piccal/plot_seq_1.py

249 lines
8.2 KiB
Python
Raw Normal View History

import os, sys
import matplotlib.pyplot as plt
import numpy as np
from common import parse_yaml_cfg
import rms_analysis
def get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD ):
inDir = os.path.join(inDir,"%i" % (midi_pitch))
dirL = os.listdir(inDir)
pkL = []
# for each take in this directory
for idir in dirL:
take_number = int(idir)
# analyze this takes audio and locate the note peaks
r = rms_analysis.rms_analysis_main( os.path.join(inDir,idir), midi_pitch, **analysisArgsD )
# store the peaks in pkL[ (db,us) ]
for db,us,stats in zip(r.pkDbL,r.pkUsL,r.statsL):
pkL.append( (db,us,stats.durMs,take_number) )
# sort the peaks on increasing attack pulse microseconds
pkL = sorted( pkL, key= lambda x: x[1] )
# merge sample points that separated by less than 'minSampleDistUs' milliseconds
#pkL = merge_close_sample_points( pkL, analysisArgsD['minSampleDistUs'] )
# split pkL
pkDbL,pkUsL,durMsL,takeIdL = tuple(zip(*pkL))
return pkUsL,pkDbL,durMsL,takeIdL,r.holdDutyPctL
def select_resample_reference_indexes( noiseIdxL ):
resampleIdxS = set()
for i in noiseIdxL:
resampleIdxS.add( i )
resampleIdxS.add( i+1 )
resampleIdxS.add( i-1 )
resampleIdxL = list(resampleIdxS)
# if a single sample point is left out of a region of
# contiguous sample points then include this as a resample point
for i in resampleIdxL:
if i + 1 not in resampleIdxL and i + 2 in resampleIdxL: # BUG BUG BUG: Hardcoded constant
resampleIdxL.append(i+1)
return resampleIdxL
def locate_resample_regions( usL, dbL, resampleIdxL ):
# locate regions of points to resample
regionL = [] # (bi,ei)
inRegionFl = False
bi = None
for i in range(len(usL)):
if inRegionFl:
if i not in resampleIdxL:
regionL.append((bi,i-1))
inRegionFl = False
bi = None
else:
if i in resampleIdxL:
inRegionFl = True
bi = i
if bi is not None:
regionL.append((bi,len(usL)-1))
# select points around and within the resample regions
# to resample
reUsL = []
reDbL = []
for bi,ei in regionL:
for i in range(bi,ei+2):
if i == 0:
us = usL[i]
db = dbL[i]
elif i >= len(usL):
us = usL[i-1]
db = dbL[i-1]
else:
us = usL[i-1] + (usL[i]-usL[i-1])/2
db = dbL[i-1] + (dbL[i]-dbL[i-1])/2
reUsL.append(us)
reDbL.append(db)
return reUsL,reDbL
def get_dur_skip_indexes( durMsL, dbL, takeIdL, minDurMs, minDb ):
firstAudibleIdx = None
firstNonSkipIdx = None
skipIdxL = [ i for i,(ms,db) in enumerate(zip(durMsL,dbL)) if ms < minDurMs or db < minDb ]
# if a single sample point is left out of a region of
# contiguous skipped points then skip this point also
for i in range(len(durMsL)):
if i not in skipIdxL and i-1 in skipIdxL and i+1 in skipIdxL:
skipIdxL.append(i)
# find the first set of 3 contiguous samples that
# are greater than minDurMs - all samples prior
# to these will be skipped
xL = []
for i in range(len(durMsL)):
if i in skipIdxL:
xL = []
else:
xL.append(i)
if len(xL) == 3: # BUG BUG BUG: Hardcoded constant
firstAudibleIdx = xL[0]
break
# decrease by one decibel to locate the first non-skip
# TODO: what if no note exists that is one decibel less
# The recordings of very quiet notes do not give reliabel decibel measures
# so this may not be the best backup criteria
if firstAudibleIdx is not None:
i = firstAudibleIdx-1
while abs(dbL[i] - dbL[firstAudibleIdx]) < 1.0: # BUG BUG BUG: Hardcoded constant
i -= 1
firstNonSkipIdx = i
return skipIdxL, firstAudibleIdx, firstNonSkipIdx
def get_resample_points( usL, dbL, durMsL, takeIdL, minDurMs, minDb, noiseLimitPct ):
skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, takeIdL, minDurMs, minDb )
durL = [ (usL[i],dbL[i]) for i in skipIdxL ]
scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL )
noiseIdxL = [ i for i in range(scoreV.shape[0]) if scoreV[i] > noiseLimitPct ]
noiseL = [ (usL[i],dbL[i]) for i in noiseIdxL ]
resampleIdxL = select_resample_reference_indexes( noiseIdxL )
resampleIdxL = [ i for i in resampleIdxL if i >= firstNonSkipIdx ]
resampleL = [ (usL[i],dbL[i]) for i in resampleIdxL ]
reUsL,reDbL = locate_resample_regions( usL, dbL, resampleIdxL )
return reUsL, reDbL, noiseL, resampleL, durL, firstAudibleIdx, firstNonSkipIdx
def get_resample_points_wrap( inDir, midi_pitch, analysisArgsD ):
usL, dbL, durMsL,_,_ = get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD['rmsAnalysisArgs'] )
reUsL,_,_,_,_,_,_ = get_resample_points( usL, dbL, durMsL, analysisArgsD['resampleMinDurMs'], analysisArgsD['resampleMinDb'], analysisArgsD['resampleNoiseLimitPct'] )
return reUsL
def plot_noise_region( ax, inDir, keyMapD, midi_pitch, analysisArgsD ):
plotResampleFl = False
plotTakesFl = True
usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD['rmsAnalysisArgs'] )
reUsL, reDbL, noiseL, resampleL, durL, firstAudibleIdx, firstNonSkipIdx = get_resample_points( usL, dbL, durMsL, takeIdL, analysisArgsD['resampleMinDurMs'], analysisArgsD['resampleMinDb'], analysisArgsD['resampleNoiseLimitPct'] )
# plot first audible and non-skip position
ax.plot( usL[firstNonSkipIdx], dbL[firstNonSkipIdx], markersize=15, marker='+', linestyle='None', color='red')
ax.plot( usL[firstNonSkipIdx], dbL[firstAudibleIdx], markersize=15, marker='*', linestyle='None', color='red')
# plot the resample points
if plotResampleFl:
ax.plot( reUsL, reDbL, markersize=10, marker='x', linestyle='None', color='green')
# plot the noisy sample positions
if noiseL:
nUsL,nDbL = zip(*noiseL)
ax.plot( nUsL, nDbL, marker='o', linestyle='None', color='black')
# plot the noisy sample positions and the neighbors included in the noisy region
if resampleL:
nUsL,nDbL = zip(*resampleL)
ax.plot( nUsL, nDbL, marker='*', linestyle='None', color='red')
# plot actual sample points
if plotTakesFl:
for takeId in list(set(takeIdL)):
xL,yL = zip(*[(usL[i],dbL[i]) for i in range(len(usL)) if takeIdL[i]==takeId ])
ax.plot(xL,yL, marker='.')
for i,(x,y) in enumerate(zip(xL,yL)):
ax.text(x,y,str(i))
else:
ax.plot(usL, dbL, marker='.')
# plot the duration skip points
if durL:
nUsL,nDbL = zip(*durL)
ax.plot( nUsL, nDbL, marker='.', linestyle='None', color='yellow')
# plot the locations where the hold duty cycle changes with vertical black lines
for us_duty in holdDutyPctL:
us,duty = tuple(us_duty)
if us > 0:
ax.axvline(us,color='black')
# plot the 'minDb' reference line
ax.axhline(analysisArgsD['resampleMinDb'] ,color='black')
ax.set_ylabel( "%i %s %s" % (midi_pitch, keyMapD[midi_pitch]['type'],keyMapD[midi_pitch]['class']))
def plot_noise_regions_main( inDir, cfg, pitchL ):
analysisArgsD = cfg.analysisArgs
keyMapD = { d['midi']:d for d in cfg.key_mapL }
axN = len(pitchL)
fig,axL = plt.subplots(axN,1)
if axN == 1:
axL = [axL]
fig.set_size_inches(18.5, 10.5*axN)
for ax,midi_pitch in zip(axL,pitchL):
plot_noise_region( ax,inDir, cfg.key_mapL, midi_pitch, analysisArgsD )
plt.show()
if __name__ == "__main__":
inDir = sys.argv[1]
cfgFn = sys.argv[2]
pitch = int(sys.argv[3])
cfg = parse_yaml_cfg( cfgFn )
pitchL = [pitch]
plot_noise_regions_main( inDir, cfg, pitchL )
#rms_analysis.write_audacity_label_files( inDir, cfg.analysisArgs['rmsAnalysisArgs'] )