Browse Source

tiny/i2c_timer_pwm_2.c,tinyMakefile : New firmware version with programmable hold delay.

master
kevin 3 years ago
parent
commit
c5c95c5f97
2 changed files with 686 additions and 1 deletions
  1. 1
    1
      control/tiny/Makefile
  2. 685
    0
      control/tiny/i2c_timer_pwm_2.c

+ 1
- 1
control/tiny/Makefile View File

@@ -7,7 +7,7 @@ TTY=/dev/ttyACM0
7 7
 endif
8 8
 
9 9
 ifndef TARGET
10
-TARGET=i2c_timer_pwm
10
+TARGET=i2c_timer_pwm_2
11 11
 endif
12 12
 
13 13
 MCU=attiny85

+ 685
- 0
control/tiny/i2c_timer_pwm_2.c View File

@@ -0,0 +1,685 @@
1
+//| Copyright: (C) 2018-2020 Kevin Larke <contact AT larke DOT org>
2
+//| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
3
+
4
+// w 60 0  1 10    : w i2c_addr SetPWM enable duty_val
5
+// w 60 5 12  8 32 : w i2c_addr write addrFl|src coarse_val
6
+// w 60 4  0  5    : w i2c_addr read  src read_addr  (set the read address to register 5)
7
+// r 60 4  3       : r i2c_addr <dum> cnt            (read the first 3 reg's beginning w/ 5)
8
+/*                                    
9
+                                    AT TINY 85
10
+                                     +--\/--+
11
+                              RESET _| 1  8 |_ +5V
12
+             ~OC1B       HOLD PINB3 _| 2  7 |_ SCL         yellow 
13
+              OC1B      ONSET PINB4 _| 3  6 |_ PINB1 LED
14
+                                GND _| 4  5 |_ SDA         orange
15
+                                     +------+
16
+        * = Serial and/or programming pins on Arduino as ISP
17
+*/
18
+
19
+
20
+// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
21
+#define F_CPU 16000000L
22
+
23
+#include <stdio.h>
24
+#include <avr/io.h>
25
+#include <util/delay.h>
26
+#include <avr/interrupt.h>
27
+
28
+#include "usiTwiSlave.h"
29
+
30
+#define HOLD_DIR DDB3
31
+#define ATTK_DIR DDB4
32
+#define LED_DIR  DDB1
33
+
34
+#define HOLD_PIN PINB3
35
+#define ATTK_PIN PINB4
36
+#define LED_PIN  PINB1
37
+
38
+// Opcodes
39
+enum
40
+{ 
41
+ kSetPwm_Op         =  0,  // Set PWM duty/hz/div   0 {<duty> {<freq> {<div>}}}  div:2=2,3=4,4=8,5=16,6=32,7=64,8=128,9=256,10=512,11=1024,12=2048,13=4096,14=8192,15=16384
42
+ kNoteOnVel_Op      =  1,  // Turn on note          3 {<vel>}
43
+ kNoteOnUsec_Op     =  2,  // Turn on note          4 {<coarse> {<fine> {<prescale>}}}
44
+ kNoteOff_Op        =  3,  // Turn off note         5
45
+ kSetReadAddr_Op    =  4,  // Set a read addr.      6 {<src>} {<addr>} }  src: 0=reg 1=table 2=eeprom
46
+ kWrite_Op          =  5,  // Set write             7 {<addrfl|src> {addr}  {<value0> ... {<valueN>}}  addrFl:0x80  src: 4=reg 5=table 6=eeprom
47
+ kWriteTable_Op     =  6,  // Write table to EEprom 9
48
+ kHoldDelay_Op      =  7,  // Set hold delay          {<coarse> {<fine>}}
49
+ kFlags_Op          =  8,  // Set flags variable 
50
+ kInvalid_Op        =  9   //                                             
51
+};
52
+
53
+
54
+enum
55
+{
56
+ kReg_Rd_Addr_idx    =  0,  // Next Reg Address to read
57
+ kTable_Rd_Addr_idx  =  1,  // Next Table Address to read
58
+ kEE_Rd_Addr_idx     =  2,  // Next EEPROM address to read
59
+ kRead_Src_idx       =  3,  // kReg_Rd_Addr_idx=reg,  kTable_Rd_Addr_idx=table, kEE_Rd_Addr_idx=eeprom
60
+ 
61
+ kReg_Wr_Addr_idx    =  4,  // Next Reg Address to write
62
+ kTable_Wr_Addr_idx  =  5,  // Next Table Address to write
63
+ kEE_Wr_Addr_idx     =  6,  // Next EEPROM address to write
64
+ kWrite_Dst_idx      =  7,  // kReg_Wr_Addr_idx=reg,  kTable_Wr_Addr_idx=table, kEE_Wr_Addr_idx=eeprom
65
+ 
66
+ kTmr_Coarse_idx     =  8,  //  
67
+ kTmr_Fine_idx       =  9,  // 
68
+ kTmr_Prescale_idx   = 10,  // Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024  Default: 4 (16us)
69
+ 
70
+ kPwm_Duty_idx       = 11,  // 
71
+ kPwm_Freq_idx       = 12,  //
72
+ kPwm_Div_idx        = 13,  //
73
+
74
+ kState_idx          = 14, // 1=attk 2=hold
75
+ kError_Code_idx     = 15, // Error Code
76
+ kMax_Coarse_Tmr_idx = 16, // Max. allowable coarse timer value
77
+
78
+ kDelay_Coarse_idx   = 17, // (17,18)=2000 (0,6)=100
79
+ kDelay_Fine_idx     = 18,
80
+
81
+ kFlags_idx          = 19,
82
+ 
83
+ kMax_idx
84
+};
85
+
86
+enum
87
+{
88
+ kState_Attk_Fl        = 1,
89
+ kState_Hold_Fl        = 2
90
+};
91
+
92
+// ctl_regs[kFlags_idx]  bits
93
+enum
94
+{
95
+  kHoldOnAttk_Fl = 0x01
96
+};
97
+
98
+volatile uint8_t ctl_regs[] =
99
+{
100
+   0,                //  0 (0-(kMax_idx-1)) Reg Read Addr   
101
+   0,                //  1 (0-255)          Table Read Addr
102
+   0,                //  2 (0-255)          EE Read Addr  
103
+   kReg_Rd_Addr_idx, //  3 (0-2)    Read source
104
+   
105
+   0,                //  4 (0-(kMax_idx-1)) Reg Write Addr   
106
+   0,                //  5 (0-255)          Table Write Addr
107
+   0,                //  6 (0-255)          EE Write Addr
108
+   kReg_Wr_Addr_idx, //  7 (0-2)    Write source
109
+   
110
+   5,                //  8 (0-255)  Timer 0 Coarse Value (20400 us)
111
+   0,                //  9 (0-255)  Timer 0 Fine Value
112
+   4,                // 10 (1-5)    4=16us per tick
113
+   
114
+ 127,                // 11 (0-255)  Pwm Duty cycle
115
+ 255,                // 12 (0-255)  Pwm Frequency  (123 Hz)
116
+   5,                // 13 (0-15)   Pwm clock div 
117
+   
118
+   0,                // 14 state flags 1=attk   2=hold  (read/only)
119
+   0,                // 15 (0-255)  Error bit field
120
+   14,               // 16 (0-255) Max allowable coarse timer count
121
+
122
+   0,                // 17 (0-255) Hold coarse delay  
123
+ 250,                // 18 (0-255) Hold fine delay    0,6=100us 0,124=2000us w/ 16us Tmr0 tick
124
+   0                 // 19 (0-255) Flags 1=hold-on-attack
125
+   
126
+};
127
+
128
+// These registers are saved to Eeprom
129
+uint8_t eeprom_addr[] =
130
+{
131
+ kTmr_Prescale_idx,
132
+ kPwm_Duty_idx,
133
+ kPwm_Freq_idx,
134
+ kPwm_Div_idx
135
+};
136
+
137
+
138
+
139
+#define tableN 256
140
+uint8_t table[ tableN ]; // [ coarse_0,fine_0, coarse_1, fine_1, .... coarse_127,fine_127]
141
+ 
142
+
143
+enum
144
+{
145
+ kInvalid_Read_Src_ErrFl   = 0x01,
146
+ kInvalid_Write_Dst_ErrFl  = 0x02,
147
+ kInvalid_Coarse_Tmr_ErrFl = 0x04
148
+};
149
+
150
+#define set_error( flag ) ctl_regs[ kError_Code_idx ] |= (flag)
151
+
152
+//------------------------------------------------------------------------------
153
+//------------------------------------------------------------------------------
154
+//------------------------------------------------------------------------------
155
+//
156
+// EEPROM
157
+//
158
+
159
+void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
160
+{
161
+  // Wait for completion of previous write 
162
+  while(EECR & (1<<EEPE))
163
+  {}
164
+    
165
+  EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode   
166
+  EEAR = ucAddress;             // Set up address and data registers 
167
+  EEDR = ucData;  
168
+  EECR |= (1<<EEMPE);           // Write logical one to EEMPE 
169
+  EECR |= (1<<EEPE);            // Start eeprom write by setting EEPE 
170
+}
171
+
172
+uint8_t EEPROM_read(uint8_t ucAddress)
173
+{
174
+  // Wait for completion of previous write 
175
+  while(EECR & (1<<EEPE))
176
+  {}
177
+    
178
+  EEAR = ucAddress;  // Set up address register 
179
+  EECR |= (1<<EERE); // Start eeprom read by writing EERE 
180
+  return EEDR;       // Return data from data register 
181
+}
182
+
183
+void write_table()
184
+{
185
+  uint8_t i;
186
+  uint8_t regN = sizeof(eeprom_addr);
187
+
188
+  // write the persistent registers
189
+  for(i=0; i<regN; ++i)
190
+    EEPROM_write( i, ctl_regs[ eeprom_addr[i] ] );
191
+
192
+  // write the table
193
+  for(i=0; i<tableN; ++i)
194
+    EEPROM_write( regN+i, table[i] );
195
+}
196
+
197
+void load_table()
198
+{
199
+  uint8_t i;
200
+  uint8_t regN = sizeof(eeprom_addr);
201
+
202
+  // read the persistent registers
203
+  for(i=0; i<regN; ++i)
204
+    ctl_regs[ eeprom_addr[i] ] = EEPROM_read(i);
205
+
206
+  // read the tabke
207
+  for(i=0; i<tableN; ++i)
208
+    table[i] = EEPROM_read(regN + i);
209
+}
210
+
211
+
212
+//------------------------------------------------------------------------------
213
+//------------------------------------------------------------------------------
214
+//------------------------------------------------------------------------------
215
+//
216
+// Timer0
217
+//
218
+
219
+uint16_t stage1_cnt        = 0;
220
+uint16_t stage2_cnt        = 0;
221
+uint8_t  stage1_coarse_cnt = 0;
222
+uint8_t  stage1_fine_cnt   = 0;
223
+uint8_t  stage2_coarse_cnt = 0;
224
+uint8_t  stage2_fine_cnt   = 0;
225
+uint8_t  hold_beg_first_fl = 0;
226
+
227
+volatile uint8_t tmr0_state        = 0;    // current timer mode: 0=disabled 1=coarse mode, 2=fine mode 
228
+volatile uint8_t tmr0_coarse_cur   = 0;
229
+
230
+
231
+
232
+
233
+#define set_attack()    do { ctl_regs[kState_idx] |= kState_Attk_Fl;  PORTB |= _BV(ATTK_PIN);            } while(0)
234
+#define clear_attack()  do { PORTB &= ~_BV(ATTK_PIN);           ctl_regs[kState_idx] &= ~kState_Attk_Fl; } while(0)
235
+
236
+#define clear_hold() PORTB &= ~(_BV(HOLD_PIN))
237
+#define set_hold()   PORTB |= _BV(HOLD_PIN)
238
+
239
+
240
+void hold_begin()
241
+{
242
+  // Reset the PWM counter to to OCR1C (PWM TOP) so that it immediately triggers
243
+  // set_hold() and latches any new value for OCR1B (See: 12.2.2 Timer/Counter1 in PWM Mode)
244
+  // If this is not done and OCR1B was modified the first pulse will have the incorrect length.
245
+  TCNT1   = ctl_regs[kPwm_Freq_idx];  
246
+  TIMSK  |= _BV(OCIE1B) + _BV(TOIE1);    // PWM interupt Enable interrupts
247
+
248
+  TCCR1  |= ctl_regs[ kPwm_Div_idx];     // 32us period (512 divider) prescaler
249
+  GTCCR  |= _BV(PSR1);                   // Force the pre-scale to be latched by setting PSR1
250
+  
251
+}
252
+
253
+void hold_end()
254
+{
255
+  clear_attack();
256
+  clear_hold();
257
+  TIMSK  &= ~_BV(OCIE0A);                // Clear timer interrupt (shouldn't be necessary but doesn't hurt on during note-off message)
258
+  TIMSK  &= ~(_BV(OCIE1B) + _BV(TOIE1)); // PWM interupt disable interrupts
259
+
260
+  TCCR1  = 0;              // Stop the PWM timer by setting the pre-scale to 0
261
+  GTCCR  |= _BV(PSR1);     // Force the pre-scale to be latched by setting PSR1
262
+  
263
+}
264
+
265
+// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
266
+void tmr0_reset()
267
+{
268
+  uint16_t delayCnt = ctl_regs[ kDelay_Coarse_idx ];
269
+  delayCnt = (delayCnt<<8) + ctl_regs[ kDelay_Fine_idx ];
270
+
271
+  uint16_t attkCnt = ctl_regs[ kTmr_Coarse_idx  ];
272
+  attkCnt = (attkCnt<<8) + ctl_regs[ kTmr_Fine_idx ];
273
+
274
+  if( attkCnt > delayCnt )
275
+  {
276
+    stage1_cnt = attkCnt - delayCnt;
277
+    stage2_cnt = delayCnt;
278
+    hold_beg_first_fl = 1;
279
+  }
280
+  else
281
+  {    
282
+    stage1_cnt = attkCnt;
283
+    stage2_cnt = delayCnt - attkCnt;    
284
+    hold_beg_first_fl = 0;
285
+  }
286
+
287
+  stage1_coarse_cnt = stage1_cnt >> 8;
288
+  stage1_fine_cnt   = stage1_cnt & 0xff;
289
+  
290
+  stage2_coarse_cnt = stage2_cnt >> 8;
291
+  stage2_fine_cnt   = stage2_cnt & 0xff;
292
+  
293
+  tmr0_coarse_cur = 0;               // clear the coarse time counter
294
+  
295
+  // always start in mode=1 because even if coarse count==0
296
+  // because a COMPA interrupt will be fired immediately when the
297
+  // timer starts
298
+  tmr0_state = 1;   
299
+  OCR0A      = 0xff;    
300
+  TCNT0      = 0;
301
+
302
+  clear_hold();   // clear the hold pin
303
+  set_attack();   // set the attack pin
304
+  
305
+  TIMSK |= _BV(OCIE0A);     // enable the timer interrupt
306
+
307
+  //if( ctl_regs[ kFlags_idx ] & kHoldOnAttk_Fl )
308
+  //  hold_begin();
309
+  
310
+}
311
+
312
+ISR(TIMER0_COMPA_vect)
313
+{
314
+  switch( tmr0_state )
315
+  {
316
+    case 0: // timer disabled
317
+      break;
318
+
319
+    case 1: // stage1 coarse mode
320
+      // Note: the '+1' here is necessary to absorb an interrupt which is occurring
321
+      // for an unknown reason.  It must have something to do with resetting the
322
+      // OCIE0A interrupt because it doesn't occur on the hold delay coarse timing.
323
+      if( ++tmr0_coarse_cur >= stage1_coarse_cnt+1 )
324
+      {
325
+        tmr0_state = 2;
326
+        OCR0A      = stage1_fine_cnt;
327
+      }
328
+      break;
329
+
330
+    case 2: // stage1 fine mode complete
331
+
332
+      // if a coarse delay count exists then go into stage2 coarse mode 
333
+      if( stage2_coarse_cnt > 0 )
334
+      {
335
+        tmr0_state      = 3;
336
+        tmr0_coarse_cur = 0;
337
+        OCR0A           = 0xff;
338
+      }
339
+      else // otherwise go into fine mode
340
+      {
341
+        tmr0_state = 4;
342
+        OCR0A      = stage2_fine_cnt;
343
+      }
344
+
345
+      if( hold_beg_first_fl )
346
+        hold_begin();  // start hold PWM
347
+      else
348
+        clear_attack();
349
+      
350
+      break;
351
+
352
+    case 3: // stage2 coarse mode
353
+      if( ++tmr0_coarse_cur >= stage2_coarse_cnt )
354
+      {
355
+        tmr0_state = 4;
356
+        OCR0A      = stage2_fine_cnt;
357
+      }      
358
+      break;
359
+      
360
+    case 4: // stage2 fine mode complete
361
+      TIMSK      &= ~_BV(OCIE0A);    // clear timer interrupt
362
+      tmr0_state  = 0;
363
+
364
+      if( hold_beg_first_fl )        
365
+        clear_attack();
366
+      else
367
+        hold_begin();
368
+      
369
+      //if( !(ctl_regs[ kFlags_idx ] & kHoldOnAttk_Fl) )
370
+      //  hold_begin();
371
+      break;      
372
+  }
373
+}
374
+
375
+
376
+
377
+void tmr0_init()
378
+{
379
+  TIMSK  &= ~_BV(OCIE0A);                 // Disable interrupt TIMER1_OVF
380
+  TCCR0A = 0;                             // Set the timer control registers to their default value
381
+  TCCR0B = 0;
382
+  TCCR0A  |=  0x02;                       // CTC mode
383
+  TCCR0B  |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler
384
+  GTCCR   |= _BV(PSR0);                   // Trigger the pre-scaler to be reset to the selected value
385
+}
386
+
387
+
388
+//------------------------------------------------------------------------------
389
+//------------------------------------------------------------------------------
390
+//------------------------------------------------------------------------------
391
+//
392
+// Pwm
393
+//
394
+// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B
395
+// but since these pins are not available this code uses
396
+// ISR's to redirect the output to PIN3
397
+
398
+void pwm1_update()
399
+{
400
+  OCR1B   = ctl_regs[kPwm_Duty_idx]; // control duty cycle
401
+  OCR1C   = ctl_regs[kPwm_Freq_idx]; // PWM frequency pre-scaler
402
+}
403
+
404
+
405
+// Called when TCNT1 == OCR1C.
406
+// At this point TCNT1 is reset to 0, new OCR1B values are latched from temp. loctaion to OCR1B
407
+ISR(TIMER1_OVF_vect)
408
+{
409
+  set_hold();
410
+}
411
+
412
+// Called when TCNT1 == OCR1B
413
+ISR(TIMER1_COMPB_vect)
414
+{
415
+  clear_hold();
416
+}
417
+
418
+
419
+void pwm1_init()
420
+{
421
+  DDRB   |=  _BV(HOLD_DIR);  // setup PB3 as output
422
+  
423
+  TCCR1 = 0; // Set the control registers to their default
424
+  GTCCR = 0;
425
+  GTCCR  |= _BV(PWM1B);    // Enable PWM B and disconnect output pins
426
+  
427
+  pwm1_update();
428
+
429
+}
430
+
431
+//------------------------------------------------------------------------------
432
+//------------------------------------------------------------------------------
433
+//------------------------------------------------------------------------------
434
+
435
+// Tracks the current register pointer position
436
+volatile uint8_t reg_position = 0;
437
+const uint8_t    reg_size = sizeof(ctl_regs);
438
+
439
+//
440
+// Read Request Handler
441
+//
442
+// This is called for each read request we receive, never put more
443
+// than one byte of data (with TinyWireS.send) to the send-buffer when
444
+// using this callback
445
+//
446
+
447
+void on_request()
448
+{
449
+  uint8_t val = 0;
450
+  
451
+  switch( ctl_regs[ kRead_Src_idx ] )
452
+  {
453
+    case kReg_Rd_Addr_idx:
454
+      val = ctl_regs[ ctl_regs[kReg_Rd_Addr_idx] ];
455
+      break;
456
+
457
+    case kTable_Rd_Addr_idx:
458
+      val = table[ ctl_regs[kTable_Rd_Addr_idx] ];
459
+      break;
460
+
461
+    case kEE_Rd_Addr_idx:
462
+      val = EEPROM_read(ctl_regs[kEE_Rd_Addr_idx]);
463
+      break;
464
+
465
+    default:
466
+      set_error( kInvalid_Read_Src_ErrFl );
467
+      return;
468
+  }
469
+  
470
+  usiTwiTransmitByte(val);
471
+
472
+  ctl_regs[ ctl_regs[ kRead_Src_idx ]  ] += 1;
473
+
474
+}
475
+
476
+
477
+void _write_op( uint8_t* stack, uint8_t stackN )
478
+{
479
+  uint8_t stack_idx = 0;
480
+  
481
+  if( stackN > 0 )
482
+  {
483
+    uint8_t src     = stack[0] & 0x07;
484
+    uint8_t addr_fl = stack[0] & 0x08;
485
+
486
+    // verify the source value
487
+    if( src < kReg_Wr_Addr_idx  || src > kEE_Wr_Addr_idx )
488
+    {
489
+      set_error( kInvalid_Write_Dst_ErrFl );
490
+      return;
491
+    }
492
+
493
+    // set the write source
494
+    stack_idx                  = 1;
495
+    ctl_regs[ kWrite_Dst_idx ] = src;
496
+
497
+    // if an address value was passed also ....
498
+    if( addr_fl && stackN > 1 )
499
+    {
500
+      stack_idx       = 2;
501
+      ctl_regs[ src ] = stack[1];
502
+    }
503
+  }
504
+
505
+  //
506
+  for(; stack_idx<stackN; ++stack_idx)
507
+  {
508
+    uint8_t addr_idx = ctl_regs[ ctl_regs[kWrite_Dst_idx] ]++;
509
+    uint8_t val      = stack[ stack_idx ];
510
+    
511
+    switch( ctl_regs[ kWrite_Dst_idx ] )
512
+    {
513
+      case kReg_Wr_Addr_idx:   ctl_regs[ addr_idx ]           = val;  break;
514
+      case kTable_Wr_Addr_idx: table[ addr_idx ]              = val;  break;
515
+      case kEE_Wr_Addr_idx:    EEPROM_write( table[ addr_idx ], val); break;
516
+
517
+      default:
518
+        set_error( kInvalid_Write_Dst_ErrFl );
519
+        break;
520
+    }
521
+  }
522
+}
523
+
524
+//
525
+// The I2C data received -handler
526
+//
527
+// This needs to complete before the next incoming transaction (start,
528
+// data, restart/stop) on the bus does so be quick, set flags for long
529
+// running tasks to be called from the mainloop instead of running
530
+// them directly,
531
+//
532
+
533
+void on_receive( uint8_t byteN )
534
+{
535
+  PINB = _BV(LED_PIN);  // writes to PINB toggle the pins
536
+
537
+  const uint8_t stackN = 16;
538
+  uint8_t stack_idx = 0;
539
+  uint8_t stack[ stackN ];
540
+  uint8_t i;
541
+  
542
+  if (byteN < 1 || byteN > TWI_RX_BUFFER_SIZE)
543
+  {
544
+    // Sanity-check
545
+    return;
546
+  }
547
+
548
+  // get the register index to read/write
549
+  uint8_t op_id = usiTwiReceiveByte();
550
+    
551
+  byteN--;
552
+
553
+  // If only one byte was received then this was a read request
554
+  // and the buffer pointer (reg_position) is now set to return the byte
555
+  // at this location on the subsequent call to on_request() ...
556
+  if(byteN)
557
+  {
558
+    while( byteN-- )
559
+    {  
560
+      stack[stack_idx] = usiTwiReceiveByte();
561
+      ++stack_idx;
562
+    }
563
+  }
564
+  
565
+  switch( op_id )
566
+  {
567
+    case kSetPwm_Op:
568
+      for(i=0; i<stack_idx && i<3; ++i)
569
+        ctl_regs[ kPwm_Duty_idx + i ] = stack[i];
570
+
571
+      pwm1_update();
572
+      break;
573
+
574
+      
575
+    case kNoteOnUsec_Op:
576
+      for(i=0; i<stack_idx && i<3; ++i)
577
+        ctl_regs[ kTmr_Coarse_idx + i ] = stack[i];
578
+
579
+      // validate the coarse error value
580
+      if( ctl_regs[ kTmr_Coarse_idx ] > ctl_regs[ kMax_Coarse_Tmr_idx ])
581
+      {
582
+        ctl_regs[ kTmr_Coarse_idx ] = ctl_regs[ kMax_Coarse_Tmr_idx ];
583
+        set_error( kInvalid_Coarse_Tmr_ErrFl );
584
+      }   
585
+      // if a prescaler was included then the timer needs to be re-initialized
586
+      if( i == 3 )
587
+      {
588
+        cli();
589
+        tmr0_init();
590
+        sei();
591
+      }
592
+      
593
+      tmr0_reset();
594
+      break;
595
+
596
+    case kNoteOff_Op:
597
+      hold_end();
598
+      break;
599
+
600
+    case kSetReadAddr_Op:
601
+      if( stack_idx > 0 )
602
+      {
603
+        ctl_regs[ kRead_Src_idx ] = stack[0];
604
+      
605
+        if( stack_idx > 1 )
606
+          ctl_regs[ ctl_regs[ kRead_Src_idx ] ] = stack[1];
607
+      }
608
+      break;
609
+
610
+    case kWrite_Op:
611
+      _write_op( stack, stack_idx );
612
+      break;
613
+
614
+    case kWriteTable_Op:
615
+      write_table(); 
616
+      break;
617
+
618
+    case kHoldDelay_Op:
619
+      for(i=0; i<stack_idx && i<2; ++i)
620
+        ctl_regs[ kDelay_Coarse_idx + i ] = stack[i];
621
+
622
+      break;
623
+      
624
+    case kFlags_Op:
625
+      ctl_regs[ kFlags_idx ] = stack[0];
626
+      
627
+  }
628
+}
629
+
630
+
631
+int main(void)
632
+{
633
+  cli();        // mask all interupts
634
+
635
+  DDRB  |=   _BV(ATTK_DIR)  + _BV(HOLD_DIR)  + _BV(LED_DIR);  // setup PB4,PB3,PB1 as output  
636
+  PORTB &= ~(_BV(ATTK_PIN)  + _BV(HOLD_PIN)  + _BV(LED_PIN)); // clear output pins
637
+  
638
+  tmr0_init();
639
+  pwm1_init();
640
+  
641
+  // setup i2c library
642
+  usi_onReceiverPtr = on_receive; 
643
+  usi_onRequestPtr  = on_request;
644
+  usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
645
+  
646
+  sei();
647
+
648
+  PINB = _BV(LED_PIN);  // writes to PINB toggle the pins
649
+  _delay_ms(1000);  
650
+  PINB = _BV(LED_PIN);  // writes to PINB toggle the pins
651
+
652
+  
653
+  while(1)
654
+  {
655
+
656
+    if (!usi_onReceiverPtr)
657
+    {
658
+        // no onReceive callback, nothing to do...
659
+      continue;
660
+    }
661
+    
662
+    if (!(USISR & ( 1 << USIPF )))
663
+    {
664
+        // Stop not detected
665
+      continue;
666
+    }
667
+
668
+    
669
+    uint8_t amount = usiTwiAmountDataInReceiveBuffer();
670
+    if (amount == 0)
671
+    {
672
+        // no data in buffer
673
+      continue;
674
+    }
675
+
676
+    
677
+    usi_onReceiverPtr(amount);
678
+
679
+    
680
+  }
681
+  return 0;
682
+}
683
+
684
+
685
+

Loading…
Cancel
Save