cwMath.h/cpp : Populate cwMath from libcm and move some functions from cwUtility to cwMath.
This commit is contained in:
parent
f8e0a24032
commit
c9bf328a6d
@ -5,7 +5,7 @@
|
||||
#include "cwFile.h"
|
||||
#include "cwObject.h"
|
||||
#include "cwAudioFile.h"
|
||||
#include "cwUtility.h"
|
||||
#include "cwMath.h"
|
||||
#include "cwFileSys.h"
|
||||
|
||||
// #define _24to32_aif( p ) ((int)( ((p[0]>127?255:0) << 24) + (((int)p[0]) << 16) + (((int)p[1]) <<8) + p[2])) // no-swap equivalent
|
||||
@ -179,7 +179,7 @@ namespace cw
|
||||
if((rc = _read(p,s,10,1)) != kOkRC )
|
||||
return rc;
|
||||
|
||||
*x80Ptr = x80ToDouble(s);
|
||||
*x80Ptr = math::x80ToDouble(s);
|
||||
return kOkRC;
|
||||
}
|
||||
|
||||
@ -557,7 +557,7 @@ namespace cw
|
||||
rc_t rc = kOkRC;
|
||||
unsigned char srateX80[10];
|
||||
|
||||
doubleToX80( p->info.srate, srateX80 );
|
||||
math::doubleToX80( p->info.srate, srateX80 );
|
||||
|
||||
unsigned hdrByteCnt = 54;
|
||||
unsigned ssndByteCnt = 8 + (p->info.chCnt * p->info.frameCnt * (p->info.bits/kBitsPerByte));
|
||||
|
399
cwMath.cpp
399
cwMath.cpp
@ -2,8 +2,403 @@
|
||||
#include "cwLog.h"
|
||||
#include "cwCommonImpl.h"
|
||||
#include "cwMath.h"
|
||||
#include "cwMem.h"
|
||||
#include <algorithm>
|
||||
|
||||
unsigned cw::math::randUInt( unsigned minVal, unsigned maxVal )
|
||||
|
||||
// TODO: rewrite to avoid copying
|
||||
// this code comes via csound source ...
|
||||
double cw::math::x80ToDouble( unsigned char rate[10] )
|
||||
{
|
||||
return std::max(minVal,std::min(maxVal,minVal + (unsigned)round(((maxVal - minVal) * rand())/RAND_MAX)));
|
||||
char sign;
|
||||
short exp = 0;
|
||||
unsigned long mant1 = 0;
|
||||
unsigned long mant0 = 0;
|
||||
double val;
|
||||
unsigned char* p = (unsigned char*)rate;
|
||||
|
||||
exp = *p++;
|
||||
exp <<= 8;
|
||||
exp |= *p++;
|
||||
sign = (exp & 0x8000) ? 1 : 0;
|
||||
exp &= 0x7FFF;
|
||||
|
||||
mant1 = *p++;
|
||||
mant1 <<= 8;
|
||||
mant1 |= *p++;
|
||||
mant1 <<= 8;
|
||||
mant1 |= *p++;
|
||||
mant1 <<= 8;
|
||||
mant1 |= *p++;
|
||||
|
||||
mant0 = *p++;
|
||||
mant0 <<= 8;
|
||||
mant0 |= *p++;
|
||||
mant0 <<= 8;
|
||||
mant0 |= *p++;
|
||||
mant0 <<= 8;
|
||||
mant0 |= *p++;
|
||||
|
||||
/* special test for all bits zero meaning zero
|
||||
- else pow(2,-16383) bombs */
|
||||
if (mant1 == 0 && mant0 == 0 && exp == 0 && sign == 0)
|
||||
return 0.0;
|
||||
else {
|
||||
val = ((double)mant0) * pow(2.0,-63.0);
|
||||
val += ((double)mant1) * pow(2.0,-31.0);
|
||||
val *= pow(2.0,((double) exp) - 16383.0);
|
||||
return sign ? -val : val;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: rewrite to avoid copying
|
||||
/*
|
||||
* Convert double to IEEE 80 bit floating point
|
||||
* Should be portable to all C compilers.
|
||||
* 19aug91 aldel/dpwe covered for MSB bug in Ultrix 'cc'
|
||||
*/
|
||||
|
||||
void cw::math::doubleToX80(double val, unsigned char rate[10])
|
||||
{
|
||||
char sign = 0;
|
||||
short exp = 0;
|
||||
unsigned long mant1 = 0;
|
||||
unsigned long mant0 = 0;
|
||||
unsigned char* p = (unsigned char*)rate;
|
||||
|
||||
if (val < 0.0) { sign = 1; val = -val; }
|
||||
|
||||
if (val != 0.0) /* val identically zero -> all elements zero */
|
||||
{
|
||||
exp = (short)(std::log(val)/std::log(2.0) + 16383.0);
|
||||
val *= pow(2.0, 31.0+16383.0-(double)exp);
|
||||
mant1 =((unsigned)val);
|
||||
val -= ((double)mant1);
|
||||
val *= pow(2.0, 32.0);
|
||||
mant0 =((double)val);
|
||||
}
|
||||
|
||||
*p++ = ((sign<<7)|(exp>>8));
|
||||
*p++ = (u_char)(0xFF & exp);
|
||||
*p++ = (u_char)(0xFF & (mant1>>24));
|
||||
*p++ = (u_char)(0xFF & (mant1>>16));
|
||||
*p++ = (u_char)(0xFF & (mant1>> 8));
|
||||
*p++ = (u_char)(0xFF & (mant1));
|
||||
*p++ = (u_char)(0xFF & (mant0>>24));
|
||||
*p++ = (u_char)(0xFF & (mant0>>16));
|
||||
*p++ = (u_char)(0xFF & (mant0>> 8));
|
||||
*p++ = (u_char)(0xFF & (mant0));
|
||||
|
||||
}
|
||||
|
||||
bool cw::math::isPowerOfTwo( unsigned x )
|
||||
{
|
||||
return !( (x < 2) || (x & (x-1)) );
|
||||
}
|
||||
|
||||
unsigned cw::math::nextPowerOfTwo( unsigned val )
|
||||
{
|
||||
unsigned i;
|
||||
unsigned mask = 1;
|
||||
unsigned msb = 0;
|
||||
unsigned cnt = 0;
|
||||
|
||||
// if val is a power of two return it
|
||||
if( isPowerOfTwo(val) )
|
||||
return val;
|
||||
|
||||
// next pow of zero is 2
|
||||
if( val == 0 )
|
||||
return 2;
|
||||
|
||||
// if the next power of two can't be represented in 32 bits
|
||||
if( val > 0x80000000)
|
||||
{
|
||||
assert(0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// find most sig. bit that is set - the number with only the next msb set is next pow 2
|
||||
for(i=0; i<31; i++,mask<<=1)
|
||||
if( mask & val )
|
||||
{
|
||||
msb = i;
|
||||
cnt++;
|
||||
}
|
||||
|
||||
|
||||
return 1 << (msb + 1);
|
||||
}
|
||||
|
||||
unsigned cw::math::nearPowerOfTwo( unsigned i )
|
||||
{
|
||||
unsigned vh = nextPowerOfTwo(i);
|
||||
|
||||
if( vh == 2 )
|
||||
return vh;
|
||||
|
||||
unsigned vl = vh / 2;
|
||||
|
||||
if( vh - i < i - vl )
|
||||
return vh;
|
||||
return vl;
|
||||
}
|
||||
|
||||
bool cw::math::isOddU( unsigned v ) { return v % 2 == 1; }
|
||||
bool cw::math::isEvenU( unsigned v ) { return !isOddU(v); }
|
||||
unsigned cw::math::nextOddU( unsigned v ) { return isOddU(v) ? v : v+1; }
|
||||
unsigned cw::math::prevOddU( unsigned v ) { return isOddU(v) ? v : v-1; }
|
||||
unsigned cw::math::nextEvenU( unsigned v ) { return isEvenU(v) ? v : v+1; }
|
||||
unsigned cw::math::prevEvenU( unsigned v ) { return isEvenU(v) ? v : v-1; }
|
||||
|
||||
unsigned cw::math::modIncr(int idx, int delta, int maxN )
|
||||
{
|
||||
int sum = idx + delta;
|
||||
|
||||
if( sum >= maxN )
|
||||
return sum - maxN;
|
||||
|
||||
if( sum < 0 )
|
||||
return maxN + sum;
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
|
||||
unsigned cw::math::hzToMidi( double hz )
|
||||
{
|
||||
|
||||
float midi = 12.0 * std::log2(hz/13.75) + 9;
|
||||
|
||||
if( midi < 0 )
|
||||
midi = 0;
|
||||
if( midi > 127 )
|
||||
midi = 127;
|
||||
|
||||
return (unsigned)lround(midi);
|
||||
}
|
||||
|
||||
float cw::math::midiToHz( unsigned midi )
|
||||
{
|
||||
double m = midi <= 127 ? midi : 127;
|
||||
|
||||
return (float)( 13.75 * pow(2.0,(m - 9.0)/12.0));
|
||||
}
|
||||
|
||||
|
||||
|
||||
//=================================================================
|
||||
// Random numbers
|
||||
|
||||
int cw::math::randInt( int min, int max )
|
||||
{
|
||||
assert( min <= max );
|
||||
int range = max - min;
|
||||
return min + std::max(0,std::min(range,(int)round(range * (double)rand() / RAND_MAX)));
|
||||
}
|
||||
|
||||
unsigned cw::math::randUInt( unsigned min, unsigned max )
|
||||
{
|
||||
assert( min <= max );
|
||||
unsigned range = max - min;
|
||||
unsigned val = (unsigned)round(range * (double)rand() / RAND_MAX);
|
||||
return min + std::max((unsigned)0,std::min(range,val));
|
||||
}
|
||||
|
||||
float cw::math::randFloat( float min, float max )
|
||||
{
|
||||
assert( min <= max );
|
||||
float range = max - min;
|
||||
float val = (float)(range * (double)rand() / RAND_MAX);
|
||||
return min + std::max(0.0f,std::min(range,val));
|
||||
}
|
||||
|
||||
double cw::math::randDouble( double min, double max )
|
||||
{
|
||||
assert( min <= max );
|
||||
double range = max - min;
|
||||
double val = range * (double)rand() / RAND_MAX;
|
||||
return min + std::max(0.0,std::min(range,val));
|
||||
}
|
||||
|
||||
|
||||
//=================================================================
|
||||
// Base on: http://stackoverflow.com/questions/3874627/floating-point-comparison-functions-for-c-sharp
|
||||
|
||||
bool cw::math::isCloseD( double x0, double x1, double eps )
|
||||
{
|
||||
double d = fabs(x0-x1);
|
||||
|
||||
if( x0 == x1 )
|
||||
return true;
|
||||
|
||||
if( x0==0 || x1==0 || d<DBL_MIN )
|
||||
return d < (eps * DBL_MIN);
|
||||
|
||||
return (d / std::min( fabs(x0) + fabs(x1), DBL_MAX)) < eps;
|
||||
}
|
||||
|
||||
bool cw::math::isCloseF( float x0, float x1, double eps_d )
|
||||
{
|
||||
float eps = (float)eps_d;
|
||||
float d = fabsf(x0-x1);
|
||||
|
||||
if( x0 == x1 )
|
||||
return true;
|
||||
|
||||
if( x0==0 || x1==0 || d<FLT_MIN )
|
||||
return d < (eps * FLT_MIN);
|
||||
|
||||
return (d / std::min( fabsf(x0) + fabsf(x1), FLT_MAX)) < eps;
|
||||
}
|
||||
|
||||
bool cw::math::isCloseI( int x0, int x1, double eps )
|
||||
{
|
||||
if( x0 == x1 )
|
||||
return true;
|
||||
|
||||
return abs(x0-x1)/(abs(x0)+abs(x1)) < eps;
|
||||
}
|
||||
|
||||
|
||||
bool cw::math::isCloseU( unsigned x0, unsigned x1, double eps )
|
||||
{
|
||||
if( x0 == x1 )
|
||||
return true;
|
||||
if( x0 > x1 )
|
||||
return (x0-x1)/(x0+x1) < eps;
|
||||
else
|
||||
return (x1-x0)/(x0+x1) < eps;
|
||||
}
|
||||
|
||||
//=================================================================
|
||||
|
||||
// lFSR() implementation based on note at bottom of:
|
||||
// http://www.ece.u.edu/~koopman/lfsr/index.html
|
||||
void cw::math::lFSR( unsigned lfsrN, unsigned tapMask, unsigned seed, unsigned* yV, unsigned yN )
|
||||
{
|
||||
assert( 0 < lfsrN && lfsrN < 32 );
|
||||
|
||||
unsigned i;
|
||||
for(i=0; i<yN; ++i)
|
||||
{
|
||||
if( (yV[i] = seed & 1)==1 )
|
||||
seed = (seed >> 1) ^ tapMask;
|
||||
else
|
||||
seed = (seed >> 1);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
namespace cw
|
||||
{
|
||||
namespace math
|
||||
{
|
||||
bool mLS_IsBalanced( const unsigned* xV, int xN)
|
||||
{
|
||||
int a = 0;
|
||||
int i;
|
||||
|
||||
for(i=0; i<xN; ++i)
|
||||
if( xV[i] == 1 )
|
||||
++a;
|
||||
|
||||
return abs(a - (xN-a)) == 1;
|
||||
}
|
||||
}
|
||||
|
||||
unsigned _genGoldCopy( int* y, unsigned yi, unsigned yN, unsigned* x, unsigned xN)
|
||||
{
|
||||
unsigned i;
|
||||
for(i=0; i<xN; ++i,++yi)
|
||||
y[yi] = x[i]==1 ? -1 : 1;
|
||||
|
||||
assert(yi <= yN);
|
||||
return yi;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
bool cw::math::genGoldCodes( unsigned lfsrN, unsigned poly_coeff0, unsigned poly_coeff1, unsigned goldN, int* yM, unsigned mlsN )
|
||||
{
|
||||
bool retFl = true;
|
||||
unsigned yi = 0;
|
||||
unsigned yN = goldN * mlsN;
|
||||
unsigned* mls0V = mem::allocZ<unsigned>(mlsN);
|
||||
unsigned* mls1V = mem::allocZ<unsigned>(mlsN);
|
||||
unsigned* xorV = mem::allocZ<unsigned>(mlsN);
|
||||
|
||||
unsigned i,j;
|
||||
|
||||
lFSR(lfsrN, poly_coeff0, 1 << (lfsrN-1), mls0V, mlsN);
|
||||
|
||||
lFSR(lfsrN, poly_coeff1, 1 << (lfsrN-1), mls1V, mlsN);
|
||||
|
||||
if( mLS_IsBalanced(mls0V,mlsN) )
|
||||
yi = _genGoldCopy(yM, yi, yN, mls0V, mlsN);
|
||||
|
||||
if( yi<yN && mLS_IsBalanced(mls1V,mlsN) )
|
||||
yi = _genGoldCopy(yM, yi, yN, mls1V, mlsN);
|
||||
|
||||
|
||||
for(i=0; yi < yN && i<mlsN-1; ++i )
|
||||
{
|
||||
for(j=0; j<mlsN; ++j)
|
||||
xorV[j] = (mls0V[j] + mls1V[ (i+j) % mlsN ]) % 2;
|
||||
|
||||
if( mLS_IsBalanced(xorV,mlsN) )
|
||||
yi = _genGoldCopy(yM,yi,yN,xorV,mlsN);
|
||||
}
|
||||
|
||||
if(yi < yN )
|
||||
{
|
||||
//rc = errMsg(err,kOpFailAtRC,"Gold code generation failed. Insuffient balanced pairs.");
|
||||
retFl = false;
|
||||
}
|
||||
|
||||
mem::release(mls0V);
|
||||
mem::release(mls1V);
|
||||
mem::release(xorV);
|
||||
|
||||
return retFl;
|
||||
|
||||
}
|
||||
|
||||
bool cw::math::lFSR_Test()
|
||||
{
|
||||
// lfsrN = 5; % 5 6 7;
|
||||
// poly_coeff0 = 0x12; % 0x12 0x21 0x41;
|
||||
// poly_coeff1 = 0x1e; % 0x1e 0x36 0x72;
|
||||
|
||||
unsigned lfsrN = 7;
|
||||
unsigned pc0 = 0x41;
|
||||
unsigned pc1 = 0x72;
|
||||
unsigned mlsN = (1 << lfsrN)-1;
|
||||
|
||||
unsigned yN = mlsN*2;
|
||||
unsigned yV[ yN ];
|
||||
unsigned i;
|
||||
|
||||
lFSR( lfsrN, pc0, 1 << (lfsrN-1), yV, yN );
|
||||
|
||||
for(i=0; i<mlsN; ++i)
|
||||
if( yV[i] != yV[i+mlsN] )
|
||||
return false;
|
||||
|
||||
//atVOU_PrintL(NULL,"0x12",yV,mlsN,2);
|
||||
|
||||
lFSR( lfsrN, pc1, 1 << (lfsrN-1), yV, yN );
|
||||
|
||||
//atVOU_PrintL(NULL,"0x17",yV,mlsN,2);
|
||||
|
||||
for(i=0; i<mlsN; ++i)
|
||||
if( yV[i] != yV[i+mlsN] )
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
272
cwMath.h
272
cwMath.h
@ -5,7 +5,277 @@ namespace cw
|
||||
{
|
||||
namespace math
|
||||
{
|
||||
unsigned randUInt(unsigned minVal, unsigned maxVal );
|
||||
|
||||
double x80ToDouble( unsigned char s[10] );
|
||||
void doubleToX80( double v, unsigned char s[10] );
|
||||
|
||||
bool isPowerOfTwo( unsigned i );
|
||||
unsigned nextPowerOfTwo( unsigned i );
|
||||
unsigned nearPowerOfTwo( unsigned i );
|
||||
|
||||
bool isOddU( unsigned v );
|
||||
bool isEvenU( unsigned v );
|
||||
unsigned nextOddU( unsigned v );
|
||||
unsigned prevOddU( unsigned v );
|
||||
unsigned nextEvenU( unsigned v );
|
||||
unsigned prevEvenU( unsigned v );
|
||||
|
||||
/// Increment or decrement 'idx' by 'delta' always wrapping the result into the range
|
||||
/// 0 to (maxN-1).
|
||||
/// 'idx': initial value
|
||||
/// 'delta': incremental amount
|
||||
/// 'maxN' - 1 : maximum return value.
|
||||
unsigned modIncr(int idx, int delta, int maxN );
|
||||
|
||||
// modified bessel function of first kind, order 0
|
||||
// ref: orfandis appendix B io.m
|
||||
template< typename T >
|
||||
T bessel0( T x )
|
||||
{
|
||||
T eps = pow(10.0,-9.0);
|
||||
T n = 1.0;
|
||||
T S = 1.0;
|
||||
T D = 1.0;
|
||||
|
||||
while(D > eps*S)
|
||||
{
|
||||
T t = x /(2.0*n);
|
||||
n = n+1;
|
||||
D = D * pow(t,2.0);
|
||||
S = S + D;
|
||||
}
|
||||
|
||||
return S;
|
||||
|
||||
}
|
||||
|
||||
//=================================================================
|
||||
// The following elliptic-related function approximations come from
|
||||
// Parks & Burrus, Digital Filter Design, Appendix program 9, pp. 317-326
|
||||
// which in turn draws directly on other sources
|
||||
|
||||
// Calculate complete elliptic integral (quarter period) K
|
||||
// given *complimentary* modulus kc.
|
||||
template< typename T >
|
||||
T ellipK( T kc )
|
||||
{
|
||||
T a = 1, b = kc, c = 1, tmp;
|
||||
|
||||
while( c > std::numeric_limits<T>::epsilon )
|
||||
{
|
||||
c = 0.5*(a-b);
|
||||
tmp = 0.5*(a+b);
|
||||
b = sqrt(a*b);
|
||||
a = tmp;
|
||||
}
|
||||
|
||||
return M_PI/(2*a);
|
||||
}
|
||||
|
||||
// Calculate elliptic modulus k
|
||||
// given ratio of complete elliptic integrals r = K/K'
|
||||
// (solves the "degree equation" for fixed N = K*K1'/K'K1)
|
||||
template< typename T >
|
||||
T ellipDeg( T r )
|
||||
{
|
||||
T q,a,b,c,d;
|
||||
a = b = c = 1;
|
||||
d = q = exp(-M_PI*r);
|
||||
|
||||
while( c > std::numeric_limits<T>::epsilon )
|
||||
{
|
||||
a = a + 2*c*d;
|
||||
c = c*d*d;
|
||||
b = b + c;
|
||||
d = d*q;
|
||||
}
|
||||
|
||||
return 4*sqrt(q)*pow(b/a,2);
|
||||
}
|
||||
|
||||
// calculate arc elliptic tangent u (elliptic integral of the 1st kind)
|
||||
// given argument x = sc(u,k) and *complimentary* modulus kc
|
||||
template< typename T >
|
||||
T ellipArcSc( T x, T kc )
|
||||
{
|
||||
T a = 1, b = kc, y = 1/x, tmp;
|
||||
unsigned L = 0;
|
||||
|
||||
while( true )
|
||||
{
|
||||
tmp = a*b;
|
||||
a += b;
|
||||
b = 2*sqrt(tmp);
|
||||
y -= tmp/y;
|
||||
if( y == 0 )
|
||||
y = sqrt(tmp) * 1E-10;
|
||||
if( fabs(a-b)/a < std::numeric_limits<T>::epsilon )
|
||||
break;
|
||||
L *= 2;
|
||||
if( y < 0 )
|
||||
L++;
|
||||
}
|
||||
|
||||
if( y < 0 )
|
||||
L++;
|
||||
|
||||
return (atan(a/y) + M_PI*L)/a;
|
||||
}
|
||||
|
||||
// calculate Jacobi elliptic functions sn, cn, and dn
|
||||
// given argument u and *complimentary* modulus kc
|
||||
template< typename T >
|
||||
rc_t ellipJ( T u, T kc, T* sn, T* cn, T* dn )
|
||||
{
|
||||
assert( sn != NULL || cn != NULL || dn != NULL );
|
||||
|
||||
if( u == 0 )
|
||||
{
|
||||
if( sn != NULL ) *sn = 0;
|
||||
if( cn != NULL ) *cn = 1;
|
||||
if( dn != NULL ) *dn = 1;
|
||||
return kOkRC;
|
||||
}
|
||||
|
||||
int i;
|
||||
T a,b,c,d,e,tmp,_sn,_cn,_dn;
|
||||
T aa[16], bb[16];
|
||||
|
||||
a = 1;
|
||||
b = kc;
|
||||
|
||||
for( i = 0; i < 16; i++ )
|
||||
{
|
||||
aa[i] = a;
|
||||
bb[i] = b;
|
||||
tmp = (a+b)/2;
|
||||
b = sqrt(a*b);
|
||||
a = tmp;
|
||||
if( (a-b)/a < std::numeric_limits<T>::epsilon )
|
||||
break;
|
||||
}
|
||||
|
||||
c = a/tan(u*a);
|
||||
d = 1;
|
||||
|
||||
for( ; i >= 0; i-- )
|
||||
{
|
||||
e = c*c/a;
|
||||
c = c*d;
|
||||
a = aa[i];
|
||||
d = (e + bb[i]) / (e+a);
|
||||
}
|
||||
|
||||
_sn = 1/sqrt(1+c*c);
|
||||
_cn = _sn*c;
|
||||
_dn = d;
|
||||
|
||||
if( sn != NULL ) *sn = _sn;
|
||||
if( cn != NULL ) *cn = _cn;
|
||||
if( dn != NULL ) *dn = _dn;
|
||||
|
||||
return kOkRC;
|
||||
}
|
||||
|
||||
//=================================================================
|
||||
// bilinear transform
|
||||
// z = (2*sr + s)/(2*sr - s)
|
||||
template< typename T >
|
||||
rc_t blt( unsigned n, T sr, T* rp, T* ip )
|
||||
{
|
||||
unsigned i;
|
||||
T a = 2*sr,
|
||||
tr, ti, td;
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
tr = rp[i];
|
||||
ti = ip[i];
|
||||
td = pow(a-tr, 2) + ti*ti;
|
||||
rp[i] = (a*a - tr*tr - ti*ti)/td;
|
||||
ip[i] = 2*a*ti/td;
|
||||
if( tr < -1E15 )
|
||||
rp[i] = 0;
|
||||
if( fabs(ti) > 1E15 )
|
||||
ip[i] = 0;
|
||||
}
|
||||
|
||||
return kOkRC;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//=================================================================
|
||||
// Pitch conversion
|
||||
unsigned hzToMidi( double hz );
|
||||
float midiToHz( unsigned midi );
|
||||
|
||||
//=================================================================
|
||||
// Floating point byte swapping
|
||||
unsigned ffSwapFloatToUInt( float v );
|
||||
float ffSwapUIntToFloat( unsigned v );
|
||||
unsigned long long ffSwapDoubleToULLong( double v );
|
||||
double ffSwapULLongToDouble( unsigned long long v );
|
||||
|
||||
//=================================================================
|
||||
template< typename T >
|
||||
T rand_range(T min, T max )
|
||||
{
|
||||
assert( min <= max );
|
||||
T range = max - min;
|
||||
return min + std::max(0,std::min(range,(T)range * rand() / RAND_MAX));
|
||||
|
||||
}
|
||||
|
||||
int randInt( int min, int max );
|
||||
unsigned randUInt( unsigned min, unsigned max );
|
||||
float randFloat( float min, float max );
|
||||
double randDouble( double min, double max );
|
||||
|
||||
//=================================================================
|
||||
bool isCloseD( double x0, double x1, double eps );
|
||||
bool isCloseF( float x0, float x1, double eps );
|
||||
bool isCloseI( int x0, int x1, double eps );
|
||||
bool isCloseU( unsigned x0, unsigned x1, double eps );
|
||||
|
||||
//=================================================================
|
||||
// Run a length 'lfsrN' linear feedback shift register (LFSR) for 'yN' iterations to
|
||||
// produce a length 'yN' bit string in yV[yN].
|
||||
// 'lfsrN' count of bits in the shift register range: 2<= lfsrN <= 32.
|
||||
// 'tapMask' is a bit mask which gives the tap indexes positions for the LFSR.
|
||||
// The least significant bit corresponds to the maximum delay tap position.
|
||||
// The min tap position is therefore denoted by the tap mask bit location 1 << (lfsrN-1).
|
||||
// A minimum of two taps must exist.
|
||||
// 'seed' sets the initial delay state.
|
||||
// 'yV[yN]' is the the output vector
|
||||
// 'yN' is count of elements in yV.
|
||||
// The function resturn kOkAtRC on success or kInvalidArgsRCRC if any arguments are invalid.
|
||||
// /sa lFSR_Test.
|
||||
void lFSR( unsigned lfsrN, unsigned tapMask, unsigned seed, unsigned* yV, unsigned yN );
|
||||
|
||||
// Example and test code for lFSR()
|
||||
bool lFSR_Test();
|
||||
|
||||
|
||||
// Generate a set of 'goldN' Gold codes using the Maximum Length Sequences (MLS) generated
|
||||
// by a length 'lfsrN' linear feedback shift register.
|
||||
// 'err' is an error object to be set if the the function fails.
|
||||
// 'lfsrN' is the length of the Linear Feedback Shift Registers (LFSR) used to generate the MLS.
|
||||
// 'poly_coeff0' tap mask for the first LFSR.
|
||||
// 'coeff1' tap mask the the second LFSR.
|
||||
// 'goldN' is the count of Gold codes to generate.
|
||||
// 'yM[mlsN', goldN] is a column major output matrix where each column contains a Gold code.
|
||||
// 'mlsN' is the length of the maximum length sequence for each Gold code which can be
|
||||
// calculated as mlsN = (1 << a->lfsrN) - 1.
|
||||
// Note that values of 'lfsrN' and the 'poly_coeffx' must be carefully selected such that
|
||||
// they will produce a MLS. For example to generate a MLS with length 31 set 'lfsrN' to 5 and
|
||||
// then select poly_coeff from two different elements of the set {0x12 0x14 0x17 0x1B 0x1D 0x1E}.
|
||||
// See http://www.ece.u.edu/~koopman/lfsr/index.html for a complete set of MSL polynomial
|
||||
// coefficients for given LFSR lengths.
|
||||
// Returns false if insufficient balanced pairs exist.
|
||||
bool genGoldCodes( unsigned lfsrN, unsigned poly_coeff0, unsigned poly_coeff1, unsigned goldN, int* yM, unsigned mlsN );
|
||||
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -36,6 +36,7 @@ void cw::printHex( const void* buf, unsigned bufByteN, bool asciiFl )
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef NOT_DEF
|
||||
|
||||
// TODO: rewrite to avoid copying
|
||||
// this code comes via csound source ...
|
||||
@ -174,3 +175,5 @@ unsigned cw::nearestPowerOfTwo( unsigned i )
|
||||
return vh;
|
||||
return vl;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user