OP_TYPE* VECT_OP_FUNC(FilterFilter)(struct cmFilter_str* f, cmRC_t (*func)( struct cmFilter_str* f, const VECT_OP_TYPE* x, unsigned xn, VECT_OP_TYPE* y, unsigned yn ), const cmReal_t bb[], unsigned bn, const cmReal_t aa[], unsigned an, const VECT_OP_TYPE* x, unsigned xn, VECT_OP_TYPE* y, unsigned yn )
  1748. {
  1749. int i,j;
  1750. int nfilt = cmMax(bn,an);
  1751. int nfact = 3*(nfilt-1);
  1752. const cmReal_t* a = aa;
  1753. const cmReal_t* b = bb;
  1754. cmReal_t* m = NULL;
  1755. cmReal_t* p;
  1756. unsigned zn = (nfilt-1)*(nfilt-1);
  1757. unsigned mn = 2*zn; // space for mtx z0 and z1
  1758. mn += nfilt; // space for zero padded coeff vector
  1759. mn += 2*nfact; // space for begin/end sequences
  1760. if( nfact >= xn )
  1761. {
  1762. return cmOkRC;
  1763. }
  1764. m = cmMemAllocZ( cmReal_t, mn );
  1765. p = m;
  1766. cmReal_t* z0 = p;
  1767. p += zn;
  1768. cmReal_t* z1 = p;
  1769. p += zn;
  1770. cmReal_t* s0 = p;
  1771. p += nfact;
  1772. cmReal_t* s1 = p;
  1773. p += nfact;
  1774. // zero pad the shorter coeff vect
  1775. if( bn < nfilt )
  1776. {
  1777. cmVOR_Copy(p,bn,bb);
  1778. b = p;
  1779. p += nfilt;
  1780. }
  1781. else
  1782. if( an < nfilt )
  1783. {
  1784. cmVOR_Copy(p,an,aa);
  1785. a = p;
  1786. p += nfilt;
  1787. }
  1788. // z0=eye(nfilt-1)
  1789. cmVOR_Identity(z0,nfilt-1,nfilt-1);
  1790. // z1=[eye(nfilt-1,nfilt-2); zeros(1,nfilt-1)];
  1791. cmVOR_Identity(z1,nfilt-1,nfilt-2);
  1792. // z0(:,1) -= a(:)
  1793. for(i=0; i<nfilt-1; ++i)
  1794. z0[i] -= -a[i+1];
  1795. // z0(:,2:end) -= z1;
  1796. for(i=1; i<nfilt-1; ++i)
  1797. for(j=0; j<nfilt-1; ++j)
  1798. z0[ (i*(nfilt-1)) + j ] -= z1[ ((i-1)*(nfilt-1)) + j ];
  1799. // z1 = b - (a * b[0])
  1800. for(i=1; i<nfilt; ++i)
  1801. z1[i-1] = b[i] - (a[i] * b[0]);
  1802. // z1 = z0\z1
  1803. cmVOR_SolveLS(z0,nfilt-1,z1,1);
  1804. // if yn<xn then truncate x.
  1805. xn = cmMin(xn,yn);
  1806. yn = xn;
  1807. // fill in the beginning sequence
  1808. for(i=0; i<nfact; ++i)
  1809. s0[i] = 2*x[0] - x[ nfact-i ];
  1810. // fill in the ending sequence
  1811. for(i=0; i<nfact; ++i)
  1812. s1[i] = 2*x[xn-1] - x[ xn-2-i ];
  1813. cmVOR_MultVVS( z0, nfact, z1, s0[0]);
  1814. unsigned pn = cmMin(1024,xn);
  1815. //acFilter* f = cmFilterAlloc(c,NULL,b,bn,a,an,pn,z0);
  1816. cmFilterInit(f,b,bn,a,an,pn,z0);
  1817. const VECT_OP_TYPE* xx = x;
  1818. for(j=0; j<2; ++j)
  1819. {
  1820. unsigned n = pn;
  1821. // filter begining sequence
  1822. cmFilterExecR(f,s0,nfact,s0,nfact);
  1823. // filter middle sequence
  1824. for(i=0; i<xn; i+=n)
  1825. {
  1826. n = cmMin(pn,xn-i);
  1827. func(f,xx+i,n,y+i,n);
  1828. }
  1829. // filter ending sequence
  1830. cmFilterExecR(f,s1,nfact,s1,nfact);
  1831. // flip all the sequences
  1832. cmVOR_Flip(s0,nfact);
  1833. cmVOR_Flip(s1,nfact);
  1834. VECT_OP_FUNC(Flip)(y,yn);
  1835. if( j==0)
  1836. {
  1837. // swap the begin and end sequences
  1838. cmReal_t* t = s0;
  1839. s0 = s1;
  1840. s1 = t;
  1841. xx = y;
  1842. cmVOR_MultVVS( z0, nfact, z1, s0[0]);
  1843. cmFilterInit(f,b,bn,a,an,pn,z0);
  1844. }
  1845. }
  1846. //cmFilterFree(&f);
  1847. cmMemPtrFree(&m);
  1848. return y;
  1849. }
  1850. VECT_OP_TYPE* VECT_OP_FUNC(LP_Sinc)(VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* wndV, double srate, double fcHz, unsigned flags )
  1851. {
  1852. VECT_OP_TYPE* rp = dp;
  1853. int dM = dn % 2; // dM is used to handle odd length windows
  1854. int M = (dn - dM)/2;
  1855. int Mi = -M;
  1856. double phsFact = 2.0 * M_PI * fcHz / srate;
  1857. double sum = 0;
  1858. VECT_OP_TYPE noWndV[ dn ];
  1859. // if no window was given then create a unity window
  1860. if( wndV == NULL )
  1861. {
  1862. VECT_OP_FUNC(Fill)(noWndV,dn,1);
  1863. wndV = noWndV;
  1864. }
  1865. M += dM;
  1866. //printf("M=%i Mi=%i sign:%f phs:%f\n",M,Mi,signFact,phsFact);
  1867. for(; Mi<M; ++Mi,++dp,++wndV)
  1868. {
  1869. double phs = phsFact * Mi;
  1870. if( Mi != 0 )
  1871. *dp = *wndV * 0.5 * sin(phs)/phs;
  1872. else
  1873. *dp = *wndV * 0.5;
  1874. sum += *dp;
  1875. }
  1876. // normalize the filter to produce unity gain.
  1877. if( cmIsFlag(flags,kNormalize_LPSincFl) )
  1878. VECT_OP_FUNC(DivVS)(rp,dn,fabs(sum));
  1879. // Convert low-pass filter to high-pass filter
  1880. // Note that this can only be done after the filter is normalized.
  1881. if( cmIsFlag(flags,kHighPass_LPSincFl) )
  1882. {
  1883. VECT_OP_FUNC(MultVS)(rp,dn,-1);
  1884. rp[M-1] = 1.0 + rp[M-1];
  1885. }
  1886. return rp;
  1887. }
  1888. VECT_OP_TYPE* VECT_OP_FUNC(MelMask)( VECT_OP_TYPE* maskMtx, unsigned filterCnt, unsigned binCnt, double srate, unsigned flags )
  1889. {
  1890. unsigned fi,bi;
  1891. double mxh = srate/2.0; // nyquist
  1892. double dh = mxh/(binCnt-1) ; // binHz
  1893. double mxm = 1127.0 * log( 1.0 + mxh/700.0); // max mel value in Hz
  1894. double dm = mxm / (filterCnt+1); // avg mel band hz
  1895. double sum = 0;
  1896. for(fi=0; fi<filterCnt; ++fi)
  1897. {
  1898. double m = (fi+1) * dm;
  1899. // calc min/center/max frequencies for this band
  1900. double minHz = 700.0 * (exp((m-dm)/1127.01048)-1.0);
  1901. double ctrHz = 700.0 * (exp( m /1127.01048)-1.0);
  1902. double maxHz = 700.0 * (exp((m+dm)/1127.01048)-1.0);
  1903. // shift the band min/ctr/max to the nearest bin ctr frequency
  1904. if( cmIsFlag(flags,kShiftMelFl) )
  1905. {
  1906. unsigned i;
  1907. i = (unsigned)floor(minHz/dh);
  1908. minHz = minHz - (dh*i) < dh*(i+1) - minHz ? dh*i : dh*(i+1);
  1909. i = (unsigned)floor(ctrHz/dh);
  1910. ctrHz = ctrHz - (dh*i) < dh*(i+1) - ctrHz ? dh*i : dh*(i+1);
  1911. i = (unsigned)floor(maxHz/dh);
  1912. maxHz = maxHz - (dh*i) < dh*(i+1) - maxHz ? dh*i : dh*(i+1);
  1913. }
  1914. // calc the height of the triangle - such that all bands have equal area
  1915. double a = 2.0/(maxHz - minHz);
  1916. for(bi=0; bi<binCnt; ++bi)
  1917. {
  1918. double h = bi*dh;
  1919. unsigned mi = bi*filterCnt + fi;
  1920. if( h < minHz || h > maxHz )
  1921. maskMtx[mi] = 0;
  1922. else
  1923. {
  1924. if( h <= ctrHz )
  1925. maskMtx[mi] = a * (h - minHz)/(ctrHz-minHz);
  1926. else
  1927. maskMtx[mi] = a * (maxHz - h)/(maxHz-ctrHz);
  1928. sum += maskMtx[mi];
  1929. }
  1930. }
  1931. }
  1932. if( cmIsFlag(flags,kNormalizeMelFl) )
  1933. VECT_OP_FUNC(DivVS)( maskMtx, (filterCnt*binCnt), sum );
  1934. return maskMtx;
  1935. }
  1936. unsigned VECT_OP_FUNC(BarkMap)(unsigned* binIdxV, unsigned* cntV, unsigned bandCnt, unsigned binCnt, double srate )
  1937. {
  1938. if( bandCnt == 0 )
  1939. return 0;
  1940. //zwicker & fastl: psychoacoustics 1999, page 159
  1941. double bandUprHz[] = { 100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, 15500 };
  1942. unsigned hn = sizeof(bandUprHz)/sizeof(double);
  1943. unsigned i, bi = 0;
  1944. bandCnt = cmMin(hn,bandCnt);
  1945. binIdxV[0] = 0;
  1946. cntV[0] = 1;
  1947. for(i=1; bi < bandCnt && i<binCnt; ++i)
  1948. {
  1949. double hz = srate * i / (2 * (binCnt-1));
  1950. if( hz <= bandUprHz[bi] )
  1951. cntV[bi]++;
  1952. else
  1953. {
  1954. //printf("%i %i %i %f\n",bi,binIdxV[bi],cntV[bi],bandUprHz[bi]);
  1955. ++bi;
  1956. if( bi < bandCnt )
  1957. {
  1958. binIdxV[bi] = i;
  1959. cntV[bi] = 1;
  1960. }
  1961. }
  1962. }
  1963. return bi;
  1964. }
  1965. VECT_OP_TYPE* VECT_OP_FUNC(TriangleMask)(VECT_OP_TYPE* maskMtx, unsigned bandCnt, unsigned binCnt, const VECT_OP_TYPE* ctrHzV, VECT_OP_TYPE binHz, VECT_OP_TYPE stSpread, const VECT_OP_TYPE* lfV, const VECT_OP_TYPE* hfV )
  1966. {
  1967. unsigned i,j;
  1968. VECT_OP_TYPE v0[ bandCnt ];
  1969. VECT_OP_TYPE v1[ bandCnt ];
  1970. // if no lower/upper band limits were give use a fixed semitone band width
  1971. if( lfV==NULL || hfV==NULL)
  1972. {
  1973. for(i=0; i<bandCnt; ++i)
  1974. {
  1975. v0[i] = ctrHzV[i] * pow(2.0,-stSpread/12.0);
  1976. v1[i] = ctrHzV[i] * pow(2.0, stSpread/12.0);
  1977. }
  1978. lfV = v0;
  1979. hfV = v1;
  1980. }
  1981. VECT_OP_FUNC(Zero)(maskMtx,bandCnt*binCnt);
  1982. // for each band
  1983. for(i=0; i<bandCnt; ++i)
  1984. {
  1985. // calc bin index of first possible bin in this band
  1986. // j = (unsigned)floor(lfV[i] / binHz);
  1987. double binHz_j = 0;
  1988. // for each bin whose ctr frq is <= the band upper limit
  1989. for(j=0; j<binCnt; ++j)
  1990. {
  1991. double v;
  1992. // if bin[j] is inside the lower leg of the triangle
  1993. if( lfV[i] <= binHz_j && binHz_j <= ctrHzV[i] )
  1994. v = (binHz_j - lfV[i]) / cmMax(VECT_OP_MIN, ctrHzV[i] - lfV[i] );
  1995. else
  1996. // if bin[j] is inside the upper leg of the triangle
  1997. if( ctrHzV[i] < binHz_j && binHz_j <= hfV[i] )
  1998. v = (hfV[i] - binHz_j) / cmMax(VECT_OP_MIN, hfV[i] - ctrHzV[i] );
  1999. else
  2000. v = 0;
  2001. maskMtx[ (j*bandCnt)+i ] = v;
  2002. binHz_j = binHz * (j+1);
  2003. }
  2004. }
  2005. return maskMtx;
  2006. }
  2007. VECT_OP_TYPE* VECT_OP_FUNC(BarkMask)(VECT_OP_TYPE* maskMtx, unsigned bandCnt, unsigned binCnt, double binHz )
  2008. {
  2009. // -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 (23+1)
  2010. VECT_OP_TYPE b[]= {0, 50,150,250,350,450,570,700,840,1000,1170,1370,1600,1850,2150,2500,2900,3400,4000,4800,5800,7000,8500,10500,13500, 15500 };
  2011. bandCnt = cmMin(bandCnt,kDefaultBarkBandCnt);
  2012. VECT_OP_FUNC(TriangleMask)(maskMtx, bandCnt, binCnt, b+1, binHz, 0, b+0, b+2 );
  2013. return maskMtx;
  2014. }
  2015. VECT_OP_TYPE* VECT_OP_FUNC(TerhardtThresholdMask)(VECT_OP_TYPE* maskV, unsigned binCnt, double srate, unsigned flags )
  2016. {
  2017. unsigned i;
  2018. double c0 = cmIsFlag(flags,kModifiedTtmFl) ? 0.6 : 1.0;
  2019. double c1 = cmIsFlag(flags,kModifiedTtmFl) ? 0.5 : 6.5;
  2020. maskV[0]=0;
  2021. for(i=0; i<binCnt; ++i)
  2022. {
  2023. double hz = srate * i / (2 * (binCnt-1));
  2024. maskV[i] = pow(pow(10,(c0 * -3.64* pow(hz/1000,-0.8) + c1 * exp(-0.6 * pow(hz/1000 - 3.3,2)) - 0.001* pow(hz/1000,4))/20),2);
  2025. }
  2026. return maskV;
  2027. }
  2028. VECT_OP_TYPE* VECT_OP_FUNC(ShroederSpreadingFunc)(VECT_OP_TYPE* m, unsigned bandCnt, double srate)
  2029. {
  2030. int fi,bi;
  2031. for(fi=0; fi<bandCnt; ++fi)
  2032. for(bi=0; bi<bandCnt; ++bi )
  2033. m[ fi + (bi*bandCnt) ] = pow(10,(15.81 + 7.5 * ((fi-bi)+0.474)-17.5*pow(1+pow((fi-bi)+0.474,2),0.5))/10);
  2034. return m;
  2035. }
  2036. unsigned VECT_OP_FUNC(Kmeans)(
  2037. unsigned* classIdxV, // classIdxV[scn] - data point class assignments
  2038. VECT_OP_TYPE* centroidM, // centroidM[srn,K] - cluster centroids
  2039. unsigned K, // count of clusters
  2040. const VECT_OP_TYPE* sM, // sM[srn,scn] source data matrix
  2041. unsigned srn, // dimensionality of each data point
  2042. unsigned scn, // count of data points
  2043. const unsigned* selIdxV, // data subset selection id vector (optional)
  2044. unsigned selKey, // data subset selection key (optional)
  2045. bool initFromCentroidFl,// true if the starting centroids are in centroidM[]
  2046. VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ),
  2047. void* userDistPtr
  2048. )
  2049. {
  2050. unsigned D = srn; // data dimensionality
  2051. unsigned N = scn; // count of data points to cluster
  2052. unsigned iterCnt = 0;
  2053. unsigned ki;
  2054. unsigned i = 0;
  2055. unsigned selN = N;
  2056. // if a data point selection vector was given
  2057. if( selIdxV != NULL )
  2058. {
  2059. selN = 0;
  2060. for(i=0; i<N; ++i)
  2061. {
  2062. selN += selIdxV[i]==selKey;
  2063. classIdxV[i] = K;
  2064. }
  2065. }
  2066. assert(K<=selN);
  2067. // if the numer of datapoints and the number of clusters is the same
  2068. // make the datapoints the centroids and return
  2069. if( K == selN )
  2070. {
  2071. ki = 0;
  2072. for(i=0; i<N; ++i)
  2073. if( selIdxV==NULL || selIdxV[i]==selKey )
  2074. {
  2075. VECT_OP_FUNC(Copy)(centroidM+(ki*D),D,sM+(i*D));
  2076. classIdxV[ki] = ki;
  2077. ++ki;
  2078. }
  2079. return 0;
  2080. }
  2081. // if centroidM[] has not been initialized with the starting centroid vectors.
  2082. if( initFromCentroidFl == false )
  2083. {
  2084. unsigned* kiV = cmMemAlloc( unsigned, N );
  2085. // select K unique datapoints at random as the initial centroids
  2086. cmVOU_RandomSeq(kiV,N);
  2087. for(i=0,ki=0; i<N && ki<K; ++i)
  2088. {
  2089. if( selIdxV==NULL || selIdxV[ kiV[i] ]==selKey )
  2090. {
  2091. VECT_OP_FUNC(Copy)( centroidM + (ki*D), D, sM + (kiV[i]*D) );
  2092. ++ki;
  2093. }
  2094. }
  2095. cmMemPtrFree(&kiV);
  2096. }
  2097. unsigned* nV = cmMemAllocZ( unsigned,K);
  2098. while(1)
  2099. {
  2100. unsigned changeCnt = 0;
  2101. cmVOU_Zero(nV,K);
  2102. // for each data point - assign data point to a cluster
  2103. for(i=0; i<N; ++i)
  2104. if( selIdxV==NULL || selIdxV[i] == selKey )
  2105. {
  2106. // set ki with the index of the centroid closest to sM[:,i]
  2107. VECT_OP_FUNC(DistVMM)( NULL, NULL, &ki, D, sM + (i*srn), 1, centroidM, K, distFunc, userDistPtr );
  2108. assert(ki<K);
  2109. nV[ki]++;
  2110. changeCnt += ( ki != classIdxV[i] );
  2111. classIdxV[i] = ki;
  2112. }
  2113. // if no data points change classes then the centroids have converged
  2114. if( changeCnt == 0 )
  2115. break;
  2116. ++iterCnt;
  2117. // zero the centroid matrix
  2118. VECT_OP_FUNC(Fill)(centroidM, D*K, 0 );
  2119. // update the centroids
  2120. for(ki=0; ki<K; ++ki)
  2121. {
  2122. unsigned n = 0;
  2123. // sum the all datapoints belonging to class ki
  2124. for(i=0; i<N; ++i)
  2125. if( classIdxV[i] == ki )
  2126. {
  2127. VECT_OP_FUNC(AddVV)(centroidM + (ki*D), D, sM + (i*srn) );
  2128. ++n;
  2129. }
  2130. // convert the sum to a mean to form the centroid
  2131. if( n > 0 )
  2132. VECT_OP_FUNC(DivVS)(centroidM + (ki*D), D, n );
  2133. }
  2134. }
  2135. cmVOU_PrintL("class cnt:",NULL,1,K,nV);
  2136. cmMemPtrFree(&nV);
  2137. return iterCnt;
  2138. }
  2139. unsigned VECT_OP_FUNC(Kmeans2)(
  2140. unsigned* classIdxV, // classIdxV[scn] - data point class assignments
  2141. VECT_OP_TYPE* centroidM, // centroidM[srn,K] - cluster centroids
  2142. unsigned K, // count of clusters
  2143. const VECT_OP_TYPE* (*srcFunc)(void* userPtr, unsigned frmIdx ),
  2144. unsigned srn, // dimensionality of each data point
  2145. unsigned scn, // count of data points
  2146. void* userSrcPtr, // callback data for srcFunc
  2147. VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ),
  2148. void* distUserPtr,
  2149. int maxIterCnt,
  2150. int deltaStopCnt
  2151. )
  2152. {
  2153. unsigned D = srn; // data dimensionality
  2154. unsigned N = scn; // count of data points to cluster
  2155. unsigned iterCnt = 0;
  2156. unsigned ki;
  2157. unsigned i = 0;
  2158. const VECT_OP_TYPE* sp;
  2159. assert(K<N);
  2160. deltaStopCnt = cmMax(0,deltaStopCnt);
  2161. // nV[K] - class assignment vector
  2162. unsigned* nV = cmMemAllocZ( unsigned,2*K);
  2163. // roV[K] - read-only flag centroid
  2164. // centroids flagged as read-only will not be updated by the clustering routine
  2165. unsigned* roV = nV + K;
  2166. // copy the read-only flags into roV[K]
  2167. for(i=0; i<K; ++i)
  2168. roV[i] = classIdxV[i];
  2169. while(1)
  2170. {
  2171. unsigned changeCnt = 0;
  2172. cmVOU_Zero(nV,K);
  2173. // for each data point - assign data point to a cluster
  2174. for(i=0; i<N; ++i)
  2175. if((sp = srcFunc(userSrcPtr,i)) != NULL)
  2176. {
  2177. // set ki with the index of the centroid closest to sM[:,i]
  2178. VECT_OP_FUNC(DistVMM)( NULL, NULL, &ki, D, sp, 1, centroidM, K, distFunc, distUserPtr );
  2179. assert(ki<K);
  2180. // track the number of data points assigned to each centroid
  2181. nV[ki]++;
  2182. // track the number of data points which change classes
  2183. changeCnt += ( ki != classIdxV[i] );
  2184. // update the class that this data point belongs to
  2185. classIdxV[i] = ki;
  2186. }
  2187. // if the count of data points which changed classes is less than deltaStopCnt
  2188. // then the centroids have converged
  2189. if( changeCnt <= deltaStopCnt )
  2190. break;
  2191. if( maxIterCnt!=-1 && iterCnt>=maxIterCnt )
  2192. break;
  2193. // track the number of interations required to converge
  2194. ++iterCnt;
  2195. fprintf(stderr,"%i:%i (", iterCnt,changeCnt );
  2196. for(i=0; i<K; ++i)
  2197. fprintf(stderr,"%i ",nV[i]);
  2198. fprintf(stderr,") ");
  2199. fflush(stderr);
  2200. // update the centroids
  2201. for(ki=0; ki<K; ++ki)
  2202. if( roV[ki]==0 )
  2203. {
  2204. unsigned n = 0;
  2205. VECT_OP_FUNC(Zero)(centroidM + (ki*D), D );
  2206. // sum the all datapoints belonging to class ki
  2207. for(i=0; i<N; ++i)
  2208. if( classIdxV[i] == ki && ((sp=srcFunc(userSrcPtr,i))!=NULL))
  2209. {
  2210. VECT_OP_FUNC(AddVV)(centroidM + (ki*D), D, sp );
  2211. ++n;
  2212. }
  2213. // convert the sum to a mean to form the centroid
  2214. if( n > 0 )
  2215. VECT_OP_FUNC(DivVS)(centroidM + (ki*D), D, n );
  2216. }
  2217. }
  2218. cmMemPtrFree(&nV);
  2219. return iterCnt;
  2220. }
  2221. /// stateV[timeN]
  2222. /// a[stateN,stateN],
  2223. /// b[stateN,timeN]
  2224. /// phi[stateN].
  2225. void VECT_OP_FUNC(DiscreteViterbi)(unsigned* stateV, unsigned tN, unsigned sN, const VECT_OP_TYPE* phi, const VECT_OP_TYPE* a, const VECT_OP_TYPE* b )
  2226. {
  2227. unsigned* psiM = cmMemAlloc( unsigned, sN*tN ); // psi[sN,tN]
  2228. VECT_OP_TYPE* dV = cmMemAlloc( VECT_OP_TYPE, 2*sN );
  2229. VECT_OP_TYPE* d0V = dV;
  2230. VECT_OP_TYPE* d1V = dV + sN;
  2231. int t,i,j;
  2232. // calc the prob of starting in each state given the observations
  2233. VECT_OP_FUNC(MultVVV)( d0V, sN, phi, b );
  2234. VECT_OP_FUNC(NormalizeProbability)( d0V, sN ); // scale to prevent underflow
  2235. // for each time step
  2236. for(t=1; t<tN; ++t)
  2237. {
  2238. // for each possible next state
  2239. for(j=0; j<sN; ++j)
  2240. {
  2241. VECT_OP_TYPE mv = 0;
  2242. unsigned mi = 0;
  2243. // The following loop could be replaced with these vector op's:
  2244. // VECT_OP_TYPE tV[ sN ];
  2245. // VECT_OP_TYPE(MultVVV)(tV,sN,d0V,a + (j*sN));
  2246. // mi = VECT_OP_TYPE(MaxIndex)(tV,sN);
  2247. // mv = tV[mi];
  2248. // for each possible prev state
  2249. for(i=0; i<sN; ++i)
  2250. {
  2251. // calc prob of having ended in state i and transitioning to state j
  2252. VECT_OP_TYPE v = d0V[i] * a[ i + (j*sN) ];
  2253. // track the most likely transition ending in state j
  2254. if( v > mv )
  2255. {
  2256. mv = v;
  2257. mi = i;
  2258. }
  2259. }
  2260. // scale the prob of the most likely state by the prob of the obs given that state
  2261. d1V[j] = mv * b[ (t*sN) + j ];
  2262. // store the most likely previous state given that the current state is j
  2263. // (this is the key to understanding the backtracking step below)
  2264. psiM[ (t*sN) + j ] = mi;
  2265. }
  2266. VECT_OP_FUNC(NormalizeProbability)( d1V, sN ); // scale to prevent underflow
  2267. // swap d0V and d1V
  2268. VECT_OP_TYPE* tmp = d0V;
  2269. d0V = d1V;
  2270. d1V = tmp;
  2271. }
  2272. // store the most likely ending state
  2273. stateV[tN-1] = VECT_OP_FUNC(MaxIndex)( d0V, sN, 1 );
  2274. // given the most likely next step select the most likely previous step
  2275. for(t=tN-2; t>=0; --t)
  2276. stateV[t] = psiM[ ((t+1)*sN) + stateV[t+1] ];
  2277. cmMemPtrFree( &psiM );
  2278. cmMemPtrFree( &dV );
  2279. }
  2280. VECT_OP_TYPE* VECT_OP_FUNC(CircleCoords)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE x, VECT_OP_TYPE y, VECT_OP_TYPE varX, VECT_OP_TYPE varY )
  2281. {
  2282. unsigned i;
  2283. for(i=0; i<dn; ++i)
  2284. {
  2285. double a = 2.0*M_PI*i/(dn-1);
  2286. dbp[ i ] = (VECT_OP_TYPE)(varX * cos(a) + x);
  2287. dbp[ i+dn ] = (VECT_OP_TYPE)(varY * sin(a) + y);
  2288. }
  2289. return dbp;
  2290. }
  2291. bool VECT_OP_FUNC(ClipLine2)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax, VECT_OP_TYPE* t0, VECT_OP_TYPE* t1 )
  2292. {
  2293. VECT_OP_TYPE dx = x1 - x0;
  2294. VECT_OP_TYPE dy = y1 - y0;
  2295. VECT_OP_TYPE p=0,q=0,r=0;
  2296. *t0 = 0.0;
  2297. *t1 = 1.0;
  2298. unsigned i;
  2299. for(i=0; i<4; ++i)
  2300. {
  2301. switch(i)
  2302. {
  2303. case 0: p=-dx; q=-(xMin - x0); break; // left
  2304. case 1: p= dx; q= (xMax - x0); break; // right
  2305. case 2: p=-dy; q=-(yMin - y0); break; // bottom
  2306. case 3: p= dy; q= (yMax - y0); break; // top
  2307. }
  2308. // if parallel to edge i
  2309. if( p == 0 )
  2310. {
  2311. // if entirely outside of window
  2312. if( q < 0 )
  2313. return false;
  2314. continue;
  2315. }
  2316. r = p/q;
  2317. // if travelling right/up
  2318. if( p < 0 )
  2319. {
  2320. // travelling away from x1,y1
  2321. if( r > *t1 )
  2322. return false;
  2323. // update distance on line to point of intersection
  2324. if( r > *t0 )
  2325. *t0 = r;
  2326. }
  2327. else // if travelling left/down
  2328. {
  2329. // travelling away from x1,y1
  2330. if( r < *t0 )
  2331. return false;
  2332. // update distance on line to point of intersection
  2333. if( r < *t1 )
  2334. *t1 = r;
  2335. }
  2336. }
  2337. return true;
  2338. }
  2339. /// (Uses the Laing-Barsky clipping algorithm)
  2340. /// From: http://www.skytopia.com/project/articles/compsci/clipping.html
  2341. bool VECT_OP_FUNC(ClipLine)( VECT_OP_TYPE* x0, VECT_OP_TYPE* y0, VECT_OP_TYPE* x1, VECT_OP_TYPE* y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax )
  2342. {
  2343. VECT_OP_TYPE t0;
  2344. VECT_OP_TYPE t1;
  2345. if( VECT_OP_FUNC(ClipLine2)(*x0,*y0,*x1,*y1,xMin,yMin,xMax,yMax,&t0,&t1) )
  2346. {
  2347. VECT_OP_TYPE dx = *x1 - *x0;
  2348. VECT_OP_TYPE dy = *y1 - *y0;
  2349. *x0 = *x0 + t0*dx;
  2350. *x1 = *x0 + t1*dx;
  2351. *y0 = *y0 + t0*dy;
  2352. *y1 = *y0 + t1*dy;
  2353. return true;
  2354. }
  2355. return false;
  2356. }
  2357. bool VECT_OP_FUNC(IsLineInRect)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax )
  2358. {
  2359. VECT_OP_TYPE t0;
  2360. VECT_OP_TYPE t1;
  2361. return VECT_OP_FUNC(ClipLine2)(x0,y0,x1,y1,xMin,yMin,xMax,yMax,&t0,&t1);
  2362. }
  2363. VECT_OP_TYPE VECT_OP_FUNC(PtToLineDistance)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE px, VECT_OP_TYPE py)
  2364. {
  2365. // from:http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
  2366. double normalLength = sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
  2367. if( normalLength <= 0 )
  2368. return 0;
  2369. return (VECT_OP_TYPE)fabs((px - x0) * (y1 - y0) - (py - y0) * (x1 - x0)) / normalLength;
  2370. }
  2371. VECT_OP_TYPE VECT_OP_FUNC(ComplexDetect)(const VECT_OP_TYPE* mag0V, const VECT_OP_TYPE* mag1V, const VECT_OP_TYPE* phs0V, const VECT_OP_TYPE* phs1V, const VECT_OP_TYPE* phs2V, unsigned binCnt )
  2372. {
  2373. double sum = 0;
  2374. const VECT_OP_TYPE* ep = mag0V + binCnt;
  2375. unsigned i = 0;
  2376. for(; mag0V < ep; ++i )
  2377. {
  2378. // calc phase deviation from expected
  2379. double dev_rads = *phs0V++ - (2 * *phs1V++) + *phs2V++;
  2380. // map deviation into range: -pi to pi
  2381. //double dev_rads1 = mod(dev_rads0 + M_PI, -2*M_PI ) + M_PI;
  2382. while( dev_rads > M_PI)
  2383. dev_rads -= 2*M_PI;
  2384. while( dev_rads < -M_PI)
  2385. dev_rads += 2*M_PI;
  2386. // convert into rect coord's
  2387. double m1r = *mag1V++;
  2388. double m0r = *mag0V * cos(dev_rads);
  2389. double m0i = *mag0V++ * sin(dev_rads);
  2390. // calc the combined amplitude and phase deviation
  2391. // sum += hypot( m1 - (m0 * e^(-1*dev_rads)));
  2392. sum += hypot( m1r-m0r, -m0i );
  2393. }
  2394. return (VECT_OP_TYPE)sum;
  2395. }
  2396. VECT_OP_TYPE* VECT_OP_FUNC(DctMatrix)( VECT_OP_TYPE* dp, unsigned coeffCnt, unsigned filtCnt )
  2397. {
  2398. VECT_OP_TYPE* dbp = dp;
  2399. double c0 = 1.0/sqrt(filtCnt/2); // row 1-coeffCnt factor
  2400. double c1 = c0 * sqrt(2)/2; // row 0 factor
  2401. unsigned i,j;
  2402. // for each column
  2403. for(i=0; i<filtCnt; ++i)
  2404. // for each row
  2405. for(j=0; j<coeffCnt; ++j)
  2406. *dp++ = (j==0 ? c1 : c0) * cos( (0.5 + i) * M_PI * j / filtCnt);
  2407. return dbp;
  2408. }
  2409. unsigned VECT_OP_FUNC(PeakIndexes)( unsigned* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE threshold )
  2410. {
  2411. unsigned pkCnt = 0;
  2412. const unsigned* dep = dbp + dn;
  2413. const VECT_OP_TYPE* sep = sbp + sn;
  2414. const VECT_OP_TYPE* s2p = sbp;
  2415. const VECT_OP_TYPE* s0p = s2p++;
  2416. const VECT_OP_TYPE* s1p = s2p++;
  2417. while( dbp < dep && s2p < sep )
  2418. {
  2419. if( (*s0p < *s1p) && (*s1p > *s2p) && (*s1p >= threshold) )
  2420. {
  2421. *dbp++ = s1p - sbp;
  2422. s0p = s2p++;
  2423. s1p = s2p++;
  2424. ++pkCnt;
  2425. }
  2426. else
  2427. {
  2428. s0p = s1p;
  2429. s1p = s2p++;
  2430. }
  2431. }
  2432. return pkCnt;
  2433. }
  2434. unsigned VECT_OP_FUNC(BinIndex)( const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE v )
  2435. {
  2436. const VECT_OP_TYPE* sep = sbp + sn;
  2437. const VECT_OP_TYPE* bp = sbp;
  2438. sep--;
  2439. for(; sbp < sep; ++sbp )
  2440. if( *sbp <= v && v < *(sbp+1) )
  2441. return sbp - bp;
  2442. return cmInvalidIdx;
  2443. }
  2444. void VECT_OP_FUNC(Interp1)(VECT_OP_TYPE* y1, const VECT_OP_TYPE* x1, unsigned xy1N, const VECT_OP_TYPE* x0, const VECT_OP_TYPE* y0, unsigned xy0N )
  2445. {
  2446. unsigned i,j;
  2447. // for each output value
  2448. for(i=0,j=0; i<xy1N; ++i)
  2449. {
  2450. // x1[] and x0[] are increasing monotonic therefore j should never
  2451. // have to decrease
  2452. for(; j<xy0N-1; ++j)
  2453. {
  2454. // if x1[i] is between x0[j] and x0[j+1]
  2455. if( x0[j] <= x1[i] && x1[i] < x0[j+1] )
  2456. {
  2457. // interpolate y0[j] based on the distance beteen x0[j] and x1[i].
  2458. y1[i] = y0[j] + (y0[j+1]-y0[j]) * ((x1[i] - x0[j]) / (x0[j+1] - x0[j]));
  2459. break;
  2460. }
  2461. }
  2462. if( j == xy0N-1 )
  2463. y1[i] = y0[xy0N-1];
  2464. }
  2465. }
  2466. #endif