libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmVectOpsRICode.h 29KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
  1. #ifdef cmVectOpsRICode_h
  2. VECT_OP_TYPE* VECT_OP_FUNC(Col)( VECT_OP_TYPE* m, unsigned ci, unsigned rn, unsigned cn )
  3. {
  4. assert(ci<cn);
  5. return m + (ci*rn);
  6. }
  7. VECT_OP_TYPE* VECT_OP_FUNC(Row)( VECT_OP_TYPE* m, unsigned ri, unsigned rn, unsigned cn )
  8. {
  9. assert(ri<rn);
  10. return m + ri;
  11. }
  12. VECT_OP_TYPE* VECT_OP_FUNC(ElePtr)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
  13. {
  14. assert(ri<rn && ci<cn);
  15. return m + (ci*rn) + ri;
  16. }
  17. VECT_OP_TYPE VECT_OP_FUNC(Ele)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
  18. { return *VECT_OP_FUNC(ElePtr)(m,ri,ci,rn,cn); }
  19. void VECT_OP_FUNC(Set)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn, VECT_OP_TYPE v )
  20. { *(VECT_OP_FUNC(ElePtr)(m,ri,ci,rn,cn)) = v; }
  21. const VECT_OP_TYPE* VECT_OP_FUNC(CCol)( const VECT_OP_TYPE* m, unsigned ci, unsigned rn, unsigned cn )
  22. {
  23. assert(ci<cn);
  24. return m + (ci*rn);
  25. }
  26. const VECT_OP_TYPE* VECT_OP_FUNC(CRow)( const VECT_OP_TYPE* m, unsigned ri, unsigned rn, unsigned cn )
  27. {
  28. assert(ri<rn);
  29. return m + ri;
  30. }
  31. const VECT_OP_TYPE* VECT_OP_FUNC(CElePtr)( const VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
  32. {
  33. assert(ri<rn && ci<cn);
  34. return m + (ci*rn) + ri;
  35. }
  36. VECT_OP_TYPE VECT_OP_FUNC(CEle)( const VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
  37. { return *VECT_OP_FUNC(CElePtr)(m,ri,ci,rn,cn); }
  38. VECT_OP_TYPE* VECT_OP_FUNC(Diag)( VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
  39. {
  40. unsigned i,j;
  41. for(i=0,j=0; i<n && j<n; ++i,++j)
  42. dbp[ (i*n) + j ] = sbp[i];
  43. return dbp;
  44. }
  45. VECT_OP_TYPE* VECT_OP_FUNC(DiagZ)(VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
  46. {
  47. VECT_OP_FUNC(Fill)(dbp,n*n,0);
  48. return VECT_OP_FUNC(Diag)(dbp,n,sbp);
  49. }
  50. VECT_OP_TYPE* VECT_OP_FUNC(Identity)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
  51. {
  52. unsigned i,j;
  53. for(i=0,j=0; i<cn && j<rn; ++i,++j)
  54. dbp[ (i*rn) + j ] = 1;
  55. return dbp;
  56. }
  57. VECT_OP_TYPE* VECT_OP_FUNC(IdentityZ)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
  58. {
  59. VECT_OP_FUNC(Fill)(dbp,rn*cn,0);
  60. return VECT_OP_FUNC(Identity)(dbp,rn,cn);
  61. }
  62. VECT_OP_TYPE* VECT_OP_FUNC(Transpose)( VECT_OP_TYPE* dbp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
  63. {
  64. VECT_OP_TYPE* dp = dbp;
  65. const VECT_OP_TYPE* dep = dbp + (srn*scn);
  66. while( dbp < dep )
  67. {
  68. const VECT_OP_TYPE* sbp = sp++;
  69. const VECT_OP_TYPE* sep = sbp + (srn*scn);
  70. for(; sbp < sep; sbp+=srn )
  71. *dbp++ = *sbp;
  72. }
  73. return dp;
  74. }
  75. VECT_OP_TYPE* VECT_OP_FUNC(Fill)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE value )
  76. {
  77. const VECT_OP_TYPE* dep = dbp + dn;
  78. VECT_OP_TYPE* dp = dbp;
  79. if( value == 0 )
  80. memset(dbp,0,(dep-dbp)*sizeof(VECT_OP_TYPE));
  81. else
  82. {
  83. while( dbp < dep )
  84. *dbp++ = value;
  85. }
  86. return dp;
  87. }
  88. VECT_OP_TYPE* VECT_OP_FUNC(Zero)( VECT_OP_TYPE* dbp, unsigned dn )
  89. {
  90. memset( dbp, 0, sizeof(VECT_OP_TYPE)*dn);
  91. return dbp;
  92. }
  93. VECT_OP_TYPE* VECT_OP_FUNC(Move)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* sp )
  94. {
  95. memmove(bp,sp,sizeof(VECT_OP_TYPE)*bn);
  96. return bp;
  97. }
  98. VECT_OP_TYPE* VECT_OP_FUNC(Copy)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* sp )
  99. {
  100. memcpy(bp,sp,sizeof(VECT_OP_TYPE)*bn);
  101. return bp;
  102. }
  103. VECT_OP_TYPE* VECT_OP_FUNC(CopyN)( VECT_OP_TYPE* bp, unsigned bn, unsigned d_stride, const VECT_OP_TYPE* sp, unsigned s_stride )
  104. {
  105. VECT_OP_TYPE* dbp = bp;
  106. const VECT_OP_TYPE* ep = bp + (bn*d_stride);
  107. for(; bp < ep; bp += d_stride, sp += s_stride )
  108. *bp = *sp;
  109. return dbp;
  110. }
  111. VECT_OP_TYPE* VECT_OP_FUNC(CopyU)( VECT_OP_TYPE* bp, unsigned bn, const unsigned* sp )
  112. {
  113. VECT_OP_TYPE* dbp = bp;
  114. const VECT_OP_TYPE* ep = bp + bn;
  115. VECT_OP_TYPE* dp = bp;
  116. while( dp < ep )
  117. *dp++ = (VECT_OP_TYPE)*sp++;
  118. return dbp;
  119. }
  120. VECT_OP_TYPE* VECT_OP_FUNC(CopyI)( VECT_OP_TYPE* dbp, unsigned dn, const int* sp )
  121. {
  122. const VECT_OP_TYPE* dep = dbp + dn;
  123. VECT_OP_TYPE* dp = dbp;
  124. while( dp < dep )
  125. *dp++ = (VECT_OP_TYPE)*sp++;
  126. return dbp;
  127. }
  128. VECT_OP_TYPE* VECT_OP_FUNC(CopyF)( VECT_OP_TYPE* dbp, unsigned dn, const float* sp )
  129. {
  130. const VECT_OP_TYPE* dep = dbp + dn;
  131. VECT_OP_TYPE* dp = dbp;
  132. while( dp < dep )
  133. *dp++ = (VECT_OP_TYPE)*sp++;
  134. return dbp;
  135. }
  136. VECT_OP_TYPE* VECT_OP_FUNC(CopyD)( VECT_OP_TYPE* dbp, unsigned dn, const double* sp )
  137. {
  138. const VECT_OP_TYPE* dep = dbp + dn;
  139. VECT_OP_TYPE* dp = dbp;
  140. while( dp < dep )
  141. *dp++ = (VECT_OP_TYPE)*sp++;
  142. return dbp;
  143. }
  144. VECT_OP_TYPE* VECT_OP_FUNC(CopyS)( VECT_OP_TYPE* dbp, unsigned dn, const cmSample_t* sp )
  145. {
  146. const VECT_OP_TYPE* dep = dbp + dn;
  147. VECT_OP_TYPE* dp = dbp;
  148. while( dp < dep )
  149. *dp++ = (VECT_OP_TYPE)*sp++;
  150. return dbp;
  151. }
  152. VECT_OP_TYPE* VECT_OP_FUNC(CopyR)( VECT_OP_TYPE* dbp, unsigned dn, const cmReal_t* sp )
  153. {
  154. const VECT_OP_TYPE* dep = dbp + dn;
  155. VECT_OP_TYPE* dp = dbp;
  156. while( dp < dep )
  157. *dp++ = (VECT_OP_TYPE)*sp++;
  158. return dbp;
  159. }
  160. VECT_OP_TYPE* VECT_OP_FUNC(CopyStride)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, unsigned srcStride )
  161. {
  162. const VECT_OP_TYPE* dep = dbp + dn;
  163. VECT_OP_TYPE* dp = dbp;
  164. for(; dp < dep; sp += srcStride )
  165. *dp++ = *sp;
  166. return dbp;
  167. }
  168. VECT_OP_TYPE* VECT_OP_FUNC(Shrink)( VECT_OP_TYPE* s, unsigned sn, const VECT_OP_TYPE* t, unsigned tn )
  169. {
  170. assert( s <= t && t <= (s+sn) );
  171. assert( s <= (t+tn) && (t+tn) <= (s+sn));
  172. //VECT_OP_FUNC(Move)(s,sn - ((t - s) + tn),t+tn);
  173. VECT_OP_FUNC(Move)((VECT_OP_TYPE*)t,(sn - ((t+tn)-s)) + 1,t+tn);
  174. return s;
  175. }
  176. VECT_OP_TYPE* VECT_OP_FUNC(Expand)( VECT_OP_TYPE* s, unsigned sn, const VECT_OP_TYPE* t, unsigned tn )
  177. {
  178. assert( s <= t && t <= s+sn );
  179. unsigned i = t - s;
  180. s = cmMemResizeP(VECT_OP_TYPE,s,sn+tn);
  181. t = s + i;
  182. assert( t + tn + sn - i == s + sn + tn );
  183. VECT_OP_FUNC(Move)(((VECT_OP_TYPE*)t)+tn,sn-i,t);
  184. return s;
  185. }
  186. VECT_OP_TYPE* VECT_OP_FUNC(Replace)(VECT_OP_TYPE* s, unsigned* sn, const VECT_OP_TYPE* t, unsigned tn, const VECT_OP_TYPE* u, unsigned un )
  187. {
  188. // if s is empty and t[tn] is empty
  189. if( s == NULL && tn == 0 )
  190. {
  191. if( un == 0 )
  192. return s;
  193. s = cmMemAllocZ(VECT_OP_TYPE,un);
  194. VECT_OP_FUNC(Copy)(s,un,u);
  195. if( sn != NULL )
  196. *sn = un;
  197. return s;
  198. }
  199. assert( s!=NULL && t != NULL );
  200. assert( (u!=NULL && un>0) || (u==NULL && un==0) );
  201. if( (tn==0 && un==0) || (t==NULL && u==NULL))
  202. return s;
  203. // if the area to replace is greater than the area to insert ...
  204. if( tn > un )
  205. {
  206. VECT_OP_FUNC(Shrink)(s,*sn,t+un,tn-un); // ... then shrink the buffer
  207. *sn -= tn-un;
  208. }
  209. else
  210. // if the area to insert is greater than the area to replace ...
  211. if( un > tn )
  212. {
  213. unsigned offs = t - s;
  214. s = VECT_OP_FUNC(Expand)(s,*sn,t+tn,un-tn); // ... then expand the buffer
  215. t = s + offs;
  216. *sn += un-tn;
  217. }
  218. assert(t+un <= s+(*sn));
  219. if( u!=NULL )
  220. VECT_OP_FUNC(Copy)((VECT_OP_TYPE*)t,un,u);
  221. return s;
  222. }
  223. VECT_OP_TYPE* VECT_OP_FUNC(Rotate)( VECT_OP_TYPE* v, unsigned n, int i )
  224. {
  225. int c, j;
  226. if(v == NULL || n <= 0)
  227. return NULL;
  228. if(i < 0 || i >= n)
  229. {
  230. i %= n;
  231. if (i < 0)
  232. i += n;
  233. }
  234. if(i == 0)
  235. return 0;
  236. c = 0;
  237. for(j = 0; c < n; j++)
  238. {
  239. int t = j, k = j + i;
  240. VECT_OP_TYPE tmp = v[j];
  241. c++;
  242. while( k != j )
  243. {
  244. v[t] = v[k];
  245. t = k;
  246. k += i;
  247. if( k >= n )
  248. k -= n;
  249. c++;
  250. }
  251. v[t] = tmp;
  252. }
  253. return v;
  254. }
  255. VECT_OP_TYPE* VECT_OP_FUNC(RotateM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* sbp, int rShiftCnt, int cShiftCnt )
  256. {
  257. int j;
  258. while( rShiftCnt < 0 )
  259. rShiftCnt += drn;
  260. while( cShiftCnt < 0 )
  261. cShiftCnt += dcn;
  262. int m = rShiftCnt % drn;
  263. int n = cShiftCnt % dcn;
  264. for(j=0; j<dcn; ++j,++n)
  265. {
  266. if(n==dcn)
  267. n = 0;
  268. // cnt from dst position to end of column
  269. unsigned cn = drn - m;
  270. // copy from top of src col to bottom of dst column
  271. VECT_OP_FUNC(Copy)(dbp + (n*drn) + m, cn, sbp );
  272. sbp+=cn;
  273. if( cn < drn )
  274. {
  275. // copy from bottom of src col to top of dst column
  276. VECT_OP_FUNC(Copy)(dbp + (n*drn), drn-cn, sbp );
  277. sbp += drn-cn;
  278. }
  279. }
  280. return dbp;
  281. }
  282. VECT_OP_TYPE* VECT_OP_FUNC(Shift)( VECT_OP_TYPE* dbp, unsigned dn, int shiftCnt, VECT_OP_TYPE fillValue )
  283. {
  284. VECT_OP_TYPE* dep = dbp + dn;
  285. VECT_OP_TYPE* rp = dbp;
  286. unsigned n = dep - dbp;
  287. if( shiftCnt == 0 )
  288. return dbp;
  289. if( abs(shiftCnt) >= n )
  290. return VECT_OP_FUNC(Fill)(dbp,dn,fillValue);
  291. if( shiftCnt > 0 )
  292. {
  293. const VECT_OP_TYPE* sbp = dep - (shiftCnt+1);
  294. const VECT_OP_TYPE* sep = dbp;
  295. VECT_OP_TYPE* dp = dbp + (n-1);
  296. while( sbp >= sep )
  297. *dp-- = *sbp--;
  298. while(dbp <= dp )
  299. *dbp++ = fillValue;
  300. }
  301. else
  302. {
  303. const VECT_OP_TYPE* sbp = dbp + abs(shiftCnt);
  304. while( sbp < dep )
  305. *dbp++ = *sbp++;
  306. while(dbp<dep)
  307. *dbp++ = fillValue;
  308. }
  309. return rp;
  310. }
  311. VECT_OP_TYPE* VECT_OP_FUNC(Flip)( VECT_OP_TYPE* dbp, unsigned dn)
  312. {
  313. VECT_OP_TYPE* p0 = dbp;
  314. VECT_OP_TYPE* p1 = dbp + dn - 1;
  315. while( p0 < p1 )
  316. {
  317. VECT_OP_TYPE t = *p0;
  318. *p0++ = *p1;
  319. *p1-- = t;
  320. }
  321. return dbp;
  322. }
  323. VECT_OP_TYPE VECT_OP_FUNC(Seq)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE beg, VECT_OP_TYPE incr )
  324. {
  325. const VECT_OP_TYPE* dep = dbp + dn;
  326. unsigned i = 0;
  327. for(; dbp<dep; ++i)
  328. *dbp++ = beg + (incr*i);
  329. return beg + (incr*i);
  330. }
  331. VECT_OP_TYPE* VECT_OP_FUNC(SubVS)( VECT_OP_TYPE* bp, unsigned n, VECT_OP_TYPE v )
  332. {
  333. const VECT_OP_TYPE* ep = bp + n;
  334. VECT_OP_TYPE* dp = bp;
  335. while( dp < ep )
  336. *dp++ -= v;
  337. return bp;
  338. }
  339. VECT_OP_TYPE* VECT_OP_FUNC(SubVV)( VECT_OP_TYPE* bp, unsigned n, const VECT_OP_TYPE* v )
  340. {
  341. const VECT_OP_TYPE* ep = bp + n;
  342. VECT_OP_TYPE* dp = bp;
  343. while( dp < ep )
  344. *dp++ -= *v++;
  345. return bp;
  346. }
  347. VECT_OP_TYPE* VECT_OP_FUNC(SubVVS)( VECT_OP_TYPE* bp, unsigned n, const VECT_OP_TYPE* v, VECT_OP_TYPE s )
  348. {
  349. const VECT_OP_TYPE* ep = bp + n;
  350. VECT_OP_TYPE* dp = bp;
  351. while( dp < ep )
  352. *dp++ = *v++ - s;
  353. return bp;
  354. }
  355. VECT_OP_TYPE* VECT_OP_FUNC(SubVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
  356. {
  357. const VECT_OP_TYPE* ep = dp + (dn*dnn);
  358. VECT_OP_TYPE* dbp = dp;
  359. for(; dp < ep; dp+=dnn, v+=n )
  360. *dp -= *v;
  361. return dbp;
  362. }
  363. VECT_OP_TYPE* VECT_OP_FUNC(SubVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
  364. {
  365. const VECT_OP_TYPE* dep = dbp + dn;
  366. VECT_OP_TYPE* dp = dbp;
  367. while( dbp < dep )
  368. *dbp++ = *sb0p++ - *sb1p++;
  369. return dp;
  370. }
  371. VECT_OP_TYPE* VECT_OP_FUNC(SubVSV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE s0, const VECT_OP_TYPE* sb1p )
  372. {
  373. const VECT_OP_TYPE* dep = dbp + dn;
  374. VECT_OP_TYPE* dp = dbp;
  375. while( dbp < dep )
  376. *dbp++ = s0 - *sb1p++;
  377. return dp;
  378. }
  379. VECT_OP_TYPE* VECT_OP_FUNC(AddVS)( VECT_OP_TYPE* bp, unsigned n, VECT_OP_TYPE v )
  380. {
  381. const VECT_OP_TYPE* ep = bp + n;
  382. VECT_OP_TYPE* dp = bp;
  383. while( dp < ep )
  384. *dp++ += v;
  385. return bp;
  386. }
  387. VECT_OP_TYPE* VECT_OP_FUNC(AddVV)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* v )
  388. {
  389. const VECT_OP_TYPE* ep = bp + bn;
  390. VECT_OP_TYPE* dp = bp;
  391. while( dp < ep )
  392. *dp++ += *v++;
  393. return bp;
  394. }
  395. VECT_OP_TYPE* VECT_OP_FUNC(AddVVS)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* v, VECT_OP_TYPE s )
  396. {
  397. const VECT_OP_TYPE* ep = bp + bn;
  398. VECT_OP_TYPE* dp = bp;
  399. while( dp < ep )
  400. *dp++ = *v++ + s;
  401. return bp;
  402. }
  403. VECT_OP_TYPE* VECT_OP_FUNC(AddVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
  404. {
  405. const VECT_OP_TYPE* ep = dp + (dn*dnn);
  406. VECT_OP_TYPE* dbp = dp;
  407. for(; dp < ep; v+=n, dp+=dnn )
  408. *dp += *v;
  409. return dbp;
  410. }
  411. VECT_OP_TYPE* VECT_OP_FUNC(AddVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
  412. {
  413. const VECT_OP_TYPE* dep = dbp + dn;
  414. VECT_OP_TYPE* dp = dbp;
  415. while( dbp < dep )
  416. *dbp++ = *sb0p++ + *sb1p++;
  417. return dp;
  418. }
  419. VECT_OP_TYPE* VECT_OP_FUNC(MultVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
  420. {
  421. const VECT_OP_TYPE* dep = dbp + dn;
  422. VECT_OP_TYPE* dp = dbp;
  423. while( dbp < dep )
  424. *dbp++ = *sb0p++ * *sb1p++;
  425. return dp;
  426. }
  427. VECT_OP_TYPE* VECT_OP_FUNC(MultVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp )
  428. {
  429. const VECT_OP_TYPE* dep = dbp + dn;
  430. VECT_OP_TYPE* dp = dbp;
  431. while( dbp < dep )
  432. *dbp++ *= *sbp++;
  433. return dp;
  434. }
  435. VECT_OP_TYPE* VECT_OP_FUNC(MultVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
  436. {
  437. const VECT_OP_TYPE* ep = dp + (dn*dnn);
  438. VECT_OP_TYPE* dbp = dp;
  439. for(; dp < ep; v+=n, dp+=dnn )
  440. *dp *= *v;
  441. return dbp;
  442. }
  443. VECT_OP_TYPE* VECT_OP_FUNC(MultVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE s )
  444. {
  445. const VECT_OP_TYPE* dep = dbp + dn;
  446. VECT_OP_TYPE* dp = dbp;
  447. while( dbp < dep )
  448. *dbp++ *= s;
  449. return dp;
  450. }
  451. VECT_OP_TYPE* VECT_OP_FUNC(MultVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
  452. {
  453. const VECT_OP_TYPE* dep = dbp + dn;
  454. VECT_OP_TYPE* dp = dbp;
  455. while( dbp < dep )
  456. *dbp++ = *sbp++ * s;
  457. return dp;
  458. }
  459. VECT_OP_TYPE* VECT_OP_FUNC(MultVaVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
  460. {
  461. const VECT_OP_TYPE* dep = dbp + dn;
  462. VECT_OP_TYPE* dp = dbp;
  463. while( dbp < dep )
  464. *dbp++ += *sbp++ * s;
  465. return dp;
  466. }
  467. VECT_OP_TYPE* VECT_OP_FUNC(MultSumVVS)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
  468. {
  469. const VECT_OP_TYPE* dep = dbp + dn;
  470. VECT_OP_TYPE* dp = dbp;
  471. while( dbp < dep )
  472. *dbp++ += *sbp++ * s;
  473. return dp;
  474. }
  475. VECT_OP_TYPE* VECT_OP_FUNC(DivVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, VECT_OP_TYPE s1 )
  476. {
  477. const VECT_OP_TYPE* dep = dbp + dn;
  478. VECT_OP_TYPE* dp = dbp;
  479. while( dbp < dep )
  480. *dbp++ = *sb0p++ / s1;
  481. return dp;
  482. }
  483. VECT_OP_TYPE* VECT_OP_FUNC(DivVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p )
  484. {
  485. const VECT_OP_TYPE* dep = dbp + dn;
  486. VECT_OP_TYPE* dp = dbp;
  487. while( dbp < dep )
  488. *dbp++ /= *sb0p++;
  489. return dp;
  490. }
  491. VECT_OP_TYPE* VECT_OP_FUNC(DivVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
  492. {
  493. const VECT_OP_TYPE* dep = dbp + dn;
  494. VECT_OP_TYPE* dp = dbp;
  495. while( dbp < dep )
  496. *dbp++ = *sb0p++ / *sb1p++;
  497. return dp;
  498. }
  499. VECT_OP_TYPE* VECT_OP_FUNC(DivVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
  500. {
  501. const VECT_OP_TYPE* ep = dp + (dn*dnn);
  502. VECT_OP_TYPE* dbp = dp;
  503. for(; dp < ep; v+=n, dp+=dnn )
  504. *dp /= *v;
  505. return dbp;
  506. }
  507. VECT_OP_TYPE* VECT_OP_FUNC(DivVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE s )
  508. {
  509. const VECT_OP_TYPE* dep = dbp + dn;
  510. VECT_OP_TYPE* dp = dbp;
  511. while( dbp < dep )
  512. *dbp++ /= s;
  513. return dp;
  514. }
  515. VECT_OP_TYPE* VECT_OP_FUNC(DivVSV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE s0, const VECT_OP_TYPE* sb1p )
  516. {
  517. const VECT_OP_TYPE* dep = dbp + dn;
  518. VECT_OP_TYPE* dp = dbp;
  519. while( dbp < dep )
  520. *dbp++ = s0 / *sb1p++;
  521. return dp;
  522. }
  523. VECT_OP_TYPE* VECT_OP_FUNC(DivVVZ)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p )
  524. {
  525. const VECT_OP_TYPE* dep = dbp + dn;
  526. VECT_OP_TYPE* dp = dbp;
  527. for(; dbp < dep; ++sb0p )
  528. if( *sb0p == 0 )
  529. *dbp++ = 0;
  530. else
  531. *dbp++ /= *sb0p;
  532. return dp;
  533. }
  534. VECT_OP_TYPE* VECT_OP_FUNC(DivVVVZ)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
  535. {
  536. const VECT_OP_TYPE* dep = dbp + dn;
  537. VECT_OP_TYPE* dp = dbp;
  538. for(; dbp < dep; ++sb0p,++sb1p )
  539. if( *sb1p == 0 )
  540. *dbp++ = 0;
  541. else
  542. *dbp++ = *sb0p / *sb1p;
  543. return dp;
  544. }
  545. VECT_OP_TYPE* VECT_OP_FUNC(DivMS)( VECT_OP_TYPE* dp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* sp )
  546. {
  547. unsigned i;
  548. for(i=0; i<dcn; ++i)
  549. VECT_OP_FUNC(DivVS)( dp + i*drn, drn, sp[i] );
  550. return dp;
  551. }
  552. VECT_OP_TYPE VECT_OP_FUNC(Sum)( const VECT_OP_TYPE* bp, unsigned n )
  553. {
  554. const VECT_OP_TYPE* ep = bp + n;
  555. VECT_OP_TYPE s = 0;
  556. while( bp < ep )
  557. s += *bp++;
  558. return s;
  559. }
  560. VECT_OP_TYPE VECT_OP_FUNC(SumN)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  561. {
  562. const VECT_OP_TYPE* ep = bp + (n*stride);
  563. VECT_OP_TYPE s = 0;
  564. for(; bp < ep; bp += stride )
  565. s += *bp;
  566. return s;
  567. }
  568. VECT_OP_TYPE* VECT_OP_FUNC(SumM)(const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, VECT_OP_TYPE* dp )
  569. {
  570. unsigned i;
  571. for(i=0; i<scn; ++i)
  572. dp[i] = VECT_OP_FUNC(Sum)(sp + (i*srn), srn );
  573. return dp;
  574. }
  575. VECT_OP_TYPE* VECT_OP_FUNC(SumMN)(const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, VECT_OP_TYPE* dp )
  576. {
  577. unsigned i;
  578. for(i=0; i<srn; ++i)
  579. dp[i] = VECT_OP_FUNC(SumN)(sp + i, scn, srn );
  580. return dp;
  581. }
  582. // mi is a target value - it holds the number of elements in ap[an] which must be be less than the median value.
  583. // If the initial array contains an even number of values then the median value is formed by averaging the two center values.
  584. // In this case *evenFlPtr is set and used to indicate that the center-upper value must be found during undwinding.
  585. VECT_OP_TYPE VECT_OP_FUNC(MedianSearch)( unsigned mi, const VECT_OP_TYPE* ap, unsigned an, bool* evenFlPtr )
  586. {
  587. VECT_OP_TYPE x = ap[0]; // pick a random value as a potential median value
  588. VECT_OP_TYPE a1[ an ]; // values below x
  589. VECT_OP_TYPE a3[ an ]; // values above x
  590. unsigned a1n = 0;
  591. unsigned a2n = 0; // values equal to x
  592. unsigned a3n = 0;
  593. const VECT_OP_TYPE* abp = ap;
  594. const VECT_OP_TYPE* aep = abp + an;
  595. for(; abp < aep; ++abp )
  596. {
  597. if( *abp < x )
  598. a1[a1n++] = *abp;
  599. else
  600. {
  601. if( *abp > x )
  602. a3[a3n++] = *abp;
  603. else
  604. ++a2n;
  605. }
  606. }
  607. //printf("%i : %i %i %i\n",mi,a1n,a2n,a3n);
  608. // there are more values below x (mi remains the target split point)
  609. if( a1n > mi )
  610. {
  611. x = VECT_OP_FUNC(MedianSearch)(mi,a1,a1n,evenFlPtr);
  612. }
  613. else
  614. {
  615. // the target was located
  616. if( a1n+a2n >= mi )
  617. {
  618. // if a1n alone matches mi then the max value in a1[] holds the median value otherwise x is the median
  619. if(a1n>=1 && a1n==mi)
  620. {
  621. VECT_OP_TYPE mv = VECT_OP_FUNC(Max)(a1,a1n,1);
  622. x = *evenFlPtr ? (mv+x)/2 : mv;
  623. *evenFlPtr = false;
  624. }
  625. // if the evenFl is set then the closest value above the median (x) must be located
  626. if( *evenFlPtr )
  627. {
  628. // if the next greater value is in a2[]
  629. if( a2n > 1 && (a1n+a2n) > mi )
  630. *evenFlPtr = false;
  631. else
  632. // if the next greater value is in a3[]
  633. if( a3n > 1 )
  634. {
  635. x = (x + VECT_OP_FUNC(Min)(a3,a3n,1))/2;
  636. *evenFlPtr = false;
  637. }
  638. }
  639. // no need for unwind processing - all the possibilities at this level have been exhausted
  640. return x;
  641. }
  642. else
  643. {
  644. // There are more values above x - the median must therefore be in a3[].
  645. // Reset mi cmcounting for the fact that we know that there are
  646. // a1n+a2n values below the lowest value in a3.
  647. x = VECT_OP_FUNC(MedianSearch)(mi - (a1n+a2n), a3, a3n, evenFlPtr );
  648. }
  649. }
  650. if( *evenFlPtr )
  651. {
  652. // find the first value greater than x
  653. while( ap < aep && *ap <= x )
  654. ++ap;
  655. if( ap < aep )
  656. {
  657. VECT_OP_TYPE v = *ap++;
  658. // find the nearest value greater than x
  659. for(; ap < aep; ++ap )
  660. if( *ap > x && ((*ap - x) < (v-x)))
  661. v = *ap;
  662. x = (v + x)/2;
  663. *evenFlPtr = false;
  664. }
  665. }
  666. return x;
  667. }
  668. VECT_OP_TYPE VECT_OP_FUNC(Median)( const VECT_OP_TYPE* bp, unsigned n )
  669. {
  670. bool evenFl = cmIsEvenU(n);
  671. unsigned medIdx = evenFl ? n/2 : (n+1)/2;
  672. return VECT_OP_FUNC(MedianSearch)( medIdx, bp, n, &evenFl );
  673. }
  674. unsigned VECT_OP_FUNC(MinIndex)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  675. {
  676. const VECT_OP_TYPE* ep = bp + (n*stride);
  677. if( bp >= ep )
  678. return cmInvalidIdx;
  679. const VECT_OP_TYPE* p = bp;
  680. const VECT_OP_TYPE* mp = bp;
  681. bp+=stride;
  682. for(; bp < ep; bp+=stride )
  683. if( *bp < *mp )
  684. mp = bp;
  685. return (mp - p)/stride;
  686. }
  687. unsigned VECT_OP_FUNC(MaxIndex)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  688. {
  689. const VECT_OP_TYPE* ep = bp + (n*stride);
  690. if( bp >= ep )
  691. return cmInvalidIdx;
  692. const VECT_OP_TYPE* p = bp;
  693. const VECT_OP_TYPE* mp = bp;
  694. bp+=stride;
  695. for(; bp < ep; bp+=stride )
  696. if( *bp > *mp )
  697. mp = bp;
  698. return (mp - p)/stride;
  699. }
  700. VECT_OP_TYPE VECT_OP_FUNC(Min)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  701. {
  702. unsigned i;
  703. if((i = VECT_OP_FUNC(MinIndex)(bp,n,stride)) == cmInvalidIdx )
  704. {
  705. assert(0);
  706. return 0;
  707. }
  708. return bp[i*stride];
  709. }
  710. VECT_OP_TYPE VECT_OP_FUNC(Max)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  711. {
  712. unsigned i;
  713. if((i = VECT_OP_FUNC(MaxIndex)(bp,n,stride)) == cmInvalidIdx )
  714. {
  715. assert(0);
  716. return 0;
  717. }
  718. return bp[i*stride];
  719. }
  720. VECT_OP_TYPE* VECT_OP_FUNC(MinVV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp )
  721. {
  722. unsigned i;
  723. for(i=0; i<dn; ++i)
  724. if( sp[i] < dp[i] )
  725. dp[i] = sp[i];
  726. return dp;
  727. }
  728. VECT_OP_TYPE* VECT_OP_FUNC(MaxVV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp )
  729. {
  730. unsigned i;
  731. for(i=0; i<dn; ++i)
  732. if( sp[i] > dp[i] )
  733. dp[i] = sp[i];
  734. return dp;
  735. }
  736. unsigned* VECT_OP_FUNC(MinIndexM)( unsigned* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
  737. {
  738. unsigned i = 0;
  739. for(i=0; i<scn; ++i)
  740. dp[i] = VECT_OP_FUNC(MinIndex)(sp + (i*srn), srn, 1 );
  741. return dp;
  742. }
  743. unsigned* VECT_OP_FUNC(MaxIndexM)( unsigned* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
  744. {
  745. unsigned i = 0;
  746. for(i=0; i<scn; ++i)
  747. dp[i] = VECT_OP_FUNC(MaxIndex)(sp + (i*srn), srn, 1 );
  748. return dp;
  749. }
  750. VECT_OP_TYPE VECT_OP_FUNC(Mode)( const VECT_OP_TYPE* sp, unsigned sn )
  751. {
  752. unsigned n[sn];
  753. VECT_OP_TYPE v[sn];
  754. unsigned i,j,k = 0;
  755. unsigned n0 = 0; // idx of most freq occurring ele
  756. unsigned n1 = -1; // idx of 2nd most freq occurring ele
  757. for(i=0; i<sn; ++i)
  758. {
  759. // find sp[i] in v[]
  760. for(j=0; j<k; ++j)
  761. if( sp[i] == v[j] )
  762. {
  763. ++n[j];
  764. break;
  765. }
  766. // sp[i] was not found in v[]
  767. if( k == j )
  768. {
  769. v[j] = sp[i];
  770. n[j] = 1;
  771. ++k;
  772. }
  773. // n[j] holds frq of sp[i]
  774. // do nothing if j is already most freq
  775. if( j != n0 )
  776. {
  777. // if j is new most freq
  778. if( n[j] > n[n0] )
  779. {
  780. n1 = n0;
  781. n0 = j;
  782. }
  783. else
  784. // if j is 2nd most freq
  785. if( (n1==-1) || (n[j] > n[n1]) )
  786. n1 = j;
  787. }
  788. // if diff between two most freq is greater than remaining ele's
  789. if( (n1!=-1) && (n[n0]-n[n1]) >= (sn-i) )
  790. break;
  791. }
  792. // if there are no ele's with same count
  793. if( n[n0] > n[n1] )
  794. return v[n0];
  795. // break tie between ele's with same count be returning min value
  796. // (this is the same as Matlab tie break criteria)
  797. j = 0;
  798. for(i=1; i<k; ++i)
  799. if( (n[i] > n[j]) || (n[i] == n[j] && v[i] < v[j]) )
  800. j=i;
  801. return v[j];
  802. }
  803. VECT_OP_TYPE* VECT_OP_FUNC(Abs)( VECT_OP_TYPE* dbp, unsigned dn )
  804. {
  805. unsigned i;
  806. for(i=0; i<dn; ++i)
  807. if( dbp[i]<0 )
  808. dbp[i] = -dbp[i];
  809. return dbp;
  810. }
  811. VECT_OP_TYPE* VECT_OP_FUNC(HalfWaveRectify)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  812. {
  813. VECT_OP_TYPE* dp = dbp;
  814. VECT_OP_TYPE* ep = dbp + dn;
  815. for(; dp < ep; ++dp,++sp )
  816. *dp = *sp < 0 ? 0 : *sp;
  817. return dbp;
  818. }
  819. bool VECT_OP_FUNC(IsEqual)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  820. {
  821. const VECT_OP_TYPE* ep = s0p + sn;
  822. for(; s0p < ep; ++s0p,++s1p )
  823. if( *s0p != *s1p )
  824. return false;
  825. return true;
  826. }
  827. bool VECT_OP_FUNC(IsClose)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn, double eps )
  828. {
  829. const VECT_OP_TYPE* ep = s0p + sn;
  830. for(; s0p < ep; ++s0p,++s1p )
  831. {
  832. if( !cmIsClose(*s0p,*s1p,eps) )
  833. return false;
  834. }
  835. return true;
  836. }
  837. unsigned VECT_OP_FUNC(Find)( const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE key )
  838. {
  839. const VECT_OP_TYPE* sbp = sp;
  840. const VECT_OP_TYPE* ep = sp + sn;
  841. while( sp<ep )
  842. if( *sp++ == key )
  843. break;
  844. if( sp==ep )
  845. return cmInvalidIdx;
  846. return (sp-1) - sbp;
  847. }
  848. unsigned VECT_OP_FUNC(Count)( const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE key )
  849. {
  850. unsigned cnt = 0;
  851. const VECT_OP_TYPE* ep = sp + sn;
  852. while( sp<ep )
  853. if( *sp++ == key )
  854. ++cnt;
  855. return cnt;
  856. }
  857. VECT_OP_TYPE* VECT_OP_FUNC(ReplaceLte)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE lteKeyVal, VECT_OP_TYPE replaceVal )
  858. {
  859. VECT_OP_TYPE* rp = dp;
  860. const VECT_OP_TYPE* ep = dp + dn;
  861. for(; dp < ep; ++sp )
  862. *dp++ = *sp <= lteKeyVal ? replaceVal : *sp;
  863. return rp;
  864. }
  865. void VECT_OP_FUNC(FnThresh)( const VECT_OP_TYPE* xV, unsigned xN, unsigned wndN, VECT_OP_TYPE* yV, unsigned yStride, VECT_OP_TYPE (*fnPtr)(const VECT_OP_TYPE*, unsigned) )
  866. {
  867. int i0 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2;
  868. int i1 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2 - 1;
  869. int i,j;
  870. i0 = -i0;
  871. if( fnPtr == NULL )
  872. fnPtr = &(VECT_OP_FUNC(Median));
  873. for(i=0; i<xN; ++i,++i0,++i1)
  874. {
  875. j = (i*yStride);
  876. if( i0 < 0 )
  877. if( i1 >= xN )
  878. yV[j] = (*fnPtr)(xV,xN);
  879. else
  880. yV[j] = (*fnPtr)(xV,i1+1);
  881. else if( i1 >= xN )
  882. yV[j] = (*fnPtr)(xV+i0,xN-i0);
  883. else
  884. yV[j] = (*fnPtr)(xV+i0,wndN);
  885. }
  886. }
  887. void VECT_OP_FUNC(MedianFilt)( const VECT_OP_TYPE* xV, unsigned xN, unsigned wndN, VECT_OP_TYPE* yV, unsigned yStride )
  888. {
  889. int i0 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2;
  890. int i1 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2 - 1;
  891. int i,j;
  892. VECT_OP_TYPE tV[ wndN ];
  893. i0 = -i0;
  894. VECT_OP_FUNC(Fill)(tV,wndN,0);
  895. for(i=0; i<xN; ++i,++i0,++i1)
  896. {
  897. j = (i*yStride);
  898. // note that the position of the zero padding in tV[]
  899. // does not matter because the median calcluation does
  900. // not make any assumptions about the order of the argument
  901. // vector.
  902. if( i0 < 0 )
  903. {
  904. VECT_OP_FUNC(Copy)(tV,wndN+i0,xV);
  905. VECT_OP_FUNC(Fill)(tV+wndN+i0,labs(i0),0);
  906. //VECT_OP_FUNC(Print)(NULL,1,wndN,tV,-1,-1);
  907. yV[j] = VECT_OP_FUNC(Median)(tV,wndN);
  908. continue;
  909. }
  910. if( i1 >= xN )
  911. {
  912. VECT_OP_FUNC(Copy)(tV,wndN-(i1-xN+1),xV+i0);
  913. VECT_OP_FUNC(Fill)(tV+wndN-(i1-xN+1),i1-xN+1,0);
  914. //VECT_OP_FUNC(Print)(NULL,1,wndN,tV,-1,-1);
  915. yV[j] = VECT_OP_FUNC(Median)(tV,wndN);
  916. continue;
  917. }
  918. //VECT_OP_FUNC(Print)(NULL,1,wndN,xV+i0,-1,-1);
  919. yV[j] = VECT_OP_FUNC(Median)(xV+i0,wndN);
  920. }
  921. }
  922. unsigned* VECT_OP_FUNC(LevEditDistAllocMtx)(unsigned maxN)
  923. {
  924. maxN += 1;
  925. unsigned* m = cmMemAllocZ(unsigned,maxN*maxN);
  926. unsigned* p = m;
  927. unsigned i;
  928. // initialize the comparison matrix with the default costs in the
  929. // first row and column
  930. // (Note that this matrix is not oriented in column major order like most 'cm' matrices.)
  931. for(i=0; i<maxN; ++i)
  932. {
  933. p[i] = i; // 0th row
  934. p[ i * maxN ] = i; // 0th col
  935. }
  936. return m;
  937. }
  938. double VECT_OP_FUNC(LevEditDist)(unsigned mtxMaxN, unsigned* m, const VECT_OP_TYPE* s0, int n0, const VECT_OP_TYPE* s1, int n1, unsigned maxN )
  939. {
  940. mtxMaxN += 1;
  941. assert( n0 < mtxMaxN && n1 < mtxMaxN );
  942. int v = 0;
  943. unsigned i;
  944. // Note that m[maxN,maxN] is not oriented in column major order like most 'cm' matrices.
  945. for(i=1; i<n0+1; ++i)
  946. {
  947. unsigned ii = i * mtxMaxN; // current row
  948. unsigned i_1 = ii - mtxMaxN; // previous row
  949. unsigned j;
  950. for( j=1; j<n1+1; ++j)
  951. {
  952. int cost = s0[i-1] == s1[j-1] ? 0 : 1;
  953. //m[i][j] = min( m[i-1][j] + 1, min( m[i][j-1] + 1, m[i-1][j-1] + cost ) );
  954. m[ ii + j ] = v = cmMin( m[ i_1 + j] + 1, cmMin( m[ ii + j - 1] + 1, m[ i_1 + j - 1 ] + cost ) );
  955. }
  956. }
  957. return (double) v / maxN;
  958. }
  959. double VECT_OP_FUNC(LevEditDistWithCostThresh)( int mtxMaxN, unsigned* m, const VECT_OP_TYPE* s0, int n0, const VECT_OP_TYPE* s1, int n1, double maxCost, unsigned maxN )
  960. {
  961. mtxMaxN += 1;
  962. int v = 0;
  963. maxCost = cmMin(1.0,cmMax(0.0,maxCost));
  964. int iMaxCost = ceil( maxCost * maxN );
  965. assert( iMaxCost > 0 && maxCost > 0 );
  966. // If the two strings are different lengths and the min possible distance is
  967. // greater than the threshold then return the threshold as the cost.
  968. // (Note: For strings of different length the min possible distance is the
  969. // difference in length between the two strings).
  970. if( abs(n0-n1) > iMaxCost )
  971. return maxCost;
  972. int i;
  973. // for each row in the matrix ...
  974. for(i=1; i<n0+1; ++i)
  975. {
  976. int ii = i * mtxMaxN; // current row
  977. int i_1 = ii - mtxMaxN; // previous row
  978. // Limit the row to (2*iMaxCost)+1 diagnal strip.
  979. // This strip is based on the idea that the best case can be precomputed for
  980. // all matrix elements in advance - where the best case for position i,j is:
  981. // abs(i-j). This can be justified based on the idea that the least possible
  982. // distance between two strings of length i and j is abs(i-1). The minimum least
  983. // possible distance is therefore found on the matrix diagnal and grows as the
  984. // distance from the diagnal increases.
  985. int ji = cmMax( 1, i - iMaxCost );
  986. int jn = cmMin(iMaxCost + i, n1) + 1;
  987. int j;
  988. // fill in (max cost + 1) as the value in the column before the starting column
  989. // (it will be referred to during the first computation in this row)
  990. if( ji >= 2 )
  991. m[ ii + (ji-1) ] = iMaxCost + 1;
  992. // for each column in the diagnal stripe - beginning with the leftmost column.
  993. for( j=ji; j<jn; ++j)
  994. {
  995. int cost = s0[i-1] == s1[j-1] ? 0 : 1;
  996. m[ ii + j ] = v = cmMin( m[ i_1 + j] + 1, cmMin( m[ ii + j - 1] + 1, m[ i_1 + j - 1 ] + cost ) );
  997. }
  998. // fill in (max cost + 1) in the column following the last column
  999. // (it will be referred to during computation of the following row)
  1000. if( j < n1+1 )
  1001. m[ii + j] = iMaxCost + 1;
  1002. }
  1003. assert( v >= 0 );
  1004. return cmMin( maxCost , (double) v / maxN);
  1005. }
  1006. #endif