piccal/plot_seq_1.py

797 lines
26 KiB
Python
Raw Normal View History

##| Copyright: (C) 2019-2020 Kevin Larke <contact AT larke DOT org>
##| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
2020-02-29 05:01:58 +00:00
import os, sys,json
import matplotlib.pyplot as plt
import numpy as np
from common import parse_yaml_cfg
import rms_analysis
2020-02-29 05:01:58 +00:00
import elbow
def fit_to_reference( pkL, refTakeId ):
us_outL = []
db_outL = []
dur_outL = []
tid_outL = []
dbL,usL,durMsL,takeIdL = tuple(zip(*pkL))
us_refL,db_refL,dur_refL = zip(*[(usL[i],dbL[i],durMsL[i]) for i in range(len(usL)) if takeIdL[i]==refTakeId])
for takeId in set(takeIdL):
us0L,db0L,dur0L = zip(*[(usL[i],dbL[i],durMsL[i]) for i in range(len(usL)) if takeIdL[i]==takeId ])
if takeId == refTakeId:
db_outL += db0L
else:
db1V = elbow.fit_points_to_reference(us0L,db0L,us_refL,db_refL)
db_outL += db1V.tolist()
us_outL += us0L
dur_outL+= dur0L
tid_outL+= [takeId] * len(us0L)
return zip(db_outL,us_outL,dur_outL,tid_outL)
def get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD ):
inDir = os.path.join(inDir,"%i" % (midi_pitch))
2020-02-29 05:01:58 +00:00
takeDirL = os.listdir(inDir)
pkL = []
2020-02-29 05:01:58 +00:00
usRefL = None
dbRefL = None
2020-02-29 05:01:58 +00:00
# for each take in this directory
for take_number in range(len(takeDirL)):
# analyze this takes audio and locate the note peaks
2020-02-29 05:01:58 +00:00
r = rms_analysis.rms_analysis_main( os.path.join(inDir,str(take_number)), midi_pitch, **analysisArgsD )
# store the peaks in pkL[ (db,us) ]
for db,us,stats in zip(r.pkDbL,r.pkUsL,r.statsL):
pkL.append( (db,us,stats.durMs,take_number) )
2020-02-29 05:01:58 +00:00
pkL = fit_to_reference( pkL, 0 )
# sort the peaks on increasing attack pulse microseconds
pkL = sorted( pkL, key= lambda x: x[1] )
# merge sample points that separated by less than 'minSampleDistUs' milliseconds
#pkL = merge_close_sample_points( pkL, analysisArgsD['minSampleDistUs'] )
# split pkL
pkDbL,pkUsL,durMsL,takeIdL = tuple(zip(*pkL))
return pkUsL,pkDbL,durMsL,takeIdL,r.holdDutyPctL
2020-02-29 05:01:58 +00:00
def select_resample_reference_indexes( noiseIdxL ):
resampleIdxS = set()
2020-02-29 05:01:58 +00:00
# for each noisy sample index store that index and the index
# before and after it
for i in noiseIdxL:
resampleIdxS.add( i )
2020-02-29 05:01:58 +00:00
if i+1 < len(noiseIdxL):
resampleIdxS.add( i+1 )
if i-1 >= 0:
resampleIdxS.add( i-1 )
resampleIdxL = list(resampleIdxS)
# if a single sample point is left out of a region of
2020-02-29 05:01:58 +00:00
# contiguous sample points then include this as a resample point also
for i in resampleIdxL:
if i + 1 not in resampleIdxL and i + 2 in resampleIdxL: # BUG BUG BUG: Hardcoded constant
2020-02-29 05:01:58 +00:00
if i+1 < len(noiseIdxL):
resampleIdxL.append(i+1)
return resampleIdxL
def locate_resample_regions( usL, dbL, resampleIdxL ):
# locate regions of points to resample
regionL = [] # (bi,ei)
inRegionFl = False
bi = None
for i in range(len(usL)):
if inRegionFl:
if i not in resampleIdxL:
regionL.append((bi,i-1))
inRegionFl = False
bi = None
else:
if i in resampleIdxL:
inRegionFl = True
bi = i
if bi is not None:
regionL.append((bi,len(usL)-1))
# select points around and within the resample regions
# to resample
reUsL = []
reDbL = []
for bi,ei in regionL:
for i in range(bi,ei+2):
if i == 0:
us = usL[i]
db = dbL[i]
elif i >= len(usL):
us = usL[i-1]
db = dbL[i-1]
else:
us = usL[i-1] + (usL[i]-usL[i-1])/2
db = dbL[i-1] + (dbL[i]-dbL[i-1])/2
reUsL.append(us)
reDbL.append(db)
return reUsL,reDbL
2020-02-29 05:01:58 +00:00
def get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreL, minDurMs, minDb, noiseLimitPct ):
firstAudibleIdx = None
firstNonSkipIdx = None
2020-02-29 05:01:58 +00:00
# get the indexes of samples which do not meet the duration, db level, or noise criteria
skipIdxL = [ i for i,(ms,db,score) in enumerate(zip(durMsL,dbL,scoreL)) if ms < minDurMs or db < minDb or score > noiseLimitPct ]
# if a single sample point is left out of a region of
# contiguous skipped points then skip this point also
for i in range(len(durMsL)):
if i not in skipIdxL and i-1 in skipIdxL and i+1 in skipIdxL:
skipIdxL.append(i)
# find the first set of 3 contiguous samples that
# are greater than minDurMs - all samples prior
# to these will be skipped
xL = []
for i in range(len(durMsL)):
if i in skipIdxL:
xL = []
else:
xL.append(i)
if len(xL) == 3: # BUG BUG BUG: Hardcoded constant
firstAudibleIdx = xL[0]
break
# decrease by one decibel to locate the first non-skip
# TODO: what if no note exists that is one decibel less
# The recordings of very quiet notes do not give reliabel decibel measures
# so this may not be the best backup criteria
if firstAudibleIdx is not None:
i = firstAudibleIdx-1
while abs(dbL[i] - dbL[firstAudibleIdx]) < 1.0: # BUG BUG BUG: Hardcoded constant
i -= 1
firstNonSkipIdx = i
return skipIdxL, firstAudibleIdx, firstNonSkipIdx
def get_resample_points( usL, dbL, durMsL, takeIdL, minDurMs, minDb, noiseLimitPct ):
scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL )
2020-02-29 05:01:58 +00:00
skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreV.tolist(), minDurMs, minDb, noiseLimitPct )
skipL = [ (usL[i],dbL[i]) for i in skipIdxL ]
noiseIdxL = [ i for i in range(scoreV.shape[0]) if scoreV[i] > noiseLimitPct ]
noiseL = [ (usL[i],dbL[i]) for i in noiseIdxL ]
resampleIdxL = select_resample_reference_indexes( noiseIdxL )
2020-02-29 05:01:58 +00:00
if firstNonSkipIdx is not None:
resampleIdxL = [ i for i in resampleIdxL if i >= firstNonSkipIdx ]
resampleL = [ (usL[i],dbL[i]) for i in resampleIdxL ]
reUsL,reDbL = locate_resample_regions( usL, dbL, resampleIdxL )
2020-02-29 05:01:58 +00:00
return reUsL, reDbL, noiseL, resampleL, skipL, firstAudibleIdx, firstNonSkipIdx
def get_resample_points_wrap( inDir, midi_pitch, analysisArgsD ):
usL, dbL, durMsL,_,_ = get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD['rmsAnalysisArgs'] )
reUsL,_,_,_,_,_,_ = get_resample_points( usL, dbL, durMsL, analysisArgsD['resampleMinDurMs'], analysisArgsD['resampleMinDb'], analysisArgsD['resampleNoiseLimitPct'] )
return reUsL
2020-02-29 05:01:58 +00:00
def plot_us_db_curves( ax, inDir, keyMapD, midi_pitch, analysisArgsD, plotResamplePointsFl=False, plotTakesFl=True, usMax=None ):
usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD['rmsAnalysisArgs'] )
reUsL, reDbL, noiseL, resampleL, skipL, firstAudibleIdx, firstNonSkipIdx = get_resample_points( usL, dbL, durMsL, takeIdL, analysisArgsD['resampleMinDurMs'], analysisArgsD['resampleMinDb'], analysisArgsD['resampleNoiseLimitPct'] )
# plot first audible and non-skip position
2020-02-29 05:01:58 +00:00
if False:
2020-02-29 05:01:58 +00:00
if firstNonSkipIdx is not None:
ax.plot( usL[firstNonSkipIdx], dbL[firstNonSkipIdx], markersize=15, marker='+', linestyle='None', color='red')
if firstAudibleIdx is not None:
ax.plot( usL[firstAudibleIdx], dbL[firstAudibleIdx], markersize=15, marker='*', linestyle='None', color='red')
# plot the resample points
if plotResamplePointsFl:
ax.plot( reUsL, reDbL, markersize=13, marker='x', linestyle='None', color='green')
# plot the noisy sample positions
if noiseL:
nUsL,nDbL = zip(*noiseL)
ax.plot( nUsL, nDbL, marker='o', markersize=9, linestyle='None', color='black')
# plot the noisy sample positions and the neighbors included in the noisy region
if resampleL:
nUsL,nDbL = zip(*resampleL)
ax.plot( nUsL, nDbL, marker='+', markersize=8, linestyle='None', color='red')
2020-02-29 05:01:58 +00:00
# plot actual sample points
2020-02-29 05:01:58 +00:00
elbow_us = None
elbow_db = None
elbow_len = None
usL,dbL,takeIdL = zip(*[(us,dbL[i],takeIdL[i]) for i,us in enumerate(usL) if usMax is None or us <= usMax])
if plotTakesFl:
for takeId in list(set(takeIdL)):
2020-02-29 05:01:58 +00:00
# get the us,db points included in this take
xL,yL = zip(*[(usL[i],dbL[i]) for i in range(len(usL)) if takeIdL[i]==takeId ])
2020-02-29 05:01:58 +00:00
ax.plot(xL,yL, marker='.',label=takeId)
for i,(x,y) in enumerate(zip(xL,yL)):
ax.text(x,y,str(i))
2020-02-29 05:01:58 +00:00
#if elbow_len is None or len(xL) > elbow_len:
if takeId+1 == len(set(takeIdL)):
elbow_us,elbow_db = elbow.find_elbow(xL,yL)
elbow_len = len(xL)
else:
ax.plot(usL, dbL, marker='.')
2020-02-29 05:01:58 +00:00
ax.plot([elbow_us],[elbow_db],marker='*',markersize=12,color='red',linestyle='None')
# plot the skip points in yellow
if False:
if skipL:
nUsL,nDbL = zip(*skipL)
ax.plot( nUsL, nDbL, marker='.', linestyle='None', color='yellow')
# plot the locations where the hold duty cycle changes with vertical black lines
for us_duty in holdDutyPctL:
us,duty = tuple(us_duty)
if us > 0:
ax.axvline(us,color='black')
# plot the 'minDb' reference line
ax.axhline(analysisArgsD['resampleMinDb'] ,color='black')
2020-02-29 05:01:58 +00:00
if os.path.isfile("minInterpDb.json"):
with open("minInterpDb.json","r") as f:
r = json.load(f)
if midi_pitch in r['pitchL']:
ax.axhline( r['minDbL'][ r['pitchL'].index(midi_pitch) ], color='blue' )
ax.axhline( r['maxDbL'][ r['pitchL'].index(midi_pitch) ], color='blue' )
ax.set_ylabel( "%i %s %s" % (midi_pitch, keyMapD[midi_pitch]['type'],keyMapD[midi_pitch]['class']))
2020-02-29 05:01:58 +00:00
def plot_us_db_curves_main( inDir, cfg, pitchL, plotTakesFl=True, usMax=None ):
analysisArgsD = cfg.analysisArgs
keyMapD = { d['midi']:d for d in cfg.key_mapL }
axN = len(pitchL)
2020-02-29 05:01:58 +00:00
fig,axL = plt.subplots(axN,1,sharex=True)
if axN == 1:
axL = [axL]
fig.set_size_inches(18.5, 10.5*axN)
for ax,midi_pitch in zip(axL,pitchL):
2020-02-29 05:01:58 +00:00
plot_us_db_curves( ax,inDir, keyMapD, midi_pitch, analysisArgsD, plotTakesFl=plotTakesFl, usMax=usMax )
if plotTakesFl:
plt.legend()
plt.show()
def plot_all_noise_curves( inDir, cfg, pitchL=None ):
pitchFolderL = os.listdir(inDir)
if pitchL is None:
pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ]
fig,ax = plt.subplots()
for midi_pitch in pitchL:
print(midi_pitch)
usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL )
minDurMs = cfg.analysisArgs['resampleMinDurMs']
minDb = cfg.analysisArgs['resampleMinDb'],
noiseLimitPct = cfg.analysisArgs['resampleNoiseLimitPct']
skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, scoreV.tolist(), takeIdL, minDurMs, minDb, noiseLimitPct )
if False:
ax.plot( usL[firstAudibleIdx], scoreV[firstAudibleIdx], markersize=10, marker='*', linestyle='None', color='red')
ax.plot( usL, scoreV, label="%i"%(midi_pitch) )
ax.set_xlabel('us')
else:
xL = [ (score,db,i) for i,(score,db) in enumerate(zip(scoreV,dbL)) ]
xL = sorted(xL, key=lambda x: x[1] )
scoreV,dbL,idxL = zip(*xL)
ax.plot( dbL[idxL[firstAudibleIdx]], scoreV[idxL[firstAudibleIdx]], markersize=10, marker='*', linestyle='None', color='red')
ax.plot( dbL, scoreV, label="%i"%(midi_pitch) )
ax.set_xlabel('db')
ax.set_ylabel("noise db %")
plt.legend()
plt.show()
def plot_min_max_2_db( inDir, cfg, pitchL=None, takeId=2 ):
pitchFolderL = os.listdir(inDir)
if pitchL is None:
pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ]
okL = []
outPitchL = []
minDbL = []
maxDbL = []
for midi_pitch in pitchL:
print(midi_pitch)
usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
okL.append(False)
takeId = len(set(takeIdL))-1
db_maxL = sorted(dbL)
maxDbL.append( np.mean(db_maxL[-5:]) )
usL,dbL = zip(*[(usL[i],dbL[i]) for i in range(len(usL)) if takeIdL[i]==takeId ])
if len(set(takeIdL)) == 3:
okL[-1] = True
elbow_us,elbow_db = elbow.find_elbow(usL,dbL)
minDbL.append(elbow_db)
outPitchL.append(midi_pitch)
p_dL = sorted( zip(outPitchL,minDbL,maxDbL,okL), key=lambda x: x[0] )
outPitchL,minDbL,maxDbL,okL = zip(*p_dL)
fig,ax = plt.subplots()
ax.plot(outPitchL,minDbL)
ax.plot(outPitchL,maxDbL)
keyMapD = { d['midi']:d for d in cfg.key_mapL }
for pitch,min_db,max_db,okFl in zip(outPitchL,minDbL,maxDbL,okL):
c = 'black' if okFl else 'red'
ax.text( pitch, min_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c)
ax.text( pitch, max_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c)
plt.show()
def plot_min_db_manual( inDir, cfg ):
pitchL = list(cfg.manualMinD.keys())
outPitchL = []
maxDbL = []
minDbL = []
okL = []
anchorMinDbL = []
anchorMaxDbL = []
for midi_pitch in pitchL:
manual_take_id = cfg.manualMinD[midi_pitch][0]
manual_sample_idx = cfg.manualMinD[midi_pitch][1]
usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
okL.append(False)
takeId = len(set(takeIdL))-1
# maxDb is computed on all takes (not just the specified take)
db_maxL = sorted(dbL)
max_db = np.mean(db_maxL[-4:])
maxDbL.append( max_db )
# get the us,db values for the specified take
usL,dbL = zip(*[(usL[i],dbL[i]) for i in range(len(usL)) if takeIdL[i]==manual_take_id ])
# most pitches have 3 sample takes that do not
if len(set(takeIdL)) == 3 and manual_take_id == takeId:
okL[-1] = True
# min db from the sample index manually specified in cfg
manualMinDb = dbL[ manual_sample_idx ]
minDbL.append( manualMinDb )
outPitchL.append(midi_pitch)
if midi_pitch in cfg.manualAnchorPitchMinDbL:
anchorMinDbL.append( manualMinDb )
if midi_pitch in cfg.manualAnchorPitchMaxDbL:
anchorMaxDbL.append( max_db )
# Form the complete set of min/max db levels for each pitch by interpolating the
# db values between the manually selected anchor points.
interpMinDbL = np.interp( pitchL, cfg.manualAnchorPitchMinDbL, anchorMinDbL )
interpMaxDbL = np.interp( pitchL, cfg.manualAnchorPitchMaxDbL, anchorMaxDbL )
fig,ax = plt.subplots()
ax.plot(outPitchL,minDbL) # plot the manually selected minDb values
ax.plot(outPitchL,maxDbL) # plot the max db values
# plot the interpolated minDb/maxDb values
ax.plot(pitchL,interpMinDbL)
ax.plot(pitchL,interpMaxDbL)
keyMapD = { d['midi']:d for d in cfg.key_mapL }
for pitch,min_db,max_db,okFl in zip(outPitchL,minDbL,maxDbL,okL):
c = 'black' if okFl else 'red'
ax.text( pitch, min_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c)
ax.text( pitch, max_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c)
with open("minInterpDb.json",'w') as f:
json.dump( { "pitchL":pitchL, "minDbL":list(interpMinDbL), "maxDbL":list(interpMaxDbL) }, f )
plt.show()
2020-02-29 05:01:58 +00:00
def plot_min_max_db( inDir, cfg, pitchL=None ):
pitchFolderL = os.listdir(inDir)
if pitchL is None:
pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ]
maxDbL = []
minDbL = []
for midi_pitch in pitchL:
print(midi_pitch)
usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL )
2020-02-29 05:01:58 +00:00
minDurMs = cfg.analysisArgs['resampleMinDurMs']
minDb = cfg.analysisArgs['resampleMinDb'],
noiseLimitPct = cfg.analysisArgs['resampleNoiseLimitPct']
2020-02-29 05:01:58 +00:00
skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreV.tolist(), minDurMs, minDb, noiseLimitPct )
minDbL.append( dbL[firstAudibleIdx] )
dbL = sorted(dbL)
x = np.mean(dbL[-3:])
x = np.max(dbL)
maxDbL.append( x )
fig,ax = plt.subplots()
fig.set_size_inches(18.5, 10.5)
p_dL = sorted( zip(pitchL,maxDbL), key=lambda x: x[0] )
pitchL,maxDbL = zip(*p_dL)
ax.plot(pitchL,maxDbL)
ax.plot(pitchL,minDbL)
for pitch,db in zip(pitchL,maxDbL):
keyMapD = { d['midi']:d for d in cfg.key_mapL }
ax.text( pitch, db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']))
plt.show()
def estimate_us_to_db_map( inDir, cfg, minMapDb=16.0, maxMapDb=26.0, incrMapDb=0.5, pitchL=None ):
pitchFolderL = os.listdir(inDir)
if pitchL is None:
pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ]
mapD = {} # pitch:{ loDb: { hiDb, us_avg, us_cls, us_std, us_min, us_max, db_avg, db_std, cnt }}
# where: cnt=count of valid sample points in this db range
# us_cls=us of closest point to center of db range
dbS = set() # { (loDb,hiDb) } track the set of db ranges
for pitch in pitchL:
print(pitch)
# get the sample measurements for pitch
usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
# calc the fit to local straight line curve fit at each point
scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL )
minDurMs = cfg.analysisArgs['resampleMinDurMs']
minDb = cfg.analysisArgs['resampleMinDb'],
noiseLimitPct = cfg.analysisArgs['resampleNoiseLimitPct']
# get the set of samples that are not valid (too short, too quiet, too noisy)
skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreV.tolist(), minDurMs, minDb, noiseLimitPct )
mapD[ pitch ] = {}
# get the count of db ranges
N = int(round((maxMapDb - minMapDb) / incrMapDb)) + 1
# for each db range
for i in range(N):
loDb = minMapDb + (i*incrMapDb)
hiDb = loDb + incrMapDb
dbS.add((loDb,hiDb))
# get the valid (pulse,db) pairs for this range
u_dL = [(us,db) for i,(us,db) in enumerate(zip(usL,dbL)) if i not in skipIdxL and loDb<=db and db<hiDb ]
us_avg = 0
us_cls = 0
us_std = 0
us_min = 0
us_max = 0
db_avg = 0
db_std = 0
if len(u_dL) == 0:
print("No valid samples for pitch:",pitch," db range:",loDb,hiDb)
else:
us0L,db0L = zip(*u_dL)
if len(us0L) == 1:
us_avg = us0L[0]
us_cls = us_avg
us_min = us_avg
us_max = us_avg
db_avg = db0L[0]
elif len(us0L) > 1:
us_avg = np.mean(us0L)
us_cls = us0L[ np.argmin(np.abs(np.array(db0L)-(loDb - (hiDb-loDb)/2.0 ))) ]
us_min = np.min(us0L)
us_max = np.max(us0L)
us_std = np.std(us0L)
db_avg = np.mean(db0L)
db_std = np.std(db0L)
us_avg = int(round(us_avg))
mapD[pitch][loDb] = { 'hiDb':hiDb, 'us_avg':us_avg, 'us_cls':us_cls, 'us_std':us_std,'us_min':us_min,'us_max':us_max, 'db_avg':db_avg, 'db_std':db_std, 'cnt':len(u_dL) }
return mapD, list(dbS)
def plot_us_to_db_map( inDir, cfg, minMapDb=16.0, maxMapDb=26.0, incrMapDb=1.0, pitchL=None ):
fig,ax = plt.subplots()
mapD, dbRefL = estimate_us_to_db_map( inDir, cfg, minMapDb, maxMapDb, incrMapDb, pitchL )
# for each pitch
for pitch, dbD in mapD.items():
u_dL = [ (d['us_avg'],d['us_cls'],d['db_avg'],d['us_std'],d['us_min'],d['us_max'],d['db_std']) for loDb, d in dbD.items() if d['us_avg'] != 0 ]
# get the us/db lists for this pitch
usL,uscL,dbL,ussL,usnL,usxL,dbsL = zip(*u_dL)
# plot central curve and std dev's
p = ax.plot(usL,dbL, marker='.', label=str(pitch))
ax.plot(uscL,dbL, marker='x', label=str(pitch), color=p[0].get_color(), linestyle='None')
ax.plot(usL,np.array(dbL)+dbsL, color=p[0].get_color(), alpha=0.3)
ax.plot(usL,np.array(dbL)-dbsL, color=p[0].get_color(), alpha=0.3)
# plot us error bars
for db,us,uss,us_min,us_max in zip(dbL,usL,ussL,usnL,usxL):
ax.plot([us_min,us_max],[db,db], color=p[0].get_color(), alpha=0.3 )
ax.plot([us-uss,us+uss],[db,db], color=p[0].get_color(), alpha=0.3, marker='.', linestyle='None' )
plt.legend()
plt.show()
def report_take_ids( inDir ):
pitchDirL = os.listdir(inDir)
for pitch in pitchDirL:
pitchDir = os.path.join(inDir,pitch)
takeDirL = os.listdir(pitchDir)
if len(takeDirL) == 0:
print(pitch," directory empty")
else:
with open( os.path.join(pitchDir,'0','seq.json'), "rb") as f:
r = json.load(f)
if len(r['eventTimeL']) != 81:
print(pitch," ",len(r['eventTimeL']))
if len(takeDirL) != 3:
print("***",pitch,len(takeDirL))
def cache_us_db( inDir, cfg, outFn ):
pitch_usDbD = {}
pitchDirL = os.listdir(inDir)
for pitch in pitchDirL:
pitch = int(pitch)
print(pitch)
usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
pitch_usDbD[pitch] = { 'usL':usL, 'dbL':dbL, 'durMsL':durMsL, 'takeIdL':takeIdL, 'holdDutyPctL': holdDutyPctL }
with open(outFn,"w") as f:
json.dump(pitch_usDbD,f)
def gen_vel_map( inDir, cfg, minMaxDbFn, dynLevelN, cacheFn ):
velMapD = {} # { pitch:[ us ] }
pitchDirL = os.listdir(inDir)
with open(cacheFn,"r") as f:
pitchUsDbD = json.load(f)
with open("minInterpDb.json","r") as f:
r = json.load(f)
minMaxDbD = { pitch:(minDb,maxDb) for pitch,minDb,maxDb in zip(r['pitchL'],r['minDbL'],r['maxDbL']) }
pitchL = sorted( [ int(pitch) for pitch in pitchUsDbD.keys()] )
for pitch in pitchL:
d = pitchUsDbD[str(pitch)]
usL = d['usL']
dbL = np.array(d['dbL'])
velMapD[pitch] = []
for i in range(dynLevelN+1):
db = minMaxDbD[pitch][0] + (i * (minMaxDbD[pitch][1] - minMaxDbD[pitch][0])/ dynLevelN)
usIdx = np.argmin( np.abs(dbL - db) )
velMapD[pitch].append( (usL[ usIdx ],db) )
with open("velMapD.json","w") as f:
json.dump(velMapD,f)
mtx = np.zeros((len(velMapD),dynLevelN+1))
print(mtx.shape)
for i,(pitch,usDbL) in enumerate(velMapD.items()):
for j in range(len(usDbL)):
mtx[i,j] = usDbL[j][1]
fig,ax = plt.subplots()
ax.plot(pitchL,mtx)
plt.show()
if __name__ == "__main__":
inDir = sys.argv[1]
cfgFn = sys.argv[2]
2020-02-29 05:01:58 +00:00
mode = sys.argv[3]
if len(sys.argv) <= 4:
pitchL = None
else:
pitchL = [ int(sys.argv[i]) for i in range(4,len(sys.argv)) ]
cfg = parse_yaml_cfg( cfgFn )
2020-02-29 05:01:58 +00:00
if mode == 'us_db':
plot_us_db_curves_main( inDir, cfg, pitchL, plotTakesFl=True,usMax=None )
elif mode == 'noise':
plot_all_noise_curves( inDir, cfg, pitchL )
elif mode == 'min_max':
plot_min_max_db( inDir, cfg, pitchL )
elif mode == 'min_max_2':
plot_min_max_2_db( inDir, cfg, pitchL )
elif mode == 'us_db_map':
plot_us_to_db_map( inDir, cfg, pitchL=pitchL )
elif mode == 'audacity':
rms_analysis.write_audacity_label_files( inDir, cfg.analysisArgs['rmsAnalysisArgs'] )
elif mode == 'rpt_take_ids':
report_take_ids( inDir )
elif mode == 'manual_db':
plot_min_db_manual( inDir, cfg )
elif mode == 'gen_vel_map':
gen_vel_map( inDir, cfg, "minInterpDb.json", 9, "cache_us_db.json" )
elif mode == 'cache_us_db':
cache_us_db( inDir, cfg, "cache_us_db.json")
else:
print("Unknown mode:",mode)