libcw/cwMath.h

285 lines
8.1 KiB
C
Raw Normal View History

#ifndef cwMath_h
#define cwMath_h
namespace cw
{
namespace math
{
double x80ToDouble( unsigned char s[10] );
void doubleToX80( double v, unsigned char s[10] );
bool isPowerOfTwo( unsigned i );
unsigned nextPowerOfTwo( unsigned i );
unsigned nearPowerOfTwo( unsigned i );
bool isOddU( unsigned v );
bool isEvenU( unsigned v );
unsigned nextOddU( unsigned v );
unsigned prevOddU( unsigned v );
unsigned nextEvenU( unsigned v );
unsigned prevEvenU( unsigned v );
/// Increment or decrement 'idx' by 'delta' always wrapping the result into the range
/// 0 to (maxN-1).
/// 'idx': initial value
/// 'delta': incremental amount
/// 'maxN' - 1 : maximum return value.
unsigned modIncr(int idx, int delta, int maxN );
// modified bessel function of first kind, order 0
// ref: orfandis appendix B io.m
template< typename T >
T bessel0( T x )
{
T eps = pow(10.0,-9.0);
T n = 1.0;
T S = 1.0;
T D = 1.0;
while(D > eps*S)
{
T t = x /(2.0*n);
n = n+1;
D = D * pow(t,2.0);
S = S + D;
}
return S;
}
//=================================================================
// The following elliptic-related function approximations come from
// Parks & Burrus, Digital Filter Design, Appendix program 9, pp. 317-326
// which in turn draws directly on other sources
// Calculate complete elliptic integral (quarter period) K
// given *complimentary* modulus kc.
template< typename T >
T ellipK( T kc )
{
T a = 1, b = kc, c = 1, tmp;
while( c > std::numeric_limits<T>::epsilon )
{
c = 0.5*(a-b);
tmp = 0.5*(a+b);
b = sqrt(a*b);
a = tmp;
}
return M_PI/(2*a);
}
// Calculate elliptic modulus k
// given ratio of complete elliptic integrals r = K/K'
// (solves the "degree equation" for fixed N = K*K1'/K'K1)
template< typename T >
T ellipDeg( T r )
{
T q,a,b,c,d;
a = b = c = 1;
d = q = exp(-M_PI*r);
while( c > std::numeric_limits<T>::epsilon )
{
a = a + 2*c*d;
c = c*d*d;
b = b + c;
d = d*q;
}
return 4*sqrt(q)*pow(b/a,2);
}
// calculate arc elliptic tangent u (elliptic integral of the 1st kind)
// given argument x = sc(u,k) and *complimentary* modulus kc
template< typename T >
T ellipArcSc( T x, T kc )
{
T a = 1, b = kc, y = 1/x, tmp;
unsigned L = 0;
while( true )
{
tmp = a*b;
a += b;
b = 2*sqrt(tmp);
y -= tmp/y;
if( y == 0 )
y = sqrt(tmp) * 1E-10;
if( fabs(a-b)/a < std::numeric_limits<T>::epsilon )
break;
L *= 2;
if( y < 0 )
L++;
}
if( y < 0 )
L++;
return (atan(a/y) + M_PI*L)/a;
}
// calculate Jacobi elliptic functions sn, cn, and dn
// given argument u and *complimentary* modulus kc
template< typename T >
rc_t ellipJ( T u, T kc, T* sn, T* cn, T* dn )
{
assert( sn != NULL || cn != NULL || dn != NULL );
if( u == 0 )
{
if( sn != NULL ) *sn = 0;
if( cn != NULL ) *cn = 1;
if( dn != NULL ) *dn = 1;
return kOkRC;
}
int i;
T a,b,c,d,e,tmp,_sn,_cn,_dn;
T aa[16], bb[16];
a = 1;
b = kc;
for( i = 0; i < 16; i++ )
{
aa[i] = a;
bb[i] = b;
tmp = (a+b)/2;
b = sqrt(a*b);
a = tmp;
if( (a-b)/a < std::numeric_limits<T>::epsilon )
break;
}
c = a/tan(u*a);
d = 1;
for( ; i >= 0; i-- )
{
e = c*c/a;
c = c*d;
a = aa[i];
d = (e + bb[i]) / (e+a);
}
_sn = 1/sqrt(1+c*c);
_cn = _sn*c;
_dn = d;
if( sn != NULL ) *sn = _sn;
if( cn != NULL ) *cn = _cn;
if( dn != NULL ) *dn = _dn;
return kOkRC;
}
//=================================================================
// bilinear transform
// z = (2*sr + s)/(2*sr - s)
template< typename T >
rc_t blt( unsigned n, T sr, T* rp, T* ip )
{
unsigned i;
T a = 2*sr,
tr, ti, td;
for( i = 0; i < n; i++ )
{
tr = rp[i];
ti = ip[i];
td = pow(a-tr, 2) + ti*ti;
rp[i] = (a*a - tr*tr - ti*ti)/td;
ip[i] = 2*a*ti/td;
if( tr < -1E15 )
rp[i] = 0;
if( fabs(ti) > 1E15 )
ip[i] = 0;
}
return kOkRC;
}
//=================================================================
// Pitch conversion
unsigned hzToMidi( double hz );
float midiToHz( unsigned midi );
//=================================================================
// Floating point byte swapping
unsigned ffSwapFloatToUInt( float v );
float ffSwapUIntToFloat( unsigned v );
unsigned long long ffSwapDoubleToULLong( double v );
double ffSwapULLongToDouble( unsigned long long v );
//=================================================================
template< typename T >
T rand_range(T min, T max )
{
assert( min <= max );
T range = max - min;
return min + std::max(0,std::min(range,(T)range * rand() / RAND_MAX));
}
int randInt( int min, int max );
unsigned randUInt( unsigned min, unsigned max );
float randFloat( float min, float max );
double randDouble( double min, double max );
//=================================================================
bool isCloseD( double x0, double x1, double eps );
bool isCloseF( float x0, float x1, double eps );
bool isCloseI( int x0, int x1, double eps );
bool isCloseU( unsigned x0, unsigned x1, double eps );
//=================================================================
// Run a length 'lfsrN' linear feedback shift register (LFSR) for 'yN' iterations to
// produce a length 'yN' bit string in yV[yN].
// 'lfsrN' count of bits in the shift register range: 2<= lfsrN <= 32.
// 'tapMask' is a bit mask which gives the tap indexes positions for the LFSR.
// The least significant bit corresponds to the maximum delay tap position.
// The min tap position is therefore denoted by the tap mask bit location 1 << (lfsrN-1).
// A minimum of two taps must exist.
// 'seed' sets the initial delay state.
// 'yV[yN]' is the the output vector
// 'yN' is count of elements in yV.
// The function resturn kOkAtRC on success or kInvalidArgsRCRC if any arguments are invalid.
// /sa lFSR_Test.
void lFSR( unsigned lfsrN, unsigned tapMask, unsigned seed, unsigned* yV, unsigned yN );
// Example and test code for lFSR()
bool lFSR_Test();
// Generate a set of 'goldN' Gold codes using the Maximum Length Sequences (MLS) generated
// by a length 'lfsrN' linear feedback shift register.
// 'err' is an error object to be set if the the function fails.
// 'lfsrN' is the length of the Linear Feedback Shift Registers (LFSR) used to generate the MLS.
// 'poly_coeff0' tap mask for the first LFSR.
// 'coeff1' tap mask the the second LFSR.
// 'goldN' is the count of Gold codes to generate.
// 'yM[mlsN', goldN] is a column major output matrix where each column contains a Gold code.
// 'mlsN' is the length of the maximum length sequence for each Gold code which can be
// calculated as mlsN = (1 << a->lfsrN) - 1.
// Note that values of 'lfsrN' and the 'poly_coeffx' must be carefully selected such that
// they will produce a MLS. For example to generate a MLS with length 31 set 'lfsrN' to 5 and
// then select poly_coeff from two different elements of the set {0x12 0x14 0x17 0x1B 0x1D 0x1E}.
// See http://www.ece.u.edu/~koopman/lfsr/index.html for a complete set of MSL polynomial
// coefficients for given LFSR lengths.
// Returns false if insufficient balanced pairs exist.
bool genGoldCodes( unsigned lfsrN, unsigned poly_coeff0, unsigned poly_coeff1, unsigned goldN, int* yM, unsigned mlsN );
}
}
#endif