libcm is a C development framework with an emphasis on audio signal processing applications.
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmCtx.h"
  6. #include "cmMem.h"
  7. #include "cmMallocDebug.h"
  8. #include "cmLinkedHeap.h"
  9. #include "cmSymTbl.h"
  10. #include "cmFloatTypes.h"
  11. #include "cmComplexTypes.h"
  12. #include "cmFile.h"
  13. #include "cmFileSys.h"
  14. #include "cmProcObj.h"
  15. #include "cmProcTemplate.h"
  16. #include "cmAudioFile.h"
  17. #include "cmMath.h"
  18. #include "cmProc.h"
  19. #include "cmVectOps.h"
  20. #include "cmKeyboard.h"
  21. #include "cmGnuPlot.h"
  22. #include "cmTime.h"
  23. #include "cmMidi.h"
  24. #include "cmProc2.h"
  25. //------------------------------------------------------------------------------------------------------------
  26. cmArray* cmArrayAllocate( cmCtx* c, cmArray* ap, unsigned eleCnt, unsigned eleByteCnt, unsigned flags )
  27. {
  28. cmArray* p = cmObjAlloc( cmArray, c, ap );
  29. if( eleCnt > 0 && eleByteCnt > 0 )
  30. if( cmArrayInit(p, eleCnt, eleByteCnt, flags ) != cmOkRC )
  31. cmArrayFree(&p);
  32. return cmOkRC;
  33. }
  34. cmRC_t cmArrayFree( cmArray** pp )
  35. {
  36. cmRC_t rc = cmOkRC;
  37. cmArray* p = *pp;
  38. if( pp == NULL || *pp == NULL )
  39. return cmOkRC;
  40. if((rc = cmArrayFinal(p)) != cmOkRC )
  41. return rc;
  42. cmMemPtrFree(&p->ptr);
  43. cmObjFree(pp);
  44. return rc;
  45. }
  46. cmRC_t cmArrayInit( cmArray* p, unsigned eleCnt, unsigned eleByteCnt, unsigned flags )
  47. {
  48. cmRC_t rc = cmOkRC;
  49. if((rc = cmArrayFinal(p)) != cmOkRC )
  50. return rc;
  51. p->allocByteCnt = eleCnt * eleByteCnt;
  52. p->ptr = cmIsFlag(flags,kZeroArrayFl) ? cmMemResizeZ( char, p->ptr, p->allocByteCnt ) : cmMemResize( char, p->ptr, p->allocByteCnt );
  53. p->eleCnt = eleCnt;
  54. p->eleByteCnt = eleByteCnt;
  55. return rc;
  56. }
  57. cmRC_t cmArrayFinal( cmArray* p )
  58. { return cmOkRC; }
  59. char* cmArrayReallocDestroy(cmArray* p, unsigned newEleCnt, unsigned newEleByteCnt, unsigned flags )
  60. {
  61. // if memory is expanding
  62. if( newEleCnt * newEleByteCnt > p->allocByteCnt )
  63. cmArrayInit( p, newEleCnt, newEleByteCnt, flags );
  64. else
  65. {
  66. // ... otherwise memory is contrcmting
  67. p->eleCnt = newEleCnt;
  68. p->eleByteCnt = newEleByteCnt;
  69. if( cmIsFlag( flags, kZeroArrayFl ))
  70. memset(p->ptr,0,p->eleByteCnt);
  71. }
  72. return p->ptr;
  73. }
  74. void cmArrayReallocDestroyV(cmArray* p, int eleByteCnt,unsigned flags, ... )
  75. {
  76. unsigned i;
  77. unsigned eleCnt = 0;
  78. unsigned argCnt = 0;
  79. va_list vl0,vl1;
  80. assert(eleByteCnt>0);
  81. va_start(vl0,flags);
  82. va_copy(vl1,vl0);
  83. while( va_arg(vl0,void**) != NULL )
  84. {
  85. int argEleCnt = va_arg(vl0,int);
  86. assert(argEleCnt>0);
  87. eleCnt += argEleCnt;
  88. ++argCnt;
  89. }
  90. va_end(vl0);
  91. char* a = cmArrayReallocDestroy(p,eleCnt,eleByteCnt,flags);
  92. for(i=0; i<argCnt; ++i)
  93. {
  94. void** vp = va_arg(vl1,void**);
  95. unsigned n = va_arg(vl1,unsigned);
  96. *vp = a;
  97. a += n*eleByteCnt;
  98. }
  99. va_end(vl1);
  100. }
  101. char* cmArrayReallocPreserve(cmArray* p, unsigned newEleCnt, unsigned newEleByteCnt, unsigned flags )
  102. {
  103. unsigned cn = p->eleCnt * p->eleByteCnt;
  104. unsigned dn = newEleCnt * newEleByteCnt;
  105. if( dn > p->allocByteCnt )
  106. p->allocByteCnt = dn;
  107. p->ptr = cmIsFlag(flags,kZeroArrayFl ) ? cmMemResizePZ( char, p->ptr, cn ) : cmMemResizeP( char, p->ptr, cn);
  108. p->eleCnt = newEleCnt;
  109. p->eleByteCnt= newEleByteCnt;
  110. return p->ptr;
  111. }
  112. //------------------------------------------------------------------------------------------------------------
  113. cmAudioFileWr* cmAudioFileWrAlloc( cmCtx* c, cmAudioFileWr* ap, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample )
  114. {
  115. cmAudioFileWr* p = cmObjAlloc( cmAudioFileWr, c, ap );
  116. if( cmAudioFileWrInit( p, procSmpCnt, fn, srate, chCnt, bitsPerSample ) != cmOkRC )
  117. cmObjFree(&p);
  118. return p;
  119. }
  120. cmRC_t cmAudioFileWrFree( cmAudioFileWr** pp )
  121. {
  122. cmRC_t rc = cmOkRC;
  123. if( pp != NULL && *pp != NULL )
  124. {
  125. cmAudioFileWr* p = *pp;
  126. if((rc = cmAudioFileWrFinal(p)) == cmOkRC )
  127. {
  128. cmMemPtrFree(&p->bufV);
  129. cmMemPtrFree(&p->fn );
  130. cmObjFree(pp);
  131. }
  132. }
  133. return rc;
  134. }
  135. cmRC_t cmAudioFileWrInit( cmAudioFileWr* p, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample )
  136. {
  137. cmRC_t rc;
  138. cmRC_t afRC;
  139. if((rc = cmAudioFileWrFinal( p)) != cmOkRC )
  140. return rc;
  141. p->h = cmAudioFileNewCreate( fn, srate, bitsPerSample, chCnt, &afRC, p->obj.err.rpt );
  142. if( afRC != kOkAfRC )
  143. return cmCtxRtCondition( &p->obj, afRC, "Unable to open the audio file:'%s'", fn );
  144. p->bufV = cmMemResize( cmSample_t, p->bufV, procSmpCnt * chCnt );
  145. p->procSmpCnt = procSmpCnt;
  146. p->chCnt = chCnt;
  147. p->curChCnt = 0;
  148. p->fn = cmMemResizeZ( cmChar_t, p->fn, strlen(fn)+1 );
  149. strcpy(p->fn,fn);
  150. return rc;
  151. }
  152. cmRC_t cmAudioFileWrFinal( cmAudioFileWr* p )
  153. {
  154. cmRC_t afRC;
  155. if( p != NULL )
  156. {
  157. if( cmAudioFileIsValid( p->h ) )
  158. if(( afRC = cmAudioFileDelete( &p->h )) != kOkAfRC )
  159. return cmCtxRtCondition( &p->obj, afRC, "Unable to close the audio file:'%s'", p->fn );
  160. }
  161. return cmOkRC;
  162. }
  163. cmRC_t cmAudioFileWrExec( cmAudioFileWr* p, unsigned chIdx, const cmSample_t* sp, unsigned sn )
  164. {
  165. cmRC_t afRC;
  166. assert( sn <= p->procSmpCnt && chIdx < p->chCnt );
  167. cmSample_t* buf = p->bufV + (chIdx * p->procSmpCnt);
  168. cmVOS_Copy( buf, sn, sp);
  169. if( sn < p->procSmpCnt )
  170. cmVOS_Fill( buf+sn, p->procSmpCnt-sn, 0 );
  171. p->curChCnt++;
  172. if( p->curChCnt == p->chCnt )
  173. {
  174. p->curChCnt = 0;
  175. cmSample_t* bufPtrPtr[ p->chCnt ];
  176. unsigned i = 0;
  177. for(i=0; i<p->chCnt; ++i)
  178. bufPtrPtr[i] = p->bufV + (i*p->procSmpCnt);
  179. if((afRC = cmAudioFileWriteSample( p->h, p->procSmpCnt, p->chCnt, bufPtrPtr )) != kOkAfRC )
  180. return cmCtxRtCondition( &p->obj, afRC, "Write failed on audio file:'%s'", p->fn );
  181. }
  182. return cmOkRC;
  183. }
  184. void cmAudioFileWrTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  185. {
  186. const char* fn = "/home/kevin/src/cm/test0.aif";
  187. double durSecs = 10;
  188. double srate = 44100;
  189. unsigned chCnt = 2;
  190. unsigned bitsPerSmp = 16;
  191. unsigned procSmpCnt = 64;
  192. double hz = 1000;
  193. unsigned overToneCnt= 1;
  194. unsigned smpCnt = durSecs * srate;
  195. unsigned i;
  196. cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH );
  197. cmSigGen* sgp = cmSigGenAlloc( c, NULL, procSmpCnt, srate, kWhiteWfId, hz, overToneCnt );
  198. cmAudioFileWr* awp = cmAudioFileWrAlloc( c, NULL, procSmpCnt, fn, srate, chCnt, bitsPerSmp );
  199. for(i=0; i<smpCnt; ++i)
  200. {
  201. cmSigGenExec( sgp );
  202. cmAudioFileWrExec( awp, 0, sgp->outV, sgp->outN );
  203. cmAudioFileWrExec( awp, 1, sgp->outV, sgp->outN );
  204. i += sgp->outN;
  205. }
  206. printf("Frames:%i\n",smpCnt);
  207. cmAudioFileWrFree(&awp);
  208. cmSigGenFree( &sgp );
  209. cmCtxFree(&c);
  210. cmAudioFileReportFn( fn, 0, 20, rpt );
  211. }
  212. //------------------------------------------------------------------------------------------------------------
  213. cmMatrixBuf* cmMatrixBufAllocFile( cmCtx* c, cmMatrixBuf* p, const char* fn )
  214. {
  215. cmRC_t rc;
  216. cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
  217. if( fn != NULL )
  218. if((rc = cmMatrixBufInitFile(op,fn)) != cmOkRC )
  219. cmObjFree(&op);
  220. return op;
  221. }
  222. cmMatrixBuf* cmMatrixBufAllocCopy(cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp )
  223. {
  224. cmRC_t rc;
  225. cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
  226. if( sp != NULL && rn > 0 && cn > 0 )
  227. if((rc = cmMatrixBufInitCopy(op,rn,cn,sp)) != cmOkRC )
  228. cmObjFree(&op);
  229. return op;
  230. }
  231. cmMatrixBuf* cmMatrixBufAlloc( cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn )
  232. {
  233. cmRC_t rc;
  234. cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
  235. if( rn > 0 && cn > 0 )
  236. if((rc = cmMatrixBufInit(op,rn,cn)) != cmOkRC )
  237. cmObjFree(&op);
  238. return op;
  239. }
  240. cmRC_t cmMatrixBufFree( cmMatrixBuf** pp )
  241. {
  242. cmRC_t rc = cmOkRC;
  243. if( pp != NULL && *pp != NULL )
  244. {
  245. cmMatrixBuf* p = *pp;
  246. if((rc = cmMatrixBufFinal(p)) == cmOkRC )
  247. {
  248. cmMemPtrFree(&p->bufPtr);
  249. cmObjFree(pp);
  250. }
  251. }
  252. return rc;
  253. }
  254. void _cmMatrixBufGetFileSize( FILE* fp, unsigned* lineCharCntPtr, unsigned* lineCntPtr )
  255. {
  256. *lineCharCntPtr = 0;
  257. *lineCntPtr = 0;
  258. while( !feof(fp) )
  259. {
  260. char ch;
  261. unsigned charCnt = 0;
  262. while( (ch = getc(fp)) != EOF )
  263. {
  264. charCnt++;
  265. if( ch == '\n' )
  266. break;
  267. }
  268. *lineCntPtr += 1;
  269. if(charCnt > *lineCharCntPtr )
  270. *lineCharCntPtr = charCnt;
  271. }
  272. *lineCharCntPtr += 5; // add a safety margin
  273. }
  274. cmRC_t _cmMatrixBufGetMatrixSize( cmObj* op, FILE* fp, unsigned lineCharCnt, unsigned lineCnt, unsigned* rowCntPtr, unsigned * colCntPtr, const char* fn )
  275. {
  276. unsigned i;
  277. char lineBuf[ lineCharCnt + 1 ];
  278. *rowCntPtr = 0;
  279. *colCntPtr = 0;
  280. for(i=0; i<lineCnt; ++i)
  281. {
  282. if(fgets(lineBuf,lineCharCnt,fp)==NULL)
  283. {
  284. // if the last line is blank then return from here
  285. if( feof(fp) )
  286. return cmOkRC;
  287. return cmCtxRtCondition( op, cmSystemErrorRC, "A read error occured on the matrix file:'%s'.",fn);
  288. }
  289. assert( strlen(lineBuf) < lineCharCnt );
  290. char* lp = lineBuf;
  291. char* tp;
  292. // eat any leading white space
  293. while( (*lp) && isspace(*lp) )
  294. ++lp;
  295. // if the line was blank then skip it
  296. if( strlen(lp) == 0 || *lp == '#' )
  297. continue;
  298. (*rowCntPtr) += 1;
  299. unsigned colCnt;
  300. for(colCnt=0; (tp = strtok(lp," ")) != NULL; ++colCnt )
  301. lp = NULL;
  302. if( colCnt > *colCntPtr )
  303. *colCntPtr = colCnt;
  304. }
  305. return cmOkRC;
  306. }
  307. double _cmMatrixBufStrToNum( cmObj* op, const char* cp )
  308. {
  309. double v;
  310. if( sscanf(cp,"%le ",&v) != 1 )
  311. cmCtxRtCondition( op, cmArgAssertRC, "Parse error reading matrix file.");
  312. return v;
  313. }
  314. cmRC_t _cmMatrixBufReadFile(cmObj* op, FILE* fp, cmSample_t* p, unsigned lineCharCnt, unsigned rn, unsigned cn)
  315. {
  316. char lineBuf[ lineCharCnt+1 ];
  317. unsigned ci = 0;
  318. unsigned ri = 0;
  319. while( fgets(lineBuf,lineCharCnt,fp) != NULL )
  320. {
  321. char* lp = lineBuf;
  322. char* tp;
  323. while( (*lp) && isspace(*lp) )
  324. lp++;
  325. if( strlen(lp) == 0 || *lp == '#' )
  326. continue;
  327. for(ci=0; (tp = strtok(lp," ")) != NULL; ++ci )
  328. {
  329. p[ (ci*rn) + ri ] = _cmMatrixBufStrToNum(op,tp); //atof(tp);
  330. lp = NULL;
  331. }
  332. ++ri;
  333. }
  334. return cmOkRC;
  335. }
  336. cmRC_t cmMatrixBufInitFile( cmMatrixBuf* p, const char* fn )
  337. {
  338. cmRC_t rc;
  339. FILE* fp;
  340. unsigned lineCharCnt;
  341. unsigned lineCnt;
  342. unsigned rn;
  343. unsigned cn;
  344. if((fp = fopen(fn,"rt")) == NULL )
  345. return cmCtxRtCondition( &p->obj, cmSystemErrorRC, "Unable to open the matrix file:'%s'", fn );
  346. // get the length of the longest line in the file
  347. _cmMatrixBufGetFileSize(fp,&lineCharCnt,&lineCnt);
  348. rewind(fp);
  349. // get the count of matrix rows and columns
  350. if((rc=_cmMatrixBufGetMatrixSize( &p->obj, fp, lineCharCnt, lineCnt, &rn, &cn, fn )) != cmOkRC )
  351. goto errLabel;
  352. rewind(fp);
  353. // allocate the matrix memory
  354. cmMatrixBufInit(p,rn,cn);
  355. // fill the matrix from the file
  356. rc = _cmMatrixBufReadFile(&p->obj,fp,p->bufPtr,lineCharCnt,rn,cn);
  357. errLabel:
  358. if( rc != cmOkRC )
  359. cmMatrixBufFinal(p);
  360. fclose(fp);
  361. return rc;
  362. }
  363. cmRC_t cmMatrixBufInitCopy( cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp )
  364. {
  365. cmRC_t rc;
  366. if((rc = cmMatrixBufInit(p,rn,cn)) != cmOkRC )
  367. return rc;
  368. cmVOS_Copy(p->bufPtr,(rn*cn),sp);
  369. return rc;
  370. }
  371. cmRC_t cmMatrixBufInit( cmMatrixBuf* p, unsigned rn, unsigned cn )
  372. {
  373. cmRC_t rc;
  374. if((rc = cmMatrixBufFinal(p)) != cmOkRC )
  375. return rc;
  376. p->rn = rn;
  377. p->cn = cn;
  378. p->bufPtr = cmMemResize( cmSample_t, p->bufPtr, rn*cn );
  379. return cmOkRC;
  380. }
  381. cmRC_t cmMatrixBufFinal( cmMatrixBuf* p )
  382. { return cmOkRC; }
  383. cmSample_t* cmMatrixBufColPtr( cmMatrixBuf* p, unsigned ci )
  384. { assert(ci<p->cn); return p->bufPtr + (ci * p->rn); }
  385. cmSample_t* cmMatrixBufRowPtr( cmMatrixBuf* p, unsigned ri )
  386. { assert(ri<p->rn); return p->bufPtr + ri; }
  387. void cmMatrixBufTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  388. {
  389. cmSample_t v[] = {1,2,2,3};
  390. cmCtx* c = cmCtxAlloc(NULL,rpt,lhH,stH);
  391. cmMatrixBuf* mbp = cmMatrixBufAllocFile(c, NULL, "temp.mat" );
  392. cmMatrixBuf* vbp = cmMatrixBufAllocCopy(c, NULL, 4,1,v);
  393. unsigned i;
  394. printf("rn:%i cn:%i\n",mbp->rn,mbp->cn);
  395. //cmVOS_Print( stdout, 10, 10, mbp->bufPtr );
  396. printf("%.1f\n ",cmVOS_Median( cmMatrixBufColPtr(vbp,0),vbp->rn));
  397. for(i=0; i<mbp->cn; ++i)
  398. {
  399. //cmVOS_Print( stdout, 1, mbp->cn, cmMatrixBufColPtr(c,mbp,i) );
  400. printf("%.1f, ",cmVOS_Median( cmMatrixBufColPtr(mbp,i),mbp->rn));
  401. }
  402. printf("\n");
  403. cmMatrixBufFree(&mbp);
  404. cmMatrixBufFree(&vbp);
  405. cmCtxFree(&c);
  406. }
  407. //------------------------------------------------------------------------------------------------------------
  408. cmSigGen* cmSigGenAlloc( cmCtx* c, cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt )
  409. {
  410. cmSigGen* op = cmObjAlloc( cmSigGen, c, p );
  411. if( procSmpCnt > 0 && srate > 0 && wfId != kInvalidWfId )
  412. if( cmSigGenInit( op, procSmpCnt, srate, wfId, fundFrqHz, overToneCnt ) != cmOkRC )
  413. cmObjFree(&op);
  414. return op;
  415. }
  416. cmRC_t cmSigGenFree( cmSigGen** pp )
  417. {
  418. cmRC_t rc = cmOkRC;
  419. if( pp != NULL && *pp != NULL )
  420. {
  421. cmSigGen* p = *pp;
  422. if((rc = cmSigGenFinal(p)) == cmOkRC )
  423. {
  424. cmMemPtrFree(&p->outV);
  425. cmObjFree(pp);
  426. }
  427. }
  428. return rc;
  429. }
  430. cmRC_t cmSigGenInit( cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt )
  431. {
  432. assert( srate > 0 && procSmpCnt > 0 );
  433. p->outV = cmMemResize( cmSample_t, p->outV, procSmpCnt );
  434. p->outN = procSmpCnt;
  435. p->wfId = wfId;
  436. p->overToneCnt = overToneCnt;
  437. p->fundFrqHz = fundFrqHz;
  438. p->phase = 0;
  439. p->delaySmp = 0;
  440. p->srate = srate;
  441. return cmOkRC;
  442. }
  443. cmRC_t cmSigGenFinal( cmSigGen* p )
  444. { return cmOkRC; }
  445. cmRC_t cmSigGenExec( cmSigGen* p )
  446. {
  447. switch( p->wfId )
  448. {
  449. case kSineWfId: p->phase = cmVOS_SynthSine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  450. case kCosWfId: p->phase = cmVOS_SynthCosine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  451. case kSquareWfId: p->phase = cmVOS_SynthSquare( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  452. case kTriangleWfId: p->phase = cmVOS_SynthTriangle( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  453. case kSawtoothWfId: p->phase = cmVOS_SynthSawtooth( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  454. case kWhiteWfId: cmVOS_Random( p->outV, p->outN, -1.0, 1.0 ); break;
  455. case kPinkWfId: p->delaySmp = cmVOS_SynthPinkNoise(p->outV, p->outN, p->delaySmp ); break;
  456. case kPulseWfId: p->phase = cmVOS_SynthPulseCos( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  457. case kImpulseWfId: p->phase = cmVOS_SynthImpulse( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  458. case kSilenceWfId: cmVOS_Fill( p->outV, p->outN, 0 ); break;
  459. case kPhasorWfId: p->phase = cmVOS_SynthPhasor( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  460. case kSeqWfId: p->phase = cmVOS_Seq( p->outV, p->outN, p->phase, 1 ); break;
  461. case kInvalidWfId:
  462. default:
  463. return cmCtxRtAssertFailed( &p->obj, 0, "Invalid waveform shape.");
  464. }
  465. return cmOkRC;
  466. }
  467. //------------------------------------------------------------------------------------------------------------
  468. cmDelay* cmDelayAlloc( cmCtx* c, cmDelay* ap, unsigned procSmpCnt, unsigned delaySmpCnt )
  469. {
  470. cmDelay* p = cmObjAlloc( cmDelay, c, ap );
  471. if( procSmpCnt > 0 && delaySmpCnt > 0 )
  472. if( cmDelayInit( p,procSmpCnt,delaySmpCnt) != cmOkRC && ap == NULL )
  473. cmObjFree(&p);
  474. return p;
  475. }
  476. cmRC_t cmDelayFree( cmDelay** pp )
  477. {
  478. cmRC_t rc = cmOkRC;
  479. if( pp != NULL && *pp != NULL )
  480. {
  481. cmDelay* p = *pp;
  482. if((rc = cmDelayFinal(*pp)) == cmOkRC )
  483. {
  484. cmMemPtrFree(&p->bufPtr);
  485. cmObjFree(pp);
  486. }
  487. }
  488. return rc;
  489. }
  490. cmRC_t cmDelayInit( cmDelay* p, unsigned procSmpCnt, unsigned delaySmpCnt )
  491. {
  492. p->procSmpCnt = procSmpCnt;
  493. p->delaySmpCnt = delaySmpCnt;
  494. p->bufSmpCnt = delaySmpCnt + procSmpCnt;
  495. p->bufPtr = cmMemResizeZ( cmSample_t, p->bufPtr, p->bufSmpCnt);
  496. p->delayInIdx = 0;
  497. p->outCnt = 1;
  498. p->outV[0] = p->bufPtr;
  499. p->outN[0] = p->procSmpCnt;
  500. p->outV[1] = NULL;
  501. p->outN[1] = 0;
  502. return cmOkRC;
  503. }
  504. cmRC_t cmDelayFinal( cmDelay* p )
  505. { return cmOkRC; }
  506. cmRC_t cmDelayCopyIn( cmDelay* p, const cmSample_t* sp, unsigned sn )
  507. {
  508. assert(sn<=p->procSmpCnt);
  509. unsigned n0 = cmMin(sn,p->bufSmpCnt - p->delayInIdx);
  510. // copy as many samples as possible from the input to the delayInIdx
  511. cmVOS_Copy(p->bufPtr + p->delayInIdx, n0, sp);
  512. p->delayInIdx = (p->delayInIdx + n0) % p->bufSmpCnt;
  513. // if there was not enough room to copy all the samples into the end of the buffer ....
  514. if( n0 < sn )
  515. {
  516. assert( p->delayInIdx == 0 );
  517. // ... then copy the rest to the beginning of the buffer
  518. unsigned n1 = sn - n0;
  519. cmVOS_Copy(p->bufPtr,n1, sp + n0 );
  520. p->delayInIdx = (p->delayInIdx + n1) % p->bufSmpCnt;
  521. }
  522. return cmOkRC;
  523. }
  524. cmRC_t cmDelayAdvance( cmDelay* p, unsigned sn )
  525. {
  526. // advance the output by sn and make sn samples available
  527. int delayOutIdx = ((p->outV[0] - p->bufPtr) + sn) % p->bufSmpCnt;
  528. p->outV[0] = p->bufPtr + delayOutIdx;
  529. p->outN[0] = cmMin(p->bufSmpCnt - delayOutIdx , sn );
  530. p->outCnt = p->outN[0] == sn ? 1 : 2 ;
  531. p->outV[1] = p->outCnt == 1 ? NULL : p->bufPtr;
  532. p->outN[1] = p->outCnt == 1 ? 0 : sn - p->outN[0];
  533. return cmOkRC;
  534. }
  535. cmRC_t cmDelayExec( cmDelay* p, const cmSample_t* sp, unsigned sn, bool bypassFl )
  536. {
  537. cmRC_t rc = cmOkRC;
  538. if( bypassFl )
  539. memcpy(p->outV,sp,sn*sizeof(cmSample_t));
  540. else
  541. {
  542. cmDelayCopyIn(p,sp,sn);
  543. rc = cmDelayAdvance(p,sn);
  544. }
  545. return rc;
  546. }
  547. void cmDelayTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  548. {
  549. cmCtx ctx;
  550. cmDelay delay;
  551. cmSigGen sigGen;
  552. unsigned procCnt = 4;
  553. unsigned procSmpCnt = 5;
  554. unsigned delaySmpCnt = 3;
  555. unsigned i;
  556. cmCtx* c = cmCtxAlloc( &ctx, rpt, lhH, stH );
  557. cmDelay* dlp = cmDelayAlloc( c, &delay, procSmpCnt, delaySmpCnt );
  558. cmSigGen* sgp = cmSigGenAlloc( c, &sigGen, procSmpCnt, 0, kSeqWfId,0, 0);
  559. for(i=0; i<procCnt; ++i)
  560. {
  561. cmSigGenExec(sgp);
  562. cmDelayExec(dlp,sgp->outV,sgp->outN,false);
  563. //cmVOS_Print( c->outFp, 1, sgp->outN, sgp->outV, 5, 0 );
  564. cmCtxPrint(c,"%i %i : ",i,0);
  565. cmVOS_PrintE( rpt, 1, dlp->outN[0], dlp->outV[0] );
  566. if( dlp->outN[1] > 0 )
  567. {
  568. cmCtxPrint(c,"%i %i : ",i,1);
  569. cmVOS_PrintE( rpt, 1, dlp->outN[1], dlp->outV[1] );
  570. }
  571. }
  572. cmSigGenFinal(sgp);
  573. cmDelayFinal(dlp);
  574. cmCtxFinal(c);
  575. }
  576. //------------------------------------------------------------------------------------------------------------
  577. cmFIR* cmFIRAllocKaiser(cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb, unsigned flags )
  578. {
  579. cmFIR* op = cmObjAlloc( cmFIR, c, p );
  580. if( procSmpCnt > 0 && srate > 0 )
  581. if( cmFIRInitKaiser(op,procSmpCnt,srate,passHz,stopHz,passDb,stopDb,flags) != cmOkRC )
  582. cmObjFree(&op);
  583. return op;
  584. }
  585. cmFIR* cmFIRAllocSinc( cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags, const double* wndV )
  586. {
  587. cmFIR* op = cmObjAlloc( cmFIR, c, p );
  588. if( srate > 0 && sincSmpCnt > 0 )
  589. if( cmFIRInitSinc(op,procSmpCnt,srate,sincSmpCnt,fcHz,flags,wndV) != cmOkRC )
  590. cmObjFree(&op);
  591. return op;
  592. }
  593. cmRC_t cmFIRFree( cmFIR** pp )
  594. {
  595. cmRC_t rc = cmOkRC;
  596. if( pp != NULL && *pp != NULL)
  597. {
  598. cmFIR* p = *pp;
  599. if((rc = cmFIRFinal(*pp)) == cmOkRC )
  600. {
  601. cmMemPtrFree(&p->coeffV);
  602. cmMemPtrFree(&p->outV);
  603. cmMemPtrFree(&p->delayV);
  604. cmObjFree(pp);
  605. }
  606. }
  607. return rc;
  608. }
  609. cmRC_t cmFIRInitKaiser( cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb, unsigned flags )
  610. {
  611. // pass/stop frequencies above nyquist produce incorrect results
  612. assert( passHz <= srate/2 && stopHz<=srate/2);
  613. // based on Orfandis, Introduction to Signal Processing, p.551 Prentice Hall, 1996
  614. double fcHz = (passHz + stopHz) / 2; // fc is half way between passHz and stopHz
  615. double dHz = fabs(stopHz-passHz);
  616. // convert ripple spec from db to linear
  617. double dPass = (pow(10,passDb/20)-1) / (pow(10,passDb/20)+1);
  618. double dStop = pow(10,-stopDb/20);
  619. // in practice the ripple must be equal in the stop and pass band - so take the minimum between the two
  620. double d = cmMin(dPass,dStop);
  621. // convert the ripple bcmk to db
  622. double A = -20 * log10(d);
  623. // compute the kaiser alpha coeff
  624. double alpha = 0;
  625. if( A >= 50.0 ) // for ripple > 50
  626. alpha = 0.1102 * (A-8.7);
  627. else // for ripple <= 21
  628. {
  629. if( A > 21 )
  630. alpha = (0.5842 * (pow(A-21.0,0.4))) + (0.07886*(A-21));
  631. }
  632. double D = 0.922;
  633. if( A > 21 )
  634. D = (A - 7.95) / 14.36;
  635. // compute the filter order
  636. unsigned N = (unsigned)(floor(D * srate / dHz) + 1);
  637. //if N is even
  638. if( cmIsEvenU(N) )
  639. N = N + 1;
  640. //printf("fc=%f df=%f dPass=%f dStop=%f d=%f alpha=%f A=%f D=%f N=%i\n",fcHz,dHz,dPass,dStop,d,alpha,A,D,N);
  641. // compute a kaiser function to truncate the sinc
  642. double wnd[ N ];
  643. cmVOD_Kaiser( wnd, N, alpha );
  644. // form an ideal FIR LP impulse response based on a sinc function
  645. cmFIRInitSinc(p,procSmpCnt,srate,N,fcHz,flags, wnd);
  646. //cmVOD_Print(stdout,1,p->coeffCnt,p->coeffV);
  647. return cmOkRC;
  648. }
  649. cmRC_t cmFIRInitSinc( cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags, const double* wndV )
  650. {
  651. cmRC_t rc;
  652. if((rc = cmFIRFinal(p)) != cmOkRC )
  653. return rc;
  654. p->coeffCnt = sincSmpCnt;
  655. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
  656. p->outN = procSmpCnt;
  657. p->coeffV = cmMemResizeZ( double, p->coeffV, p->coeffCnt );
  658. p->delayV = cmMemResizeZ( double, p->delayV, p->coeffCnt-1 ); // there is always one less delay than coeff
  659. p->delayIdx = 0;
  660. unsigned lp_flags = kNormalize_LPSincFl;
  661. lp_flags |= cmIsFlag(flags,kHighPassFIRFl) ? kHighPass_LPSincFl : 0;
  662. cmVOD_LP_Sinc(p->coeffV, p->coeffCnt, wndV, srate, fcHz, lp_flags );
  663. return cmOkRC;
  664. }
  665. cmRC_t cmFIRFinal( cmFIR* p )
  666. { return cmOkRC; }
  667. cmRC_t cmFIRExec( cmFIR* p, const cmSample_t* sbp, unsigned sn )
  668. {
  669. unsigned delayCnt = p->coeffCnt-1;
  670. int di = p->delayIdx;
  671. const cmSample_t* sep = sbp + sn;
  672. cmSample_t* op = p->outV;
  673. assert( di < delayCnt );
  674. assert( sn <= p->outN );
  675. // for each input sample
  676. while( sbp < sep )
  677. {
  678. // advance the delay line
  679. p->delayIdx = (p->delayIdx + 1) % delayCnt;
  680. const double* cbp = p->coeffV;
  681. const double* cep = cbp + p->coeffCnt;
  682. // mult input sample by coeff[0]
  683. double v = *sbp * *cbp++;
  684. // calc the output sample
  685. while( cbp<cep)
  686. {
  687. // note that the delay is being iterated bcmkwards
  688. if( di == -1 )
  689. di=delayCnt-1;
  690. v += *cbp++ * p->delayV[di];
  691. --di;
  692. }
  693. // store the output sample
  694. *op++ = v;
  695. // insert the input sample
  696. p->delayV[ p->delayIdx ] = *sbp++;
  697. // store the position of the newest ele in the delay line
  698. di = p->delayIdx;
  699. }
  700. return cmOkRC;
  701. }
  702. void cmFIRTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  703. {
  704. unsigned N = 512;
  705. cmKbRecd kb;
  706. cmCtx c;
  707. cmCtxInit(&c,rpt,lhH,stH);
  708. double srate = N;
  709. unsigned procSmpCnt = N;
  710. cmPlotSetup("Test Proc Impl",2,1);
  711. cmSample_t in[ procSmpCnt ];
  712. cmVOS_Fill(in,procSmpCnt,0);
  713. in[0] = 1;
  714. cmVOS_Random(in,procSmpCnt, -1.0, 1.0 );
  715. cmFIR* ffp = cmFIRAllocKaiser( &c, NULL, procSmpCnt,srate, srate*0.025, srate/2, 10, 60, 0 );
  716. //cmFIR* ffp = cmFIRAllocSinc( &c, NULL, 32, 1000, 0 );
  717. cmFftSR* ftp = cmFftAllocSR( &c, NULL, ffp->outV, ffp->outN, kToPolarFftFl );
  718. cmFIRExec( ffp, in, procSmpCnt );
  719. cmFftExecSR( ftp, NULL, 0 );
  720. cmVOR_AmplitudeToDb(ftp->magV,ftp->binCnt,ftp->magV);
  721. printf("coeff cnt:%i\n",ffp->coeffCnt );
  722. cmPlotClear();
  723. cmPlotLineR( "test", NULL, ftp->magV, NULL, ftp->binCnt, NULL, kSolidPlotLineId );
  724. cmPlotDraw();
  725. cmKeyPress(&kb);
  726. cmFftFreeSR(&ftp);
  727. cmFIRFree(&ffp);
  728. }
  729. //------------------------------------------------------------------------------------------------------------
  730. cmFuncFilter* cmFuncFilterAlloc( cmCtx* c, cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt )
  731. {
  732. cmRC_t rc;
  733. cmFuncFilter* op = cmObjAlloc( cmFuncFilter,c, p );
  734. if( procSmpCnt > 0 && funcPtr != NULL && wndSmpCnt > 0 )
  735. {
  736. if( cmShiftBufAlloc(c,&p->shiftBuf,0,0,0) != NULL )
  737. if((rc = cmFuncFilterInit(op,procSmpCnt,funcPtr,userPtr,wndSmpCnt)) != cmOkRC )
  738. {
  739. cmShiftBuf* sbp = &p->shiftBuf;
  740. cmShiftBufFree(&sbp);
  741. cmObjFree(&op);
  742. }
  743. }
  744. return op;
  745. }
  746. cmRC_t cmFuncFilterFree( cmFuncFilter** pp )
  747. {
  748. cmRC_t rc = cmOkRC;
  749. if( pp!=NULL && *pp != NULL )
  750. {
  751. cmFuncFilter* p = *pp;
  752. if((rc = cmFuncFilterFinal(*pp)) == cmOkRC )
  753. {
  754. cmShiftBuf* sbp = &p->shiftBuf;
  755. cmShiftBufFree(&sbp);
  756. cmMemPtrFree(&p->outV);
  757. cmObjFree(pp);
  758. }
  759. }
  760. return rc;
  761. }
  762. cmRC_t cmFuncFilterInit( cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt )
  763. {
  764. cmRC_t rc;
  765. if(( rc = cmFuncFilterFinal(p)) != cmOkRC )
  766. return rc;
  767. // The shift buffer always consits of the p->wndSmpCnt-1 samples from the previous
  768. // exec followed by the latest procSmpCnt samples at the end of the buffer
  769. cmShiftBufInit( &p->shiftBuf, procSmpCnt, wndSmpCnt + procSmpCnt - 1, procSmpCnt );
  770. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt);
  771. p->outN = procSmpCnt;
  772. p->funcPtr = funcPtr;
  773. p->curWndSmpCnt = 1;
  774. p->wndSmpCnt = wndSmpCnt;
  775. return rc;
  776. }
  777. cmRC_t cmFuncFilterFinal( cmFuncFilter* p )
  778. { return cmOkRC; }
  779. cmRC_t cmFuncFilterExec( cmFuncFilter* p, const cmSample_t* sp, unsigned sn )
  780. {
  781. assert( sn <= p->outN);
  782. // The window used by this function is always causal. At the very beginning of the signal
  783. // the window length begins at 1 and increases until is has the length p->wndSmpCnt.
  784. // Note that this approach ignores any zeros automatically prepended to the beginning of the
  785. // signal by the shift buffer. The first window processed always has a length of 1 and
  786. // begins with the first actual sample given to the shift buffer. Successive windows increase
  787. // by one and start at the first actual sample until the full window length is available
  788. // from the shift buffer. At this point the window length remains constant and it is hopped
  789. // by one sample for each window.
  790. while(cmShiftBufExec(&p->shiftBuf,sp,sn))
  791. {
  792. const cmSample_t* fsp = p->shiftBuf.outV;
  793. cmSample_t* dp = p->outV;
  794. cmSample_t* ep = p->outV + sn; // produce as many output values as there are input samples
  795. // for each output sample
  796. while( dp < ep )
  797. {
  798. // the source range should never extend outside the shift buffer
  799. assert( fsp + p->curWndSmpCnt <= p->shiftBuf.outV + p->shiftBuf.wndSmpCnt );
  800. // calc the next output value
  801. *dp++ = p->funcPtr( fsp, p->curWndSmpCnt, p->userPtr );
  802. // if the window has not yet achieved its full length ...
  803. if( p->curWndSmpCnt < p->wndSmpCnt )
  804. ++p->curWndSmpCnt; // ... then increase its length by 1
  805. else
  806. ++fsp; // ... otherwise shift it ahead by 1
  807. }
  808. }
  809. return cmOkRC;
  810. }
  811. cmSample_t cmFuncFiltTestFunc( const cmSample_t* sp, unsigned sn, void* vp )
  812. {
  813. //printf("% f % f %p % i\n",*sp,*sp+(sn-1),sp,sn);
  814. cmSample_t v = cmVOS_Median(sp,sn);
  815. printf("%f ",v);
  816. return v;
  817. //return *sp;
  818. }
  819. void cmFuncFilterTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  820. {
  821. unsigned procSmpCnt = 1;
  822. unsigned N = 32;
  823. cmSample_t v[N];
  824. cmCtx c;
  825. unsigned i;
  826. cmCtxAlloc(&c,rpt,lhH,stH);
  827. cmVOS_Seq(v,N,0,1);
  828. cmVOS_Print(rpt,1,32,v);
  829. cmFuncFilter* ffp = NULL;
  830. ffp = cmFuncFilterAlloc( &c, NULL, procSmpCnt, cmFuncFiltTestFunc, NULL, 5 );
  831. for(i=0; i<N; ++i)
  832. cmFuncFilterExec(ffp,v+(i*procSmpCnt),procSmpCnt);
  833. cmFuncFilterFree( &ffp );
  834. cmCtxFinal(&c);
  835. //unsigned v1n = 9;
  836. //cmSample_t v1[9] = { 1, 75, 91, 35, 6, 80, 40, 91, 79};
  837. //cmSample_t v1[10] = {53, 64, 48, 78, 30, 59, 7, 50, 71, 53 };
  838. //printf("Median: %f \n",cmVOS_Median(v1,v1+v1n));
  839. }
  840. //------------------------------------------------------------------------------------------------------------
  841. cmDhmm* cmDhmmAlloc( cmCtx* c, cmDhmm* ap, unsigned stateN, unsigned symN, cmReal_t* initV, cmReal_t* transM, cmReal_t* stsM )
  842. {
  843. cmDhmm* p = cmObjAlloc( cmDhmm, c, ap );
  844. if( stateN > 0 && symN > 0 )
  845. if( cmDhmmInit(p, stateN, symN, initV, transM, stsM ) != cmOkRC )
  846. cmObjFree(&p);
  847. return p;
  848. }
  849. cmRC_t cmDhmmFree( cmDhmm** pp )
  850. {
  851. cmRC_t rc = cmOkRC;
  852. cmDhmm* p = *pp;
  853. if( pp==NULL || *pp==NULL )
  854. return cmOkRC;
  855. if((rc = cmDhmmFinal(p)) != cmOkRC )
  856. return cmOkRC;
  857. cmObjFree(pp);
  858. return rc;
  859. }
  860. cmRC_t cmDhmmInit( cmDhmm* p, unsigned stateN, unsigned symN, cmReal_t* initV, cmReal_t* transM, cmReal_t* stsM )
  861. {
  862. cmRC_t rc;
  863. if((rc = cmDhmmFinal(p)) != cmOkRC )
  864. return rc;
  865. p->stateN = stateN;
  866. p->symN = symN;
  867. p->initV = initV;
  868. p->transM = transM;
  869. p->stsM = stsM;
  870. return cmOkRC;
  871. }
  872. cmRC_t cmDhmmFinal( cmDhmm* p )
  873. { return cmOkRC; }
  874. cmRC_t cmDhmmExec( cmDhmm* p )
  875. {
  876. return cmOkRC;
  877. }
  878. // Generate a random matrix with rows that sum to 1.0.
  879. void _cmDhmmGenRandMatrix( cmReal_t* dp, unsigned rn, unsigned cn )
  880. {
  881. cmReal_t v[ cn ];
  882. unsigned i,j;
  883. for(i=0; i<rn; ++i)
  884. {
  885. cmVOR_Random( v, cn, 0.0, 1.0 );
  886. cmVOR_NormalizeProbability( v, cn);
  887. for(j=0; j<cn; ++j)
  888. dp[ (j * rn) + i ] = v[j];
  889. }
  890. }
  891. enum { kEqualProbHmmFl=0x01, kRandProbHmmFl=0x02, kManualProbHmmFl=0x04 };
  892. void _cmDhmmGenProb( cmReal_t* dp, unsigned rn, unsigned cn, unsigned flags, const cmReal_t* sp )
  893. {
  894. switch( flags )
  895. {
  896. case kRandProbHmmFl:
  897. _cmDhmmGenRandMatrix( dp, rn, cn );
  898. break;
  899. case kEqualProbHmmFl:
  900. {
  901. // equal prob
  902. cmReal_t pr = 1.0/cn;
  903. unsigned i,j;
  904. for(i=0; i<rn; ++i)
  905. for(j=0; j<cn; ++j)
  906. dp[ (j*rn) + i ] = pr;
  907. }
  908. break;
  909. case kManualProbHmmFl:
  910. cmVOR_Copy( dp, (rn*cn), sp );
  911. break;
  912. default:
  913. assert(0);
  914. }
  915. }
  916. // generate a random integer in the range 0 to probN-1 where probV[ probN ] contains
  917. // the probability of generating each of the possible values.
  918. unsigned _cmDhmmGenRandInt( const cmReal_t* probV, unsigned probN, unsigned stride )
  919. {
  920. cmReal_t tmp[ probN ];
  921. cmReal_t cumSumV[ probN+1 ];
  922. const cmReal_t* sp = probV;
  923. cumSumV[0] = 0;
  924. if( stride > 1 )
  925. {
  926. cmVOR_CopyStride( tmp, probN, probV, stride );
  927. sp = tmp;
  928. }
  929. cmVOR_CumSum( cumSumV+1, probN, sp );
  930. return cmVOR_BinIndex( cumSumV, probN+1, (cmReal_t)rand()/RAND_MAX );
  931. }
  932. cmRC_t cmDhmmGenObsSequence( cmDhmm* p, unsigned* dbp, unsigned dn )
  933. {
  934. const unsigned* dep = dbp + dn;
  935. // generate the first state based on the init state prob. vector
  936. unsigned state = _cmDhmmGenRandInt( p->initV, p->stateN, 1 );
  937. // generate an observation from the state based on the symbol prob. vector
  938. *dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN );
  939. while( dbp < dep )
  940. {
  941. // get the next state based on the previous state
  942. state = _cmDhmmGenRandInt( p->transM + state, p->stateN, p->stateN );
  943. // given a state generate an observation
  944. *dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN );
  945. }
  946. return cmOkRC;
  947. }
  948. /// Perform a forward evaluation of the model given a set of observations.
  949. /// initPrV[ stateN ] is the probability of the model being in each state at the start of the evaluation.
  950. /// alphaM[ stateN, obsN ] is a return value and represents the probability of seeing each symbol at each time step.
  951. enum { kNoLogScaleHmmFl = 0x00, kLogScaleHmmFl = 0x01 };
  952. cmRC_t cmDHmmForwardEval( cmDhmm* p, const cmReal_t* initPrV, const unsigned* obsV, unsigned obsN, cmReal_t* alphaM, unsigned flags, cmReal_t* logProbPtr )
  953. {
  954. bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl);
  955. cmReal_t logProb = 0;
  956. cmReal_t* abp = alphaM; // define first dest. column
  957. const cmReal_t* aep = abp + p->stateN;
  958. const cmReal_t* sts = p->stsM + (obsV[0] * p->stateN); // stsM[] column for assoc'd with first obs. symbol
  959. unsigned i;
  960. // calc the prob of begining in each state given the obs. symbol
  961. for(i=0; abp < aep; ++i )
  962. *abp++ = *initPrV++ * *sts++;
  963. // scale to prevent underflow
  964. if( scaleFl )
  965. {
  966. cmReal_t sum = cmVOR_Sum(abp-p->stateN,p->stateN);
  967. if( sum > 0 )
  968. {
  969. cmVOR_DivVS( abp-p->stateN,p->stateN,sum);
  970. logProb += log(sum);
  971. }
  972. }
  973. // for each time step
  974. for(i=1; i<obsN; ++i)
  975. {
  976. // next state 0 (first col, first row) is calc'd first
  977. const cmReal_t* tm = p->transM;
  978. // pick the stsM[] column assoc'd with ith observation symbol
  979. const cmReal_t* sts = p->stsM + (obsV[i] * p->stateN);
  980. // store a pointer to the alpha column assoc'd with obsV[i-1]
  981. const cmReal_t* app0 = abp - p->stateN;
  982. aep = abp + p->stateN;
  983. // for each dest state
  984. while( abp < aep )
  985. {
  986. // prob of being in each state on the previous time step
  987. const cmReal_t* app = app0;
  988. const cmReal_t* ape = app + p->stateN;
  989. *abp = 0;
  990. // for each src state - calc prob. of trans from src to dest
  991. while( app<ape )
  992. *abp += *app++ * *tm++;
  993. // calc prob of obs symbol in dest state
  994. *abp++ *= *sts++;
  995. }
  996. // scale to prevent underflow
  997. if( scaleFl )
  998. {
  999. cmReal_t sum = cmVOR_Sum(abp-p->stateN,p->stateN);
  1000. if( sum > 0 )
  1001. {
  1002. cmVOR_DivVS( abp-p->stateN,p->stateN,sum);
  1003. logProb += log(sum);
  1004. }
  1005. }
  1006. }
  1007. if( logProbPtr != NULL )
  1008. *logProbPtr = logProb;
  1009. return cmOkRC;
  1010. }
  1011. cmRC_t cmDHmmBcmkwardEval( cmDhmm* p, const unsigned* obsV, unsigned obsN, cmReal_t* betaM, unsigned flags )
  1012. {
  1013. bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl);
  1014. int i,j,t;
  1015. cmVOR_Fill(betaM+((obsN-1)*p->stateN),p->stateN,1.0);
  1016. // for each time step
  1017. for(t=obsN-2; t>=0; --t)
  1018. {
  1019. // for each state at t
  1020. for(i=0; i<p->stateN; ++i)
  1021. {
  1022. double Bt = 0;
  1023. // for each state at t+1
  1024. for(j=0; j<p->stateN; ++j)
  1025. {
  1026. double aij = p->transM[ (j * p->stateN) + i ];
  1027. double bj = p->stsM[ (obsV[t+1] * p->stateN) + j ];
  1028. double Bt1 = betaM[ ((t+1) * p->stateN) + j ];
  1029. Bt += aij * bj * Bt1;
  1030. }
  1031. betaM[ (t * p->stateN) + i ] = Bt;
  1032. }
  1033. if( scaleFl )
  1034. {
  1035. double* bp = betaM + (t * p->stateN);
  1036. double sum = cmVOR_Sum(bp, p->stateN );
  1037. if( sum > 0 )
  1038. cmVOR_DivVS( bp, p->stateN, sum );
  1039. }
  1040. }
  1041. return cmOkRC;
  1042. }
  1043. void _cmDhmmNormRow( cmReal_t* p, unsigned pn, unsigned stride, const cmReal_t* sp )
  1044. {
  1045. if( sp == NULL )
  1046. sp = p;
  1047. cmReal_t sum = 0;
  1048. unsigned n = pn * stride;
  1049. const cmReal_t* bp = sp;
  1050. const cmReal_t* ep = bp + n;
  1051. for(; bp<ep; bp+=stride)
  1052. sum += *bp;
  1053. for(ep = p+n; p<ep; p+=stride,sp+=stride)
  1054. *p = *sp / sum;
  1055. }
  1056. void _cmDhmmNormMtxRows( cmReal_t* dp, unsigned rn, unsigned cn, const cmReal_t* sp )
  1057. {
  1058. const cmReal_t* erp = sp + rn;
  1059. while( sp < erp )
  1060. _cmDhmmNormRow( dp++, cn, rn, sp++ );
  1061. }
  1062. cmRC_t cmDhmmTrainEM( cmDhmm* p, const unsigned* obsV, unsigned obsN, unsigned iterCnt, unsigned flags )
  1063. {
  1064. unsigned i,j,k,t;
  1065. cmReal_t alphaM[ p->stateN * obsN ];
  1066. cmReal_t betaM[ p->stateN * obsN ];
  1067. cmReal_t g[ p->stateN * obsN ];
  1068. cmReal_t q[ p->stateN * p->symN ];
  1069. cmReal_t E[ p->stateN * p->stateN ];
  1070. cmReal_t logProb = 0;
  1071. //cmDhmmReport(p->obj.ctx,p);
  1072. for(k=0; k<iterCnt; ++k)
  1073. {
  1074. cmVOR_Fill( q, (p->stateN * p->symN), 0 );
  1075. cmVOR_Fill( E, (p->stateN * p->stateN), 0 );
  1076. // calculate alpha and beta
  1077. cmDHmmForwardEval( p, p->initV, obsV, obsN, alphaM, flags, &logProb);
  1078. cmDHmmBcmkwardEval( p, obsV, obsN, betaM, flags );
  1079. // gamma[ stateN, obsN ] = alphaM .* betaM - gamma is the probability of being in each state at each time step
  1080. cmVOR_MultVVV( g,(p->stateN*obsN), alphaM, betaM );
  1081. // normalize gamma
  1082. for(i=0; i<obsN; ++i)
  1083. cmVOR_NormalizeProbability( g + (i*p->stateN), p->stateN );
  1084. //printf("ITER:%i logProb:%f\n",k,logProb);
  1085. // count the number of times state i emits obsV[0] in the starting location
  1086. cmVOR_Copy( q + (obsV[0] * p->stateN), p->stateN, g );
  1087. for(t=0; t<obsN-1; ++t)
  1088. {
  1089. // point to alpha[:,t] and beta[:,t+1]
  1090. const cmReal_t* alpha_t0 = alphaM + (t*p->stateN);
  1091. const cmReal_t* beta_t1 = betaM + ((t+1)*p->stateN);
  1092. cmReal_t Et[ p->stateN * p->stateN ];
  1093. cmReal_t Esum = 0;
  1094. // for each source state
  1095. for(i=0; i<p->stateN; ++i)
  1096. {
  1097. // for each dest state
  1098. for(j=0; j<p->stateN; ++j)
  1099. {
  1100. // prob of transitioning from state i to j and emitting obs[t] at time t
  1101. cmReal_t Eps = alpha_t0[i] * p->transM[ (j*p->stateN) + i ] * p->stsM[ (obsV[t+1]*p->stateN) + j ] * beta_t1[j];
  1102. // count the number of transitions from i to j
  1103. Et[ (j*p->stateN) + i ] = Eps;
  1104. Esum += Eps;
  1105. }
  1106. // count the number of times state i emits obsV[t]
  1107. q[ (obsV[t+1] * p->stateN) + i ] += g[ ((t+1)*p->stateN) + i ];
  1108. }
  1109. // normalize Et and sum it into E
  1110. cmVOR_DivVS( Et, (p->stateN*p->stateN), Esum );
  1111. cmVOR_AddVV( E, (p->stateN*p->stateN), Et );
  1112. }
  1113. // update the model
  1114. _cmDhmmNormMtxRows( p->initV, 1, p->stateN, g );
  1115. _cmDhmmNormMtxRows( p->transM, p->stateN, p->stateN, E );
  1116. _cmDhmmNormMtxRows( p->stsM, p->stateN, p->symN, q );
  1117. }
  1118. return cmOkRC;
  1119. }
  1120. cmRC_t cmDhmmReport( cmDhmm* p )
  1121. {
  1122. cmVOR_PrintL("initV:\n", p->obj.err.rpt, 1, p->stateN, p->initV );
  1123. cmVOR_PrintL("transM:\n", p->obj.err.rpt, p->stateN, p->stateN, p->transM );
  1124. cmVOR_PrintL("symM:\n", p->obj.err.rpt, p->stateN, p->symN, p->stsM );
  1125. return cmOkRC;
  1126. }
  1127. void cmDhmmTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  1128. {
  1129. unsigned stateN = 2;
  1130. unsigned symN = 3;
  1131. unsigned obsN = 4;
  1132. unsigned iterN = 10;
  1133. cmReal_t initV0[ stateN ];
  1134. cmReal_t transM0[ stateN * stateN ];
  1135. cmReal_t stsM0[ symN * stateN ];
  1136. cmReal_t initV1[ stateN ];
  1137. cmReal_t transM1[ stateN * stateN ];
  1138. cmReal_t stsM1[ symN * stateN ];
  1139. unsigned obsV[ obsN ];
  1140. unsigned hist[ symN ];
  1141. unsigned genFl = kManualProbHmmFl;
  1142. cmReal_t initV[] =
  1143. {
  1144. 0.44094,
  1145. 0.55906
  1146. };
  1147. cmReal_t transM[] =
  1148. {
  1149. 0.48336,
  1150. 0.81353,
  1151. 0.51664,
  1152. 0.18647,
  1153. };
  1154. cmReal_t stsM[] =
  1155. {
  1156. 0.20784,
  1157. 0.18698,
  1158. 0.43437,
  1159. 0.24102,
  1160. 0.35779,
  1161. 0.57199
  1162. };
  1163. unsigned obsM[] = { 2, 2, 2, 0 };
  1164. cmReal_t initV2[] = { 0.79060, 0.20940 };
  1165. cmReal_t transM2[] = { 0.508841, 0.011438, 0.491159, 0.988562 };
  1166. cmReal_t stsM2[] = { 0.25789, 0.35825, 0.61981, 0.42207, 0.12230, 0.21969 };
  1167. //srand( time(NULL) );
  1168. // generate a random HMM
  1169. _cmDhmmGenProb( initV0, 1, stateN, genFl, initV );
  1170. _cmDhmmGenProb( transM0, stateN, stateN, genFl, transM );
  1171. _cmDhmmGenProb( stsM0, stateN, symN, genFl, stsM );
  1172. cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH);
  1173. cmDhmm* h0p = cmDhmmAlloc( c, NULL, stateN, symN, initV0, transM0, stsM0 );
  1174. // generate an observation sequence based on the random HMM
  1175. //cmDhmmGenObsSequence(c, h0p, obsV, obsN );
  1176. memcpy(obsV,obsM,obsN*sizeof(unsigned));
  1177. if( 0 )
  1178. {
  1179. // print the HMM
  1180. cmDhmmReport( h0p);
  1181. // print the observation symbols
  1182. cmVOU_PrintL("obs:\n", rpt, 1, obsN, obsV );
  1183. // print the histogram of the obs. symbols
  1184. cmVOU_Hist( hist, symN, obsV, obsN );
  1185. cmVOU_PrintL("hist:\n", rpt, 1, symN, hist );
  1186. // calc alpha (the forward probabilities)
  1187. cmReal_t alphaM[ h0p->stateN*obsN ];
  1188. cmReal_t logProb=0;
  1189. cmDHmmForwardEval( h0p, h0p->initV, obsV, obsN, alphaM, kLogScaleHmmFl, &logProb);
  1190. printf("log prob:%f\n alpha:\n", logProb );
  1191. cmVOR_Print( rpt, h0p->stateN, obsN, alphaM );
  1192. // calc beta (the bcmkward probabilities)
  1193. cmReal_t betaM[ h0p->stateN*obsN ];
  1194. logProb=0;
  1195. cmDHmmBcmkwardEval( h0p, obsV, obsN, betaM, kLogScaleHmmFl);
  1196. printf("log prob:%f\n beta:\n", logProb );
  1197. cmVOR_Print( h0p->obj.err.rpt, h0p->stateN, obsN, betaM );
  1198. }
  1199. // initialize a second HMM with random probabilities
  1200. _cmDhmmGenProb( initV1, 1, stateN, kManualProbHmmFl, initV2 );
  1201. _cmDhmmGenProb( transM1, stateN, stateN, kManualProbHmmFl, transM2 );
  1202. _cmDhmmGenProb( stsM1, stateN, symN, kManualProbHmmFl, stsM2 );
  1203. cmDhmm* h1p = cmDhmmAlloc( c, NULL, stateN, symN, initV1, transM1, stsM1 );
  1204. cmDhmmTrainEM( h1p, obsV, obsN, iterN, kLogScaleHmmFl );
  1205. cmDhmmFree(&h1p);
  1206. cmDhmmFree(&h0p);
  1207. cmCtxFree(&c);
  1208. }
  1209. //------------------------------------------------------------------------------------------------------------
  1210. cmConvolve* cmConvolveAlloc( cmCtx* c, cmConvolve* ap, const cmSample_t* h, unsigned hn, unsigned procSmpCnt )
  1211. {
  1212. cmConvolve* p = cmObjAlloc( cmConvolve, c, ap);
  1213. p->fft = cmFftAllocSR( c,NULL,NULL,0,kNoConvertFftFl);
  1214. p->ifft= cmIFftAllocRS(c,NULL,p->fft->binCnt);
  1215. if( hn > 0 && procSmpCnt > 0 )
  1216. if( cmConvolveInit(p,h,hn,procSmpCnt) != cmOkRC )
  1217. cmObjFree(&p);
  1218. return p;
  1219. }
  1220. cmRC_t cmConvolveFree( cmConvolve** pp )
  1221. {
  1222. cmRC_t rc;
  1223. cmConvolve* p = *pp;
  1224. if( pp == NULL || *pp == NULL )
  1225. return cmOkRC;
  1226. if((rc = cmConvolveFinal(p)) != cmOkRC )
  1227. return cmOkRC;
  1228. cmFftFreeSR(&p->fft);
  1229. cmIFftFreeRS(&p->ifft);
  1230. cmMemPtrFree(&p->H);
  1231. cmMemPtrFree(&p->outV);
  1232. cmObjFree(pp);
  1233. return cmOkRC;
  1234. }
  1235. cmRC_t cmConvolveInit( cmConvolve* p, const cmSample_t* h, unsigned hn, unsigned procSmpCnt )
  1236. {
  1237. cmRC_t rc;
  1238. unsigned i;
  1239. unsigned cn = cmNextPowerOfTwo( hn + procSmpCnt - 1 );
  1240. if((rc = cmConvolveFinal(p)) != cmOkRC )
  1241. return rc;
  1242. cmFftInitSR( p->fft, NULL, cn, kNoConvertFftFl );
  1243. cmIFftInitRS( p->ifft, p->fft->binCnt);
  1244. p->H = cmMemResizeZ( cmComplexR_t,p->H, p->fft->binCnt );
  1245. p->outV = cmMemResizeZ( cmSample_t,p->outV, cn );
  1246. p->olaV = p->outV + procSmpCnt;
  1247. p->outN = procSmpCnt;
  1248. p->hn = hn;
  1249. // take the FFT of the impulse response
  1250. cmFftExecSR( p->fft, h, hn );
  1251. // copy the FFT of the impulse response to p->H[]
  1252. for(i=0; i<p->fft->binCnt; ++i)
  1253. p->H[i] = p->fft->complexV[i] / p->fft->wndSmpCnt;
  1254. return cmOkRC;
  1255. }
  1256. cmRC_t cmConvolveFinal( cmConvolve* p )
  1257. { return cmOkRC; }
  1258. cmRC_t cmConvolveExec( cmConvolve* p, const cmSample_t* x, unsigned xn )
  1259. {
  1260. unsigned i;
  1261. // take FT of input signal
  1262. cmFftExecSR( p->fft, x, xn );
  1263. // multiply the signal spectra of the input signal and impulse response
  1264. for(i=0; i<p->fft->binCnt; ++i)
  1265. p->ifft->complexV[i] = p->H[i] * p->fft->complexV[i];
  1266. // take the IFFT of the convolved spectrum
  1267. cmIFftExecRS(p->ifft,NULL);
  1268. // sum with previous impulse response tail
  1269. cmVOS_AddVVV( p->outV, p->outN-1, p->olaV, p->ifft->outV );
  1270. // first sample of the impulse response tail is complete
  1271. p->outV[p->outN-1] = p->ifft->outV[p->outN-1];
  1272. // store the new impulse response tail
  1273. cmVOS_Copy(p->olaV,p->hn-1,p->ifft->outV + p->outN );
  1274. return cmOkRC;
  1275. }
  1276. cmRC_t cmConvolveSignal( cmCtx* c, const cmSample_t* h, unsigned hn, const cmSample_t* x, unsigned xn, cmSample_t* y, unsigned yn )
  1277. {
  1278. cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn);
  1279. cmConvolveExec(p,x,xn);
  1280. unsigned n = cmMin(p->outN,yn);
  1281. cmVOS_Copy(y,n,p->outV);
  1282. if( yn > p->outN )
  1283. {
  1284. unsigned m = cmMin(yn-p->outN,p->hn-1);
  1285. cmVOS_Copy(y+n,m,p->olaV);
  1286. }
  1287. cmConvolveFree(&p);
  1288. return cmOkRC;
  1289. }
  1290. cmRC_t cmConvolveTest(cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  1291. {
  1292. cmCtx *c = cmCtxAlloc(NULL,rpt,lhH,stH);
  1293. cmSample_t h[] = { 1, .5, .25, 0, 0 };
  1294. unsigned hn = sizeof(h) / sizeof(h[0]);
  1295. cmSample_t x[] = { 1, 0, 0, 0, 1, 0, 0, 0 };
  1296. unsigned xn = sizeof(x) / sizeof(x[0]);
  1297. unsigned yn = xn+hn-1;
  1298. cmSample_t y[yn];
  1299. //cmVOS_Hann(h,5);
  1300. cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn);
  1301. cmConvolveExec(p,x,xn);
  1302. cmVOS_Print( rpt, 1, p->outN, p->outV );
  1303. cmVOS_Print( rpt, 1, p->hn-1, p->olaV );
  1304. cmConvolveFree(&p);
  1305. cmConvolveSignal(c,h,hn,x,xn,y,yn);
  1306. cmVOS_Print( rpt, 1, hn+xn-1, y );
  1307. cmCtxFree(&c);
  1308. return cmOkRC;
  1309. }
  1310. //------------------------------------------------------------------------------------------------------------
  1311. cmBfcc* cmBfccAlloc( cmCtx* ctx, cmBfcc* ap, unsigned bandCnt, unsigned binCnt, double binHz )
  1312. {
  1313. cmBfcc* p = cmObjAlloc( cmBfcc, ctx, ap );
  1314. if( bandCnt > 0 )
  1315. if( cmBfccInit( p, bandCnt, binCnt, binHz ) != cmOkRC )
  1316. cmBfccFree(&p);
  1317. return p;
  1318. }
  1319. cmRC_t cmBfccFree( cmBfcc** pp )
  1320. {
  1321. cmRC_t rc;
  1322. if( pp== NULL || *pp==NULL)
  1323. return cmOkRC;
  1324. cmBfcc* p = *pp;
  1325. if((rc = cmBfccFinal(p)) != cmOkRC )
  1326. return rc;
  1327. cmMemPtrFree(&p->dctMtx);
  1328. cmMemPtrFree(&p->filtMask);
  1329. cmMemPtrFree(&p->outV);
  1330. cmObjFree(pp);
  1331. return rc;
  1332. }
  1333. cmRC_t cmBfccInit( cmBfcc* p, unsigned bandCnt, unsigned binCnt, double binHz )
  1334. {
  1335. cmRC_t rc;
  1336. if((rc = cmBfccFinal(p)) != cmOkRC )
  1337. return rc;
  1338. p->dctMtx = cmMemResizeZ( cmReal_t, p->dctMtx, bandCnt*bandCnt);
  1339. p->filtMask = cmMemResizeZ( cmReal_t, p->filtMask, bandCnt*binCnt);
  1340. p->outV = cmMemResizeZ( cmReal_t, p->outV, bandCnt );
  1341. p->binCnt = binCnt;
  1342. p->bandCnt = bandCnt;
  1343. cmVOR_BarkMask( p->filtMask, bandCnt, binCnt, binHz );
  1344. cmVOR_DctMatrix(p->dctMtx, bandCnt, bandCnt );
  1345. return rc;
  1346. }
  1347. cmRC_t cmBfccFinal( cmBfcc* p )
  1348. { return cmOkRC; }
  1349. cmRC_t cmBfccExec( cmBfcc* p, const cmReal_t* magV, unsigned binCnt )
  1350. {
  1351. assert( binCnt <= p->binCnt );
  1352. cmReal_t t[ p->bandCnt ];
  1353. cmReal_t v[ binCnt ];
  1354. // convert magnitude to power
  1355. cmVOR_PowVVS(v,binCnt,magV,2.0);
  1356. // apply the filter mask to the power spectrum
  1357. cmVOR_MultVMV( t, p->bandCnt, p->filtMask, binCnt, v );
  1358. //cmVOR_PrintL("\t:\n", p->obj.ctx->outFuncPtr, 1, p->bandCnt, t);
  1359. cmVOR_ReplaceLte( t, p->bandCnt, t, 0, 0.1e-5 );
  1360. cmVOR_LogV( t, p->bandCnt, t );
  1361. // decorellate the bands with a DCT
  1362. cmVOR_MultVMV( p->outV, p->bandCnt, p->dctMtx, p->bandCnt, t );
  1363. return cmOkRC;
  1364. }
  1365. void cmBfccTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  1366. {
  1367. double srate = 11025;
  1368. unsigned binCnt = 129;
  1369. double binHz = srate/(binCnt-1);
  1370. unsigned bandCnt = kDefaultBarkBandCnt;
  1371. cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH );
  1372. cmBfcc* b = cmBfccAlloc( c, NULL, bandCnt, binCnt, binHz );
  1373. cmReal_t powV[] = {
  1374. 0.8402, 0.3944, 0.7831, 0.7984, 0.9116, 0.1976, 0.3352, 0.7682, 0.2778, 0.5540,
  1375. 0.4774, 0.6289, 0.3648, 0.5134, 0.9522, 0.9162, 0.6357, 0.7173, 0.1416, 0.6070,
  1376. 0.0163, 0.2429, 0.1372, 0.8042, 0.1567, 0.4009, 0.1298, 0.1088, 0.9989, 0.2183,
  1377. 0.5129, 0.8391, 0.6126, 0.2960, 0.6376, 0.5243, 0.4936, 0.9728, 0.2925, 0.7714,
  1378. 0.5267, 0.7699, 0.4002, 0.8915, 0.2833, 0.3525, 0.8077, 0.9190, 0.0698, 0.9493,
  1379. 0.5260, 0.0861, 0.1922, 0.6632, 0.8902, 0.3489, 0.0642, 0.0200, 0.4577, 0.0631,
  1380. 0.2383, 0.9706, 0.9022, 0.8509, 0.2667, 0.5398, 0.3752, 0.7602, 0.5125, 0.6677,
  1381. 0.5316, 0.0393, 0.4376, 0.9318, 0.9308, 0.7210, 0.2843, 0.7385, 0.6400, 0.3540,
  1382. 0.6879, 0.1660, 0.4401, 0.8801, 0.8292, 0.3303, 0.2290, 0.8934, 0.3504, 0.6867,
  1383. 0.9565, 0.5886, 0.6573, 0.8587, 0.4396, 0.9240, 0.3984, 0.8148, 0.6842, 0.9110,
  1384. 0.4825, 0.2158, 0.9503, 0.9201, 0.1477, 0.8811, 0.6411, 0.4320, 0.6196, 0.2811,
  1385. 0.7860, 0.3075, 0.4470, 0.2261, 0.1875, 0.2762, 0.5564, 0.4165, 0.1696, 0.9068,
  1386. 0.1032, 0.1261, 0.4954, 0.7605, 0.9848, 0.9350, 0.6844, 0.3832, 0.7498 };
  1387. //cmVOR_Random(powV, binCnt, 0.0, 1.0 );
  1388. cmBfccExec(b,powV,binCnt);
  1389. //cmVOR_PrintL("\nin:\n", rpt, 1, binCnt, powV);
  1390. //cmVOR_PrintL("\nfilt:\n", rpt, bandCnt, binCnt, b->filtMask);
  1391. //cmVOR_PrintL("\ndct:\n", rpt, bandCnt, bandCnt,b->dctMtx);
  1392. cmVOR_PrintL("\nbfcc:\n", rpt, 1, bandCnt, b->outV);
  1393. cmBfccFree(&b);
  1394. cmCtxFree(&c);
  1395. }
  1396. //------------------------------------------------------------------------------------------------------------
  1397. cmCeps* cmCepsAlloc( cmCtx* ctx, cmCeps* ap, unsigned binCnt, unsigned outN )
  1398. {
  1399. cmCeps* p = cmObjAlloc( cmCeps, ctx, ap );
  1400. //cmIFftAllocRR( ctx, &p->ft, 0 );
  1401. if( binCnt > 0 )
  1402. if( cmCepsInit( p, binCnt, outN ) != cmOkRC )
  1403. cmCepsFree(&p);
  1404. return p;
  1405. }
  1406. cmRC_t cmCepsFree( cmCeps** pp )
  1407. {
  1408. cmRC_t rc;
  1409. if( pp== NULL || *pp==NULL)
  1410. return cmOkRC;
  1411. cmCeps* p = *pp;
  1412. if((rc = cmCepsFinal(p)) != cmOkRC )
  1413. return rc;
  1414. //cmObjFreeStatic( cmIFftFreeRR, cmIFftRR, p->ft );
  1415. cmMemPtrFree(&p->dctM);
  1416. cmMemPtrFree(&p->outV);
  1417. cmObjFree(pp);
  1418. return rc;
  1419. }
  1420. cmRC_t cmCepsInit( cmCeps* p, unsigned binCnt, unsigned outN )
  1421. {
  1422. cmRC_t rc;
  1423. if((rc = cmCepsFinal(p)) != cmOkRC )
  1424. return rc;
  1425. //cmIFftInitRR( &p->ft, binCnt );
  1426. p->dct_cn = (binCnt-1)*2;
  1427. p->dctM = cmMemResize( cmReal_t, p->dctM, outN*p->dct_cn );
  1428. p->outN = outN; //p->ft.outN;
  1429. p->outV = cmMemResizeZ( cmReal_t, p->outV, outN ); //p->ft.outV;
  1430. p->binCnt = binCnt;
  1431. assert( outN <= p->dct_cn );
  1432. cmVOR_DctMatrix( p->dctM, outN, p->dct_cn );
  1433. return rc;
  1434. }
  1435. cmRC_t cmCepsFinal( cmCeps* p )
  1436. { return cmOkRC; }
  1437. cmRC_t cmCepsExec( cmCeps* p, const cmReal_t* magV, const cmReal_t* phsV, unsigned binCnt )
  1438. {
  1439. assert( binCnt == p->binCnt );
  1440. cmReal_t v[ p->dct_cn ];
  1441. // guard against zeros in the magn spectrum
  1442. cmVOR_ReplaceLte(v,binCnt,magV,0.0,0.00001);
  1443. // take the log of the spectrum
  1444. cmVOR_LogV(v,binCnt,v);
  1445. // reconstruct the negative frequencies
  1446. int i,j;
  1447. for(i=1,j=p->dct_cn-1; i<binCnt; ++i,--j)
  1448. v[j] = v[i];
  1449. // take the DCT
  1450. cmVOR_MultVMV( p->outV, p->outN, p->dctM, p->dct_cn, v );
  1451. //cmIFftExecPolarRR( &p->ft, v, phsV );
  1452. return cmOkRC;
  1453. }
  1454. //------------------------------------------------------------------------------------------------------------
  1455. cmOla* cmOlaAlloc( cmCtx* ctx, cmOla* ap, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId )
  1456. {
  1457. cmOla* p = cmObjAlloc( cmOla, ctx, ap );
  1458. cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
  1459. if( wndSmpCnt > 0 )
  1460. if( cmOlaInit(p,wndSmpCnt,hopSmpCnt,procSmpCnt,wndTypeId) != cmOkRC )
  1461. cmOlaFree(&p);
  1462. return p;
  1463. }
  1464. cmRC_t cmOlaFree( cmOla** pp )
  1465. {
  1466. cmRC_t rc;
  1467. if( pp==NULL || *pp==NULL )
  1468. return cmOkRC;
  1469. cmOla* p = *pp;
  1470. if(( rc = cmOlaFinal(p)) != cmOkRC )
  1471. return rc;
  1472. cmMemPtrFree(&p->bufV);
  1473. cmMemPtrFree(&p->outV);
  1474. cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
  1475. cmObjFree(pp);
  1476. return rc;
  1477. }
  1478. cmRC_t cmOlaInit( cmOla* p, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId )
  1479. {
  1480. cmRC_t rc;
  1481. if((rc = cmOlaFinal(p)) != cmOkRC )
  1482. return rc;
  1483. if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC )
  1484. return rc;
  1485. p->bufV = cmMemResizeZ( cmSample_t, p->bufV, wndSmpCnt );
  1486. p->outV = cmMemResizeZ( cmSample_t, p->outV, hopSmpCnt );
  1487. p->outPtr = p->outV + hopSmpCnt;
  1488. // hopSmpCnt must be an even multiple of procSmpCnt
  1489. assert( hopSmpCnt % procSmpCnt == 0 );
  1490. assert( wndSmpCnt >= hopSmpCnt );
  1491. p->wndSmpCnt = wndSmpCnt;
  1492. p->hopSmpCnt = hopSmpCnt;
  1493. p->procSmpCnt= procSmpCnt;
  1494. p->idx = 0;
  1495. return rc;
  1496. }
  1497. cmRC_t cmOlaFinal( cmOla* p )
  1498. { return cmOkRC; }
  1499. // The incoming buffer and the ola buf (bufV)
  1500. // can be divided into three logical parts:
  1501. //
  1502. // [head][middle][tail]
  1503. //
  1504. // head = hopSmpCnt values
  1505. // tail = hopSmpCnt values
  1506. // middle = wndSmpCnt - (2*hopSmpCnt) values
  1507. //
  1508. // Each exec can be broken into three phases:
  1509. //
  1510. // outV = bufV[tail] + in[head]
  1511. // bufV[middle] += in[middle]
  1512. // bufV[tail] = in[tail]
  1513. //
  1514. cmRC_t cmOlaExecS( cmOla* p, const cmSample_t* sp, unsigned sN )
  1515. {
  1516. assert( sN == p->wndSmpCnt );
  1517. cmRC_t rc = cmOkRC;
  1518. const cmSample_t* ep = sp + sN;
  1519. const cmSample_t* wp = p->wf.wndV;
  1520. int i,j,k,n;
  1521. // [Sum head of incoming samples with tail of ola buf]
  1522. // fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt]
  1523. for(i=0; i<p->hopSmpCnt; ++i)
  1524. {
  1525. p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++);
  1526. if( p->idx == p->wndSmpCnt )
  1527. p->idx = 0;
  1528. }
  1529. // [Sum middle of incoming samples with middle of ola buf]
  1530. // sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[]
  1531. n = p->wndSmpCnt - (2*p->hopSmpCnt);
  1532. k = p->idx;
  1533. for(j=0; j<n; ++j)
  1534. {
  1535. p->bufV[k++] += (*sp++ * *wp++);
  1536. if( k == p->wndSmpCnt )
  1537. k = 0;
  1538. }
  1539. // [Assign tail of incoming to tail of ola buf]
  1540. // assign ending samples from sp[] into bufV[]
  1541. while( sp < ep )
  1542. {
  1543. p->bufV[k++] = (*sp++ * *wp++);
  1544. if( k == p->wndSmpCnt )
  1545. k = 0;
  1546. }
  1547. p->outPtr = p->outV;
  1548. return rc;
  1549. }
  1550. cmRC_t cmOlaExecR( cmOla* p, const cmReal_t* sp, unsigned sN )
  1551. {
  1552. assert( sN == p->wndSmpCnt );
  1553. cmRC_t rc = cmOkRC;
  1554. const cmReal_t* ep = sp + sN;
  1555. const cmSample_t* wp = p->wf.wndV;
  1556. int i,j,k,n;
  1557. // fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt]
  1558. for(i=0; i<p->hopSmpCnt; ++i)
  1559. {
  1560. p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++);
  1561. if( p->idx == p->wndSmpCnt )
  1562. p->idx = 0;
  1563. }
  1564. // sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[]
  1565. n = p->wndSmpCnt - (2*p->hopSmpCnt);
  1566. k = p->idx;
  1567. for(j=0; j<n; ++j)
  1568. {
  1569. p->bufV[k++] += (*sp++ * *wp++);
  1570. if( k == p->wndSmpCnt )
  1571. k = 0;
  1572. }
  1573. // assign ending samples from sp[] into bufV[]
  1574. while( sp < ep )
  1575. {
  1576. p->bufV[k++] = (*sp++ * *wp++);
  1577. if( k == p->wndSmpCnt )
  1578. k = 0;
  1579. }
  1580. p->outPtr = p->outV;
  1581. return rc;
  1582. }
  1583. const cmSample_t* cmOlaExecOut(cmOla* p)
  1584. {
  1585. const cmSample_t* sp = p->outPtr;
  1586. if( sp >= p->outV + p->hopSmpCnt )
  1587. return NULL;
  1588. p->outPtr += p->procSmpCnt;
  1589. return sp;
  1590. }
  1591. //------------------------------------------------------------------------------------------------------------
  1592. cmPhsToFrq* cmPhsToFrqAlloc( cmCtx* c, cmPhsToFrq* ap, double srate, unsigned binCnt, unsigned hopSmpCnt )
  1593. {
  1594. cmPhsToFrq* p = cmObjAlloc( cmPhsToFrq, c, ap );
  1595. if( srate != 0 )
  1596. if( cmPhsToFrqInit( p, srate, binCnt, hopSmpCnt ) != cmOkRC )
  1597. cmPhsToFrqFree(&p);
  1598. return p;
  1599. }
  1600. cmRC_t cmPhsToFrqFree( cmPhsToFrq** pp )
  1601. {
  1602. cmRC_t rc = cmOkRC;
  1603. cmPhsToFrq* p = *pp;
  1604. if( pp==NULL || *pp== NULL )
  1605. return rc;
  1606. if((rc = cmPhsToFrqFinal(p)) != cmOkRC )
  1607. return rc;
  1608. cmMemPtrFree(&p->hzV);
  1609. cmMemPtrFree(&p->phsV);
  1610. cmMemPtrFree(&p->wV);
  1611. cmObjFree(pp);
  1612. return rc;
  1613. }
  1614. cmRC_t cmPhsToFrqInit( cmPhsToFrq* p, double srate, unsigned binCnt, unsigned hopSmpCnt )
  1615. {
  1616. cmRC_t rc;
  1617. unsigned i;
  1618. if((rc = cmPhsToFrqFinal(p)) != cmOkRC )
  1619. return rc;
  1620. p->hzV = cmMemResizeZ( cmReal_t, p->hzV, binCnt );
  1621. p->phsV = cmMemResizeZ( cmReal_t, p->phsV, binCnt );
  1622. p->wV = cmMemResizeZ( cmReal_t, p->wV, binCnt );
  1623. p->srate = srate;
  1624. p->binCnt = binCnt;
  1625. p->hopSmpCnt = hopSmpCnt;
  1626. for(i=0; i<binCnt; ++i)
  1627. p->wV[i] = M_PI * i * hopSmpCnt / (binCnt-1);
  1628. return rc;
  1629. }
  1630. cmRC_t cmPhsToFrqFinal(cmPhsToFrq* p )
  1631. { return cmOkRC; }
  1632. cmRC_t cmPhsToFrqExec( cmPhsToFrq* p, const cmReal_t* phsV )
  1633. {
  1634. cmRC_t rc = cmOkRC;
  1635. unsigned i;
  1636. double twoPi = 2.0 * M_PI;
  1637. double den = twoPi * p->hopSmpCnt;
  1638. for(i=0; i<p->binCnt; ++i)
  1639. {
  1640. cmReal_t dPhs = phsV[i] - p->phsV[i];
  1641. // unwrap phase - see phase_study.m for explanation
  1642. cmReal_t k = round( (p->wV[i] - dPhs) / twoPi);
  1643. // convert phase change to Hz
  1644. p->hzV[i] = (k * twoPi + dPhs) * p->srate / den;
  1645. // store phase for next iteration
  1646. p->phsV[i] = phsV[i];
  1647. }
  1648. return rc;
  1649. }
  1650. //------------------------------------------------------------------------------------------------------------
  1651. cmPvAnl* cmPvAnlAlloc( cmCtx* ctx, cmPvAnl* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags )
  1652. {
  1653. cmRC_t rc;
  1654. cmPvAnl* p = cmObjAlloc( cmPvAnl, ctx, ap );
  1655. cmShiftBufAlloc(ctx, &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt );
  1656. cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
  1657. cmFftAllocSR( ctx, &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl);
  1658. cmPhsToFrqAlloc(ctx, &p->pf, srate, p->ft.binCnt, hopSmpCnt );
  1659. if( procSmpCnt > 0 )
  1660. if((rc = cmPvAnlInit(p,procSmpCnt,srate,wndSmpCnt,hopSmpCnt,flags)) != cmOkRC )
  1661. cmPvAnlFree(&p);
  1662. return p;
  1663. }
  1664. cmRC_t cmPvAnlFree( cmPvAnl** pp )
  1665. {
  1666. cmRC_t rc;
  1667. if( pp==NULL || *pp==NULL )
  1668. return cmOkRC;
  1669. cmPvAnl* p = *pp;
  1670. if((rc = cmPvAnlFinal(p) ) != cmOkRC )
  1671. return rc;
  1672. cmObjFreeStatic( cmPhsToFrqFree, cmPhsToFrq, p->pf );
  1673. cmObjFreeStatic( cmFftFreeSR, cmFftSR, p->ft );
  1674. cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
  1675. cmObjFreeStatic( cmShiftBufFree, cmShiftBuf, p->sb );
  1676. cmObjFree(pp);
  1677. return rc;
  1678. }
  1679. cmRC_t cmPvAnlInit( cmPvAnl* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags )
  1680. {
  1681. cmRC_t rc;
  1682. if((rc = cmPvAnlFinal(p)) != cmOkRC )
  1683. return rc;
  1684. if((rc = cmShiftBufInit( &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt )) != cmOkRC )
  1685. return rc;
  1686. if((rc = cmWndFuncInit( &p->wf, kHannWndId | kNormByLengthWndFl, wndSmpCnt, 0)) != cmOkRC )
  1687. return rc;
  1688. if((rc = cmFftInitSR( &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl)) != cmOkRC )
  1689. return rc;
  1690. if((rc = cmPhsToFrqInit( &p->pf, srate, p->ft.binCnt, hopSmpCnt)) != cmOkRC )
  1691. return rc;
  1692. // if the window was just initialized
  1693. // divide the window to indirectly apply the magnitude normalization
  1694. //if( p->wndSmpCnt != wndSmpCnt )
  1695. // cmVOS_DivVS( p->wf.wndV, p->wf.outN, wndSmpCnt );
  1696. p->flags = flags;
  1697. p->procSmpCnt = procSmpCnt;
  1698. p->wndSmpCnt = wndSmpCnt;
  1699. p->hopSmpCnt = hopSmpCnt;
  1700. p->binCnt = p->ft.binCnt;
  1701. p->magV = p->ft.magV;
  1702. p->phsV = p->ft.phsV;
  1703. p->hzV = p->pf.hzV;
  1704. return rc;
  1705. }
  1706. cmRC_t cmPvAnlFinal(cmPvAnl* p )
  1707. { return cmOkRC; }
  1708. bool cmPvAnlExec( cmPvAnl* p, const cmSample_t* x, unsigned xN )
  1709. {
  1710. bool fl = false;
  1711. while( cmShiftBufExec(&p->sb,x,xN) )
  1712. {
  1713. cmWndFuncExec(&p->wf, p->sb.outV, p->sb.wndSmpCnt );
  1714. cmFftExecSR(&p->ft,NULL,0);
  1715. if( cmIsFlag(p->flags,kCalcHzPvaFl) )
  1716. cmPhsToFrqExec(&p->pf,p->phsV);
  1717. fl = true;
  1718. }
  1719. return fl;
  1720. }
  1721. //------------------------------------------------------------------------------------------------------------
  1722. cmPvSyn* cmPvSynAlloc( cmCtx* ctx, cmPvSyn* ap, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId )
  1723. {
  1724. cmRC_t rc;
  1725. cmPvSyn* p = cmObjAlloc( cmPvSyn, ctx, ap );
  1726. cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
  1727. cmIFftAllocRS( ctx, &p->ft, wndSmpCnt/2+1 );
  1728. cmOlaAlloc( ctx, &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId );
  1729. if( procSmpCnt )
  1730. if((rc = cmPvSynInit(p,procSmpCnt,outSrate,wndSmpCnt,hopSmpCnt,wndTypeId)) != cmOkRC )
  1731. cmPvSynFree(&p);
  1732. return p;
  1733. }
  1734. cmRC_t cmPvSynFree( cmPvSyn** pp )
  1735. {
  1736. cmRC_t rc;
  1737. if( pp==NULL || *pp==NULL )
  1738. return cmOkRC;
  1739. cmPvSyn* p = *pp;
  1740. if((rc = cmPvSynFinal(p)) != cmOkRC )
  1741. return rc;
  1742. cmMemPtrFree(&p->minRphV);
  1743. cmMemPtrFree(&p->maxRphV);
  1744. cmMemPtrFree(&p->itrV);
  1745. cmMemPtrFree(&p->phs0V);
  1746. cmMemPtrFree(&p->phsV);
  1747. cmMemPtrFree(&p->mag0V);
  1748. cmMemPtrFree(&p->magV);
  1749. cmObjFreeStatic( cmOlaFree, cmOla, p->ola);
  1750. cmObjFreeStatic( cmIFftFreeRS, cmIFftRS, p->ft );
  1751. cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
  1752. cmObjFree(pp);
  1753. return cmOkRC;
  1754. }
  1755. cmRC_t cmPvSynInit( cmPvSyn* p, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId )
  1756. {
  1757. cmRC_t rc;
  1758. int k;
  1759. double twoPi = 2.0 * M_PI;
  1760. bool useHannFl = true;
  1761. int m = useHannFl ? 2 : 1;
  1762. if((rc = cmPvSynFinal(p)) != cmOkRC )
  1763. return rc;
  1764. p->outSrate = outSrate;
  1765. p->procSmpCnt = procSmpCnt;
  1766. p->wndSmpCnt = wndSmpCnt;
  1767. p->hopSmpCnt = hopSmpCnt;
  1768. p->binCnt = wndSmpCnt / 2 + 1;
  1769. p->minRphV = cmMemResizeZ( cmReal_t, p->minRphV, p->binCnt );
  1770. p->maxRphV = cmMemResizeZ( cmReal_t, p->maxRphV, p->binCnt );
  1771. p->itrV = cmMemResizeZ( cmReal_t, p->itrV, p->binCnt );
  1772. p->phs0V = cmMemResizeZ( cmReal_t, p->phs0V, p->binCnt );
  1773. p->phsV = cmMemResizeZ( cmReal_t, p->phsV, p->binCnt );
  1774. p->mag0V = cmMemResizeZ( cmReal_t, p->mag0V, p->binCnt );
  1775. p->magV = cmMemResizeZ( cmReal_t, p->magV, p->binCnt );
  1776. if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC )
  1777. return rc;
  1778. if((rc = cmIFftInitRS( &p->ft, p->binCnt )) != cmOkRC )
  1779. return rc;
  1780. if((rc = cmOlaInit( &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId )) != cmOkRC )
  1781. return rc;
  1782. for(k=0; k<p->binCnt; ++k)
  1783. {
  1784. // complete revolutions per hop in radians
  1785. p->itrV[k] = twoPi * floor((double)k * hopSmpCnt / wndSmpCnt );
  1786. p->minRphV[k] = ((cmReal_t)(k-m)) * hopSmpCnt * twoPi / wndSmpCnt;
  1787. p->maxRphV[k] = ((cmReal_t)(k+m)) * hopSmpCnt * twoPi / wndSmpCnt;
  1788. //printf("%f %f %f\n",p->itrV[k],p->minRphV[k],p->maxRphV[k]);
  1789. }
  1790. return rc;
  1791. }
  1792. cmRC_t cmPvSynFinal(cmPvSyn* p )
  1793. { return cmOkRC; }
  1794. cmRC_t cmPvSynExec( cmPvSyn* p, const cmReal_t* magV, const cmReal_t* phsV )
  1795. {
  1796. double twoPi = 2.0 * M_PI;
  1797. unsigned k;
  1798. for(k=0; k<p->binCnt; ++k)
  1799. {
  1800. // phase dist between cur and prv frame
  1801. cmReal_t dp = phsV[k] - p->phs0V[k];
  1802. // dist must be positive (accum phase always increases)
  1803. if( dp < -0.00001 )
  1804. dp += twoPi;
  1805. // add in complete revolutions based on the bin frequency
  1806. // (these would have been lost from 'dp' due to phase wrap)
  1807. dp += p->itrV[k];
  1808. // constrain the phase change to lie within the range of the kth bin
  1809. if( dp < p->minRphV[k] )
  1810. dp += twoPi;
  1811. if( dp > p->maxRphV[k] )
  1812. dp -= twoPi;
  1813. p->phsV[k] = p->phs0V[k] + dp;
  1814. p->magV[k] = p->mag0V[k];
  1815. p->phs0V[k] = phsV[k];
  1816. p->mag0V[k] = magV[k];
  1817. }
  1818. cmIFftExecPolarRS( &p->ft, magV, phsV );
  1819. cmOlaExecS( &p->ola, p->ft.outV, p->ft.outN );
  1820. //printf("%i %i\n",p->binCnt,p->ft.binCnt );
  1821. //cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, magV );
  1822. //cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, p->phsV );
  1823. //cmVOS_Print( p->obj.ctx->outFuncPtr, 1, 10, p->ft.outV );
  1824. return cmOkRC;
  1825. }
  1826. cmRC_t cmPvSynDoIt( cmPvSyn* p, const cmSample_t* v )
  1827. {
  1828. cmOlaExecS( &p->ola, v, p->wndSmpCnt );
  1829. //printf("%f\n",cmVOS_RMS(s,p->wndSmpCnt,p->wndSmpCnt));
  1830. return cmOkRC;
  1831. }
  1832. const cmSample_t* cmPvSynExecOut(cmPvSyn* p )
  1833. { return cmOlaExecOut(&p->ola); }
  1834. //------------------------------------------------------------------------------------------------------------
  1835. cmMidiSynth* cmMidiSynthAlloc( cmCtx* ctx, cmMidiSynth* ap, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate )
  1836. {
  1837. cmMidiSynth* p = cmObjAlloc( cmMidiSynth, ctx, ap );
  1838. if( pgmArray != NULL )
  1839. if( cmMidiSynthInit( p, pgmArray, pgmCnt, voiceCnt, procSmpCnt, outChCnt, srate ) != cmOkRC )
  1840. cmMidiSynthFree(&p);
  1841. return p;
  1842. }
  1843. cmRC_t cmMidiSynthFree( cmMidiSynth** pp )
  1844. {
  1845. cmRC_t rc;
  1846. if( pp==NULL || *pp==NULL)
  1847. return cmOkRC;
  1848. cmMidiSynth* p = *pp;
  1849. if((rc = cmMidiSynthFinal(p)) != cmOkRC )
  1850. return rc;
  1851. cmMemPtrFree(&p->voiceArray);
  1852. cmMemPtrFree(&p->outM);
  1853. cmMemPtrFree(&p->outChArray);
  1854. cmObjFree(pp);
  1855. return cmOkRC;
  1856. }
  1857. cmRC_t cmMidiSynthInit( cmMidiSynth* p, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate )
  1858. {
  1859. // at least one pgm must be given
  1860. assert( pgmCnt > 0 );
  1861. unsigned i;
  1862. cmRC_t rc;
  1863. if((rc = cmMidiSynthFinal(p)) != cmOkRC )
  1864. return rc;
  1865. p->voiceArray = cmMemResizeZ( cmMidiVoice, p->voiceArray, voiceCnt );
  1866. p->outM = cmMemResizeZ( cmSample_t, p->outM, outChCnt * procSmpCnt );
  1867. p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt );
  1868. p->avail = p->voiceArray;
  1869. p->voiceCnt = voiceCnt;
  1870. p->activeVoiceCnt = 0;
  1871. p->voiceStealCnt = 0;
  1872. p->procSmpCnt = procSmpCnt;
  1873. p->outChCnt = outChCnt;
  1874. p->srate = srate;
  1875. for(i=0; i<outChCnt; ++i)
  1876. p->outChArray[i] = p->outM + (i*procSmpCnt);
  1877. for(i=0; i<kMidiChCnt; ++i)
  1878. {
  1879. p->chArray[i].pgm = 0;
  1880. p->chArray[i].active = NULL;
  1881. p->chArray[i].pitchBend = 0;
  1882. p->chArray[i].synthPtr = p;
  1883. memset(p->chArray[i].midiCtl, 0, kMidiCtlCnt * sizeof(cmMidiByte_t));
  1884. }
  1885. for(i=0; i<voiceCnt; ++i)
  1886. {
  1887. p->voiceArray[i].index = i;
  1888. p->voiceArray[i].flags = 0;
  1889. p->voiceArray[i].pitch = kInvalidMidiPitch;
  1890. p->voiceArray[i].velocity = kInvalidMidiVelocity;
  1891. p->voiceArray[i].pgm.pgm = kInvalidMidiPgm;
  1892. p->voiceArray[i].pgm.cbPtr = NULL;
  1893. p->voiceArray[i].pgm.cbDataPtr = NULL;
  1894. p->voiceArray[i].chPtr = NULL;
  1895. p->voiceArray[i].link = i<voiceCnt-1 ? p->voiceArray + i + 1 : NULL;
  1896. }
  1897. for(i=0; i<pgmCnt; ++i)
  1898. {
  1899. unsigned idx = pgmArray[i].pgm;
  1900. if( idx >= kMidiPgmCnt )
  1901. rc = cmCtxRtCondition( &p->obj, cmArgAssertRC, "MIDI program change values must be less than %i.",kMidiPgmCnt);
  1902. else
  1903. {
  1904. p->pgmArray[ idx ].cbPtr = pgmArray[i].cbPtr;
  1905. p->pgmArray[ idx ].cbDataPtr = pgmArray[i].cbDataPtr;
  1906. p->pgmArray[ idx ].pgm = idx;
  1907. }
  1908. }
  1909. return rc;
  1910. }
  1911. cmRC_t cmMidiSynthFinal( cmMidiSynth* p )
  1912. { return cmOkRC; }
  1913. cmRC_t _cmMidiSynthOnNoteOn( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel )
  1914. {
  1915. assert( ch < kMidiChCnt );
  1916. if( p->activeVoiceCnt == p->voiceCnt )
  1917. {
  1918. ++p->voiceStealCnt;
  1919. return cmOkRC;
  1920. }
  1921. assert( p->avail != NULL );
  1922. cmMidiSynthCh* chPtr = p->chArray + ch;
  1923. cmMidiVoice* vp = p->avail;
  1924. ++p->activeVoiceCnt;
  1925. // update avail
  1926. p->avail = p->avail->link;
  1927. // update active
  1928. vp->flags |= kActiveMsFl | kKeyGateMsFl;
  1929. vp->pitch = pitch;
  1930. vp->velocity = vel;
  1931. vp->pgm = p->pgmArray[ chPtr->pgm ];
  1932. vp->chPtr = chPtr;
  1933. vp->link = chPtr->active;
  1934. chPtr->active = vp;
  1935. vp->pgm.cbPtr( vp, kAttackMsId, NULL, 0 );
  1936. return cmOkRC;
  1937. }
  1938. cmRC_t _cmMidiSynthOnNoteOff( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel )
  1939. {
  1940. assert( ch < kMidiChCnt );
  1941. cmMidiSynthCh* cp = p->chArray + ch;
  1942. cmMidiVoice* vp = cp->active;
  1943. // find the voice for the given pitch
  1944. while( vp != NULL )
  1945. {
  1946. if( (vp->pitch == pitch) && (cmIsFlag(vp->flags,kKeyGateMsFl)==true) )
  1947. break;
  1948. vp = vp->link;
  1949. }
  1950. // if no voice had a key down on this pitch
  1951. if( vp == NULL )
  1952. {
  1953. return cmOkRC;
  1954. }
  1955. // mark the key as 'up'
  1956. vp->flags = cmClrFlag(vp->flags,kKeyGateMsFl);
  1957. // if the sustain pedal is up
  1958. if( cp->midiCtl[ kSustainCtlMdId ] == 0 )
  1959. vp->pgm.cbPtr( vp, kReleaseMsId, NULL, 0 );
  1960. return cmOkRC;
  1961. }
  1962. cmRC_t _cmMidiSynthOnCtl( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t ctlId, cmMidiByte_t ctlValue )
  1963. {
  1964. assert( ch < kMidiChCnt && ctlId < kMidiCtlCnt );
  1965. cmMidiSynthCh* cp = p->chArray + ch;
  1966. cp->midiCtl[ ctlId ] = ctlValue;
  1967. // if the sustain pedal is going up
  1968. if( ctlId == kSustainCtlMdId && ctlValue == 0 )
  1969. {
  1970. cmMidiVoice* vp = cp->active;
  1971. while(vp != NULL)
  1972. {
  1973. if( cmIsFlag(vp->flags,kKeyGateMsFl)==false )
  1974. vp->pgm.cbPtr(vp, kReleaseMsId, NULL, 0 );
  1975. vp = vp->link;
  1976. }
  1977. }
  1978. //printf("%i %i %f\n",ctlId,ctlValue,ctlValue/127.0);
  1979. return cmOkRC;
  1980. }
  1981. cmRC_t cmMidiSynthOnMidi( cmMidiSynth* p, const cmMidiPacket_t* pktArray, unsigned pktCnt )
  1982. {
  1983. unsigned i=0;
  1984. for(i=0; i<pktCnt; ++i)
  1985. if( pktArray[i].msgArray != NULL )
  1986. {
  1987. unsigned j;
  1988. for(j=0; j<pktArray[i].msgCnt; ++j)
  1989. {
  1990. const cmMidiMsg* mp = pktArray[i].msgArray + j;
  1991. cmMidiByte_t ch = mp->status & 0x0f;
  1992. cmMidiByte_t status = mp->status & 0xf0;
  1993. switch( status )
  1994. {
  1995. case kNoteOnMdId:
  1996. if( mp->d1 != 0 )
  1997. {
  1998. _cmMidiSynthOnNoteOn(p,ch,mp->d0,mp->d1);
  1999. break;
  2000. }
  2001. // fall through
  2002. case kNoteOffMdId:
  2003. _cmMidiSynthOnNoteOff(p,ch,mp->d0,mp->d1);
  2004. break;
  2005. case kPolyPresMdId:
  2006. break;
  2007. case kCtlMdId:
  2008. _cmMidiSynthOnCtl( p, ch, mp->d0, mp->d1 );
  2009. break;
  2010. case kPgmMdId:
  2011. break;
  2012. case kChPresMdId:
  2013. break;
  2014. case kPbendMdId:
  2015. break;
  2016. default:
  2017. printf("Unknown MIDI status:%i %i\n",(int)status,(int)mp->status);
  2018. break;
  2019. }
  2020. }
  2021. }
  2022. return cmOkRC;
  2023. }
  2024. cmRC_t cmMidiSynthExec( cmMidiSynth* p, cmSample_t* outChArray[], unsigned outChCnt )
  2025. {
  2026. unsigned i;
  2027. cmSample_t** chArray = outChArray == NULL ? p->outChArray : outChArray;
  2028. unsigned chCnt = outChArray == NULL ? p->outChCnt : outChCnt;
  2029. // FIX: make one active chain attached to cmMidiSynth rather than many
  2030. // active chains attached to each channel - this will avoid the extra
  2031. // iterations below.
  2032. // for each channel
  2033. for(i=0; i<kMidiChCnt; ++i)
  2034. {
  2035. cmMidiVoice* vp = p->chArray[i].active;
  2036. cmMidiVoice* prv = NULL;
  2037. // for each voice assigned to this channel
  2038. while(vp != NULL)
  2039. {
  2040. // tell the voice to perform its DSP function - returns 0 if the voice is no longer active
  2041. if( vp->pgm.cbPtr( vp, kDspMsId, chArray, chCnt ) )
  2042. {
  2043. prv = vp;
  2044. vp = vp->link;
  2045. }
  2046. else
  2047. {
  2048. cmMidiVoice* nvp = vp->link;
  2049. // remove vp from the active chain
  2050. if( prv != NULL )
  2051. prv->link = vp->link;
  2052. else
  2053. {
  2054. assert( vp == p->chArray[i].active );
  2055. // vp is first recd on active chain, nvp becomes first ...
  2056. p->chArray[i].active = vp->link;
  2057. prv = NULL; // ... so prv must be NULL
  2058. }
  2059. // insert this voice on the available chain
  2060. vp->link = p->avail;
  2061. p->avail = vp;
  2062. --p->activeVoiceCnt;
  2063. vp = nvp;
  2064. }
  2065. }
  2066. }
  2067. return cmOkRC;
  2068. }
  2069. //------------------------------------------------------------------------------------------------------------
  2070. cmWtVoice* cmWtVoiceAlloc( cmCtx* ctx, cmWtVoice* ap, unsigned procSmpCnt, cmReal_t hz )
  2071. {
  2072. cmWtVoice* p = cmObjAlloc( cmWtVoice, ctx, ap );
  2073. if( procSmpCnt != 0 )
  2074. if( cmWtVoiceInit( p, procSmpCnt, hz ) != cmOkRC )
  2075. cmWtVoiceFree(&p);
  2076. return p;
  2077. }
  2078. cmRC_t cmWtVoiceFree( cmWtVoice** pp )
  2079. {
  2080. cmRC_t rc = cmOkRC;
  2081. if( pp==NULL || *pp==NULL )
  2082. return cmOkRC;
  2083. cmWtVoice* p = *pp;
  2084. if((rc = cmWtVoiceFinal(p)) != cmOkRC )
  2085. return rc;
  2086. cmMemPtrFree(&p->outV);
  2087. cmObjFree(pp);
  2088. return rc;
  2089. }
  2090. cmRC_t cmWtVoiceInit( cmWtVoice* p, unsigned procSmpCnt, cmReal_t hz )
  2091. {
  2092. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
  2093. p->outN = procSmpCnt;
  2094. p->hz = hz;
  2095. p->level = 0;
  2096. p->durSmpCnt = 0;
  2097. p->phase = 0;
  2098. p->state = kOffWtId;
  2099. return cmOkRC;
  2100. }
  2101. cmRC_t cmWtVoiceFinal( cmWtVoice* p )
  2102. { return cmOkRC; }
  2103. int cmWtVoiceExec( cmWtVoice* p, struct cmMidiVoice_str* mvp, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt )
  2104. {
  2105. switch( sel )
  2106. {
  2107. case kAttackMsId:
  2108. p->state = kAtkWtId;
  2109. p->hz = (13.75 * pow(2,(-9.0/12.0))) * pow(2,((double)mvp->pitch / 12));
  2110. //printf("%fhz\n",p->hz);
  2111. break;
  2112. case kReleaseMsId:
  2113. p->state = kRlsWtId;
  2114. //printf("rls:%f\n",p->phase);
  2115. break;
  2116. case kDspMsId:
  2117. {
  2118. if( p->state == kRlsWtId )
  2119. {
  2120. p->state = kOffWtId;
  2121. return 0;
  2122. }
  2123. cmMidiSynth* sp = mvp->chPtr->synthPtr;
  2124. cmSample_t* dp = outChCnt == 0 ? p->outV : outChArray[0];
  2125. cmSample_t* ep = dp + p->outN;
  2126. cmReal_t rps = (2.0 * M_PI * p->hz) / sp->srate;
  2127. cmReal_t sum=0;
  2128. unsigned i=0;
  2129. for(; dp < ep; ++dp)
  2130. {
  2131. *dp += (cmSample_t)(0.5 * sin( p->phase ));
  2132. sum += *dp;
  2133. ++i;
  2134. p->phase += rps;
  2135. }
  2136. //printf("(%f %f %i %i %p) ",p->phase,sum,i,p->outN,outChArray[0] );
  2137. }
  2138. break;
  2139. default:
  2140. assert(0);
  2141. break;
  2142. }
  2143. return 1;
  2144. }
  2145. //------------------------------------------------------------------------------------------------------------
  2146. cmWtVoiceBank* cmWtVoiceBankAlloc( cmCtx* ctx, cmWtVoiceBank* ap, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt )
  2147. {
  2148. cmWtVoiceBank* p = cmObjAlloc( cmWtVoiceBank, ctx, ap );
  2149. if( srate != 0 )
  2150. if( cmWtVoiceBankInit( p, srate, procSmpCnt, voiceCnt, chCnt ) != cmOkRC )
  2151. cmWtVoiceBankFree(&p);
  2152. return p;
  2153. }
  2154. cmRC_t cmWtVoiceBankFree( cmWtVoiceBank** pp )
  2155. {
  2156. cmRC_t rc;
  2157. if( pp==NULL || *pp==NULL)
  2158. return cmOkRC;
  2159. cmWtVoiceBank* p = *pp;
  2160. if((rc = cmWtVoiceBankFinal(p)) != cmOkRC )
  2161. return rc;
  2162. cmMemPtrFree(&p->voiceArray);
  2163. cmMemPtrFree(&p->chArray);
  2164. cmMemPtrFree(&p->buf);
  2165. cmObjFree(pp);
  2166. return rc;
  2167. }
  2168. cmRC_t cmWtVoiceBankInit( cmWtVoiceBank* p, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt )
  2169. {
  2170. cmRC_t rc;
  2171. unsigned i;
  2172. if((rc = cmWtVoiceBankFinal(p)) != cmOkRC )
  2173. return rc;
  2174. p->voiceArray = cmMemResizeZ( cmWtVoice*, p->voiceArray, voiceCnt );
  2175. for(i=0; i<voiceCnt; ++i)
  2176. p->voiceArray[i] = cmWtVoiceAlloc(p->obj.ctx,NULL,procSmpCnt,0);
  2177. p->voiceCnt = voiceCnt;
  2178. p->buf = cmMemResizeZ( cmSample_t, p->buf, chCnt * procSmpCnt );
  2179. p->chArray = cmMemResizeZ( cmSample_t*, p->chArray, chCnt );
  2180. for(i=0; i<chCnt; ++i)
  2181. p->chArray[i] = p->buf + (i*procSmpCnt);
  2182. p->chCnt = chCnt;
  2183. p->procSmpCnt = procSmpCnt;
  2184. return cmOkRC;
  2185. }
  2186. cmRC_t cmWtVoiceBankFinal( cmWtVoiceBank* p )
  2187. {
  2188. unsigned i;
  2189. for(i=0; i<p->voiceCnt; ++i)
  2190. cmWtVoiceFree(&p->voiceArray[i]);
  2191. return cmOkRC;
  2192. }
  2193. int cmWtVoiceBankExec( cmWtVoiceBank* p, struct cmMidiVoice_str* voicePtr, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt )
  2194. {
  2195. cmWtVoice* vp = p->voiceArray[ voicePtr->index ];
  2196. bool fl = outChArray==NULL || outChCnt==0;
  2197. cmSample_t** chArray = fl ? p->chArray : outChArray;
  2198. unsigned chCnt = fl ? p->chCnt : outChCnt;
  2199. return cmWtVoiceExec( vp, voicePtr, sel, chArray, chCnt );
  2200. }
  2201. //------------------------------------------------------------------------------------------------------------
  2202. cmAudioFileBuf* cmAudioFileBufAlloc( cmCtx* ctx, cmAudioFileBuf* ap, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt )
  2203. {
  2204. cmAudioFileBuf* p = cmObjAlloc( cmAudioFileBuf, ctx, ap );
  2205. if( procSmpCnt != 0 )
  2206. if( cmAudioFileBufInit( p, procSmpCnt, fn, audioChIdx, begSmpIdx, durSmpCnt ) != cmOkRC )
  2207. cmAudioFileBufFree(&p);
  2208. return p;
  2209. }
  2210. cmRC_t cmAudioFileBufFree( cmAudioFileBuf** pp )
  2211. {
  2212. cmRC_t rc;
  2213. if( pp==NULL || *pp==NULL)
  2214. return cmOkRC;
  2215. cmAudioFileBuf* p = *pp;
  2216. if((rc = cmAudioFileBufFinal(p)) != cmOkRC )
  2217. return rc;
  2218. cmMemPtrFree(&p->bufV);
  2219. cmMemPtrFree(&p->fn);
  2220. cmObjFree(pp);
  2221. return rc;
  2222. }
  2223. cmRC_t cmAudioFileBufInit( cmAudioFileBuf* p, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt )
  2224. {
  2225. cmAudioFileH_t afH;
  2226. cmRC_t rc;
  2227. if((rc = cmAudioFileBufFinal(p)) != cmOkRC )
  2228. return rc;
  2229. // open the audio file for reading
  2230. if( cmAudioFileIsValid( afH = cmAudioFileNewOpen( fn, &p->info, &rc, p->obj.err.rpt ))==false || rc != kOkAfRC )
  2231. return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file '%s' could not be opend.",fn );
  2232. // validate the audio channel
  2233. if( audioChIdx >= p->info.chCnt )
  2234. return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file channel index %i is out of range for the audio file '%s'.",audioChIdx,fn);
  2235. // validate the start sample index
  2236. if( begSmpIdx > p->info.frameCnt )
  2237. return cmCtxRtCondition(&p->obj, cmOkRC, "The start sample index %i is past the end of the audio file '%s'.",begSmpIdx,fn);
  2238. if( durSmpCnt == cmInvalidCnt )
  2239. durSmpCnt = p->info.frameCnt - begSmpIdx;
  2240. // validate the duration
  2241. if( begSmpIdx + durSmpCnt > p->info.frameCnt )
  2242. {
  2243. unsigned newDurSmpCnt = p->info.frameCnt - begSmpIdx;
  2244. cmCtxRtCondition(&p->obj, cmOkRC, "The selected sample duration %i is past the end of the audio file '%s' and has been shorted to %i samples.",durSmpCnt,fn,newDurSmpCnt);
  2245. durSmpCnt = newDurSmpCnt;
  2246. }
  2247. // seek to the starting sample
  2248. if( cmAudioFileSeek( afH, begSmpIdx ) != kOkAfRC )
  2249. return cmCtxRtCondition(&p->obj, cmArgAssertRC,"Seek to sample index %i failed on the audio file '%s'.",begSmpIdx,fn);
  2250. // allocate the buffer memory
  2251. p->bufV = cmMemResizeZ( cmSample_t, p->bufV, durSmpCnt );
  2252. p->fn = cmMemResize( char, p->fn, strlen(fn)+1 );
  2253. p->bufN = durSmpCnt;
  2254. p->begSmpIdx = begSmpIdx;
  2255. p->chIdx = audioChIdx;
  2256. strcpy(p->fn,fn);
  2257. cmSample_t* outV = p->bufV;
  2258. // read the file into the buffer
  2259. unsigned rdSmpCnt = cmMin(4096,durSmpCnt);
  2260. unsigned cmc = 0;
  2261. while( cmc < durSmpCnt )
  2262. {
  2263. unsigned actualReadCnt = 0;
  2264. unsigned n = rdSmpCnt;
  2265. cmSample_t* chArray[] = {outV};
  2266. if( cmc + n > durSmpCnt )
  2267. n = durSmpCnt - cmc;
  2268. if((rc=cmAudioFileReadSample( afH, n, audioChIdx, 1, chArray, &actualReadCnt)) != kOkAfRC )
  2269. break;
  2270. cmc += actualReadCnt;
  2271. outV += actualReadCnt;
  2272. }
  2273. if( rc==kOkAfRC || (rc != kOkAfRC && cmAudioFileIsEOF(afH)))
  2274. rc = cmOkRC;
  2275. return rc;
  2276. }
  2277. cmRC_t cmAudioFileBufFinal(cmAudioFileBuf* p )
  2278. { return cmOkRC; }
  2279. unsigned cmAudioFileBufExec( cmAudioFileBuf* p, unsigned smpIdx, cmSample_t* outV, unsigned outN, bool sumIntoOutFl )
  2280. {
  2281. if( outV == NULL || outN == 0 || smpIdx >= p->bufN )
  2282. return 0;
  2283. unsigned n = cmMin(outN,p->bufN-smpIdx);
  2284. if( sumIntoOutFl )
  2285. cmVOS_AddVV(outV,n,p->bufV + smpIdx);
  2286. else
  2287. cmVOS_Copy(outV,n,p->bufV + smpIdx );
  2288. if( n < outN )
  2289. memset(outV+n,0,(outN-n)*sizeof(cmSample_t));
  2290. return n;
  2291. }
  2292. //------------------------------------------------------------------------------------------------------------
  2293. cmMDelay* cmMDelayAlloc( cmCtx* ctx, cmMDelay* ap, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray )
  2294. {
  2295. cmMDelay* p = cmObjAlloc( cmMDelay, ctx, ap );
  2296. if( procSmpCnt != 0 )
  2297. if( cmMDelayInit( p, procSmpCnt, srate, fbCoeff, delayCnt, delayMsArray, delayGainArray ) != cmOkRC )
  2298. cmMDelayFree(&p);
  2299. return p;
  2300. }
  2301. cmRC_t cmMDelayFree( cmMDelay** pp )
  2302. {
  2303. cmRC_t rc;
  2304. if( pp == NULL || *pp==NULL)
  2305. return cmOkRC;
  2306. cmMDelay* p = *pp;
  2307. if((rc = cmMDelayFinal(p)) != cmOkRC )
  2308. return rc;
  2309. unsigned i;
  2310. for(i=0; i<p->delayCnt; ++i)
  2311. cmMemPtrFree(&p->delayArray[i].delayBuf);
  2312. cmMemPtrFree(&p->delayArray);
  2313. cmMemPtrFree(&p->outV);
  2314. cmObjFree(pp);
  2315. return cmOkRC;
  2316. }
  2317. cmRC_t cmMDelayInit( cmMDelay* p, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray )
  2318. {
  2319. cmRC_t rc;
  2320. if((rc = cmMDelayFinal(p)) != cmOkRC )
  2321. return rc;
  2322. if( delayCnt <= 0 )
  2323. return rc;
  2324. p->delayArray = cmMemResizeZ( cmMDelayHead, p->delayArray, delayCnt );
  2325. unsigned i;
  2326. for(i=0; i<delayCnt; ++i)
  2327. {
  2328. p->delayArray[i].delayGain = delayGainArray == NULL ? 1.0 : delayGainArray[i];
  2329. p->delayArray[i].delayMs = delayMsArray[i];
  2330. p->delayArray[i].delaySmpFrac = delayMsArray[i] * srate / 1000.0;
  2331. p->delayArray[i].delayBufSmpCnt = ceil(delayMsArray[i] * srate / 1000)+2;
  2332. p->delayArray[i].delayBuf = cmMemResizeZ( cmSample_t, p->delayArray[i].delayBuf, p->delayArray[i].delayBufSmpCnt );
  2333. p->delayArray[i].inIdx = 0;
  2334. }
  2335. p->delayCnt= delayCnt;
  2336. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
  2337. p->outN = procSmpCnt;
  2338. p->fbCoeff = fbCoeff;
  2339. p->srate = srate;
  2340. return cmOkRC;
  2341. }
  2342. cmRC_t cmMDelayFinal( cmMDelay* p )
  2343. { return cmOkRC; }
  2344. void _cmMDelayExec( cmMDelay* p, cmMDelayHead* hp, const cmSample_t inV[], cmSample_t outV[], unsigned sigN )
  2345. {
  2346. cmSample_t* dl = hp->delayBuf; // ptr to the base of the delay line
  2347. cmReal_t dfi = (cmReal_t)(hp->inIdx - hp->delaySmpFrac) + hp->delayBufSmpCnt; // fractional delay in samples
  2348. int dii0 = ((int)dfi) % hp->delayBufSmpCnt; // index to the sample just before the delay position
  2349. int dii1 = (dii0 + 1) % hp->delayBufSmpCnt; // index to the sample just after the delay position
  2350. //cmReal_t frac = 0; //dfi - dii0; // interpolation coeff.
  2351. unsigned i;
  2352. for(i=0; i<sigN; i++)
  2353. {
  2354. /*
  2355. outPtr[i] = -(((f+0)*(f-1)*(f-2)/6) * _wtPtr[iPhs0])
  2356. +(((f+1)*(f-1)*(f-2)/2) * _wtPtr[iPhs0+1])
  2357. -(((f+1)*(f-0)*(f-2)/2) * _wtPtr[iPhs0+2])
  2358. +(((f+1)*(f-0)*(f-1)/6) * _wtPtr[iPhs0+3]);
  2359. */
  2360. cmSample_t outSmp = dl[dii0]; // + (frac * (dl[dii1]-dl[dii0]));
  2361. outV[i] += outSmp/p->delayCnt;
  2362. dl[hp->inIdx] = (p->fbCoeff * outSmp) + inV[i];
  2363. hp->inIdx = (hp->inIdx+1) % hp->delayBufSmpCnt;
  2364. dii0 = (dii0+1) % hp->delayBufSmpCnt;
  2365. dii1 = (dii1+1) % hp->delayBufSmpCnt;
  2366. }
  2367. }
  2368. cmRC_t cmMDelayExec( cmMDelay* p, const cmSample_t* inV, cmSample_t* outV, unsigned sigN, bool bypassFl )
  2369. {
  2370. assert( sigN <= p->outN);
  2371. if( outV == NULL )
  2372. {
  2373. outV = p->outV;
  2374. sigN = cmMin(sigN,p->outN);
  2375. cmVOS_Fill(outV,sigN,0);
  2376. }
  2377. else
  2378. {
  2379. cmVOS_Zero(outV,sigN);
  2380. }
  2381. if( inV == NULL )
  2382. return cmOkRC;
  2383. if( bypassFl )
  2384. {
  2385. memcpy(outV,inV,sigN*sizeof(cmSample_t));
  2386. return cmOkRC;
  2387. }
  2388. unsigned di;
  2389. for( di=0; di<p->delayCnt; ++di)
  2390. {
  2391. cmMDelayHead* hp = p->delayArray + di;
  2392. hp->delaySmpFrac = hp->delayMs * p->srate / 1000.0;
  2393. _cmMDelayExec(p,hp,inV,outV,sigN);
  2394. }
  2395. return cmOkRC;
  2396. }
  2397. void cmMDelaySetTapMs( cmMDelay* p, unsigned tapIdx, cmReal_t ms )
  2398. {
  2399. assert( tapIdx < p->delayCnt );
  2400. p->delayArray[tapIdx].delayMs = ms;
  2401. }
  2402. void cmMDelaySetTapGain(cmMDelay* p, unsigned tapIdx, cmReal_t gain )
  2403. {
  2404. assert( tapIdx < p->delayCnt );
  2405. p->delayArray[tapIdx].delayGain = gain;
  2406. }
  2407. void cmMDelayReport( cmMDelay* p, cmRpt_t* rpt )
  2408. {
  2409. cmRptPrintf(rpt,"tap cnt:%i fb:%f sr:%f\n",p->delayCnt,p->fbCoeff,p->srate);
  2410. }
  2411. //------------------------------------------------------------------------------------------------------------
  2412. cmAudioSegPlayer* cmAudioSegPlayerAlloc( cmCtx* ctx, cmAudioSegPlayer* ap, unsigned procSmpCnt, unsigned outChCnt )
  2413. {
  2414. cmAudioSegPlayer* p = cmObjAlloc( cmAudioSegPlayer, ctx, ap );
  2415. if( procSmpCnt != 0 )
  2416. if( cmAudioSegPlayerInit( p, procSmpCnt, outChCnt ) != cmOkRC )
  2417. cmAudioSegPlayerFree(&p);
  2418. return p;
  2419. }
  2420. cmRC_t cmAudioSegPlayerFree( cmAudioSegPlayer** pp )
  2421. {
  2422. if( pp == NULL || *pp == NULL )
  2423. return cmOkRC;
  2424. cmAudioSegPlayer* p = *pp;
  2425. cmMemPtrFree(&p->segArray);
  2426. cmMemPtrFree(&p->outM);
  2427. cmObjFree(pp);
  2428. return cmOkRC;
  2429. }
  2430. cmRC_t cmAudioSegPlayerInit( cmAudioSegPlayer* p, unsigned procSmpCnt, unsigned outChCnt )
  2431. {
  2432. cmRC_t rc = cmOkRC;
  2433. if((rc = cmAudioSegPlayerFinal(p)) != cmOkRC )
  2434. return rc;
  2435. p->procSmpCnt = procSmpCnt;
  2436. p->outChCnt = outChCnt;
  2437. p->segCnt = 0;
  2438. if( outChCnt )
  2439. {
  2440. unsigned i;
  2441. p->outM = cmMemResizeZ( cmSample_t, p->outM, procSmpCnt * outChCnt );
  2442. p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt );
  2443. for(i=0; i<outChCnt; ++i)
  2444. p->outChArray[i] = p->outM + (i*procSmpCnt);
  2445. }
  2446. return rc;
  2447. }
  2448. cmRC_t cmAudioSegPlayerFinal( cmAudioSegPlayer* p )
  2449. { return cmOkRC; }
  2450. cmRC_t _cmAudioSegPlayerSegSetup( cmAudioSeg* sp, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
  2451. {
  2452. sp->bufPtr = bufPtr;
  2453. sp->id = id;
  2454. sp->smpIdx = smpIdx;
  2455. sp->smpCnt = smpCnt;
  2456. sp->outChIdx = outChIdx;
  2457. sp->outSmpIdx = 0;
  2458. sp->flags = 0;
  2459. return cmOkRC;
  2460. }
  2461. cmAudioSeg* _cmAudioSegPlayerIdToSegPtr( cmAudioSegPlayer* p, unsigned id, bool ignoreErrFl )
  2462. {
  2463. unsigned i = 0;
  2464. for(i=0; i<p->segCnt; ++i)
  2465. if( p->segArray[i].id == id )
  2466. return p->segArray + i;
  2467. if( !ignoreErrFl )
  2468. cmCtxRtCondition(&p->obj, cmArgAssertRC,"Unable to locate an audio segment with id=%i.",id);
  2469. return NULL;
  2470. }
  2471. cmRC_t cmAudioSegPlayerInsert( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
  2472. {
  2473. cmRC_t rc;
  2474. assert( _cmAudioSegPlayerIdToSegPtr( p, id, true ) == NULL );
  2475. p->segArray = cmMemResizePZ( cmAudioSeg, p->segArray, p->segCnt + 1 );
  2476. cmAudioSeg* sp = p->segArray + p->segCnt;
  2477. if((rc = _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx )) == cmOkRC )
  2478. ++p->segCnt;
  2479. return rc;
  2480. }
  2481. cmRC_t cmAudioSegPlayerEdit( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
  2482. {
  2483. cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
  2484. return _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx );
  2485. }
  2486. cmRC_t cmAudioSegPlayerRemove( cmAudioSegPlayer* p, unsigned id, bool delFl )
  2487. {
  2488. cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
  2489. if( sp == NULL )
  2490. return cmArgAssertRC;
  2491. sp->flags = cmEnaFlag( sp->flags, kDelAspFl, delFl );
  2492. return cmOkRC;
  2493. }
  2494. cmRC_t cmAudioSegPlayerEnable( cmAudioSegPlayer* p, unsigned id, bool enableFl, unsigned outSmpIdx )
  2495. {
  2496. cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
  2497. if( sp == NULL )
  2498. return cmArgAssertRC;
  2499. if( outSmpIdx != cmInvalidIdx )
  2500. sp->outSmpIdx = outSmpIdx;
  2501. sp->flags = cmEnaFlag( sp->flags, kEnableAspFl, enableFl );
  2502. return cmOkRC;
  2503. }
  2504. void _cmAudioSegPlayerResetSeg( cmAudioSeg* sp )
  2505. {
  2506. sp->outSmpIdx = 0;
  2507. sp->flags = cmClrFlag(sp->flags, kEnableAspFl );
  2508. }
  2509. cmRC_t cmAudioSegPlayerReset( cmAudioSegPlayer* p )
  2510. {
  2511. unsigned i;
  2512. for(i=0; i<p->segCnt; ++i)
  2513. {
  2514. cmAudioSeg* sp = p->segArray + i;
  2515. _cmAudioSegPlayerResetSeg(sp);
  2516. }
  2517. return cmOkRC;
  2518. }
  2519. cmRC_t cmAudioSegPlayerExec( cmAudioSegPlayer* p, cmSample_t** outChPtr, unsigned outChCnt, unsigned procSmpCnt )
  2520. {
  2521. unsigned i;
  2522. if( outChPtr == NULL || outChCnt == 0 )
  2523. {
  2524. assert( p->outChCnt > 0 );
  2525. outChPtr = p->outChArray;
  2526. outChCnt = p->outChCnt;
  2527. assert( p->procSmpCnt <= procSmpCnt );
  2528. }
  2529. for(i=0; i<p->segCnt; ++i)
  2530. {
  2531. cmAudioSeg* sp = p->segArray + i;
  2532. // if the output channel is valid and the segment is enabled and not deleted
  2533. if( sp->outChIdx < outChCnt && (sp->flags & (kEnableAspFl | kDelAspFl)) == kEnableAspFl )
  2534. {
  2535. unsigned bufSmpIdx = sp->smpIdx + sp->outSmpIdx;
  2536. unsigned bufSmpCnt = 0;
  2537. // if all the samples have been played
  2538. if( sp->bufPtr->bufN <= bufSmpIdx )
  2539. _cmAudioSegPlayerResetSeg(sp);
  2540. else
  2541. {
  2542. // prevent playing past the end of the buffer
  2543. bufSmpCnt = cmMin( procSmpCnt, sp->bufPtr->bufN - bufSmpIdx );
  2544. // limit the number of samples to the segment length
  2545. bufSmpCnt = cmMin( bufSmpCnt, sp->smpCnt - sp->outSmpIdx );
  2546. // sum the samples into the output channel
  2547. cmVOS_AddVV( outChPtr[ sp->outChIdx ], bufSmpCnt, sp->bufPtr->bufV + bufSmpIdx );
  2548. // incr the next output sample index
  2549. sp->outSmpIdx += bufSmpCnt;
  2550. }
  2551. if( bufSmpCnt < procSmpCnt )
  2552. cmVOS_Zero( outChPtr[ sp->outChIdx ] + bufSmpCnt, procSmpCnt - bufSmpCnt );
  2553. }
  2554. }
  2555. return cmOkRC;
  2556. }
  2557. //------------------------------------------------------------------------------------------------------------
  2558. /*
  2559. cmCluster0* cmCluster0Alloc( cmCtx* ctx, cmCluster0* ap, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* dstUserPtr )
  2560. {
  2561. cmCluster0* p = cmObjAlloc( cmCluster0, ctx, ap );
  2562. if( stateCnt != 0 )
  2563. if( cmCluster0Init( p, stateCnt, binCnt, flags, distFunc, distUserPtr ) != cmOkRC )
  2564. cmCluster0Free(&p);
  2565. return p;
  2566. }
  2567. cmRC_t cmCluster0Free( cmCluster0** pp )
  2568. {
  2569. if( pp == NULL || *pp == NULL )
  2570. return cmOkRC;
  2571. cmCluster0* p = *pp;
  2572. cmMemPtrFree(&p->oM);
  2573. cmMemPtrFree(&p->tM);
  2574. cmMemPtrFree(&p->dV);
  2575. cmObjFree(pp);
  2576. return cmOkRC;
  2577. }
  2578. cmRC_t cmCluster0Init( cmCluster0* p, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* distUserPtr )
  2579. {
  2580. cmRC_t rc;
  2581. if((rc = cmCluster0Final(p)) != cmOkRC )
  2582. return rc;
  2583. p->oM = cmMemResizeZ( cmReal_t, p->oM, binCnt * stateCnt );
  2584. p->tM = cmMemResizeZ( cmReal_t, p->tM, stateCnt * stateCnt );
  2585. p->stateCnt = stateCnt;
  2586. p->binCnt = binCnt;
  2587. p->flags = flags;
  2588. p->distFunc = distFunc;
  2589. p->distUserPtr = distUserPtr;
  2590. p->cnt = 0;
  2591. }
  2592. cmRC_t cmCluster0Final( cmCluster0* p )
  2593. { return cmOkRC; }
  2594. cmRC_t cmCluster0Exec( cmCluster0* p, const cmReal_t* v, unsigned vn )
  2595. {
  2596. assert( vn <= p->binCnt );
  2597. ++cnt;
  2598. if( cnt <= stateCnt )
  2599. {
  2600. cmVOR_Copy( p->oM + ((cnt-1)*binCnt), vn, v );
  2601. return cmOkRC;
  2602. }
  2603. return cmOkRC;
  2604. }
  2605. */
  2606. cmNmf_t* cmNmfAlloc( cmCtx* ctx, cmNmf_t* ap, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt )
  2607. {
  2608. cmNmf_t* p = cmObjAlloc( cmNmf_t, ctx, ap );
  2609. if( n != 0 )
  2610. if( cmNmfInit( p, n, m, r, maxIterCnt, convergeCnt ) != cmOkRC )
  2611. cmNmfFree(&p);
  2612. return p;
  2613. }
  2614. cmRC_t cmNmfFree( cmNmf_t** pp )
  2615. {
  2616. if( pp== NULL || *pp == NULL )
  2617. return cmOkRC;
  2618. cmNmf_t* p = *pp;
  2619. cmMemPtrFree(&p->V);
  2620. cmMemPtrFree(&p->W);
  2621. cmMemPtrFree(&p->H);
  2622. cmMemPtrFree(&p->tr);
  2623. cmMemPtrFree(&p->x);
  2624. cmMemPtrFree(&p->t0nm);
  2625. cmMemPtrFree(&p->t1nm);
  2626. cmMemPtrFree(&p->Wt);
  2627. cmMemPtrFree(&p->trm);
  2628. cmMemPtrFree(&p->crm);
  2629. cmMemPtrFree(&p->c0);
  2630. cmMemPtrFree(&p->c1);
  2631. cmMemPtrFree(&p->idxV);
  2632. cmObjFree(pp);
  2633. return cmOkRC;
  2634. }
  2635. cmRC_t cmNmfInit( cmNmf_t* p, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt )
  2636. {
  2637. cmRC_t rc;
  2638. if((rc = cmNmfFinal(p)) != cmOkRC )
  2639. return rc;
  2640. p->n = n;
  2641. p->m = m;
  2642. p->r = r;
  2643. p->maxIterCnt = maxIterCnt;
  2644. p->convergeCnt= convergeCnt;
  2645. p->V = cmMemResizeZ(cmReal_t, p->V, n*m );
  2646. p->W = cmMemResize( cmReal_t, p->W, n*r );
  2647. p->H = cmMemResize( cmReal_t, p->H, r*m );
  2648. p->tr = cmMemResize( cmReal_t, p->tr, r );
  2649. p->x = cmMemResize( cmReal_t, p->x, r*cmMax(m,n) );
  2650. p->t0nm = cmMemResize( cmReal_t, p->t0nm, cmMax(r,n)*m );
  2651. p->Ht = p->t0nm;
  2652. p->t1nm = cmMemResize( cmReal_t, p->t1nm, n*m );
  2653. p->Wt = cmMemResize( cmReal_t, p->Wt, r*n );
  2654. p->trm = cmMemResize( cmReal_t, p->trm, r*cmMax(m,n) );
  2655. p->crm = cmMemResizeZ(unsigned, p->crm, r*m);
  2656. p->tnr = p->trm;
  2657. p->c0 = cmMemResizeZ(unsigned, p->c0, m*m);
  2658. p->c1 = cmMemResizeZ(unsigned, p->c1, m*m);
  2659. p->idxV = cmMemResizeZ(unsigned, p->idxV, m );
  2660. p->c0m = p->c0;
  2661. p->c1m = p->c1;
  2662. cmVOR_Random(p->W,n*r,0.0,1.0);
  2663. cmVOR_Random(p->H,r*m,0.0,1.0);
  2664. return rc;
  2665. }
  2666. cmRC_t cmNmfFinal(cmNmf_t* p )
  2667. { return cmOkRC; }
  2668. // NMF base on: Lee and Seung, 2001, Algo's for Non-negative Matrix Fcmtorization
  2669. // Connectivity stopping technique based on: http://www.broadinstitute.org/mpr/publications/projects/NMF/nmf.m
  2670. cmRC_t cmNmfExec( cmNmf_t* p, const cmReal_t* vM, unsigned cn )
  2671. {
  2672. cmRC_t rc = cmOkRC;
  2673. unsigned i,j,k;
  2674. unsigned n = p->n;
  2675. unsigned m = p->m;
  2676. unsigned r = p->r;
  2677. unsigned stopIter = 0;
  2678. assert(cn <= m );
  2679. // shift in the incoming columns of V[]
  2680. if( cn < m )
  2681. cmVOR_Shift(p->V, n*m, n*cn,0);
  2682. cmVOR_Copy( p->V, n*cn,vM );
  2683. // shift H[] by the same amount as V[]
  2684. if( cn < m )
  2685. cmVOR_Shift( p->H, r*m, r*cn,0);
  2686. cmVOR_Random(p->H, r*cn, 0.0, 1.0 );
  2687. cmVOU_Zero( p->c1m, m*m );
  2688. for(i=0,j=0; i<p->maxIterCnt && stopIter<p->convergeCnt; ++i)
  2689. {
  2690. // x[r,m] =repmat(sum(W,1)',1,m);
  2691. cmVOR_SumM( p->W, n, r, p->tr );
  2692. for(j=0; j<m; ++j)
  2693. cmVOR_Copy( p->x + (j*r), r, p->tr );
  2694. cmVOR_Transpose(p->Wt,p->W,n,r);
  2695. //H=H.*(W'*(V./(W*H)))./x;
  2696. cmVOR_MultMMM(p->t0nm,n,m,p->W,p->H,r); // t0nm[n,m] = W*H
  2697. cmVOR_DivVVV( p->t1nm,n*m,p->V,p->t0nm); // t1nm[n,m] = V./(W*H)
  2698. cmVOR_MultMMM(p->trm,r,m,p->Wt,p->t1nm,n); // trm[r,m] = W'*(V./(W*H))
  2699. cmVOR_MultVV(p->H,r*m,p->trm); // H[r,m] = H .* (W'*(V./(W*H)))
  2700. cmVOR_DivVV(p->H,r*m, p->x ); // H[r,m] = (H .* (W'*(V./(W*H)))) ./ x
  2701. // x[n,r]=repmat(sum(H,2)',n,1);
  2702. cmVOR_SumMN(p->H, r, m, p->tr );
  2703. for(j=0; j<n; ++j)
  2704. cmVOR_CopyN(p->x + j, r, n, p->tr, 1 );
  2705. cmVOR_Transpose(p->Ht,p->H,r,m);
  2706. // W=W.*((V./(W*H))*H')./x;
  2707. cmVOR_MultMMM(p->tnr,n,r,p->t1nm,p->Ht,m); // tnr[n,r] = (V./(W*H))*Ht
  2708. cmVOR_MultVV(p->W,n*r,p->tnr); // W[n,r] = W.*(V./(W*H))*Ht
  2709. cmVOR_DivVV(p->W,n*r,p->x); // W[n,r] = W.*(V./(W*H))*Ht ./x
  2710. if( i % 10 == 0 )
  2711. {
  2712. cmVOR_ReplaceLte( p->H, r*m, p->H, 2.2204e-16, 2.2204e-16 );
  2713. cmVOR_ReplaceLte( p->W, n*r, p->W, 2.2204e-16, 2.2204e-16 );
  2714. cmVOR_MaxIndexM( p->idxV, p->H, r, m );
  2715. unsigned mismatchCnt = 0;
  2716. for(j=0; j<m; ++j)
  2717. for(k=0; k<m; ++k)
  2718. {
  2719. unsigned c_idx = (j*m)+k;
  2720. p->c0m[ c_idx ] = p->idxV[j] == p->idxV[k];
  2721. mismatchCnt += p->c0m[ c_idx ] != p->c1m[ c_idx ];
  2722. }
  2723. if( mismatchCnt == 0 )
  2724. ++stopIter;
  2725. else
  2726. stopIter = 0;
  2727. printf("%i %i %i\n",i,stopIter,mismatchCnt);
  2728. fflush(stdout);
  2729. unsigned* tcm = p->c0m;
  2730. p->c0m = p->c1m;
  2731. p->c1m = tcm;
  2732. }
  2733. }
  2734. return rc;
  2735. }
  2736. //------------------------------------------------------------------------------------------------------------
  2737. unsigned _cmVectArrayTypeByteCnt( cmVectArray_t* p, unsigned flags )
  2738. {
  2739. switch( flags & kVaMask )
  2740. {
  2741. case kFloatVaFl: return sizeof(float);
  2742. case kDoubleVaFl: return sizeof(double);
  2743. case kIntVaFl: return sizeof(int);
  2744. case kUIntVaFl: return sizeof(unsigned);
  2745. }
  2746. if( p != NULL )
  2747. cmCtxRtCondition(&p->obj,cmInvalidArgRC,"Unknown data type.");
  2748. return 0;
  2749. }
  2750. cmRC_t _cmVectArrayAppend( cmVectArray_t* p, const void* v, unsigned typeByteCnt, unsigned valCnt )
  2751. {
  2752. cmRC_t rc = cmSubSysFailRC;
  2753. cmVectArrayVect_t* ep = NULL;
  2754. unsigned byteCnt = typeByteCnt * valCnt;
  2755. if( byteCnt == 0 || v == NULL )
  2756. return rc;
  2757. // verify that all vectors written to this vector array contain the same data type.
  2758. if( typeByteCnt != _cmVectArrayTypeByteCnt(p,p->flags) )
  2759. return cmCtxRtCondition(&p->obj,cmInvalidArgRC,"All data stored to a cmVectArray_t must be a consistent type.");
  2760. // allocate space for the link record
  2761. if((ep = cmMemAllocZ(cmVectArrayVect_t,1)) == NULL )
  2762. goto errLabel;
  2763. // allocate space for the vector data
  2764. if((ep->u.v = cmMemAlloc(char,typeByteCnt*valCnt)) == NULL )
  2765. goto errLabel;
  2766. // append the link recd to the end of the element list
  2767. if( p->ep != NULL )
  2768. p->ep->link = ep;
  2769. else
  2770. {
  2771. p->bp = ep;
  2772. p->cur = p->bp;
  2773. }
  2774. p->ep = ep;
  2775. // store the length of the vector
  2776. ep->n = valCnt;
  2777. // copy in the vector data
  2778. memcpy(ep->u.v,v,byteCnt);
  2779. // track the number of vectors stored
  2780. p->vectCnt += 1;
  2781. // track the longest data vector
  2782. if( valCnt > p->maxEleCnt )
  2783. p->maxEleCnt = valCnt;
  2784. rc = cmOkRC;
  2785. errLabel:
  2786. if(rc != cmOkRC )
  2787. {
  2788. cmMemFree(ep->u.v);
  2789. cmMemFree(ep);
  2790. }
  2791. return rc;
  2792. }
  2793. cmVectArray_t* cmVectArrayAlloc( cmCtx* ctx, unsigned flags )
  2794. {
  2795. cmRC_t rc = cmOkRC;
  2796. cmVectArray_t* p = cmObjAlloc(cmVectArray_t,ctx,NULL);
  2797. assert(p != NULL);
  2798. switch( flags & kVaMask )
  2799. {
  2800. case kIntVaFl:
  2801. p->flags |= kIntVaFl;
  2802. p->typeByteCnt = sizeof(int);
  2803. break;
  2804. case kUIntVaFl:
  2805. p->flags |= kUIntVaFl;
  2806. p->typeByteCnt = sizeof(unsigned);
  2807. break;
  2808. case kFloatVaFl:
  2809. p->flags |= kFloatVaFl;
  2810. p->typeByteCnt = sizeof(float);
  2811. break;
  2812. case kDoubleVaFl:
  2813. p->flags |= kDoubleVaFl;
  2814. p->typeByteCnt = sizeof(double);
  2815. break;
  2816. default:
  2817. rc = cmCtxRtCondition(&p->obj,cmInvalidArgRC,"The vector array value type flag was not recognized.");
  2818. }
  2819. if(rc != cmOkRC)
  2820. cmVectArrayFree(&p);
  2821. return p;
  2822. }
  2823. cmVectArray_t* cmVectArrayAllocFromFile(cmCtx* ctx, const char* fn )
  2824. {
  2825. cmRC_t rc = cmOkRC;
  2826. FILE* fp = NULL;
  2827. char* buf = NULL;
  2828. cmVectArray_t* p = NULL;
  2829. unsigned hn = 4;
  2830. unsigned hdr[hn];
  2831. // create the file
  2832. if((fp = fopen(fn,"rb")) == NULL )
  2833. {
  2834. rc = cmCtxRtCondition(&ctx->obj,cmSystemErrorRC,"The vector array file '%s' could not be opened.",cmStringNullGuard(fn));
  2835. goto errLabel;
  2836. }
  2837. if( fread(hdr,sizeof(unsigned),hn,fp) != hn )
  2838. {
  2839. rc = cmCtxRtCondition(&ctx->obj,cmSystemErrorRC,"The vector array file header could not be read from '%s'.",cmStringNullGuard(fn));
  2840. goto errLabel;
  2841. }
  2842. unsigned flags = hdr[0];
  2843. unsigned typeByteCnt = hdr[1];
  2844. unsigned vectCnt = hdr[2];
  2845. unsigned maxEleCnt = hdr[3];
  2846. unsigned i;
  2847. buf = cmMemAlloc(char,maxEleCnt*typeByteCnt);
  2848. if((p = cmVectArrayAlloc(ctx, flags )) == NULL )
  2849. goto errLabel;
  2850. for(i=0; i<vectCnt; ++i)
  2851. {
  2852. unsigned vn;
  2853. if( fread(&vn,sizeof(unsigned),1,fp) != 1 )
  2854. {
  2855. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array file element count read failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
  2856. goto errLabel;
  2857. }
  2858. assert( vn <= maxEleCnt );
  2859. if( fread(buf,typeByteCnt,vn,fp) != vn )
  2860. {
  2861. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array data read failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
  2862. goto errLabel;
  2863. }
  2864. if((rc = _cmVectArrayAppend(p,buf, typeByteCnt, vn )) != cmOkRC )
  2865. {
  2866. rc = cmCtxRtCondition(&p->obj,rc,"The vector array data store failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
  2867. goto errLabel;
  2868. }
  2869. }
  2870. errLabel:
  2871. if( fp != NULL )
  2872. fclose(fp);
  2873. cmMemFree(buf);
  2874. if(rc != cmOkRC && p != NULL)
  2875. cmVectArrayFree(&p);
  2876. return p;
  2877. }
  2878. cmRC_t cmVectArrayFree( cmVectArray_t** pp )
  2879. {
  2880. cmRC_t rc = cmOkRC;
  2881. if( pp == NULL || *pp == NULL )
  2882. return rc;
  2883. cmVectArray_t* p = *pp;
  2884. if((rc = cmVectArrayClear(p)) != cmOkRC )
  2885. return rc;
  2886. cmMemFree(p->tempV);
  2887. cmObjFree(pp);
  2888. return rc;
  2889. }
  2890. cmRC_t cmVectArrayClear( cmVectArray_t* p )
  2891. {
  2892. cmVectArrayVect_t* ep = p->bp;
  2893. while( ep!=NULL )
  2894. {
  2895. cmVectArrayVect_t* np = ep->link;
  2896. cmMemFree(ep->u.v);
  2897. cmMemFree(ep);
  2898. ep = np;
  2899. }
  2900. p->bp = NULL;
  2901. p->ep = NULL;
  2902. p->maxEleCnt = 0;
  2903. p->vectCnt = 0;
  2904. return cmOkRC;
  2905. }
  2906. unsigned cmVectArrayCount( const cmVectArray_t* p )
  2907. { return p->vectCnt; }
  2908. unsigned cmVectArrayMaxRowCount( const cmVectArray_t* p )
  2909. {
  2910. const cmVectArrayVect_t* np = p->bp;
  2911. unsigned maxN = 0;
  2912. for(; np!=NULL; np=np->link)
  2913. if( np->n > maxN )
  2914. maxN = np->n;
  2915. return maxN;
  2916. }
  2917. cmRC_t cmVectArrayAppendV( cmVectArray_t* p, const void* v, unsigned vn )
  2918. { return _cmVectArrayAppend(p,v,_cmVectArrayTypeByteCnt(p,p->flags), vn); }
  2919. cmRC_t cmVectArrayAppendS( cmVectArray_t* p, const cmSample_t* v, unsigned vn )
  2920. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2921. cmRC_t cmVectArrayAppendR( cmVectArray_t* p, const cmReal_t* v, unsigned vn )
  2922. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2923. cmRC_t cmVectArrayAppendF( cmVectArray_t* p, const float* v, unsigned vn )
  2924. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2925. cmRC_t cmVectArrayAppendD( cmVectArray_t* p, const double* v, unsigned vn )
  2926. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2927. cmRC_t cmVectArrayAppendI( cmVectArray_t* p, const int* v, unsigned vn )
  2928. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2929. cmRC_t cmVectArrayAppendU( cmVectArray_t* p, const unsigned* v, unsigned vn )
  2930. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2931. cmRC_t cmVectArrayWrite( cmVectArray_t* p, const char* fn )
  2932. {
  2933. cmRC_t rc = cmOkRC;
  2934. FILE* fp = NULL;
  2935. cmVectArrayVect_t* ep;
  2936. unsigned i;
  2937. unsigned hn = 4;
  2938. unsigned hdr[hn];
  2939. hdr[0] = p->flags;
  2940. hdr[1] = p->typeByteCnt;
  2941. hdr[2] = p->vectCnt;
  2942. hdr[3] = p->maxEleCnt;
  2943. // create the file
  2944. if((fp = fopen(fn,"wb")) == NULL )
  2945. return cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array file '%s' could not be created.",cmStringNullGuard(fn));
  2946. // write the header
  2947. if( fwrite(hdr,sizeof(unsigned),hn,fp) != hn )
  2948. {
  2949. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file header write failed in '%s'.",cmStringNullGuard(fn));
  2950. goto errLabel;
  2951. }
  2952. // write each vector element
  2953. for(ep=p->bp,i=0; ep!=NULL; ep=ep->link,++i)
  2954. {
  2955. // write the count of data values in the vector
  2956. if( fwrite(&ep->n,sizeof(ep->n),1,fp) != 1 )
  2957. {
  2958. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file write failed on element header %i in '%s'.",i,cmStringNullGuard(fn));
  2959. goto errLabel;
  2960. }
  2961. // write the vector
  2962. if(fwrite(ep->u.v,p->typeByteCnt,ep->n,fp) != ep->n )
  2963. {
  2964. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file write failed on data vector %i in '%s'.",i,cmStringNullGuard(fn));
  2965. goto errLabel;
  2966. }
  2967. }
  2968. errLabel:
  2969. if( fp != NULL )
  2970. fclose(fp);
  2971. return rc;
  2972. }
  2973. cmRC_t cmVectArrayPrint( cmVectArray_t* p, cmRpt_t* rpt )
  2974. {
  2975. cmRC_t rc = cmOkRC;
  2976. cmVectArrayVect_t* rp = p->bp;
  2977. for(; rp!=NULL; rp=rp->link)
  2978. {
  2979. switch( p->flags & kVaMask )
  2980. {
  2981. case kFloatVaFl:
  2982. cmVOF_Print(rpt,1,rp->n,rp->u.fV);
  2983. break;
  2984. case kDoubleVaFl:
  2985. cmVOD_Print(rpt,1,rp->n,rp->u.dV);
  2986. break;
  2987. case kIntVaFl:
  2988. cmVOI_Print(rpt,1,rp->n,rp->u.iV);
  2989. break;
  2990. case kUIntVaFl:
  2991. cmVOU_Print(rpt,1,rp->n,rp->u.uV);
  2992. break;
  2993. default:
  2994. rc = cmCtxRtCondition(&p->obj,cmInvalidArgRC,"The vector array value type flag was not recognized.");
  2995. break;
  2996. }
  2997. }
  2998. return rc;
  2999. }
  3000. unsigned cmVectArrayForEachS( cmVectArray_t* p, unsigned idx, unsigned cnt, cmVectArrayForEachFuncS_t func, void* arg )
  3001. {
  3002. cmVectArrayVect_t* ep = p->bp;
  3003. unsigned i = 0;
  3004. unsigned n = 0;
  3005. // for each sub-array
  3006. for(; ep!=NULL && n<cnt; ep=ep->link )
  3007. {
  3008. // if the cur sub-array is in the range of idx:idx+cnt
  3009. if( i <= idx && idx < i + ep->n )
  3010. {
  3011. unsigned j = idx - i; // starting idx into cur sub-array
  3012. assert(j<ep->n);
  3013. unsigned m = cmMin(ep->n - j,cnt-n); // cnt of ele's to send from cur sub-array
  3014. // do callback
  3015. if( func(arg, idx, ep->u.sV + j, m ) != cmOkRC )
  3016. break;
  3017. idx += m;
  3018. n += m;
  3019. }
  3020. i += ep->n;
  3021. }
  3022. return n;
  3023. }
  3024. cmRC_t _cmVectArrayWriteMatrix( cmCtx* ctx, const char* fn, unsigned flags, const void* m, unsigned rn, unsigned cn )
  3025. {
  3026. cmRC_t rc = cmOkRC;
  3027. cmVectArray_t* p;
  3028. const char* b = (const char*)m;
  3029. unsigned tbc = _cmVectArrayTypeByteCnt( NULL, flags );
  3030. unsigned ri = 0;
  3031. char* vv = cmMemAlloc(char,cn*tbc);
  3032. if((p = cmVectArrayAlloc(ctx,flags)) == NULL )
  3033. return cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to allocate a cmVectArray_t in %s().",__FUNCTION__);
  3034. for(ri=0; ri<rn; ++ri)
  3035. {
  3036. // get ptr to first element in row 'ri' or m[]
  3037. const char* v = b + ri*tbc;
  3038. unsigned ci;
  3039. // for each column in m[ri,:]
  3040. for(ci=0; ci<cn; ++ci)
  3041. memcpy(vv + ci*tbc, v + ci*rn*tbc, tbc );
  3042. // append the row to the VectArray
  3043. if((rc = cmVectArrayAppendV(p,v,cn)) != cmOkRC )
  3044. {
  3045. rc = cmCtxRtCondition(&p->obj,rc,"Vector append failed in %s().",__FUNCTION__);
  3046. goto errLabel;
  3047. }
  3048. }
  3049. if((rc = cmVectArrayWrite(p,fn)) != cmOkRC )
  3050. rc = cmCtxRtCondition(&p->obj,rc,"Vector array write failed in %s().",__FUNCTION__);
  3051. errLabel:
  3052. if((rc = cmVectArrayFree(&p)) != cmOkRC )
  3053. rc = cmCtxRtCondition(&ctx->obj,rc,"Vector array free failed in %s().",__FUNCTION__);
  3054. cmMemFree(vv);
  3055. return rc;
  3056. }
  3057. cmRC_t cmVectArrayWriteVectorV( cmCtx* ctx, const char* fn, const void* v, unsigned vn, unsigned flags )
  3058. { return _cmVectArrayWriteMatrix( ctx, fn, flags, v, 1, vn ); }
  3059. cmRC_t cmVectArrayWriteVectorS( cmCtx* ctx, const char* fn, const cmSample_t* v, unsigned vn )
  3060. { return _cmVectArrayWriteMatrix( ctx, fn, kSampleVaFl, v, 1, vn ); }
  3061. cmRC_t cmVectArrayWriteVectorR( cmCtx* ctx, const char* fn, const cmReal_t* v, unsigned vn )
  3062. { return _cmVectArrayWriteMatrix( ctx, fn, kRealVaFl, v, 1, vn ); }
  3063. cmRC_t cmVectArrayWriteVectorD( cmCtx* ctx, const char* fn, const double* v, unsigned vn )
  3064. { return _cmVectArrayWriteMatrix( ctx, fn, kDoubleVaFl, v, 1, vn ); }
  3065. cmRC_t cmVectArrayWriteVectorF( cmCtx* ctx, const char* fn, const float* v, unsigned vn )
  3066. { return _cmVectArrayWriteMatrix( ctx, fn, kFloatVaFl, v, 1, vn ); }
  3067. cmRC_t cmVectArrayWriteVectorI( cmCtx* ctx, const char* fn, const int* v, unsigned vn )
  3068. { return _cmVectArrayWriteMatrix( ctx, fn, kIntVaFl, v, 1, vn ); }
  3069. cmRC_t cmVectArrayWriteVectorU( cmCtx* ctx, const char* fn, const unsigned* v, unsigned vn )
  3070. { return _cmVectArrayWriteMatrix( ctx, fn, kUIntVaFl, v, 1, vn ); }
  3071. cmRC_t cmVectArrayWriteMatrixV( cmCtx* ctx, const char* fn, const void* v, unsigned rn, unsigned cn, unsigned flags )
  3072. { return _cmVectArrayWriteMatrix( ctx, fn, flags, v, rn, cn); }
  3073. cmRC_t cmVectArrayWriteMatrixS( cmCtx* ctx, const char* fn, const cmSample_t* v, unsigned rn, unsigned cn )
  3074. { return _cmVectArrayWriteMatrix( ctx, fn, kSampleVaFl, v, rn, cn); }
  3075. cmRC_t cmVectArrayWriteMatrixR( cmCtx* ctx, const char* fn, const cmReal_t* v, unsigned rn, unsigned cn )
  3076. { return _cmVectArrayWriteMatrix( ctx, fn, kRealVaFl, v, rn, cn); }
  3077. cmRC_t cmVectArrayWriteMatrixD( cmCtx* ctx, const char* fn, const double* v, unsigned rn, unsigned cn )
  3078. { return _cmVectArrayWriteMatrix( ctx, fn, kDoubleVaFl, v, rn, cn); }
  3079. cmRC_t cmVectArrayWriteMatrixF( cmCtx* ctx, const char* fn, const float* v, unsigned rn, unsigned cn )
  3080. { return _cmVectArrayWriteMatrix( ctx, fn, kFloatVaFl, v, rn, cn); }
  3081. cmRC_t cmVectArrayWriteMatrixI( cmCtx* ctx, const char* fn, const int* v, unsigned rn, unsigned cn )
  3082. { return _cmVectArrayWriteMatrix( ctx, fn, kIntVaFl, v, rn, cn); }
  3083. cmRC_t cmVectArrayWriteMatrixU( cmCtx* ctx, const char* fn, const unsigned* v, unsigned rn, unsigned cn )
  3084. { return _cmVectArrayWriteMatrix( ctx, fn, kUIntVaFl, v, rn, cn); }
  3085. // Fill v[(*vnRef)*tbc] with the data from the current row of p.
  3086. // Return the count of elements copied to v[] in *vnRef.
  3087. cmRC_t _cmVectArrayGetV( cmVectArray_t* p, void* v, unsigned* vnRef, unsigned tbc )
  3088. {
  3089. assert( tbc == p->typeByteCnt );
  3090. if( cmVectArrayIsEOL(p) )
  3091. return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"%s failed because the state is EOL.",__FUNCTION__);
  3092. unsigned n = cmMin((*vnRef)*tbc, p->cur->n * p->typeByteCnt );
  3093. memcpy(v, p->cur->u.v, n );
  3094. *vnRef = n/tbc;
  3095. return cmOkRC;
  3096. }
  3097. cmRC_t _cmVectArrayReadMatrixV( cmCtx* ctx, const char* fn, void** mRef, unsigned* rnRef, unsigned* cnRef )
  3098. {
  3099. assert( mRef != NULL );
  3100. assert( cnRef != NULL );
  3101. assert( rnRef != NULL );
  3102. *mRef = NULL;
  3103. *cnRef = 0;
  3104. *rnRef = 0;
  3105. cmRC_t rc = cmOkRC;
  3106. cmVectArray_t* va;
  3107. if((va = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
  3108. rc = cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to read the vectarray from the file '%s'.", cmStringNullGuard(fn));
  3109. else
  3110. {
  3111. unsigned rn = cmVectArrayCount(va); // count of rows
  3112. unsigned cn = cmVectArrayMaxRowCount(va); // max count of ele's among all rows
  3113. char* m = cmMemAllocZ(char,va->typeByteCnt*rn*cn); // allocate the matrix
  3114. unsigned ci = 0;
  3115. cmVectArrayRewind(va);
  3116. // read each vector into a column of m[]
  3117. for(; !cmVectArrayIsEOL(va); ++ci)
  3118. {
  3119. unsigned n = cmVectArrayEleCount(va);
  3120. assert( m+(ci*rn+n)*va->typeByteCnt <= m + rn*cn*va->typeByteCnt );
  3121. if( _cmVectArrayGetV(va, m + ci*rn*va->typeByteCnt, &n, va->typeByteCnt) != cmOkRC )
  3122. goto errLabel;
  3123. cmVectArrayAdvance(va,1);
  3124. }
  3125. *mRef = m;
  3126. *cnRef = cn;
  3127. *rnRef = rn;
  3128. }
  3129. errLabel:
  3130. if( va != NULL )
  3131. cmVectArrayFree(&va);
  3132. return rc;
  3133. }
  3134. cmRC_t cmVectArrayReadMatrixV( cmCtx* ctx, const char* fn, void** mRef, unsigned* rnRef, unsigned* cnRef )
  3135. { return _cmVectArrayReadMatrixV(ctx, fn, mRef, rnRef, cnRef ); }
  3136. cmRC_t cmVectArrayReadMatrixS( cmCtx* ctx, const char* fn, cmSample_t** mRef, unsigned* rnRef, unsigned* cnRef )
  3137. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3138. cmRC_t cmVectArrayReadMatrixR( cmCtx* ctx, const char* fn, cmReal_t** mRef, unsigned* rnRef, unsigned* cnRef )
  3139. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3140. cmRC_t cmVectArrayReadMatrixD( cmCtx* ctx, const char* fn, double** mRef, unsigned* rnRef, unsigned* cnRef )
  3141. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3142. cmRC_t cmVectArrayReadMatrixF( cmCtx* ctx, const char* fn, float** mRef, unsigned* rnRef, unsigned* cnRef )
  3143. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3144. cmRC_t cmVectArrayReadMatrixI( cmCtx* ctx, const char* fn, int** mRef, unsigned* rnRef, unsigned* cnRef )
  3145. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3146. cmRC_t cmVectArrayReadMatrixU( cmCtx* ctx, const char* fn, unsigned** mRef, unsigned* rnRef, unsigned* cnRef )
  3147. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3148. cmRC_t cmVectArrayForEachTextFuncS( void* arg, unsigned idx, const cmSample_t* xV, unsigned xN )
  3149. {
  3150. assert(0);
  3151. return cmOkRC;
  3152. }
  3153. cmRC_t cmVectArrayRewind( cmVectArray_t* p )
  3154. {
  3155. p->cur = p->bp;
  3156. return cmOkRC;
  3157. }
  3158. cmRC_t cmVectArrayAdvance( cmVectArray_t* p, unsigned n )
  3159. {
  3160. unsigned i;
  3161. for(i=0; i<n; ++i)
  3162. {
  3163. if( p->cur == NULL )
  3164. break;
  3165. p->cur = p->cur->link;
  3166. }
  3167. return cmOkRC;
  3168. }
  3169. bool cmVectArrayIsEOL( const cmVectArray_t* p )
  3170. { return p->cur == NULL; }
  3171. unsigned cmVectArrayEleCount( const cmVectArray_t* p )
  3172. {
  3173. if( p->cur == NULL )
  3174. return 0;
  3175. return p->cur->n;
  3176. }
  3177. cmRC_t cmVectArrayGetV( cmVectArray_t* p, void* v, unsigned* vnRef )
  3178. { return _cmVectArrayGetV(p,v,vnRef,_cmVectArrayTypeByteCnt(p,p->flags)); }
  3179. cmRC_t cmVectArrayGetS( cmVectArray_t* p, cmSample_t* v, unsigned* vnRef )
  3180. {
  3181. assert( cmIsFlag(p->flags,kSampleVaFl) );
  3182. return _cmVectArrayGetV(p,v,vnRef,sizeof(cmSample_t));
  3183. }
  3184. cmRC_t cmVectArrayGetR( cmVectArray_t* p, cmReal_t* v, unsigned* vnRef )
  3185. {
  3186. assert( cmIsFlag(p->flags,kRealVaFl) );
  3187. return _cmVectArrayGetV(p,v,vnRef,sizeof(cmReal_t));
  3188. }
  3189. cmRC_t cmVectArrayGetD( cmVectArray_t* p, double* v, unsigned* vnRef )
  3190. {
  3191. assert( cmIsFlag(p->flags,kDoubleVaFl) );
  3192. return _cmVectArrayGetV(p,v,vnRef,sizeof(double));
  3193. }
  3194. cmRC_t cmVectArrayGetF( cmVectArray_t* p, float* v, unsigned* vnRef )
  3195. {
  3196. assert( cmIsFlag(p->flags,kFloatVaFl) );
  3197. return _cmVectArrayGetV(p,v,vnRef,sizeof(float));
  3198. }
  3199. cmRC_t cmVectArrayGetI( cmVectArray_t* p, int* v, unsigned* vnRef )
  3200. {
  3201. assert( cmIsFlag(p->flags,kIntVaFl) );
  3202. return _cmVectArrayGetV(p,v,vnRef,sizeof(int));
  3203. }
  3204. cmRC_t cmVectArrayGetU( cmVectArray_t* p, unsigned* v, unsigned* vnRef )
  3205. {
  3206. assert( cmIsFlag(p->flags,kUIntVaFl) );
  3207. return _cmVectArrayGetV(p,v,vnRef,sizeof(unsigned));
  3208. }
  3209. cmRC_t _cmVectArrayMatrixIsEqual( cmCtx* ctx, const char* fn, const void* mm, unsigned rn, unsigned cn, unsigned flags, bool* resultFlRef )
  3210. {
  3211. assert( resultFlRef != NULL );
  3212. cmRC_t rc = cmOkRC;
  3213. cmVectArray_t* p = NULL;
  3214. const char* m = (const char*)mm;
  3215. unsigned tbc = _cmVectArrayTypeByteCnt(NULL,flags);
  3216. unsigned ri = 0;
  3217. char* vv = cmMemAlloc(char,cn*tbc);
  3218. *resultFlRef = false;
  3219. // read the vector array
  3220. if((p = cmVectArrayAllocFromFile(ctx, fn )) == NULL)
  3221. {
  3222. rc = cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to read the VectArray from the file '%s'.", cmStringNullGuard(fn));
  3223. goto errLabel;
  3224. }
  3225. // verify that the matrix type matches the vector array type
  3226. if( (p->flags & kVaMask) != (flags & kVaMask) )
  3227. {
  3228. rc = cmCtxRtCondition(&ctx->obj,cmInvalidArgRC,"Invalid type conversion in '%s'.",__FUNCTION__);
  3229. goto errLabel;
  3230. }
  3231. // the row count of the VectArray and m[] must be the same
  3232. if( cmVectArrayCount(p) != rn )
  3233. {
  3234. *resultFlRef = false;
  3235. goto errLabel;
  3236. }
  3237. // for each row in VectArray
  3238. for(; !cmVectArrayIsEOL(p); ++ri )
  3239. {
  3240. unsigned vn = cmVectArrayEleCount(p);
  3241. char v[ vn*p->typeByteCnt ];
  3242. unsigned ci;
  3243. // get the current row from the VectArray into v[vn]
  3244. if( _cmVectArrayGetV(p,v,&vn,p->typeByteCnt) != cmOkRC )
  3245. goto errLabel;
  3246. // if the size of the current row does not match the row element count of the matrix
  3247. if( vn != cn )
  3248. goto errLabel;
  3249. for(ci=0; ci<cn; ++ci)
  3250. memcpy(vv + ci*tbc, m + (ri*tbc) + (ci*rn*tbc), tbc );
  3251. // the current row does not match the matrix column vector
  3252. if( memcmp(v, vv, vn*p->typeByteCnt ) != 0 )
  3253. goto errLabel;
  3254. cmVectArrayAdvance(p,1);
  3255. }
  3256. *resultFlRef = true;
  3257. errLabel:
  3258. if( p != NULL )
  3259. cmVectArrayFree(&p);
  3260. cmMemFree(vv);
  3261. return rc;
  3262. }
  3263. cmRC_t cmVectArrayMatrixIsEqualV( cmCtx* ctx, const char* fn, const void* m, unsigned rn, unsigned cn, bool* resultFlRef, unsigned flags )
  3264. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, flags, resultFlRef); }
  3265. cmRC_t cmVectArrayMatrixIsEqualS( cmCtx* ctx, const char* fn, const cmSample_t* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3266. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kSampleVaFl, resultFlRef ); }
  3267. cmRC_t cmVectArrayMatrixIsEqualR( cmCtx* ctx, const char* fn, const cmReal_t* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3268. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kRealVaFl, resultFlRef ); }
  3269. cmRC_t cmVectArrayMatrixIsEqualD( cmCtx* ctx, const char* fn, const double* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3270. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kDoubleVaFl, resultFlRef ); }
  3271. cmRC_t cmVectArrayMatrixIsEqualF( cmCtx* ctx, const char* fn, const float* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3272. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kFloatVaFl, resultFlRef ); }
  3273. cmRC_t cmVectArrayMatrixIsEqualI( cmCtx* ctx, const char* fn, const int* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3274. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kIntVaFl, resultFlRef ); }
  3275. cmRC_t cmVectArrayMatrixIsEqualU( cmCtx* ctx, const char* fn, const unsigned* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3276. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kUIntVaFl, resultFlRef ); }
  3277. unsigned cmVectArrayVectEleCount( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt )
  3278. {
  3279. unsigned n = 0;
  3280. cmVectArrayVect_t* pos = p->cur;
  3281. if( cmVectArrayRewind(p) != cmOkRC )
  3282. goto errLabel;
  3283. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3284. goto errLabel;
  3285. while( !cmVectArrayIsEOL(p) )
  3286. {
  3287. n += cmVectArrayEleCount(p);
  3288. if(cmVectArrayAdvance(p,groupCnt) != cmOkRC )
  3289. goto errLabel;
  3290. }
  3291. errLabel:
  3292. p->cur = pos;
  3293. return n;
  3294. }
  3295. cmRC_t cmVectArrayFormVectF( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, float** vRef, unsigned* vnRef )
  3296. {
  3297. cmRC_t rc = cmOkRC;
  3298. *vRef = NULL;
  3299. *vnRef = 0;
  3300. unsigned N = cmVectArrayVectEleCount(p,groupIdx,groupCnt);
  3301. if( N == 0 )
  3302. return rc;
  3303. float* v = cmMemAllocZ(float,N);
  3304. unsigned i = 0;
  3305. cmVectArrayVect_t* pos = p->cur;
  3306. if( cmVectArrayRewind(p) != cmOkRC )
  3307. goto errLabel;
  3308. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3309. goto errLabel;
  3310. while( !cmVectArrayIsEOL(p) )
  3311. {
  3312. unsigned n = cmVectArrayEleCount(p);
  3313. assert(i+n <= N);
  3314. cmVectArrayGetF(p,v+i,&n);
  3315. i += n;
  3316. cmVectArrayAdvance(p,groupCnt);
  3317. }
  3318. *vRef = v;
  3319. *vnRef = i;
  3320. errLabel:
  3321. p->cur = pos;
  3322. return rc;
  3323. }
  3324. cmRC_t cmVectArrayFormVectColF( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, unsigned colIdx, float** vRef, unsigned* vnRef )
  3325. {
  3326. cmRC_t rc = cmOkRC;
  3327. *vRef = NULL;
  3328. *vnRef = 0;
  3329. // assume there will be one output element for each group
  3330. unsigned N = cmVectArrayCount(p)/groupCnt + 1;
  3331. if( N == 0 )
  3332. return rc;
  3333. float* v = cmMemAllocZ(float,N);
  3334. unsigned i = 0;
  3335. cmVectArrayVect_t* pos = p->cur;
  3336. if( cmVectArrayRewind(p) != cmOkRC )
  3337. goto errLabel;
  3338. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3339. goto errLabel;
  3340. while( i<N && !cmVectArrayIsEOL(p) )
  3341. {
  3342. unsigned tn = cmVectArrayEleCount(p);
  3343. float tv[tn];
  3344. // read the sub-vector
  3345. cmVectArrayGetF(p,tv,&tn);
  3346. // store the output value
  3347. if( colIdx < tn )
  3348. {
  3349. v[i] = tv[colIdx];
  3350. i += 1;
  3351. }
  3352. cmVectArrayAdvance(p,groupCnt);
  3353. }
  3354. *vRef = v;
  3355. *vnRef = i;
  3356. errLabel:
  3357. p->cur = pos;
  3358. return rc;
  3359. }
  3360. cmRC_t cmVectArrayFormVectColU( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, unsigned colIdx, unsigned** vRef, unsigned* vnRef )
  3361. {
  3362. cmRC_t rc = cmOkRC;
  3363. *vRef = NULL;
  3364. *vnRef = 0;
  3365. // assume there will be one output element for each group
  3366. unsigned N = cmVectArrayCount(p)/groupCnt + 1;
  3367. if( N == 0 )
  3368. return rc;
  3369. unsigned* v = cmMemAllocZ(unsigned,N);
  3370. unsigned i = 0;
  3371. cmVectArrayVect_t* pos = p->cur;
  3372. if( cmVectArrayRewind(p) != cmOkRC )
  3373. goto errLabel;
  3374. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3375. goto errLabel;
  3376. while( i<N && !cmVectArrayIsEOL(p) )
  3377. {
  3378. unsigned tn = cmVectArrayEleCount(p);
  3379. unsigned tv[tn];
  3380. // read the sub-vector
  3381. cmVectArrayGetU(p,tv,&tn);
  3382. assert( colIdx < tn );
  3383. // store the output value
  3384. if( colIdx < tn )
  3385. v[i++] = tv[colIdx];
  3386. cmVectArrayAdvance(p,groupCnt);
  3387. }
  3388. *vRef = v;
  3389. *vnRef = i;
  3390. errLabel:
  3391. p->cur = pos;
  3392. return rc;
  3393. }
  3394. cmRC_t cmVectArrayTest( cmCtx* ctx, const char* fn, bool genFl )
  3395. {
  3396. cmRC_t rc = cmOkRC;
  3397. cmVectArray_t* p = NULL;
  3398. if( fn == NULL || strlen(fn)==0 )
  3399. return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Invalid test output file name.");
  3400. if( genFl )
  3401. {
  3402. unsigned flags = kSampleVaFl;
  3403. cmSample_t v[] = { 0, 1, 2, 3, 4, 5 };
  3404. if( (p = cmVectArrayAlloc(ctx,flags)) == NULL )
  3405. return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vectory array object allocation failed.");
  3406. if( cmVectArrayAppendS(p,v,1) != cmOkRC )
  3407. {
  3408. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 1 failed.");
  3409. goto errLabel;
  3410. }
  3411. if( cmVectArrayAppendS(p,v+1,2) != cmOkRC )
  3412. {
  3413. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 2 failed.");
  3414. goto errLabel;
  3415. }
  3416. if( cmVectArrayAppendS(p,v+3,3) != cmOkRC )
  3417. {
  3418. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 3 failed.");
  3419. goto errLabel;
  3420. }
  3421. if( cmVectArrayWrite(p,fn) != cmOkRC )
  3422. {
  3423. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector array write failed.");
  3424. goto errLabel;
  3425. }
  3426. //cmVectArrayForEachS(p,0,cmVectArrayEleCount(p),cmVectArrayForEachTextFuncS,&ctx->printRpt);
  3427. //if( cmVectArrayFree(&p) != cmOkRC )
  3428. //{
  3429. // rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vectory array release failed.");
  3430. // goto errLabel;
  3431. //}
  3432. }
  3433. else
  3434. {
  3435. if((p = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
  3436. {
  3437. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"VectArray alloc from file failed.");
  3438. goto errLabel;
  3439. }
  3440. while(!cmVectArrayIsEOL(p))
  3441. {
  3442. unsigned n = cmVectArrayEleCount(p);
  3443. cmSample_t v[n];
  3444. if( cmVectArrayGetS(p,v,&n) != cmOkRC )
  3445. {
  3446. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"VectArrayGetS() failed.");
  3447. goto errLabel;
  3448. }
  3449. //cmVOS_PrintL("v:",NULL,1,n,v);
  3450. cmVectArrayAdvance(p,1);
  3451. }
  3452. // Test matrix reading
  3453. cmSample_t* m;
  3454. unsigned rn,cn;
  3455. if( cmVectArrayReadMatrixS(ctx, fn, &m, &rn, &cn ) != cmOkRC )
  3456. goto errLabel;
  3457. else
  3458. {
  3459. //cmVOS_PrintL("v:",NULL,rn,cn,m);
  3460. cmMemFree(m);
  3461. }
  3462. }
  3463. errLabel:
  3464. if( cmVectArrayFree(&p) != cmOkRC )
  3465. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vector array release failed.");
  3466. return rc;
  3467. }
  3468. //-----------------------------------------------------------------------------------------------------------------------
  3469. cmWhFilt* cmWhFiltAlloc( cmCtx* c, cmWhFilt* p, unsigned binCnt, cmReal_t binHz, cmReal_t coeff, cmReal_t maxHz )
  3470. {
  3471. cmWhFilt* op = cmObjAlloc(cmWhFilt,c,p);
  3472. if( binCnt > 0 )
  3473. if( cmWhFiltInit(op,binCnt,binHz,coeff,maxHz) != cmOkRC )
  3474. cmWhFiltFree(&op);
  3475. return op;
  3476. }
  3477. cmRC_t cmWhFiltFree( cmWhFilt** pp )
  3478. {
  3479. cmRC_t rc = cmOkRC;
  3480. if( pp==NULL || *pp==NULL )
  3481. return rc;
  3482. cmWhFilt* p = *pp;
  3483. if((rc = cmWhFiltFinal(p)) != cmOkRC )
  3484. return rc;
  3485. cmMemFree(p->whM);
  3486. cmMemFree(p->whiV);
  3487. cmMemFree(p->iV);
  3488. cmObjFree(pp);
  3489. return rc;
  3490. }
  3491. cmRC_t cmWhFiltInit( cmWhFilt* p, unsigned binCnt, cmReal_t binHz, cmReal_t coeff, cmReal_t maxHz )
  3492. {
  3493. cmRC_t rc;
  3494. if((rc = cmWhFiltFinal(p)) != cmOkRC )
  3495. return rc;
  3496. p->binCnt = binCnt;
  3497. p->binHz = binHz;
  3498. p->bandCnt = maxHz == 0 ? 34 : ceil(log10(maxHz/229.0 + 1) * 21.4 - 1)-1;
  3499. if( p->bandCnt <= 0 )
  3500. return cmCtxRtCondition(&p->obj, cmInvalidArgRC, "Max. Hz too low to form any frequency bands.");
  3501. cmReal_t flV[ p->bandCnt ];
  3502. cmReal_t fcV[ p->bandCnt ];
  3503. cmReal_t fhV[ p->bandCnt ];
  3504. int i;
  3505. for(i=0; i<p->bandCnt; ++i)
  3506. {
  3507. fcV[i] = 229.0 * (pow(10.0,(i+2)/21.4) - 1.0);
  3508. flV[i] = i==0 ? 0 : fcV[i-1];
  3509. }
  3510. for(i=0; i<p->bandCnt-1; ++i)
  3511. fhV[i] = fcV[i+1];
  3512. fhV[p->bandCnt-1] = fcV[p->bandCnt-1] + (fcV[p->bandCnt-1] - fcV[p->bandCnt-2]);
  3513. //cmVOR_PrintL("flV",NULL,1,p->bandCnt,flV);
  3514. //cmVOR_PrintL("fcV",NULL,1,p->bandCnt,fcV);
  3515. //cmVOR_PrintL("fhV",NULL,1,p->bandCnt,fhV);
  3516. cmReal_t* tM = cmMemAlloc(cmReal_t,p->bandCnt * p->binCnt);
  3517. p->whM = cmMemResizeZ(cmReal_t,p->whM,p->binCnt * p->bandCnt);
  3518. p->iV = cmMemResizeZ(cmReal_t,p->iV,p->binCnt);
  3519. // generate the bin index values
  3520. for(i=0; i<p->binCnt; ++i)
  3521. p->iV[i] = i;
  3522. cmReal_t stSpread = 0; // set stSpread to 0 to use flV/fhV[]
  3523. cmVOR_TriangleMask(tM, p->bandCnt, p->binCnt, fcV, p->binHz, stSpread, flV, fhV );
  3524. cmVOR_Transpose(p->whM, tM, p->bandCnt, p->binCnt );
  3525. cmMemFree(tM);
  3526. //cmVOR_PrintL("whM",NULL,p->bandCnt,p->binCnt,p->whM);
  3527. //cmVectArrayWriteMatrixR(p->obj.ctx, "/home/kevin/temp/frqtrk/whM.va", p->whM, p->binCnt, p->bandCnt );
  3528. unsigned whiN = p->bandCnt+2;
  3529. p->whiV = cmMemResizeZ(cmReal_t,p->whiV,whiN);
  3530. for(i=0; i<whiN; ++i)
  3531. {
  3532. if( i == 0 )
  3533. p->whiV[i] = 0;
  3534. else
  3535. if( i == whiN-1 )
  3536. p->whiV[i] = fhV[p->bandCnt-1]/binHz;
  3537. else
  3538. p->whiV[i] = fcV[i-1]/binHz;
  3539. }
  3540. //cmVOR_PrintL("whiV",NULL,1,whiN,p->whiV);
  3541. //cmVectArrayWriteMatrixR(p->obj.ctx, "/home/kevin/temp/frqtrk/whiV.va", p->whiV, whiN, 1 );
  3542. return rc;
  3543. }
  3544. cmRC_t cmWhFiltFinal( cmWhFilt* p )
  3545. { return cmOkRC; }
  3546. cmRC_t cmWhFiltExec( cmWhFilt* p, const cmReal_t* xV, cmReal_t* yV, unsigned xyN )
  3547. {
  3548. assert( xyN == p->binCnt);
  3549. cmRC_t rc = cmOkRC;
  3550. unsigned whiN = p->bandCnt + 2;
  3551. unsigned mbi = cmMin(xyN, floor(p->whiV[whiN-1]));
  3552. // calculate the level in each band to form a composite filter
  3553. cmReal_t y0V[ whiN ];
  3554. cmReal_t* b0V = y0V + 1;
  3555. cmVOR_MultVVM(b0V, p->bandCnt, xV, p->binCnt, p->whM );
  3556. //cmVOR_PrintL("b0V",NULL,1,p->bandCnt,b0V);
  3557. // BEWARE: zeros in b0V will generate Inf's when sent
  3558. // through the cmVOR_PowVS() function.
  3559. int i;
  3560. for(i=0; i<p->bandCnt; ++i)
  3561. if( b0V[i] < 0.000001 )
  3562. b0V[i] = 0.000001;
  3563. // apply a non-linear expansion function to each band
  3564. cmVOR_PowVS(b0V,p->bandCnt,p->coeff-1);
  3565. //cmVOR_PrintL("b0V",NULL,1,p->bandCnt,b0V);
  3566. // add edge values to the filter
  3567. y0V[0] = b0V[0];
  3568. y0V[whiN-1] = b0V[p->bandCnt-1];
  3569. //cmVOR_PrintL("y0V",NULL,1,whiN,y0V);
  3570. cmVOR_Interp1(yV,p->iV,p->binCnt,p->whiV,y0V,whiN);
  3571. cmVOR_Fill(yV+mbi,xyN-mbi,1.0);
  3572. //cmVOR_PrintL("yV",NULL,1,p->binCnt,yV);
  3573. cmVOR_MultVV(yV,xyN,xV);
  3574. return rc;
  3575. }
  3576. //-----------------------------------------------------------------------------------------------------------------------
  3577. cmFrqTrk* cmFrqTrkAlloc( cmCtx* c, cmFrqTrk* p, const cmFrqTrkArgs_t* a )
  3578. {
  3579. cmFrqTrk* op = cmObjAlloc(cmFrqTrk,c,p);
  3580. op->logVa = cmVectArrayAlloc(c,kRealVaFl);
  3581. op->levelVa = cmVectArrayAlloc(c,kRealVaFl);
  3582. op->specVa = cmVectArrayAlloc(c,kRealVaFl);
  3583. op->attenVa = cmVectArrayAlloc(c,kRealVaFl);
  3584. op->wf = cmWhFiltAlloc(c,NULL,0,0,0,0);
  3585. if( a != NULL )
  3586. if( cmFrqTrkInit(op,a) != cmOkRC )
  3587. cmFrqTrkFree(&op);
  3588. return op;
  3589. }
  3590. cmRC_t cmFrqTrkFree( cmFrqTrk** pp )
  3591. {
  3592. cmRC_t rc = cmOkRC;
  3593. if( pp==NULL || *pp==NULL )
  3594. return rc;
  3595. cmFrqTrk* p = *pp;
  3596. if((rc = cmFrqTrkFinal(p)) != cmOkRC )
  3597. return rc;
  3598. unsigned i;
  3599. for(i=0; i<p->a.chCnt; ++i)
  3600. {
  3601. cmMemFree(p->ch[i].dbV);
  3602. cmMemFree(p->ch[i].hzV);
  3603. }
  3604. cmMemFree(p->ch);
  3605. cmMemFree(p->dbM);
  3606. cmMemFree(p->pkiV);
  3607. cmMemFree(p->dbV);
  3608. cmMemFree(p->aV);
  3609. cmVectArrayFree(&p->logVa);
  3610. cmVectArrayFree(&p->levelVa);
  3611. cmVectArrayFree(&p->specVa);
  3612. cmVectArrayFree(&p->attenVa);
  3613. cmWhFiltFree(&p->wf);
  3614. cmMemFree(p->logFn);
  3615. cmMemFree(p->levelFn);
  3616. cmMemFree(p->specFn);
  3617. cmMemFree(p->attenFn);
  3618. cmObjFree(pp);
  3619. return rc;
  3620. }
  3621. cmRC_t cmFrqTrkInit( cmFrqTrk* p, const cmFrqTrkArgs_t* a )
  3622. {
  3623. cmRC_t rc;
  3624. if((rc = cmFrqTrkFinal(p)) != cmOkRC )
  3625. return rc;
  3626. p->a = *a;
  3627. p->ch = cmMemResizeZ(cmFrqTrkCh_t,p->ch,a->chCnt );
  3628. p->hN = cmMax(1,a->wndSecs * a->srate / a->hopSmpCnt );
  3629. p->sN = 4*p->hN;
  3630. p->binHz = a->srate / ((p->a.binCnt-1)*2);
  3631. p->bN = cmMin( p->a.binCnt, ceil(p->a.pkMaxHz / p->binHz ));
  3632. p->dbM = cmMemResizeZ(cmReal_t,p->dbM,p->hN*p->bN);
  3633. p->hi = 0;
  3634. p->fN = 0;
  3635. p->dbV = cmMemResizeZ(cmReal_t,p->dbV,p->bN);
  3636. p->pkiV = cmMemResizeZ(unsigned,p->pkiV,p->bN);
  3637. p->deadN_max = a->maxTrkDeadSec * a->srate / a->hopSmpCnt;
  3638. p->minTrkN = a->minTrkSec * a->srate / a->hopSmpCnt;
  3639. p->nextTrkId = 1;
  3640. p->aV = cmMemResizeZ(cmReal_t,p->aV,p->a.binCnt);
  3641. p->attenDlyPhsMax = cmMax(3,a->attenDlySec * a->srate / a->hopSmpCnt );
  3642. p->attenPhsMax = cmMax(3,a->attenAtkSec * a->srate / a->hopSmpCnt );
  3643. if( a->logFn != NULL )
  3644. p->logFn = cmMemResizeStr(p->logFn,a->logFn);
  3645. if( a->levelFn != NULL )
  3646. p->levelFn = cmMemResizeStr(p->levelFn,a->levelFn);
  3647. if( a->specFn != NULL )
  3648. p->specFn = cmMemResizeStr(p->specFn,a->specFn);
  3649. if( a->attenFn != NULL )
  3650. p->attenFn = cmMemResizeStr(p->attenFn,a->attenFn);
  3651. if(cmWhFiltInit(p->wf,p->bN,p->binHz,p->a.whFiltCoeff,p->a.pkMaxHz) != cmOkRC )
  3652. cmCtxRtCondition(&p->obj, cmSubSysFailRC, "Whitening filter intitialization failed.");
  3653. unsigned i;
  3654. for(i=0; i<p->a.chCnt; ++i)
  3655. {
  3656. p->ch[i].dbV = cmMemResizeZ(cmReal_t,p->ch[i].dbV,p->sN);
  3657. p->ch[i].hzV = cmMemResizeZ(cmReal_t,p->ch[i].hzV,p->sN);
  3658. }
  3659. return rc;
  3660. }
  3661. cmRC_t cmFrqTrkFinal( cmFrqTrk* p )
  3662. {
  3663. cmRC_t rc = cmOkRC;
  3664. if( p->logFn != NULL )
  3665. cmVectArrayWrite(p->logVa,p->logFn);
  3666. if( p->levelFn != NULL )
  3667. cmVectArrayWrite(p->levelVa,p->levelFn);
  3668. if( p->specFn != NULL )
  3669. cmVectArrayWrite(p->specVa,p->specFn);
  3670. if( p->attenFn != NULL )
  3671. cmVectArrayWrite(p->attenVa,p->attenFn);
  3672. cmWhFiltFinal(p->wf);
  3673. return rc;
  3674. }
  3675. // Return an available channel record or NULL if all channel records are in use.
  3676. cmFrqTrkCh_t* _cmFrqTrkFindAvailCh( cmFrqTrk* p )
  3677. {
  3678. unsigned i;
  3679. for(i=0; i<p->a.chCnt; ++i)
  3680. if( p->ch[i].activeFl == false )
  3681. return p->ch + i;
  3682. return NULL;
  3683. }
  3684. // Estimate the peak frequency by parabolic interpolotion into hzV[p->bN]
  3685. void _cmFrqTrkMagnToHz( cmFrqTrk* p, const cmReal_t* dbV, unsigned* pkiV, unsigned pkN, cmReal_t* hzV )
  3686. {
  3687. unsigned i;
  3688. for(i=0; i<pkN; ++i)
  3689. if( pkiV[i] != cmInvalidIdx )
  3690. {
  3691. unsigned pki = pkiV[i];
  3692. cmReal_t y0 = pki>0 ? dbV[ pki-1 ] : dbV[pki];
  3693. cmReal_t y1 = dbV[ pki ];
  3694. cmReal_t y2 = pki<p->bN-1 ? dbV[ pki+1 ] : dbV[pki];
  3695. cmReal_t den = y0 - (2.*y1) + y2;
  3696. cmReal_t offs = den==0 ? 0 : 0.5 * ((y0 - y2) / den);
  3697. hzV[pki] = p->binHz * (pki+offs);
  3698. //if( hzV[pki] < 0 )
  3699. //{
  3700. // printf("%f : %f %f %f : %f %f\n",hzV[pki],y0,y1,y2,den,offs);
  3701. //}
  3702. }
  3703. }
  3704. unsigned _cmFrqTrkActiveChCount( cmFrqTrk* p )
  3705. {
  3706. unsigned n = 0;
  3707. unsigned i;
  3708. for(i=0; i<p->a.chCnt; ++i)
  3709. if( p->ch[i].activeFl )
  3710. ++n;
  3711. return n;
  3712. }
  3713. void _cmFrqTrkWriteLevel( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned bN )
  3714. {
  3715. if( p->levelFn != NULL )
  3716. {
  3717. double maxHz = 5000.0;
  3718. unsigned maxBinIdx = cmMin(bN,maxHz / p->binHz);
  3719. unsigned vn = 3;
  3720. cmReal_t v[vn];
  3721. unsigned idx = cmVOR_MaxIndex(dbV,maxBinIdx,1);
  3722. v[0] = cmVOR_Mean(dbV,maxBinIdx);
  3723. v[1] = dbV[idx];
  3724. v[2] = hzV[idx];
  3725. cmVectArrayAppendR(p->levelVa,v,vn);
  3726. }
  3727. }
  3728. void _cmFrqTrkWriteLog( cmFrqTrk* p )
  3729. {
  3730. unsigned n;
  3731. cmReal_t* vb = NULL;
  3732. if( p->logFn == NULL )
  3733. return;
  3734. if((n = _cmFrqTrkActiveChCount(p)) > 0 )
  3735. {
  3736. unsigned i,j;
  3737. // sn = count of elements in the summary sub-vector
  3738. unsigned sn = 3;
  3739. // each active channel will emit 7 values
  3740. unsigned nn = 1 + n*7 + sn;
  3741. // allocate the row vector
  3742. vb = cmMemResize(cmReal_t,vb,nn);
  3743. // row format
  3744. // [ nn idV[n] hzV[n] ... hsV[n] smV[sn] ]
  3745. // n = (nn - (1 + sn)) / 7
  3746. *vb = nn; // the first element in the vector contains the length of the row
  3747. cmReal_t* v = vb + 1;
  3748. // setup the base pointer to each sub-vector
  3749. cmReal_t* idV = v + n * 0;
  3750. cmReal_t* hzV = v + n * 1;
  3751. cmReal_t* dbV = v + n * 2;
  3752. cmReal_t* stV = v + n * 3;
  3753. cmReal_t* dsV = v + n * 4;
  3754. cmReal_t* hsV = v + n * 5;
  3755. cmReal_t* agV = v + n * 6;
  3756. cmReal_t* smV = v + n * 7; // summary information
  3757. smV[0] = p->newTrkCnt;
  3758. smV[1] = p->curTrkCnt;
  3759. smV[2] = p->deadTrkCnt;
  3760. // for each active channel
  3761. for(i=0,j=0; i<p->a.chCnt; ++i)
  3762. if( p->ch[i].activeFl )
  3763. {
  3764. assert(j < n);
  3765. // elements of each sub-vector associated with a given
  3766. // index refer to the same track record - element i therefore
  3767. // refers to active track index i.
  3768. idV[j] = p->ch[i].id;
  3769. hzV[j] = p->ch[i].hz;
  3770. dbV[j] = p->ch[i].db;
  3771. stV[j] = p->ch[i].dN;
  3772. dsV[j] = p->ch[i].db_std;
  3773. hsV[j] = p->ch[i].hz_std;
  3774. agV[j] = p->ch[i].attenGain;
  3775. ++j;
  3776. }
  3777. cmVectArrayAppendR(p->logVa, vb, nn );
  3778. }
  3779. cmMemFree(vb);
  3780. }
  3781. void _cmFrqTrkPrintChs( const cmFrqTrk* p )
  3782. {
  3783. unsigned i;
  3784. for(i=0; i<p->a.chCnt; ++i)
  3785. {
  3786. cmFrqTrkCh_t* c = p->ch + i;
  3787. printf("%i : %i tN:%i hz:%f db:%f\n",i,c->activeFl,c->tN,c->hz,c->db);
  3788. }
  3789. }
  3790. // Used to sort the channels into descending dB order.
  3791. int _cmFrqTrkChCompare( const void* p0, const void* p1 )
  3792. { return ((cmFrqTrkCh_t*)p0)->db - ((cmFrqTrkCh_t*)p1)->db; }
  3793. // Return the index of the peak associated with pkiV[i] which best matches the tracker 'c'
  3794. // or cmInvalidIdx if no valid peaks were found.
  3795. // pkiV[ pkN ] holds the indexes into dbV[] and hzV[] which are peaks.
  3796. // Some elements of pkiV[] may be set to cmInvalidIdx if the associated peak has already
  3797. // been selected by another tracker.
  3798. unsigned _cmFrqTrkFindPeak( cmFrqTrk* p, const cmFrqTrkCh_t* c, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  3799. {
  3800. unsigned i,pki;
  3801. cmReal_t d_max = p->a.pkThreshDb;
  3802. unsigned d_idx = cmInvalidIdx;
  3803. cmReal_t hz_min = c->hz * pow(2,-p->a.stRange/12.0);
  3804. cmReal_t hz_max = c->hz * pow(2, p->a.stRange/12.0);
  3805. // find the peak with the most energy inside the frequency range hz_min to hz_max.
  3806. for(i=0; i<pkN; ++i)
  3807. if( ((pki = pkiV[i]) != cmInvalidIdx) && hz_min <= hzV[pki] && hzV[pki] <= hz_max && dbV[pki]>d_max )
  3808. {
  3809. d_max= dbV[pki];
  3810. d_idx = i;
  3811. }
  3812. return d_idx;
  3813. }
  3814. void _cmFrqTrkScoreChs( cmFrqTrk* p )
  3815. {
  3816. unsigned i;
  3817. for(i=0; i<p->a.chCnt; ++i)
  3818. if( p->ch[i].activeFl )
  3819. {
  3820. cmFrqTrkCh_t* c = p->ch + i;
  3821. c->dbV[ c->si ] = c->db;
  3822. c->hzV[ c->si ] = c->hz;
  3823. c->si = (c->si + 1) % p->sN;
  3824. c->sn += 1;
  3825. unsigned n = cmMin(c->sn,p->sN);
  3826. c->db_mean = cmVOR_Mean(c->dbV,n);
  3827. c->db_std = sqrt(cmVOR_Variance( c->dbV,n,&c->db_mean));
  3828. c->hz_mean = cmVOR_Mean(c->hzV,n);
  3829. c->hz_std = sqrt(cmVOR_Variance( c->hzV,n,&c->hz_mean));
  3830. //c->score = c->db / ((cmMax(0.1,c->db_std) + cmMax(0.1,c->hz_std))/2);
  3831. c->score = c->db - (c->db_std * 5) - (c->hz_std/50);
  3832. //printf("%f %f %f %f %f\n",c->db,cmMin(0.1,c->db_std),c->hz,cmMin(0.1,c->hz_std),c->score);
  3833. }
  3834. }
  3835. // Generate a filter that is wider for higher frequencies than lower frequencies.
  3836. unsigned _cmFrqTrkFillMap( cmFrqTrk* p, cmReal_t* map, unsigned maxN, cmReal_t hz )
  3837. {
  3838. assert( maxN % 2 == 1 );
  3839. unsigned i;
  3840. cmReal_t maxHz = p->a.srate/2;
  3841. unsigned mapN = cmMin(maxN,ceil(hz/maxHz * maxN));
  3842. if( mapN % 2 == 0 )
  3843. mapN += 1;
  3844. mapN = cmMin(maxN,mapN);
  3845. unsigned N = floor(mapN/2);
  3846. double COEFF = 0.3;
  3847. for(i=0; i<N; ++i)
  3848. {
  3849. map[i] = pow(((double)i+1)/(N+1),COEFF);
  3850. map[mapN-(i+1)] = map[i];
  3851. }
  3852. map[N] = 1.0;
  3853. return mapN;
  3854. }
  3855. void _cmFrqTrkApplyAtten( cmFrqTrk* p, cmReal_t* aV, cmReal_t gain, cmReal_t hz )
  3856. {
  3857. int cbi = cmMin(p->a.binCnt,cmMax(0,round(hz/p->binHz)));
  3858. //cmReal_t map[] = { .25, .5, 1, .5, .25 };
  3859. //int mapN = sizeof(map)/sizeof(map[0]);
  3860. unsigned maxN = 30; // must be odd
  3861. cmReal_t map[ maxN ];
  3862. int mapN = _cmFrqTrkFillMap(p, map, maxN, hz );
  3863. int j;
  3864. int ai = cbi - mapN/2;
  3865. for(j=0; j<mapN; ++j,++ai)
  3866. if( 0 <= ai && ai < p->a.binCnt )
  3867. aV[ai] *= 1.0 - (map[j] * gain);
  3868. }
  3869. void _cmFrqTrkUpdateFilter( cmFrqTrk* p )
  3870. {
  3871. unsigned i;
  3872. cmVOR_Fill(p->aV,p->a.binCnt,1.0);
  3873. for(i=0; i<p->a.chCnt; ++i)
  3874. if( p->ch[i].activeFl )
  3875. {
  3876. cmFrqTrkCh_t* c = p->ch + i;
  3877. //
  3878. if( c->score >= p->a.attenThresh && c->state == kNoStateFrqTrkId )
  3879. {
  3880. //printf("%f\n",c->score);
  3881. c->attenPhsIdx = 0;
  3882. c->state = kDlyFrqTrkId;
  3883. }
  3884. switch( c->state )
  3885. {
  3886. case kNoStateFrqTrkId:
  3887. break;
  3888. case kDlyFrqTrkId:
  3889. c->attenPhsIdx += 1;
  3890. if( c->attenPhsIdx >= p->attenDlyPhsMax && c->dN == 0 )
  3891. c->state = kAtkFrqTrkId;
  3892. break;
  3893. case kAtkFrqTrkId:
  3894. if( c->attenPhsIdx < p->attenDlyPhsMax + p->attenPhsMax )
  3895. {
  3896. c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
  3897. _cmFrqTrkApplyAtten(p, p->aV, c->attenGain, c->hz);
  3898. }
  3899. c->attenPhsIdx += 1;
  3900. if( c->attenPhsIdx >= p->attenDlyPhsMax + p->attenPhsMax )
  3901. c->state = kSusFrqTrkId;
  3902. break;
  3903. case kSusFrqTrkId:
  3904. if( c->dN > 0 )
  3905. {
  3906. if( c->attenPhsIdx > 0 )
  3907. {
  3908. c->attenPhsIdx -= 1;
  3909. c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
  3910. }
  3911. }
  3912. _cmFrqTrkApplyAtten(p,p->aV, c->attenGain, c->hz);
  3913. if( c->dN >= p->deadN_max )
  3914. c->state = kDcyFrqTrkId;
  3915. break;
  3916. case kDcyFrqTrkId:
  3917. if( c->attenPhsIdx > 0 )
  3918. {
  3919. c->attenPhsIdx -= 1;
  3920. c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
  3921. _cmFrqTrkApplyAtten(p,p->aV, c->attenGain, c->hz);
  3922. }
  3923. if( c->attenPhsIdx == 0 )
  3924. c->activeFl = false;
  3925. break;
  3926. }
  3927. }
  3928. }
  3929. // Extend the existing trackers
  3930. void _cmFrqTrkExtendChs( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  3931. {
  3932. unsigned i;
  3933. p->curTrkCnt = 0;
  3934. p->deadTrkCnt = 0;
  3935. // sort the channels in descending order
  3936. qsort(p->ch,p->a.chCnt,sizeof(cmFrqTrkCh_t),_cmFrqTrkChCompare);
  3937. // for each active channel
  3938. for(i=0; i<p->a.chCnt; ++i)
  3939. {
  3940. cmFrqTrkCh_t* c = p->ch + i;
  3941. if( c->activeFl )
  3942. {
  3943. unsigned pki;
  3944. // find the best peak to extend tracker 'c'.
  3945. if((pki = _cmFrqTrkFindPeak(p,c,dbV,hzV,pkiV,pkN)) == cmInvalidIdx )
  3946. {
  3947. // no valid track was found to extend tracker 'c'
  3948. c->dN += 1;
  3949. c->tN += 1;
  3950. if( c->dN >= p->deadN_max )
  3951. {
  3952. if( c->attenPhsIdx == 0 )
  3953. c->activeFl = false;
  3954. p->deadTrkCnt += 1;
  3955. }
  3956. }
  3957. else // ... update the tracker using the matching peak
  3958. {
  3959. unsigned j = pkiV[pki];
  3960. c->dN = 0;
  3961. c->db = dbV[ j ];
  3962. c->hz = hzV[ j ];
  3963. c->tN += 1;
  3964. pkiV[pki] = cmInvalidIdx; // mark the peak as unavailable.
  3965. p->curTrkCnt += 1;
  3966. }
  3967. }
  3968. }
  3969. }
  3970. // disable peaks which are within 'stRange' semitones of the frequency of active trackers.
  3971. void _cmFrqTrkDisableClosePeaks( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  3972. {
  3973. unsigned i;
  3974. for(i=0; i<p->a.chCnt; ++i)
  3975. {
  3976. const cmFrqTrkCh_t* c = p->ch + i;
  3977. if( !c->activeFl )
  3978. continue;
  3979. cmReal_t hz_min = c->hz * pow(2,-p->a.stRange/12.0);
  3980. cmReal_t hz_max = c->hz * pow(2, p->a.stRange/12.0);
  3981. unsigned j;
  3982. // find all peaks within the frequency range hz_min to hz_max.
  3983. for(j=0; j<pkN; ++j)
  3984. if( pkiV[j] != cmInvalidIdx && hz_min <= c->hz && c->hz <= hz_max )
  3985. pkiV[j] = cmInvalidIdx;
  3986. }
  3987. }
  3988. // Return the index into pkiV[] of the maximum energy peak in dbV[]
  3989. // that is also above kAtkThreshDb.
  3990. unsigned _cmFrqTrkMaxEnergyPeakIndex( const cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, const unsigned* pkiV, unsigned pkN )
  3991. {
  3992. cmReal_t mv = p->a.pkAtkThreshDb;
  3993. unsigned mi = cmInvalidIdx;
  3994. unsigned i;
  3995. for(i=0; i<pkN; ++i)
  3996. if( pkiV[i] != cmInvalidIdx && dbV[pkiV[i]] >= mv && hzV[pkiV[i]] < p->a.pkMaxHz )
  3997. {
  3998. mi = i;
  3999. mv = dbV[pkiV[i]];
  4000. }
  4001. return mi;
  4002. }
  4003. // start new trackers
  4004. void _cmFrqTrkNewChs( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  4005. {
  4006. p->newTrkCnt = 0;
  4007. while(1)
  4008. {
  4009. unsigned db_max_idx;
  4010. cmFrqTrkCh_t* c;
  4011. // find an inactive channel
  4012. if((c = _cmFrqTrkFindAvailCh(p)) == NULL )
  4013. break;
  4014. // find the largest peak that is above pkAtkThreshDb && less than pkAtkHz.
  4015. if((db_max_idx = _cmFrqTrkMaxEnergyPeakIndex(p,dbV,hzV,pkiV,pkN)) == cmInvalidIdx )
  4016. break;
  4017. // activate a new channel
  4018. c->activeFl = true;
  4019. c->tN = 1;
  4020. c->dN = 0;
  4021. c->hz = hzV[ pkiV[ db_max_idx ] ];
  4022. c->db = dbV[ pkiV[ db_max_idx ] ];
  4023. c->id = p->nextTrkId++;
  4024. c->si = 0;
  4025. c->sn = 0;
  4026. c->score = 0;
  4027. c->state = kNoStateFrqTrkId;
  4028. c->attenPhsIdx = cmInvalidIdx;
  4029. c->attenGain = 1.0;
  4030. // mark the peak as unavailable
  4031. pkiV[ db_max_idx ] = cmInvalidIdx;
  4032. p->newTrkCnt += 1;
  4033. }
  4034. }
  4035. void _cmFrqTrkApplyFrqBias( cmFrqTrk* p, cmReal_t* xV )
  4036. {
  4037. // convert to decibel scale (0.0 - 100.0) and then scale to (0.0 to 1.0)
  4038. unsigned i;
  4039. for(i=0; i<p->bN; ++i)
  4040. xV[i] = cmMax(0.0, (20*log10( cmMax(xV[i]/1.5,0.00001)) + 100.0)/100.0);
  4041. }
  4042. cmRC_t cmFrqTrkExec( cmFrqTrk* p, const cmReal_t* magV, const cmReal_t* phsV, const cmReal_t* hertzV )
  4043. {
  4044. cmRC_t rc = cmOkRC;
  4045. cmReal_t hzV[ p->bN ];
  4046. //cmReal_t powV[ p->bN ];
  4047. //cmReal_t yV[ p->bN];
  4048. //cmVOR_MultVVV(powV,p->bN,magV,magV);
  4049. //cmWhFiltExec(p->wf,powV,p->dbV,p->bN);
  4050. // convert magV to Decibels
  4051. //cmVOR_AmplToDbVV(p->dbV,p->bN, magV, -200.0);
  4052. // copy p->dbV to dbM[hi,:]
  4053. //cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, p->dbV, 1 );
  4054. //cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, whV, 1 );
  4055. if( 1 )
  4056. {
  4057. cmReal_t powV[ p->bN ];
  4058. cmVOR_MultVVV(powV,p->bN,magV,magV);
  4059. cmWhFiltExec(p->wf,powV,p->dbV,p->bN);
  4060. _cmFrqTrkApplyFrqBias(p,p->dbV);
  4061. }
  4062. else
  4063. {
  4064. // convert magV to Decibels
  4065. cmVOR_AmplToDbVV(p->dbV,p->bN, magV, -200.0);
  4066. }
  4067. // copy p->dbV to dbM[hi,:]
  4068. cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, p->dbV, 1 );
  4069. // increment hi to next column to fill in dbM[]
  4070. p->hi = (p->hi + 1) % p->hN;
  4071. // Set dbV[] to spectral magnitude profile by taking the mean over time
  4072. // of the last hN magnitude vectors
  4073. cmVOR_MeanM2(p->dbV, p->dbM, p->hN, p->bN, 0, cmMin(p->fN+1,p->hN));
  4074. //cmVOR_MeanM(p->dbV, p->dbM, p->hN, p->bN, 0);
  4075. if( p->fN >= p->hN )
  4076. {
  4077. // set pkiV[] to the indexes of the peaks above pkThreshDb in i0[]
  4078. unsigned pkN = cmVOR_PeakIndexes(p->pkiV, p->bN, p->dbV, p->bN, p->a.pkThreshDb );
  4079. // set hzV[] to the peak frequencies assoc'd with peaks at dbV[ pkiV[] ].
  4080. _cmFrqTrkMagnToHz(p, p->dbV, p->pkiV, pkN, hzV );
  4081. // extend the existing trackers
  4082. _cmFrqTrkExtendChs(p, p->dbV, hzV, p->pkiV, pkN );
  4083. //_cmFrqTrkDisableClosePeaks(p, p->dbV, hzV, p->pkiV, pkN );
  4084. // create new trackers
  4085. _cmFrqTrkNewChs(p,p->dbV,hzV,p->pkiV,pkN);
  4086. //
  4087. _cmFrqTrkScoreChs(p);
  4088. //
  4089. _cmFrqTrkUpdateFilter(p);
  4090. /*
  4091. // write the log file
  4092. _cmFrqTrkWriteLog(p);
  4093. // write the spectrum output file
  4094. if( p->specFn != NULL )
  4095. cmVectArrayAppendR(p->specVa,p->dbV,p->bN);
  4096. // write the atten output file
  4097. if( p->attenFn != NULL )
  4098. cmVectArrayAppendR(p->attenVa,p->aV,p->bN);
  4099. // write the the level file
  4100. _cmFrqTrkWriteLevel(p,p->dbV,hzV,p->bN);
  4101. */
  4102. }
  4103. p->fN += 1;
  4104. return rc;
  4105. }
  4106. void cmFrqTrkPrint( cmFrqTrk* p )
  4107. {
  4108. printf("srate: %f\n",p->a.srate);
  4109. printf("chCnt: %i\n",p->a.chCnt);
  4110. printf("binCnt: %i (bN=%i)\n",p->a.binCnt,p->bN);
  4111. printf("hopSmpCnt: %i\n",p->a.hopSmpCnt);
  4112. printf("stRange: %f\n",p->a.stRange);
  4113. printf("wndSecs: %f (%i)\n",p->a.wndSecs,p->hN);
  4114. printf("minTrkSec: %f (%i)\n",p->a.minTrkSec,p->minTrkN);
  4115. printf("maxTrkDeadSec: %f (%i)\n",p->a.maxTrkDeadSec,p->deadN_max);
  4116. printf("pkThreshDb: %f\n",p->a.pkThreshDb);
  4117. printf("pkAtkThreshDb: %f\n",p->a.pkAtkThreshDb);
  4118. }
  4119. //------------------------------------------------------------------------------------------------------------
  4120. cmFbCtl_t* cmFbCtlAlloc( cmCtx* c, cmFbCtl_t* ap, const cmFbCtlArgs_t* a )
  4121. {
  4122. cmFbCtl_t* p = cmObjAlloc( cmFbCtl_t, c, ap );
  4123. p->sva = cmVectArrayAlloc(c,kRealVaFl);
  4124. p->uva = cmVectArrayAlloc(c,kRealVaFl);
  4125. if( a != NULL )
  4126. {
  4127. if( cmFbCtlInit( p, a ) != cmOkRC )
  4128. cmFbCtlFree(&p);
  4129. }
  4130. return p;
  4131. }
  4132. cmRC_t cmFbCtlFree( cmFbCtl_t** pp )
  4133. {
  4134. if( pp == NULL || *pp == NULL )
  4135. return cmOkRC;
  4136. cmFbCtl_t* p = *pp;
  4137. cmVectArrayWrite(p->sva, "/home/kevin/temp/frqtrk/fb_ctl_s.va");
  4138. cmVectArrayWrite(p->uva, "/home/kevin/temp/frqtrk/fb_ctl_u.va");
  4139. cmMemFree(p->bM);
  4140. cmMemFree(p->rmsV);
  4141. cmVectArrayFree(&p->sva);
  4142. cmVectArrayFree(&p->uva);
  4143. cmObjFree(pp);
  4144. return cmOkRC;
  4145. }
  4146. cmRC_t cmFbCtlInit( cmFbCtl_t* p, const cmFbCtlArgs_t* a )
  4147. {
  4148. cmRC_t rc;
  4149. if((rc = cmFbCtlFinal(p)) != cmOkRC )
  4150. return rc;
  4151. double binHz = a->srate / ((a->binCnt-1)*2);
  4152. p->a = *a;
  4153. p->frmCnt = (a->bufMs * a->srate / 1000.0) /a->hopSmpCnt;
  4154. p->binCnt = cmMin(p->a.binCnt, a->maxHz/binHz);
  4155. p->bM = cmMemResizeZ(cmReal_t, p->bM, p->binCnt*p->frmCnt);
  4156. p->rmsV = cmMemResizeZ(cmReal_t, p->rmsV, p->frmCnt);
  4157. p->sV = cmMemResizeZ(cmReal_t, p->sV, p->binCnt);
  4158. p->uV = cmMemResizeZ(cmReal_t, p->uV, p->binCnt);
  4159. printf("cmFbCtl: frmCnt:%i binCnt:%i \n",p->frmCnt,p->binCnt);
  4160. return rc;
  4161. }
  4162. cmRC_t cmFbCtlFinal(cmFbCtl_t* p )
  4163. { return cmOkRC; }
  4164. cmRC_t cmFbCtlExec( cmFbCtl_t* p, const cmReal_t* x0V )
  4165. {
  4166. unsigned i;
  4167. cmRC_t rc = cmOkRC;
  4168. cmReal_t xV[ p->binCnt ];
  4169. cmVOR_AmplToDbVV(xV, p->binCnt, x0V, -1000.0 );
  4170. cmVOR_Shift( p->rmsV, p->frmCnt, -1, 0 );
  4171. p->rmsV[0] = cmVOR_Mean(xV,p->binCnt);
  4172. cmVOR_CopyN(p->bM + p->bfi, p->binCnt, p->frmCnt, xV, 1 );
  4173. p->bfi = (p->bfi + 1) % p->frmCnt;
  4174. p->bfN = cmMin(p->bfN+1,p->frmCnt);
  4175. for(i=0; i<p->binCnt; ++i)
  4176. {
  4177. const cmReal_t* v = p->bM + i * p->frmCnt;
  4178. cmReal_t u = cmVOR_Mean(v, p->bfN );
  4179. cmReal_t s = sqrt(cmVOR_Variance(v, p->bfN,&u));
  4180. p->sV[i] = (0.0002 - s);
  4181. p->uV[i] = u;
  4182. }
  4183. cmVectArrayAppendR(p->sva,p->sV,p->binCnt);
  4184. cmVectArrayAppendR(p->uva,p->uV,p->binCnt);
  4185. return rc;
  4186. }
  4187. //=======================================================================================================================
  4188. cmExpander* cmExpanderAlloc( cmCtx* c, cmExpander* p,
  4189. double srate, unsigned procSmpCnt, double threshDb, double rlsDb,
  4190. double threshMs, double rmsMs, double atkMs, double rlsMs )
  4191. {
  4192. cmExpander* op = cmObjAlloc(cmExpander,c,p);
  4193. if( srate > 0 )
  4194. if( cmExpanderInit(op,srate, procSmpCnt, threshDb, rlsDb, threshMs, rmsMs, atkMs, rlsMs) != cmOkRC )
  4195. cmExpanderFree(&op);
  4196. return op;
  4197. }
  4198. cmRC_t cmExpanderFree( cmExpander** pp )
  4199. {
  4200. cmRC_t rc = cmOkRC;
  4201. if( pp==NULL || *pp==NULL )
  4202. return rc;
  4203. cmExpander* p = *pp;
  4204. if((rc = cmExpanderFinal(p)) != cmOkRC )
  4205. return rc;
  4206. cmMemFree(p->rmsV);
  4207. cmMemFree(p->envV);
  4208. cmObjFree(pp);
  4209. return rc;
  4210. }
  4211. cmRC_t cmExpanderInit( cmExpander* p,
  4212. double srate, unsigned procSmpCnt, double threshDb, double rlsDb,
  4213. double threshMs, double rmsMs, double atkMs, double rlsMs )
  4214. {
  4215. cmRC_t rc;
  4216. unsigned i;
  4217. if((rc = cmExpanderFinal(p)) != cmOkRC )
  4218. return rc;
  4219. unsigned atkN = cmMax(1,ceil( atkMs / (srate * 1000.0)));
  4220. unsigned rlsN = cmMax(1,ceil( rlsMs / (srate * 1000.0)));
  4221. p->rmsN = cmMax(1,ceil(rmsMs / (srate * 1000.0)));
  4222. p->rmsV = cmMemResizeZ(cmReal_t,p->rmsV,p->rmsN);
  4223. p->rmsIdx = 0;
  4224. p->envN = atkN + rlsN;
  4225. p->envV = cmMemResizeZ(cmSample_t,p->envV,p->envN);
  4226. p->envIdx = p->envN;
  4227. p->threshN = cmMax(1,ceil(threshMs / (srate * 1000.0)));
  4228. p->threshIdx = 0;
  4229. p->threshLvl = pow(10.0,(threshDb/20.0));
  4230. p->rlsLvl = pow(10.0,(rlsDb/20.0));
  4231. p->gain = 1.0;
  4232. p->atkCnt = 0;
  4233. cmSample_t G = (1.0 - p->rlsLvl);
  4234. for(i=0; i<atkN; ++i)
  4235. {
  4236. p->envV[i] = 1.0 - G*i/atkN;
  4237. }
  4238. for(i=0; i<rlsN; ++i)
  4239. {
  4240. p->envV[atkN+i] = p->rlsLvl + (G*i/rlsN);
  4241. }
  4242. printf("rmsN:%i atkN:%i rlsN:%i thr:%f %f rls:%f %f\n",p->rmsN,atkN,rlsN,threshDb,p->threshLvl,rlsDb,p->rlsLvl);
  4243. //for(i=0; i<p->envN; ++i)
  4244. // printf("%i %f\n",i,p->envV[i]);
  4245. //printf("\n");
  4246. return cmOkRC;
  4247. }
  4248. cmRC_t cmExpanderFinal( cmExpander* p )
  4249. { return cmOkRC; }
  4250. cmRC_t cmExpanderExec( cmExpander* p, cmSample_t* x, cmSample_t* y, unsigned xyN )
  4251. {
  4252. unsigned i;
  4253. // update the RMS buffer
  4254. for(i=0; i<xyN; ++i)
  4255. {
  4256. // NOTE: using abs() instead of pow(x,2)
  4257. p->rmsV[p->rmsIdx] = abs(x[i]);
  4258. if( ++p->rmsIdx >= p->rmsN )
  4259. p->rmsIdx = 0;
  4260. }
  4261. // calculate the RMS
  4262. double rms = cmVOR_Mean(p->rmsV,p->rmsN);
  4263. // update the duration that the signal has been above the threshold
  4264. if( rms > p->threshLvl )
  4265. p->threshIdx += 1;
  4266. else
  4267. p->threshIdx = 0;
  4268. // begin the atk phase?
  4269. if( p->threshIdx > p->threshN && p->envIdx >= p->envN )
  4270. {
  4271. p->envIdx = 0;
  4272. }
  4273. // update the output
  4274. if( p->envIdx >= p->envN )
  4275. {
  4276. if( y != NULL )
  4277. cmVOS_Copy(y,xyN,x);
  4278. }
  4279. else
  4280. {
  4281. if( y == NULL )
  4282. y = x;
  4283. for(i=0; i<xyN && p->envIdx<p->envN; ++i,++p->envIdx)
  4284. y[i] = p->envV[p->envIdx] * x[i];
  4285. }
  4286. return cmOkRC;
  4287. }
  4288. cmRC_t cmExpanderExecD( cmExpander* p, double* x, double* y, unsigned xyN )
  4289. {
  4290. unsigned i;
  4291. // update the RMS buffer
  4292. for(i=0; i<xyN; ++i)
  4293. {
  4294. // NOTE: using abs() instead of pow(x,2)
  4295. p->rmsV[p->rmsIdx] = x[i];
  4296. p->rmsIdx += 1;
  4297. if( p->rmsIdx >= p->rmsN )
  4298. p->rmsIdx = 0;
  4299. }
  4300. // calculate the RMS
  4301. p->rmsValue = cmVOR_Mean(p->rmsV,p->rmsN);
  4302. // update the duration that the signal has been above the threshold
  4303. if( p->rmsValue > p->threshLvl )
  4304. p->threshIdx += 1;
  4305. else
  4306. p->threshIdx = 0;
  4307. // begin the atk phase?
  4308. if( p->threshIdx > p->threshN && p->envIdx >= p->envN )
  4309. {
  4310. p->envIdx = 0;
  4311. p->atkCnt += 1;
  4312. }
  4313. /*
  4314. if( p->envIdx >= p->envN )
  4315. p->gain = 1.0;
  4316. else
  4317. {
  4318. p->gain = p->envV[p->envIdx];
  4319. p->envIdx += 1;
  4320. }
  4321. */
  4322. // update the output
  4323. if( p->envIdx >= p->envN )
  4324. {
  4325. if( y != NULL )
  4326. cmVOD_Copy(y,xyN,x);
  4327. }
  4328. else
  4329. {
  4330. if( y == NULL )
  4331. y = x;
  4332. for(i=0; i<xyN && p->envIdx<p->envN; ++i,++p->envIdx)
  4333. y[i] = p->envV[p->envIdx] * x[i];
  4334. }
  4335. return cmOkRC;
  4336. }
  4337. //=======================================================================================================================
  4338. cmExpanderBank* cmExpanderBankAlloc( cmCtx* c, cmExpanderBank* p, unsigned bandN, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs )
  4339. {
  4340. cmExpanderBank* op = cmObjAlloc(cmExpanderBank,c,p);
  4341. if( bandN > 0 )
  4342. if( cmExpanderBankInit(op,bandN,srate, procSmpCnt, threshDb, rlsDb, threshMs, rmsMs, atkMs, rlsMs) != cmOkRC )
  4343. cmExpanderBankFree(&op);
  4344. return op;
  4345. }
  4346. cmRC_t cmExpanderBankFree( cmExpanderBank** pp )
  4347. {
  4348. cmRC_t rc = cmOkRC;
  4349. if( pp==NULL || *pp==NULL )
  4350. return rc;
  4351. cmExpanderBank* p = *pp;
  4352. if((rc = cmExpanderBankFinal(p)) != cmOkRC )
  4353. return rc;
  4354. cmMemFree(p->b);
  4355. cmObjFree(pp);
  4356. return rc;
  4357. }
  4358. cmRC_t cmExpanderBankInit( cmExpanderBank* p, unsigned bandN, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs )
  4359. {
  4360. cmRC_t rc;
  4361. unsigned i;
  4362. if((rc = cmExpanderBankFinal(p)) != cmOkRC )
  4363. return rc;
  4364. p->bandN = bandN;
  4365. p->b = cmMemResizeZ(cmExpander*,p->b,p->bandN);
  4366. for(i=0; i<bandN; ++i)
  4367. p->b[i] = cmExpanderAlloc(p->obj.ctx,NULL,srate, procSmpCnt,threshDb,rlsDb,threshMs,rmsMs,atkMs,rlsMs);
  4368. return cmOkRC;
  4369. }
  4370. cmRC_t cmExpanderBankFinal( cmExpanderBank* p )
  4371. {
  4372. unsigned i;
  4373. for(i=0; i<p->bandN; ++i)
  4374. cmExpanderFree(&p->b[i]);
  4375. return cmOkRC;
  4376. }
  4377. cmRC_t cmExpanderBankExec( cmExpanderBank* p, cmSample_t* x, unsigned bandN )
  4378. {
  4379. assert( bandN <= p->bandN);
  4380. unsigned i;
  4381. for(i=0; i<bandN; ++i)
  4382. {
  4383. cmExpanderExec(p->b[i],&x[i],NULL,1);
  4384. }
  4385. return cmOkRC;
  4386. }
  4387. /*
  4388. cmRC_t cmExpanderBankExecD( cmExpanderBank* p, double* x, unsigned binN )
  4389. {
  4390. unsigned i;
  4391. p->rmsValue = 0;
  4392. for(i=0; i<p->bandN; ++i)
  4393. {
  4394. double sum = cmVOD_Sum(x,binN);
  4395. cmExpanderExecD(p->b[i],&sum,NULL,1);
  4396. //printf("%f %f\n",sum, p->b[i]->rmsValue);
  4397. p->rmsValue += p->b[i]->rmsValue;
  4398. cmVOR_MultVS(x,binN,p->b[i]->gain);
  4399. }
  4400. p->rmsValue /= p->bandN;
  4401. return cmOkRC;
  4402. }
  4403. */
  4404. cmRC_t cmExpanderBankExecD( cmExpanderBank* p, double* x, unsigned bandN )
  4405. {
  4406. unsigned i;
  4407. //unsigned n = 3;
  4408. //unsigned no2 = n/2;
  4409. double xx;
  4410. p->rmsValue = 0;
  4411. p->atkCnt = 0;
  4412. for(i=0; i<p->bandN; ++i)
  4413. {
  4414. unsigned atkCnt = p->b[i]->atkCnt;
  4415. //if( i >= no2 && i < bandN-no2 )
  4416. // xx = cmVOR_Mean(x-no2,n);
  4417. //else
  4418. xx = x[i];
  4419. cmExpanderExecD(p->b[i],&xx,NULL,1);
  4420. p->rmsValue += p->b[i]->rmsValue;
  4421. p->atkCnt += p->b[i]->atkCnt != atkCnt;
  4422. }
  4423. p->rmsValue /= p->bandN;
  4424. return cmOkRC;
  4425. }
  4426. //------------------------------------------------------------------------------------------------------------
  4427. cmSpecDist_t* cmSpecDistAlloc( cmCtx* ctx,cmSpecDist_t* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId )
  4428. {
  4429. cmSpecDist_t* p = cmObjAlloc( cmSpecDist_t, ctx, ap );
  4430. //p->iSpecVa = cmVectArrayAlloc(ctx,kRealVaFl);
  4431. p->oSpecVa = cmVectArrayAlloc(ctx,kRealVaFl);
  4432. if( procSmpCnt != 0 )
  4433. {
  4434. if( cmSpecDistInit( p, procSmpCnt, srate, wndSmpCnt, hopFcmt, olaWndTypeId ) != cmOkRC )
  4435. cmSpecDistFree(&p);
  4436. }
  4437. return p;
  4438. }
  4439. cmRC_t cmSpecDistFree( cmSpecDist_t** pp )
  4440. {
  4441. if( pp == NULL || *pp == NULL )
  4442. return cmOkRC;
  4443. cmSpecDist_t* p = *pp;
  4444. cmSpecDistFinal(p);
  4445. //cmVectArrayFree(&p->iSpecVa);
  4446. cmVectArrayFree(&p->oSpecVa);
  4447. cmMemPtrFree(&p->hzV);
  4448. cmMemPtrFree(&p->iSpecM);
  4449. cmMemPtrFree(&p->oSpecM);
  4450. cmMemPtrFree(&p->iSpecV);
  4451. cmMemPtrFree(&p->oSpecV);
  4452. cmObjFree(pp);
  4453. return cmOkRC;
  4454. }
  4455. cmRC_t cmSpecDistInit( cmSpecDist_t* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId )
  4456. {
  4457. //cmFrqTrkArgs_t fta;
  4458. cmRC_t rc;
  4459. if((rc = cmSpecDistFinal(p)) != cmOkRC )
  4460. return rc;
  4461. unsigned flags = 0;
  4462. p->srate = srate;
  4463. p->wndSmpCnt = wndSmpCnt;
  4464. p->hopSmpCnt = (unsigned)floor(wndSmpCnt/hopFcmt);
  4465. p->procSmpCnt = procSmpCnt;
  4466. p->mode = kBasicModeSdId;
  4467. p->thresh = 60;
  4468. p->offset = 0;
  4469. p->invertFl = false;
  4470. p->uprSlope = 0.0;
  4471. p->lwrSlope = 2.0;
  4472. p->pva = cmPvAnlAlloc( p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, flags );
  4473. p->pvs = cmPvSynAlloc( p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, olaWndTypeId );
  4474. /*
  4475. fta.srate = srate;
  4476. fta.chCnt = 50;
  4477. fta.binCnt = p->pva->binCnt;
  4478. fta.hopSmpCnt = p->pva->hopSmpCnt;
  4479. fta.stRange = 0.25;
  4480. fta.wndSecs = 0.25;
  4481. fta.minTrkSec = 0.25;
  4482. fta.maxTrkDeadSec = 0.25;
  4483. fta.pkThreshDb = 0.1; //-110.0;
  4484. fta.pkAtkThreshDb = 0.4; //-60.0;
  4485. fta.pkMaxHz = 20000;
  4486. fta.whFiltCoeff = 0.33;
  4487. fta.attenThresh = 0.4;
  4488. fta.attenGain = 0.5;
  4489. fta.attenDlySec = 1.0;
  4490. fta.attenAtkSec = 1.0;
  4491. fta.logFn = "/home/kevin/temp/frqtrk/trk_log.va";
  4492. fta.levelFn = "/home/kevin/temp/frqtrk/level.va";
  4493. fta.specFn = "/home/kevin/temp/frqtrk/spec.va";
  4494. fta.attenFn = "/home/kevin/temp/frqtrk/atten.va";
  4495. */
  4496. //p->ft = cmFrqTrkAlloc( p->obj.ctx, NULL, &fta );
  4497. /*
  4498. cmFbCtlArgs_t fba;
  4499. fba.srate = srate;
  4500. fba.binCnt = p->pva->binCnt;
  4501. fba.hopSmpCnt = p->hopSmpCnt;
  4502. fba.bufMs = 500;
  4503. fba.maxHz = 5000;
  4504. */
  4505. //p->fbc = cmFbCtlAlloc( p->obj.ctx, NULL, &fba );
  4506. //unsigned expBandN = 1; //
  4507. unsigned expBandN = 20000.0 / (p->srate / p->pva->binCnt);
  4508. double expSrate = p->pva->hopSmpCnt / srate;
  4509. unsigned expProcSmpCnt = 1;
  4510. double expThreshDb = -80.0;
  4511. double expRlsDb = -18.0;
  4512. double expThreshMs = 250.0;
  4513. double expRmsMs = 100.0;
  4514. double expAtkMs = 25.0;
  4515. double expRlsMs = 1000.0;
  4516. p->exb = cmExpanderBankAlloc( p->obj.ctx, NULL, expBandN, expSrate, expProcSmpCnt, expThreshDb, expRlsDb, expThreshMs, expRmsMs, expAtkMs, expRlsMs );
  4517. p->spcBwHz = cmMin(srate/2,10000);
  4518. p->spcSmArg = 0.05;
  4519. p->spcMin = p->spcBwHz;
  4520. p->spcMax = 0.0;
  4521. p->spcSum = 0.0;
  4522. p->spcCnt = 0;
  4523. double binHz = srate / p->pva->wndSmpCnt;
  4524. p->spcBinCnt = (unsigned)floor(p->spcBwHz / binHz);
  4525. p->hzV = cmMemResizeZ(cmReal_t,p->hzV,p->spcBinCnt);
  4526. cmVOR_Seq( p->hzV, p->spcBinCnt, 0, 1 );
  4527. cmVOR_MultVS( p->hzV, p->spcBinCnt, binHz );
  4528. p->aeUnit = 0;
  4529. p->aeMin = 1000;
  4530. p->aeMax = -1000;
  4531. double histSecs = 0.05;
  4532. p->hN = cmMax(1,histSecs * p->srate / p->hopSmpCnt );
  4533. p->iSpecM = cmMemResizeZ(cmReal_t,p->iSpecM,p->hN*p->pva->binCnt);
  4534. p->oSpecM = cmMemResizeZ(cmReal_t,p->oSpecM,p->hN*p->pva->binCnt);
  4535. p->iSpecV = cmMemResizeZ(cmReal_t,p->iSpecV, p->pva->binCnt);
  4536. p->oSpecV = cmMemResizeZ(cmReal_t,p->oSpecV, p->pva->binCnt);
  4537. p->hi = 0;
  4538. //p->bypOut = cmMemResizeZ(cmSample_t, p->bypOut, procSmpCnt );
  4539. return rc;
  4540. }
  4541. cmRC_t cmSpecDistFinal(cmSpecDist_t* p )
  4542. {
  4543. cmRC_t rc = cmOkRC;
  4544. //cmVectArrayWrite(p->iSpecVa, "/home/kevin/temp/frqtrk/iSpec.va");
  4545. cmVectArrayWrite(p->oSpecVa, "/home/kevin/temp/expand/oSpec.va");
  4546. cmPvAnlFree(&p->pva);
  4547. cmPvSynFree(&p->pvs);
  4548. //cmFrqTrkFree(&p->ft);
  4549. //cmFbCtlFree(&p->fbc);
  4550. cmExpanderBankFree(&p->exb);
  4551. return rc;
  4552. }
  4553. void _cmSpecDistBasicMode0(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh )
  4554. {
  4555. // octavez> thresh = 60;
  4556. // octave> X1m = [-62 -61 -60 -59];
  4557. // octave> -abs(abs(X1m+thresh)-(X1m+thresh)) - thresh
  4558. // octave> ans = -64 -62 -60 -60
  4559. unsigned i=0;
  4560. for(i=0; i<binCnt; ++i)
  4561. {
  4562. cmReal_t a = fabs(X1m[i]);
  4563. cmReal_t d = a - thresh;
  4564. X1m[i] = -thresh;
  4565. if( d > 0 )
  4566. X1m[i] -= 2*d;
  4567. }
  4568. }
  4569. void _cmSpecDistBasicMode(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh )
  4570. {
  4571. unsigned i=0;
  4572. if( p->lwrSlope < 0.3 )
  4573. p->lwrSlope = 0.3;
  4574. for(i=0; i<binCnt; ++i)
  4575. {
  4576. cmReal_t a = fabs(X1m[i]);
  4577. cmReal_t d = a - thresh;
  4578. X1m[i] = -thresh;
  4579. if( d > 0 )
  4580. X1m[i] -= (p->lwrSlope*d);
  4581. else
  4582. X1m[i] -= (p->uprSlope*d);
  4583. }
  4584. }
  4585. cmReal_t _cmSpecDistCentMode( cmSpecDist_t* p, cmReal_t* X1m )
  4586. {
  4587. // calc the spectral centroid
  4588. double num = cmVOR_MultSumVV( p->pva->magV, p->hzV, p->spcBinCnt );
  4589. double den = cmVOR_Sum( p->pva->magV, p->spcBinCnt );
  4590. double result = 0;
  4591. if( den != 0 )
  4592. result = num/den;
  4593. // apply smoothing filter to spectral centroid
  4594. p->spc = (result * p->spcSmArg) + (p->spc * (1.0-p->spcSmArg));
  4595. // track spec. cetr. min and max
  4596. p->spcMin = cmMin(p->spcMin,p->spc);
  4597. p->spcMax = cmMax(p->spcMax,p->spc);
  4598. //-----------------------------------------------------
  4599. ++p->spcCnt;
  4600. p->spcSum += p->spc;
  4601. p->spcSqSum += p->spc * p->spc;
  4602. // use the one-pass std-dev calc. trick
  4603. //double mean = p->spcSum / p->spcCnt;
  4604. //double variance = p->spcSqSum / p->spcCnt - mean * mean;
  4605. //double std_dev = sqrt(variance);
  4606. double smin = p->spcMin;
  4607. double smax = p->spcMax;
  4608. //smin = mean - std_dev;
  4609. //smax = mean + std_dev;
  4610. //-----------------------------------------------------
  4611. // convert spec. cent. to unit range
  4612. double spcUnit = (p->spc - smin) / (smax - smin);
  4613. spcUnit = cmMin(1.0,cmMax(0.0,spcUnit));
  4614. if( p->invertFl )
  4615. spcUnit = 1.0 - spcUnit;
  4616. //if( p->spcMin==p->spc || p->spcMax==p->spc )
  4617. // printf("min:%f avg:%f sd:%f max:%f\n",p->spcMin,p->spcSum/p->spcCnt,std_dev,p->spcMax);
  4618. return spcUnit;
  4619. }
  4620. void _cmSpecDistBump( cmSpecDist_t* p, cmReal_t* x, unsigned binCnt, double thresh)
  4621. {
  4622. /*
  4623. thresh *= -1;
  4624. minDb = -100;
  4625. if db < minDb
  4626. db = minDb;
  4627. endif
  4628. if db > thresh
  4629. y = 1;
  4630. else
  4631. x = (minDb - db)/(minDb - thresh);
  4632. y = x + (x - (x.^coeff));
  4633. endif
  4634. y = minDb + abs(minDb) * y;
  4635. */
  4636. unsigned i=0;
  4637. //printf("%f %f %f\n",thresh,p->lwrSlope,x[0]);
  4638. double minDb = -100.0;
  4639. thresh = -thresh;
  4640. for(i=0; i<binCnt; ++i)
  4641. {
  4642. double y;
  4643. if( x[i] < minDb )
  4644. x[i] = minDb;
  4645. if( x[i] > thresh )
  4646. y = 1;
  4647. else
  4648. {
  4649. y = (minDb - x[i])/(minDb - thresh);
  4650. y += y - pow(y,p->lwrSlope);
  4651. }
  4652. x[i] = minDb + (-minDb) * y;
  4653. }
  4654. }
  4655. void _cmSpecDistAmpEnvMode( cmSpecDist_t* p, cmReal_t* X1m )
  4656. {
  4657. cmReal_t smCoeff = 0.1;
  4658. //
  4659. cmReal_t mx = cmVOR_Max(X1m,p->pva->binCnt,1);
  4660. p->aeSmMax = (mx * smCoeff) + (p->aeSmMax * (1.0-smCoeff));
  4661. cmReal_t a = cmVOR_Mean(X1m,p->pva->binCnt);
  4662. p->ae = (a * smCoeff) + (p->ae * (1.0-smCoeff));
  4663. p->aeMin = cmMin(p->ae,p->aeMin);
  4664. p->aeMax = cmMax(p->ae,p->aeMax);
  4665. p->aeUnit = (p->ae - p->aeMin) / (p->aeMax-p->aeMin);
  4666. p->aeUnit = cmMin(1.0,cmMax(0.0,p->aeUnit));
  4667. if( p->invertFl )
  4668. p->aeUnit = 1.0 - p->aeUnit;
  4669. //printf("%f\n",p->aeSmMax);
  4670. }
  4671. void _cmSpecDistPhaseMod( cmSpecDist_t* p, cmReal_t* phsV, unsigned binCnt )
  4672. {
  4673. unsigned i;
  4674. cmReal_t offs = sin( 0.1 * 2.0 * M_PI * (p->phaseModIndex++) / (p->srate/p->hopSmpCnt) );
  4675. //printf("offs %f %i %i %f\n",offs,p->phaseModIndex,p->hopSmpCnt,p->srate);
  4676. cmReal_t new_phs = phsV[0] + offs;
  4677. for(i=0; i<binCnt-1; ++i)
  4678. {
  4679. while( new_phs > M_PI )
  4680. new_phs -= 2.0*M_PI;
  4681. while( new_phs < -M_PI )
  4682. new_phs += 2.0*M_PI;
  4683. cmReal_t d = phsV[i+1] - phsV[i];
  4684. phsV[i] = new_phs;
  4685. new_phs += d;
  4686. }
  4687. }
  4688. cmRC_t cmSpecDistExec( cmSpecDist_t* p, const cmSample_t* sp, unsigned sn )
  4689. {
  4690. assert( sn == p->procSmpCnt );
  4691. bool recordFl = false;
  4692. // cmPvAnlExec() returns true when it calc's a new spectral output frame
  4693. if( cmPvAnlExec( p->pva, sp, sn ) )
  4694. {
  4695. cmReal_t X1m[p->pva->binCnt];
  4696. // take the mean of the the input magntitude spectrum
  4697. cmReal_t u0 = cmVOR_Mean(p->pva->magV,p->pva->binCnt);
  4698. if(recordFl)
  4699. {
  4700. // store a time windowed average of the input spectrum to p->iSpecV
  4701. cmVOR_CopyN(p->iSpecM + p->hi, p->pva->binCnt, p->hN, X1m, 1 );
  4702. cmVOR_MeanM2(p->iSpecV, p->iSpecM, p->hN, p->pva->binCnt, 0, cmMin(p->fi+1,p->hN));
  4703. }
  4704. cmVOR_AmplToDbVV(X1m, p->pva->binCnt, p->pva->magV, -1000.0 );
  4705. //cmVOR_AmplToDbVV(X1m, p->pva->binCnt, X1m, -1000.0 );
  4706. switch( p->mode )
  4707. {
  4708. case kBypassModeSdId:
  4709. break;
  4710. case kBasicModeSdId:
  4711. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh);
  4712. break;
  4713. case kSpecCentSdId:
  4714. {
  4715. _cmSpecDistAmpEnvMode(p,X1m);
  4716. double spcUnit = _cmSpecDistCentMode(p,X1m);
  4717. double thresh = fabs(p->aeSmMax) - (spcUnit*p->offset);
  4718. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh);
  4719. }
  4720. break;
  4721. case kAmpEnvSdId:
  4722. {
  4723. _cmSpecDistAmpEnvMode(p,X1m);
  4724. //double thresh = fabs(p->aeSmMax) - p->offset;
  4725. double thresh = fabs(p->aeSmMax) - (p->aeUnit*p->offset);
  4726. thresh = fabs(p->thresh) - (p->aeUnit*p->offset);
  4727. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh);
  4728. }
  4729. break;
  4730. case kBumpSdId:
  4731. _cmSpecDistBump(p,X1m, p->pva->binCnt, p->offset);
  4732. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh);
  4733. break;
  4734. case 5:
  4735. break;
  4736. default:
  4737. break;
  4738. }
  4739. cmVOR_DbToAmplVV(X1m, p->pva->binCnt, X1m );
  4740. // run and apply the tracker/supressor
  4741. //cmFrqTrkExec(p->ft, X1m, p->pva->phsV, NULL );
  4742. //cmVOR_MultVV(X1m, p->pva->binCnt,p->ft->aV );
  4743. // convert the mean input magnitude to db
  4744. cmReal_t idb = 20*log10(u0);
  4745. // get the mean output magnitude spectra
  4746. cmReal_t u1 = cmVOR_Mean(X1m,p->pva->binCnt);
  4747. if( idb > -150.0 )
  4748. {
  4749. // set the output gain such that the mean output magnitude
  4750. // will match the mean input magnitude
  4751. p->ogain = u0/u1;
  4752. }
  4753. else
  4754. {
  4755. cmReal_t a0 = 0.9;
  4756. p->ogain *= a0;
  4757. }
  4758. cmVOR_MultVS(X1m,p->pva->binCnt,cmMin(4.0,p->ogain));
  4759. //cmFbCtlExec(p->fbc,X1m);
  4760. //cmReal_t v[ p->pva->binCnt ];
  4761. //cmVOR_Copy(v,p->pva->binCnt,p->pva->phsV);
  4762. //_cmSpecDistPhaseMod(p, v, p->pva->binCnt );
  4763. if(recordFl)
  4764. {
  4765. // store a time windowed average of the output spectrum to p->iSpecV
  4766. cmVOR_CopyN(p->oSpecM + p->hi, p->pva->binCnt, p->hN, X1m, 1 );
  4767. cmVOR_MeanM2(p->oSpecV, p->oSpecM, p->hN, p->pva->binCnt, 0, cmMin(p->fi+1,p->hN));
  4768. // store iSpecV and oSpecV to iSpecVa and oSpecVa to create debugging files
  4769. //cmVectArrayAppendR(p->iSpecVa,p->iSpecV,p->pva->binCnt);
  4770. //cmVectArrayAppendR(p->oSpecVa,p->oSpecV,p->pva->binCnt);
  4771. p->hi = (p->hi + 1) % p->hN;
  4772. }
  4773. //unsigned binN = 12500.0 / (p->srate / p->pva->binCnt);
  4774. //cmExpanderBankExecD(p->exb, X1m, binN );
  4775. /*
  4776. cmExpanderBankExecD(p->exb, X1m, p->exb->bandN );
  4777. cmReal_t mean = cmVOR_Mean(X1m,p->exb->bandN);
  4778. cmReal_t arr[3] = { p->exb->rmsValue, mean, p->exb->atkCnt };
  4779. cmVectArrayAppendR(p->oSpecVa,arr,3);
  4780. */
  4781. cmPvSynExec(p->pvs, X1m, p->pva->phsV );
  4782. p->fi += 1;
  4783. }
  4784. return cmOkRC;
  4785. }
  4786. const cmSample_t* cmSpecDistOut( cmSpecDist_t* p )
  4787. {
  4788. return cmPvSynExecOut(p->pvs);
  4789. }
  4790. //------------------------------------------------------------------------------------------------------------
  4791. cmRC_t _cmBinMtxFileWriteHdr( cmBinMtxFile_t* p )
  4792. {
  4793. cmFileRC_t fileRC;
  4794. unsigned n = 3;
  4795. unsigned hdr[n];
  4796. hdr[0] = p->rowCnt;
  4797. hdr[1] = p->maxRowEleCnt;
  4798. hdr[2] = p->eleByteCnt;
  4799. if((fileRC = cmFileSeek(p->fh,kBeginFileFl,0)) != kOkFileRC )
  4800. return cmCtxRtCondition(&p->obj, fileRC, "File seek failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh)));
  4801. if((fileRC = cmFileWriteUInt(p->fh,hdr,n)) != kOkFileRC )
  4802. return cmCtxRtCondition( &p->obj, fileRC, "Header write failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh)) );
  4803. return cmOkRC;
  4804. }
  4805. cmBinMtxFile_t* cmBinMtxFileAlloc( cmCtx* ctx, cmBinMtxFile_t* ap, const cmChar_t* fn )
  4806. {
  4807. cmBinMtxFile_t* p = cmObjAlloc( cmBinMtxFile_t, ctx, ap );
  4808. if( fn != NULL )
  4809. if( cmBinMtxFileInit( p, fn ) != cmOkRC )
  4810. cmBinMtxFileFree(&p);
  4811. return p;
  4812. }
  4813. cmRC_t cmBinMtxFileFree( cmBinMtxFile_t** pp )
  4814. {
  4815. cmRC_t rc;
  4816. if( pp==NULL || *pp == NULL )
  4817. return cmOkRC;
  4818. cmBinMtxFile_t* p = *pp;
  4819. if((rc = cmBinMtxFileFinal(p)) == cmOkRC )
  4820. {
  4821. cmObjFree(pp);
  4822. }
  4823. return rc;
  4824. }
  4825. cmRC_t cmBinMtxFileInit( cmBinMtxFile_t* p, const cmChar_t* fn )
  4826. {
  4827. cmRC_t rc;
  4828. cmFileRC_t fileRC;
  4829. if((rc = cmBinMtxFileFinal(p)) != cmOkRC )
  4830. return rc;
  4831. // open the output file for writing
  4832. if((fileRC = cmFileOpen(&p->fh,fn,kWriteFileFl | kBinaryFileFl, p->obj.err.rpt)) != kOkFileRC )
  4833. return cmCtxRtCondition( &p->obj, fileRC, "Unable to open the matrix file:'%s'", cmStringNullGuard(fn) );
  4834. // iniitlaize the object
  4835. p->rowCnt = 0;
  4836. p->maxRowEleCnt = 0;
  4837. p->eleByteCnt = 0;
  4838. // write the blank header as place holder
  4839. if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC )
  4840. return rc;
  4841. return rc;
  4842. }
  4843. cmRC_t cmBinMtxFileFinal( cmBinMtxFile_t* p )
  4844. {
  4845. cmRC_t rc;
  4846. cmFileRC_t fileRC;
  4847. if( p != NULL && cmFileIsValid(p->fh))
  4848. {
  4849. // re-write the file header
  4850. if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC )
  4851. return rc;
  4852. // close the file
  4853. if((fileRC = cmFileClose(&p->fh)) != kOkFileRC )
  4854. return cmCtxRtCondition(&p->obj, fileRC, "Matrix file close failed on:'%s'",cmStringNullGuard(cmFileName(p->fh)));
  4855. }
  4856. return cmOkRC;
  4857. }
  4858. bool cmBinMtxFileIsValid( cmBinMtxFile_t* p )
  4859. { return p != NULL && cmFileIsValid(p->fh); }
  4860. cmRC_t _cmBinMtxFileWriteRow( cmBinMtxFile_t* p, const void* buf, unsigned eleCnt, unsigned eleByteCnt )
  4861. {
  4862. cmFileRC_t fileRC;
  4863. if((fileRC = cmFileWrite(p->fh,&eleCnt,sizeof(eleCnt))) != kOkFileRC )
  4864. return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i element count write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh)));
  4865. if((fileRC = cmFileWrite(p->fh,buf,eleCnt*eleByteCnt)) != kOkFileRC )
  4866. return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i data write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh)));
  4867. if( eleCnt > p->maxRowEleCnt )
  4868. p->maxRowEleCnt = eleCnt;
  4869. ++p->rowCnt;
  4870. return cmOkRC;
  4871. }
  4872. cmRC_t cmBinMtxFileExecS( cmBinMtxFile_t* p, const cmSample_t* x, unsigned xn )
  4873. {
  4874. // verify that all rows are written as cmSample_t
  4875. assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmSample_t));
  4876. p->eleByteCnt = sizeof(cmSample_t);
  4877. return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt);
  4878. }
  4879. cmRC_t cmBinMtxFileExecR( cmBinMtxFile_t* p, const cmReal_t* x, unsigned xn )
  4880. {
  4881. // verify that all rows are written as cmReal_t
  4882. assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmReal_t));
  4883. p->eleByteCnt = sizeof(cmReal_t);
  4884. return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt);
  4885. }
  4886. cmRC_t cmBinMtxFileWrite( const cmChar_t* fn, unsigned rowCnt, unsigned colCnt, const cmSample_t* sp, const cmReal_t* rp, cmCtx* ctx, cmRpt_t* rpt )
  4887. {
  4888. assert( sp == NULL || rp == NULL );
  4889. cmCtx* ctxp = NULL;
  4890. cmBinMtxFile_t* bp = NULL;
  4891. if( ctx == NULL )
  4892. ctx = ctxp = cmCtxAlloc(NULL,rpt,cmLHeapNullHandle,cmSymTblNullHandle);
  4893. if((bp = cmBinMtxFileAlloc(ctx,NULL,fn)) != NULL )
  4894. {
  4895. unsigned i = 0;
  4896. cmSample_t* sbp = sp == NULL ? NULL : cmMemAlloc(cmSample_t,colCnt);
  4897. cmReal_t* rbp = rp == NULL ? NULL : cmMemAlloc(cmReal_t,colCnt);
  4898. for(i=0; i<rowCnt; ++i)
  4899. {
  4900. if( sp!=NULL )
  4901. {
  4902. cmVOS_CopyN(sbp,colCnt,1,sp+i,rowCnt);
  4903. cmBinMtxFileExecS(bp,sbp,colCnt);
  4904. }
  4905. if( rp!=NULL )
  4906. {
  4907. cmVOR_CopyN(rbp,colCnt,1,rp+i,rowCnt);
  4908. cmBinMtxFileExecR(bp,rbp,colCnt);
  4909. }
  4910. }
  4911. cmMemPtrFree(&sbp);
  4912. cmMemPtrFree(&rbp);
  4913. cmBinMtxFileFree(&bp);
  4914. }
  4915. if( ctxp != NULL )
  4916. cmCtxFree(&ctxp);
  4917. return cmOkRC;
  4918. }
  4919. cmRC_t _cmBinMtxFileReadHdr( cmCtx_t* ctx, cmFileH_t h, unsigned* rowCntPtr, unsigned* colCntPtr, unsigned* eleByteCntPtr, const cmChar_t* fn )
  4920. {
  4921. cmRC_t rc = cmOkRC;
  4922. unsigned hdr[3];
  4923. if( cmFileRead(h,&hdr,sizeof(hdr)) != kOkFileRC )
  4924. {
  4925. rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Binary matrix file header read failed on '%s'.",cmStringNullGuard(fn));
  4926. goto errLabel;
  4927. }
  4928. if( rowCntPtr != NULL )
  4929. *rowCntPtr = hdr[0];
  4930. if( colCntPtr != NULL )
  4931. *colCntPtr = hdr[1];
  4932. if( eleByteCntPtr != NULL )
  4933. *eleByteCntPtr = hdr[2];
  4934. errLabel:
  4935. return rc;
  4936. }
  4937. cmRC_t cmBinMtxFileSize( cmCtx_t* ctx, const cmChar_t* fn, unsigned* rowCntPtr, unsigned* colCntPtr, unsigned* eleByteCntPtr )
  4938. {
  4939. cmFileH_t h = cmFileNullHandle;
  4940. cmRC_t rc = cmOkRC;
  4941. if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, ctx->err.rpt) != kOkFileRC )
  4942. {
  4943. rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn));
  4944. goto errLabel;
  4945. }
  4946. rc = _cmBinMtxFileReadHdr(ctx,h,rowCntPtr,colCntPtr,eleByteCntPtr,fn);
  4947. errLabel:
  4948. cmFileClose(&h);
  4949. return rc;
  4950. }
  4951. cmRC_t cmBinMtxFileRead( cmCtx_t* ctx, const cmChar_t* fn, unsigned mRowCnt, unsigned mColCnt, unsigned mEleByteCnt, void* retBuf, unsigned* colCntV )
  4952. {
  4953. cmFileH_t h = cmFileNullHandle;
  4954. cmRC_t rc = cmOkRC;
  4955. char* rowBuf = NULL;
  4956. unsigned rowCnt,colCnt,eleByteCnt,i;
  4957. cmErr_t err;
  4958. cmErrSetup(&err,ctx->err.rpt,"Binary Matrix File Reader");
  4959. if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, err.rpt) != kOkFileRC )
  4960. {
  4961. rc = cmErrMsg(&err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn));
  4962. goto errLabel;
  4963. }
  4964. if((rc = _cmBinMtxFileReadHdr(ctx,h,&rowCnt,&colCnt,&eleByteCnt,fn)) != cmOkRC )
  4965. goto errLabel;
  4966. if( mRowCnt != rowCnt )
  4967. rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file row count and the return buffer row count are not the same.");
  4968. if( mColCnt != colCnt )
  4969. rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file column count and the return buffer column count are not the same.");
  4970. if( mEleByteCnt != eleByteCnt )
  4971. rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file element byte count and the return buffer element byte count are not the same.");
  4972. if( rc == cmOkRC )
  4973. {
  4974. rowBuf = cmMemAllocZ(char,colCnt*eleByteCnt);
  4975. for(i=0; i<rowCnt; ++i)
  4976. {
  4977. unsigned cn;
  4978. // read the row length
  4979. if( cmFileReadUInt(h,&cn,1) != kOkFileRC )
  4980. {
  4981. rc = cmErrMsg(&err,cmSubSysFailRC,"Error reading row length at row index:%i.",i);
  4982. goto errLabel;
  4983. }
  4984. if( colCntV != NULL )
  4985. colCntV[i] = cn;
  4986. // verify the actual col count does not exceed the max col count
  4987. if( cn > colCnt )
  4988. {
  4989. rc = cmErrMsg(&err,cmSubSysFailRC,"The actual column count:%i exceeds the max column count:%i.",cn,colCnt);
  4990. goto errLabel;
  4991. }
  4992. //read the row data
  4993. if( cmFileReadChar(h,rowBuf,cn*eleByteCnt) != kOkFileRC )
  4994. {
  4995. rc = cmErrMsg(&err,cmSubSysFailRC,"File read failed at row index:%i.",i);
  4996. goto errLabel;
  4997. }
  4998. char* dp = ((char*)retBuf) + i * eleByteCnt;
  4999. // the data is read in row-major order but the matrix must be
  5000. // returned on col major order - rearrange the columns here.
  5001. switch(eleByteCnt)
  5002. {
  5003. case sizeof(cmSample_t):
  5004. cmVOS_CopyN(((cmSample_t*)dp), cn, rowCnt, (cmSample_t*)rowBuf, 1 );
  5005. break;
  5006. case sizeof(cmReal_t):
  5007. cmVOR_CopyN(((cmReal_t*)dp), cn, rowCnt, (cmReal_t*)rowBuf, 1 );
  5008. break;
  5009. default:
  5010. rc = cmErrMsg(&err,cmSubSysFailRC,"Invalid element byte count:%i.",eleByteCnt);
  5011. goto errLabel;
  5012. }
  5013. }
  5014. }
  5015. errLabel:
  5016. cmMemPtrFree(&rowBuf);
  5017. cmFileClose(&h);
  5018. return rc;
  5019. }