Compare commits

...

6 Commits

9 changed files with 760 additions and 7 deletions

4
.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
*.elf
*.hex
*.pyc
_autosave*

View File

@ -1,5 +1,7 @@
This is the main repository for the CML picadae hardware
and a control files.
![Picadae](picadae_solenoids_closeup_20191012_2.jpg)
- [__kicad__](kicad/README.md) contains the keyboard and pedal schematics and printed circuit board layout.
- [__control__](control/README.md) contains the keyboard solenoid ATtiny85 firware, controller Arduino firmware and, Python control API and program.

View File

@ -17,7 +17,8 @@ class TinyOp(Enum):
writeOp = 5
writeTableOp = 6
holdDelayOp = 7
invalidOp = 8
flagsOp = 8
invalidOp = 9
class TinyRegAddr(Enum):
@ -40,7 +41,22 @@ class TinyRegAddr(Enum):
kMaxAllowTmrAddr = 16
kDelayCoarseAddr = 17
kDelayFineAddr = 18
kFlagsAddr = 19
class TinyRegAddr0(Enum):
kRdRegAddrAddr = 0
kRdSrcAddr = 1
kWrRegAddrAddr = 2
kWrDstAddr = 3
kAttkDutyAddr = 4
kAttkDurHiAddr = 5
kAttkDurLoAddr = 6
kDecayStepAddr = 7
kDecayDecrAddr = 8
kPwmDutyAddr = 9
kErrorCodeAddr = 10
class TinyConst(Enum):
kRdRegSrcId = TinyRegAddr.kRdRegAddrAddr.value # 0
kRdTableSrcId = TinyRegAddr.kRdTableAddrAddr.value # 1
@ -263,6 +279,14 @@ class Picadae:
return res
def set_flags( self, midi_pitch, flags ):
return self.call_op( midi_pitch, TinyOp.flagsOp.value, [int(flags)] )
#return self.call_op( midi_pitch, 5, [int(flags)] )
def get_flags( self, midi_pitch, time_out_ms=250 ):
return self.block_on_picadae_read_reg( midi_pitch, TinyRegAddr.kFlagsAddr.value, byteOutN=1, time_out_ms=time_out_ms )
#return self.block_on_picadae_read_reg( midi_pitch, TinyRegAddr.kAttkDutyAddr.value, byteOutN=1, time_out_ms=time_out_ms )
def set_velocity_map( self, midi_pitch, midi_vel, pulse_usec ):
coarse,fine = self._usec_to_coarse_and_fine( pulse_usec )
@ -321,7 +345,18 @@ class Picadae:
self.make_note( midi_pitch, base_atk_us + i*delta_us, dur_ms )
time.sleep( dur_ms / 1000.0 )
return Result()
def make_scale( self, pitch0, pitch1, atk_us, dur_ms ):
if pitch0>pitch1:
printf("pitch0 must be <= pitch1")
else:
for pitch in range(pitch0,pitch1+1):
self.make_note( pitch, atk_us, dur_ms )
time.sleep( dur_ms / 1000.0 )
return Result()
def set_log_level( self, log_level ):
self.log_level = log_level
return Result()
@ -344,6 +379,17 @@ class Picadae:
x = coarse*coarse_usec + fine*self.prescaler_usec
#####
# n = int(16e6*usec/(256*1e6))
# coarse = n >> 8;
# fine = n & 0xff;
# x = usec
####
print("C:%i F:%i : %i %i (%i)" % (coarse,fine, x, usec, usec-x ))
return coarse,fine

View File

@ -27,9 +27,12 @@ class PicadaeShell:
'f':{ "func":"get_pwm_freq", "minN":1, "maxN":1, "help":"pwm freq <pitch>"},
'I':{ "func":"set_pwm_div", "minN":2, "maxN":2, "help":"pwm div <pitch> <div> div:2=2,3=4,4=8,(5)=16 1us,6=32,7=64,8=128,9=256,10=512 32us, 11=1024,12=2048,13=4096,14=8192,15=16384"},
'i':{ "func":"get_pwm_div", "minN":1, "maxN":1, "help":"pwm div <pitch>"},
'A':{ "func":"set_flags", "minN":2, "maxN":2, "help":"set flags <pitch> <flags>"},
'a':{ "func":"get_flags", "minN":1, "maxN":1, "help":"get flags <pitch>"},
'W':{ "func":"write_table", "minN":1, "maxN":1, "help":"write_table <pitch>"},
'N':{ "func":"make_note", "minN":3, "maxN":3, "help":"note <pitch> <atkUs> <durMs>"},
'S':{ "func":"make_seq", "minN":5, "maxN":5, "help":"seq <pitch> <atkUs> <durMs> <deltaUs> <note_count>"},
'S':{ "func":"make_seq", "minN":5, "maxN":5, "help":"seq <pitch> <atkUs> <durMs> <deltaUs> <note_count>"},
'C':{ "func":"make_scale", "minN":4, "maxN":4, "help":"scale <pitch0> <pitch1> <atkUs> <durMs>"},
'L':{ "func":"set_log_level", "minN":1, "maxN":1, "help":"log <level> (0-1)."}
}

View File

@ -7,7 +7,7 @@ TTY=/dev/ttyACM0
endif
ifndef TARGET
TARGET=i2c_timer_pwm
TARGET=i2c_timer_pwm_2
endif
MCU=attiny85

View File

@ -0,0 +1,685 @@
//| Copyright: (C) 2018-2020 Kevin Larke <contact AT larke DOT org>
//| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
// w 60 0 1 10 : w i2c_addr SetPWM enable duty_val
// w 60 5 12 8 32 : w i2c_addr write addrFl|src coarse_val
// w 60 4 0 5 : w i2c_addr read src read_addr (set the read address to register 5)
// r 60 4 3 : r i2c_addr <dum> cnt (read the first 3 reg's beginning w/ 5)
/*
AT TINY 85
+--\/--+
RESET _| 1 8 |_ +5V
~OC1B HOLD PINB3 _| 2 7 |_ SCL yellow
OC1B ONSET PINB4 _| 3 6 |_ PINB1 LED
GND _| 4 5 |_ SDA orange
+------+
* = Serial and/or programming pins on Arduino as ISP
*/
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
#define F_CPU 16000000L
#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include "usiTwiSlave.h"
#define HOLD_DIR DDB3
#define ATTK_DIR DDB4
#define LED_DIR DDB1
#define HOLD_PIN PINB3
#define ATTK_PIN PINB4
#define LED_PIN PINB1
// Opcodes
enum
{
kSetPwm_Op = 0, // Set PWM duty/hz/div 0 {<duty> {<freq> {<div>}}} div:2=2,3=4,4=8,5=16,6=32,7=64,8=128,9=256,10=512,11=1024,12=2048,13=4096,14=8192,15=16384
kNoteOnVel_Op = 1, // Turn on note 3 {<vel>}
kNoteOnUsec_Op = 2, // Turn on note 4 {<coarse> {<fine> {<prescale>}}}
kNoteOff_Op = 3, // Turn off note 5
kSetReadAddr_Op = 4, // Set a read addr. 6 {<src>} {<addr>} } src: 0=reg 1=table 2=eeprom
kWrite_Op = 5, // Set write 7 {<addrfl|src> {addr} {<value0> ... {<valueN>}} addrFl:0x80 src: 4=reg 5=table 6=eeprom
kWriteTable_Op = 6, // Write table to EEprom 9
kHoldDelay_Op = 7, // Set hold delay {<coarse> {<fine>}}
kFlags_Op = 8, // Set flags variable
kInvalid_Op = 9 //
};
enum
{
kReg_Rd_Addr_idx = 0, // Next Reg Address to read
kTable_Rd_Addr_idx = 1, // Next Table Address to read
kEE_Rd_Addr_idx = 2, // Next EEPROM address to read
kRead_Src_idx = 3, // kReg_Rd_Addr_idx=reg, kTable_Rd_Addr_idx=table, kEE_Rd_Addr_idx=eeprom
kReg_Wr_Addr_idx = 4, // Next Reg Address to write
kTable_Wr_Addr_idx = 5, // Next Table Address to write
kEE_Wr_Addr_idx = 6, // Next EEPROM address to write
kWrite_Dst_idx = 7, // kReg_Wr_Addr_idx=reg, kTable_Wr_Addr_idx=table, kEE_Wr_Addr_idx=eeprom
kTmr_Coarse_idx = 8, //
kTmr_Fine_idx = 9, //
kTmr_Prescale_idx = 10, // Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024 Default: 4 (16us)
kPwm_Duty_idx = 11, //
kPwm_Freq_idx = 12, //
kPwm_Div_idx = 13, //
kState_idx = 14, // 1=attk 2=hold
kError_Code_idx = 15, // Error Code
kMax_Coarse_Tmr_idx = 16, // Max. allowable coarse timer value
kDelay_Coarse_idx = 17, // (17,18)=2000 (0,6)=100
kDelay_Fine_idx = 18,
kFlags_idx = 19,
kMax_idx
};
enum
{
kState_Attk_Fl = 1,
kState_Hold_Fl = 2
};
// ctl_regs[kFlags_idx] bits
enum
{
kHoldOnAttk_Fl = 0x01
};
volatile uint8_t ctl_regs[] =
{
0, // 0 (0-(kMax_idx-1)) Reg Read Addr
0, // 1 (0-255) Table Read Addr
0, // 2 (0-255) EE Read Addr
kReg_Rd_Addr_idx, // 3 (0-2) Read source
0, // 4 (0-(kMax_idx-1)) Reg Write Addr
0, // 5 (0-255) Table Write Addr
0, // 6 (0-255) EE Write Addr
kReg_Wr_Addr_idx, // 7 (0-2) Write source
5, // 8 (0-255) Timer 0 Coarse Value (20400 us)
0, // 9 (0-255) Timer 0 Fine Value
4, // 10 (1-5) 4=16us per tick
127, // 11 (0-255) Pwm Duty cycle
255, // 12 (0-255) Pwm Frequency (123 Hz)
5, // 13 (0-15) Pwm clock div
0, // 14 state flags 1=attk 2=hold (read/only)
0, // 15 (0-255) Error bit field
14, // 16 (0-255) Max allowable coarse timer count
0, // 17 (0-255) Hold coarse delay
250, // 18 (0-255) Hold fine delay 0,6=100us 0,124=2000us w/ 16us Tmr0 tick
0 // 19 (0-255) Flags 1=hold-on-attack
};
// These registers are saved to Eeprom
uint8_t eeprom_addr[] =
{
kTmr_Prescale_idx,
kPwm_Duty_idx,
kPwm_Freq_idx,
kPwm_Div_idx
};
#define tableN 256
uint8_t table[ tableN ]; // [ coarse_0,fine_0, coarse_1, fine_1, .... coarse_127,fine_127]
enum
{
kInvalid_Read_Src_ErrFl = 0x01,
kInvalid_Write_Dst_ErrFl = 0x02,
kInvalid_Coarse_Tmr_ErrFl = 0x04
};
#define set_error( flag ) ctl_regs[ kError_Code_idx ] |= (flag)
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// EEPROM
//
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
EEAR = ucAddress; // Set up address and data registers
EEDR = ucData;
EECR |= (1<<EEMPE); // Write logical one to EEMPE
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
}
uint8_t EEPROM_read(uint8_t ucAddress)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EEAR = ucAddress; // Set up address register
EECR |= (1<<EERE); // Start eeprom read by writing EERE
return EEDR; // Return data from data register
}
void write_table()
{
uint8_t i;
uint8_t regN = sizeof(eeprom_addr);
// write the persistent registers
for(i=0; i<regN; ++i)
EEPROM_write( i, ctl_regs[ eeprom_addr[i] ] );
// write the table
for(i=0; i<tableN; ++i)
EEPROM_write( regN+i, table[i] );
}
void load_table()
{
uint8_t i;
uint8_t regN = sizeof(eeprom_addr);
// read the persistent registers
for(i=0; i<regN; ++i)
ctl_regs[ eeprom_addr[i] ] = EEPROM_read(i);
// read the tabke
for(i=0; i<tableN; ++i)
table[i] = EEPROM_read(regN + i);
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Timer0
//
uint16_t stage1_cnt = 0;
uint16_t stage2_cnt = 0;
uint8_t stage1_coarse_cnt = 0;
uint8_t stage1_fine_cnt = 0;
uint8_t stage2_coarse_cnt = 0;
uint8_t stage2_fine_cnt = 0;
uint8_t hold_beg_first_fl = 0;
volatile uint8_t tmr0_state = 0; // current timer mode: 0=disabled 1=coarse mode, 2=fine mode
volatile uint8_t tmr0_coarse_cur = 0;
#define set_attack() do { ctl_regs[kState_idx] |= kState_Attk_Fl; PORTB |= _BV(ATTK_PIN); } while(0)
#define clear_attack() do { PORTB &= ~_BV(ATTK_PIN); ctl_regs[kState_idx] &= ~kState_Attk_Fl; } while(0)
#define clear_hold() PORTB &= ~(_BV(HOLD_PIN))
#define set_hold() PORTB |= _BV(HOLD_PIN)
void hold_begin()
{
// Reset the PWM counter to to OCR1C (PWM TOP) so that it immediately triggers
// set_hold() and latches any new value for OCR1B (See: 12.2.2 Timer/Counter1 in PWM Mode)
// If this is not done and OCR1B was modified the first pulse will have the incorrect length.
TCNT1 = ctl_regs[kPwm_Freq_idx];
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // PWM interupt Enable interrupts
TCCR1 |= ctl_regs[ kPwm_Div_idx]; // 32us period (512 divider) prescaler
GTCCR |= _BV(PSR1); // Force the pre-scale to be latched by setting PSR1
}
void hold_end()
{
clear_attack();
clear_hold();
TIMSK &= ~_BV(OCIE0A); // Clear timer interrupt (shouldn't be necessary but doesn't hurt on during note-off message)
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // PWM interupt disable interrupts
TCCR1 = 0; // Stop the PWM timer by setting the pre-scale to 0
GTCCR |= _BV(PSR1); // Force the pre-scale to be latched by setting PSR1
}
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
void tmr0_reset()
{
uint16_t delayCnt = ctl_regs[ kDelay_Coarse_idx ];
delayCnt = (delayCnt<<8) + ctl_regs[ kDelay_Fine_idx ];
uint16_t attkCnt = ctl_regs[ kTmr_Coarse_idx ];
attkCnt = (attkCnt<<8) + ctl_regs[ kTmr_Fine_idx ];
if( attkCnt > delayCnt )
{
stage1_cnt = attkCnt - delayCnt;
stage2_cnt = delayCnt;
hold_beg_first_fl = 1;
}
else
{
stage1_cnt = attkCnt;
stage2_cnt = delayCnt - attkCnt;
hold_beg_first_fl = 0;
}
stage1_coarse_cnt = stage1_cnt >> 8;
stage1_fine_cnt = stage1_cnt & 0xff;
stage2_coarse_cnt = stage2_cnt >> 8;
stage2_fine_cnt = stage2_cnt & 0xff;
tmr0_coarse_cur = 0; // clear the coarse time counter
// always start in mode=1 because even if coarse count==0
// because a COMPA interrupt will be fired immediately when the
// timer starts
tmr0_state = 1;
OCR0A = 0xff;
TCNT0 = 0;
clear_hold(); // clear the hold pin
set_attack(); // set the attack pin
TIMSK |= _BV(OCIE0A); // enable the timer interrupt
//if( ctl_regs[ kFlags_idx ] & kHoldOnAttk_Fl )
// hold_begin();
}
ISR(TIMER0_COMPA_vect)
{
switch( tmr0_state )
{
case 0: // timer disabled
break;
case 1: // stage1 coarse mode
// Note: the '+1' here is necessary to absorb an interrupt which is occurring
// for an unknown reason. It must have something to do with resetting the
// OCIE0A interrupt because it doesn't occur on the hold delay coarse timing.
if( ++tmr0_coarse_cur >= stage1_coarse_cnt+1 )
{
tmr0_state = 2;
OCR0A = stage1_fine_cnt;
}
break;
case 2: // stage1 fine mode complete
// if a coarse delay count exists then go into stage2 coarse mode
if( stage2_coarse_cnt > 0 )
{
tmr0_state = 3;
tmr0_coarse_cur = 0;
OCR0A = 0xff;
}
else // otherwise go into fine mode
{
tmr0_state = 4;
OCR0A = stage2_fine_cnt;
}
if( hold_beg_first_fl )
hold_begin(); // start hold PWM
else
clear_attack();
break;
case 3: // stage2 coarse mode
if( ++tmr0_coarse_cur >= stage2_coarse_cnt )
{
tmr0_state = 4;
OCR0A = stage2_fine_cnt;
}
break;
case 4: // stage2 fine mode complete
TIMSK &= ~_BV(OCIE0A); // clear timer interrupt
tmr0_state = 0;
if( hold_beg_first_fl )
clear_attack();
else
hold_begin();
//if( !(ctl_regs[ kFlags_idx ] & kHoldOnAttk_Fl) )
// hold_begin();
break;
}
}
void tmr0_init()
{
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF
TCCR0A = 0; // Set the timer control registers to their default value
TCCR0B = 0;
TCCR0A |= 0x02; // CTC mode
TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler
GTCCR |= _BV(PSR0); // Trigger the pre-scaler to be reset to the selected value
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Pwm
//
// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B
// but since these pins are not available this code uses
// ISR's to redirect the output to PIN3
void pwm1_update()
{
OCR1B = ctl_regs[kPwm_Duty_idx]; // control duty cycle
OCR1C = ctl_regs[kPwm_Freq_idx]; // PWM frequency pre-scaler
}
// Called when TCNT1 == OCR1C.
// At this point TCNT1 is reset to 0, new OCR1B values are latched from temp. loctaion to OCR1B
ISR(TIMER1_OVF_vect)
{
set_hold();
}
// Called when TCNT1 == OCR1B
ISR(TIMER1_COMPB_vect)
{
clear_hold();
}
void pwm1_init()
{
DDRB |= _BV(HOLD_DIR); // setup PB3 as output
TCCR1 = 0; // Set the control registers to their default
GTCCR = 0;
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
pwm1_update();
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Tracks the current register pointer position
volatile uint8_t reg_position = 0;
const uint8_t reg_size = sizeof(ctl_regs);
//
// Read Request Handler
//
// This is called for each read request we receive, never put more
// than one byte of data (with TinyWireS.send) to the send-buffer when
// using this callback
//
void on_request()
{
uint8_t val = 0;
switch( ctl_regs[ kRead_Src_idx ] )
{
case kReg_Rd_Addr_idx:
val = ctl_regs[ ctl_regs[kReg_Rd_Addr_idx] ];
break;
case kTable_Rd_Addr_idx:
val = table[ ctl_regs[kTable_Rd_Addr_idx] ];
break;
case kEE_Rd_Addr_idx:
val = EEPROM_read(ctl_regs[kEE_Rd_Addr_idx]);
break;
default:
set_error( kInvalid_Read_Src_ErrFl );
return;
}
usiTwiTransmitByte(val);
ctl_regs[ ctl_regs[ kRead_Src_idx ] ] += 1;
}
void _write_op( uint8_t* stack, uint8_t stackN )
{
uint8_t stack_idx = 0;
if( stackN > 0 )
{
uint8_t src = stack[0] & 0x07;
uint8_t addr_fl = stack[0] & 0x08;
// verify the source value
if( src < kReg_Wr_Addr_idx || src > kEE_Wr_Addr_idx )
{
set_error( kInvalid_Write_Dst_ErrFl );
return;
}
// set the write source
stack_idx = 1;
ctl_regs[ kWrite_Dst_idx ] = src;
// if an address value was passed also ....
if( addr_fl && stackN > 1 )
{
stack_idx = 2;
ctl_regs[ src ] = stack[1];
}
}
//
for(; stack_idx<stackN; ++stack_idx)
{
uint8_t addr_idx = ctl_regs[ ctl_regs[kWrite_Dst_idx] ]++;
uint8_t val = stack[ stack_idx ];
switch( ctl_regs[ kWrite_Dst_idx ] )
{
case kReg_Wr_Addr_idx: ctl_regs[ addr_idx ] = val; break;
case kTable_Wr_Addr_idx: table[ addr_idx ] = val; break;
case kEE_Wr_Addr_idx: EEPROM_write( table[ addr_idx ], val); break;
default:
set_error( kInvalid_Write_Dst_ErrFl );
break;
}
}
}
//
// The I2C data received -handler
//
// This needs to complete before the next incoming transaction (start,
// data, restart/stop) on the bus does so be quick, set flags for long
// running tasks to be called from the mainloop instead of running
// them directly,
//
void on_receive( uint8_t byteN )
{
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
const uint8_t stackN = 16;
uint8_t stack_idx = 0;
uint8_t stack[ stackN ];
uint8_t i;
if (byteN < 1 || byteN > TWI_RX_BUFFER_SIZE)
{
// Sanity-check
return;
}
// get the register index to read/write
uint8_t op_id = usiTwiReceiveByte();
byteN--;
// If only one byte was received then this was a read request
// and the buffer pointer (reg_position) is now set to return the byte
// at this location on the subsequent call to on_request() ...
if(byteN)
{
while( byteN-- )
{
stack[stack_idx] = usiTwiReceiveByte();
++stack_idx;
}
}
switch( op_id )
{
case kSetPwm_Op:
for(i=0; i<stack_idx && i<3; ++i)
ctl_regs[ kPwm_Duty_idx + i ] = stack[i];
pwm1_update();
break;
case kNoteOnUsec_Op:
for(i=0; i<stack_idx && i<3; ++i)
ctl_regs[ kTmr_Coarse_idx + i ] = stack[i];
// validate the coarse error value
if( ctl_regs[ kTmr_Coarse_idx ] > ctl_regs[ kMax_Coarse_Tmr_idx ])
{
ctl_regs[ kTmr_Coarse_idx ] = ctl_regs[ kMax_Coarse_Tmr_idx ];
set_error( kInvalid_Coarse_Tmr_ErrFl );
}
// if a prescaler was included then the timer needs to be re-initialized
if( i == 3 )
{
cli();
tmr0_init();
sei();
}
tmr0_reset();
break;
case kNoteOff_Op:
hold_end();
break;
case kSetReadAddr_Op:
if( stack_idx > 0 )
{
ctl_regs[ kRead_Src_idx ] = stack[0];
if( stack_idx > 1 )
ctl_regs[ ctl_regs[ kRead_Src_idx ] ] = stack[1];
}
break;
case kWrite_Op:
_write_op( stack, stack_idx );
break;
case kWriteTable_Op:
write_table();
break;
case kHoldDelay_Op:
for(i=0; i<stack_idx && i<2; ++i)
ctl_regs[ kDelay_Coarse_idx + i ] = stack[i];
break;
case kFlags_Op:
ctl_regs[ kFlags_idx ] = stack[0];
}
}
int main(void)
{
cli(); // mask all interupts
DDRB |= _BV(ATTK_DIR) + _BV(HOLD_DIR) + _BV(LED_DIR); // setup PB4,PB3,PB1 as output
PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN) + _BV(LED_PIN)); // clear output pins
tmr0_init();
pwm1_init();
// setup i2c library
usi_onReceiverPtr = on_receive;
usi_onRequestPtr = on_request;
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
sei();
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
_delay_ms(1000);
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
while(1)
{
if (!usi_onReceiverPtr)
{
// no onReceive callback, nothing to do...
continue;
}
if (!(USISR & ( 1 << USIPF )))
{
// Stop not detected
continue;
}
uint8_t amount = usiTwiAmountDataInReceiveBuffer();
if (amount == 0)
{
// no data in buffer
continue;
}
usi_onReceiverPtr(amount);
}
return 0;
}

View File

@ -40,13 +40,16 @@ Change Activity:
/********************************************************************************
includes
********************************************************************************/
#include <stddef.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include "usiTwiSlave.h"
//#include "../common/util.h"
//request_func_t _onTwiDataRequest = NULL;
request_func_t usi_onRequestPtr = NULL;
receive_func_t usi_onReceiverPtr = NULL;
/********************************************************************************
device dependent defines

View File

@ -36,6 +36,7 @@ Change Activity:
/********************************************************************************
includes
@ -52,17 +53,26 @@ Change Activity:
********************************************************************************/
void usiTwiSlaveInit( uint8_t );
void usiTwiTransmitByte( uint8_t );
uint8_t usiTwiReceiveByte( void );
bool usiTwiDataInReceiveBuffer( void );
void (*_onTwiDataRequest)(void);
//void (*_onTwiDataRequest)(void);
//extern request_func_t _onTwiDataRequest;
bool usiTwiDataInTransmitBuffer(void);
uint8_t usiTwiAmountDataInReceiveBuffer(void);
// on_XXX handler pointers
void (*usi_onRequestPtr)(void);
void (*usi_onReceiverPtr)(uint8_t);
//void (*usi_onRequestPtr)(void);
//void (*usi_onReceiverPtr)(uint8_t);
typedef void (*request_func_t)(void);
typedef void (*receive_func_t)(uint8_t);
extern request_func_t usi_onRequestPtr;
extern receive_func_t usi_onReceiverPtr;
/********************************************************************************

Binary file not shown.

After

Width:  |  Height:  |  Size: 381 KiB