#include "cmPrefix.h" #include "cmGlobal.h" #include "cmRpt.h" #include "cmErr.h" #include "cmCtx.h" #include "cmMem.h" #include "cmMallocDebug.h" #include "cmLinkedHeap.h" #include "cmSymTbl.h" #include "cmFloatTypes.h" #include "cmComplexTypes.h" #include "cmFile.h" #include "cmFileSys.h" #include "cmProcObj.h" #include "cmProcTemplate.h" #include "cmAudioFile.h" #include "cmMath.h" #include "cmProc.h" #include "cmVectOps.h" #include "cmKeyboard.h" #include "cmGnuPlot.h" #include "cmTime.h" #include "cmMidi.h" #include "cmProc2.h" //------------------------------------------------------------------------------------------------------------ cmArray* cmArrayAllocate( cmCtx* c, cmArray* ap, unsigned eleCnt, unsigned eleByteCnt, unsigned flags ) { cmArray* p = cmObjAlloc( cmArray, c, ap ); if( eleCnt > 0 && eleByteCnt > 0 ) if( cmArrayInit(p, eleCnt, eleByteCnt, flags ) != cmOkRC ) cmArrayFree(&p); return cmOkRC; } cmRC_t cmArrayFree( cmArray** pp ) { cmRC_t rc = cmOkRC; cmArray* p = *pp; if( pp == NULL || *pp == NULL ) return cmOkRC; if((rc = cmArrayFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->ptr); cmObjFree(pp); return rc; } cmRC_t cmArrayInit( cmArray* p, unsigned eleCnt, unsigned eleByteCnt, unsigned flags ) { cmRC_t rc = cmOkRC; if((rc = cmArrayFinal(p)) != cmOkRC ) return rc; p->allocByteCnt = eleCnt * eleByteCnt; p->ptr = cmIsFlag(flags,kZeroArrayFl) ? cmMemResizeZ( char, p->ptr, p->allocByteCnt ) : cmMemResize( char, p->ptr, p->allocByteCnt ); p->eleCnt = eleCnt; p->eleByteCnt = eleByteCnt; return rc; } cmRC_t cmArrayFinal( cmArray* p ) { return cmOkRC; } char* cmArrayReallocDestroy(cmArray* p, unsigned newEleCnt, unsigned newEleByteCnt, unsigned flags ) { // if memory is expanding if( newEleCnt * newEleByteCnt > p->allocByteCnt ) cmArrayInit( p, newEleCnt, newEleByteCnt, flags ); else { // ... otherwise memory is contrcmting p->eleCnt = newEleCnt; p->eleByteCnt = newEleByteCnt; if( cmIsFlag( flags, kZeroArrayFl )) memset(p->ptr,0,p->eleByteCnt); } return p->ptr; } void cmArrayReallocDestroyV(cmArray* p, int eleByteCnt,unsigned flags, ... ) { unsigned i; unsigned eleCnt = 0; unsigned argCnt = 0; va_list vl0,vl1; assert(eleByteCnt>0); va_start(vl0,flags); va_copy(vl1,vl0); while( va_arg(vl0,void**) != NULL ) { int argEleCnt = va_arg(vl0,int); assert(argEleCnt>0); eleCnt += argEleCnt; ++argCnt; } va_end(vl0); char* a = cmArrayReallocDestroy(p,eleCnt,eleByteCnt,flags); for(i=0; ieleCnt * p->eleByteCnt; unsigned dn = newEleCnt * newEleByteCnt; if( dn > p->allocByteCnt ) p->allocByteCnt = dn; p->ptr = cmIsFlag(flags,kZeroArrayFl ) ? cmMemResizePZ( char, p->ptr, cn ) : cmMemResizeP( char, p->ptr, cn); p->eleCnt = newEleCnt; p->eleByteCnt= newEleByteCnt; return p->ptr; } //------------------------------------------------------------------------------------------------------------ cmAudioFileWr* cmAudioFileWrAlloc( cmCtx* c, cmAudioFileWr* ap, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample ) { cmAudioFileWr* p = cmObjAlloc( cmAudioFileWr, c, ap ); if( cmAudioFileWrInit( p, procSmpCnt, fn, srate, chCnt, bitsPerSample ) != cmOkRC ) cmObjFree(&p); return p; } cmRC_t cmAudioFileWrFree( cmAudioFileWr** pp ) { cmRC_t rc = cmOkRC; if( pp != NULL && *pp != NULL ) { cmAudioFileWr* p = *pp; if((rc = cmAudioFileWrFinal(p)) == cmOkRC ) { cmMemPtrFree(&p->bufV); cmMemPtrFree(&p->fn ); cmObjFree(pp); } } return rc; } cmRC_t cmAudioFileWrInit( cmAudioFileWr* p, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample ) { cmRC_t rc; cmRC_t afRC; if((rc = cmAudioFileWrFinal( p)) != cmOkRC ) return rc; p->h = cmAudioFileNewCreate( fn, srate, bitsPerSample, chCnt, &afRC, p->obj.err.rpt ); if( afRC != kOkAfRC ) return cmCtxRtCondition( &p->obj, afRC, "Unable to open the audio file:'%s'", fn ); p->bufV = cmMemResize( cmSample_t, p->bufV, procSmpCnt * chCnt ); p->procSmpCnt = procSmpCnt; p->chCnt = chCnt; p->curChCnt = 0; p->fn = cmMemResizeZ( cmChar_t, p->fn, strlen(fn)+1 ); strcpy(p->fn,fn); return rc; } cmRC_t cmAudioFileWrFinal( cmAudioFileWr* p ) { cmRC_t afRC; if( p != NULL ) { if( cmAudioFileIsValid( p->h ) ) if(( afRC = cmAudioFileDelete( &p->h )) != kOkAfRC ) return cmCtxRtCondition( &p->obj, afRC, "Unable to close the audio file:'%s'", p->fn ); } return cmOkRC; } cmRC_t cmAudioFileWrExec( cmAudioFileWr* p, unsigned chIdx, const cmSample_t* sp, unsigned sn ) { cmRC_t afRC; assert( sn <= p->procSmpCnt && chIdx < p->chCnt ); cmSample_t* buf = p->bufV + (chIdx * p->procSmpCnt); cmVOS_Copy( buf, sn, sp); if( sn < p->procSmpCnt ) cmVOS_Fill( buf+sn, p->procSmpCnt-sn, 0 ); p->curChCnt++; if( p->curChCnt == p->chCnt ) { p->curChCnt = 0; cmSample_t* bufPtrPtr[ p->chCnt ]; unsigned i = 0; for(i=0; ichCnt; ++i) bufPtrPtr[i] = p->bufV + (i*p->procSmpCnt); if((afRC = cmAudioFileWriteSample( p->h, p->procSmpCnt, p->chCnt, bufPtrPtr )) != kOkAfRC ) return cmCtxRtCondition( &p->obj, afRC, "Write failed on audio file:'%s'", p->fn ); } return cmOkRC; } void cmAudioFileWrTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH ) { const char* fn = "/home/kevin/src/cm/test0.aif"; double durSecs = 10; double srate = 44100; unsigned chCnt = 2; unsigned bitsPerSmp = 16; unsigned procSmpCnt = 64; double hz = 1000; unsigned overToneCnt= 1; unsigned smpCnt = durSecs * srate; unsigned i; cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH ); cmSigGen* sgp = cmSigGenAlloc( c, NULL, procSmpCnt, srate, kWhiteWfId, hz, overToneCnt ); cmAudioFileWr* awp = cmAudioFileWrAlloc( c, NULL, procSmpCnt, fn, srate, chCnt, bitsPerSmp ); for(i=0; ioutV, sgp->outN ); cmAudioFileWrExec( awp, 1, sgp->outV, sgp->outN ); i += sgp->outN; } printf("Frames:%i\n",smpCnt); cmAudioFileWrFree(&awp); cmSigGenFree( &sgp ); cmCtxFree(&c); cmAudioFileReportFn( fn, 0, 20, rpt ); } //------------------------------------------------------------------------------------------------------------ cmMatrixBuf* cmMatrixBufAllocFile( cmCtx* c, cmMatrixBuf* p, const char* fn ) { cmRC_t rc; cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p ); if( fn != NULL ) if((rc = cmMatrixBufInitFile(op,fn)) != cmOkRC ) cmObjFree(&op); return op; } cmMatrixBuf* cmMatrixBufAllocCopy(cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp ) { cmRC_t rc; cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p ); if( sp != NULL && rn > 0 && cn > 0 ) if((rc = cmMatrixBufInitCopy(op,rn,cn,sp)) != cmOkRC ) cmObjFree(&op); return op; } cmMatrixBuf* cmMatrixBufAlloc( cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn ) { cmRC_t rc; cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p ); if( rn > 0 && cn > 0 ) if((rc = cmMatrixBufInit(op,rn,cn)) != cmOkRC ) cmObjFree(&op); return op; } cmRC_t cmMatrixBufFree( cmMatrixBuf** pp ) { cmRC_t rc = cmOkRC; if( pp != NULL && *pp != NULL ) { cmMatrixBuf* p = *pp; if((rc = cmMatrixBufFinal(p)) == cmOkRC ) { cmMemPtrFree(&p->bufPtr); cmObjFree(pp); } } return rc; } void _cmMatrixBufGetFileSize( FILE* fp, unsigned* lineCharCntPtr, unsigned* lineCntPtr ) { *lineCharCntPtr = 0; *lineCntPtr = 0; while( !feof(fp) ) { char ch; unsigned charCnt = 0; while( (ch = getc(fp)) != EOF ) { charCnt++; if( ch == '\n' ) break; } *lineCntPtr += 1; if(charCnt > *lineCharCntPtr ) *lineCharCntPtr = charCnt; } *lineCharCntPtr += 5; // add a safety margin } cmRC_t _cmMatrixBufGetMatrixSize( cmObj* op, FILE* fp, unsigned lineCharCnt, unsigned lineCnt, unsigned* rowCntPtr, unsigned * colCntPtr, const char* fn ) { unsigned i; char lineBuf[ lineCharCnt + 1 ]; *rowCntPtr = 0; *colCntPtr = 0; for(i=0; i *colCntPtr ) *colCntPtr = colCnt; } return cmOkRC; } double _cmMatrixBufStrToNum( cmObj* op, const char* cp ) { double v; if( sscanf(cp,"%le ",&v) != 1 ) cmCtxRtCondition( op, cmArgAssertRC, "Parse error reading matrix file."); return v; } cmRC_t _cmMatrixBufReadFile(cmObj* op, FILE* fp, cmSample_t* p, unsigned lineCharCnt, unsigned rn, unsigned cn) { char lineBuf[ lineCharCnt+1 ]; unsigned ci = 0; unsigned ri = 0; while( fgets(lineBuf,lineCharCnt,fp) != NULL ) { char* lp = lineBuf; char* tp; while( (*lp) && isspace(*lp) ) lp++; if( strlen(lp) == 0 || *lp == '#' ) continue; for(ci=0; (tp = strtok(lp," ")) != NULL; ++ci ) { p[ (ci*rn) + ri ] = _cmMatrixBufStrToNum(op,tp); //atof(tp); lp = NULL; } ++ri; } return cmOkRC; } cmRC_t cmMatrixBufInitFile( cmMatrixBuf* p, const char* fn ) { cmRC_t rc; FILE* fp; unsigned lineCharCnt; unsigned lineCnt; unsigned rn; unsigned cn; if((fp = fopen(fn,"rt")) == NULL ) return cmCtxRtCondition( &p->obj, cmSystemErrorRC, "Unable to open the matrix file:'%s'", fn ); // get the length of the longest line in the file _cmMatrixBufGetFileSize(fp,&lineCharCnt,&lineCnt); rewind(fp); // get the count of matrix rows and columns if((rc=_cmMatrixBufGetMatrixSize( &p->obj, fp, lineCharCnt, lineCnt, &rn, &cn, fn )) != cmOkRC ) goto errLabel; rewind(fp); // allocate the matrix memory cmMatrixBufInit(p,rn,cn); // fill the matrix from the file rc = _cmMatrixBufReadFile(&p->obj,fp,p->bufPtr,lineCharCnt,rn,cn); errLabel: if( rc != cmOkRC ) cmMatrixBufFinal(p); fclose(fp); return rc; } cmRC_t cmMatrixBufInitCopy( cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp ) { cmRC_t rc; if((rc = cmMatrixBufInit(p,rn,cn)) != cmOkRC ) return rc; cmVOS_Copy(p->bufPtr,(rn*cn),sp); return rc; } cmRC_t cmMatrixBufInit( cmMatrixBuf* p, unsigned rn, unsigned cn ) { cmRC_t rc; if((rc = cmMatrixBufFinal(p)) != cmOkRC ) return rc; p->rn = rn; p->cn = cn; p->bufPtr = cmMemResize( cmSample_t, p->bufPtr, rn*cn ); return cmOkRC; } cmRC_t cmMatrixBufFinal( cmMatrixBuf* p ) { return cmOkRC; } cmSample_t* cmMatrixBufColPtr( cmMatrixBuf* p, unsigned ci ) { assert(cicn); return p->bufPtr + (ci * p->rn); } cmSample_t* cmMatrixBufRowPtr( cmMatrixBuf* p, unsigned ri ) { assert(rirn); return p->bufPtr + ri; } void cmMatrixBufTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH ) { cmSample_t v[] = {1,2,2,3}; cmCtx* c = cmCtxAlloc(NULL,rpt,lhH,stH); cmMatrixBuf* mbp = cmMatrixBufAllocFile(c, NULL, "temp.mat" ); cmMatrixBuf* vbp = cmMatrixBufAllocCopy(c, NULL, 4,1,v); unsigned i; printf("rn:%i cn:%i\n",mbp->rn,mbp->cn); //cmVOS_Print( stdout, 10, 10, mbp->bufPtr ); printf("%.1f\n ",cmVOS_Median( cmMatrixBufColPtr(vbp,0),vbp->rn)); for(i=0; icn; ++i) { //cmVOS_Print( stdout, 1, mbp->cn, cmMatrixBufColPtr(c,mbp,i) ); printf("%.1f, ",cmVOS_Median( cmMatrixBufColPtr(mbp,i),mbp->rn)); } printf("\n"); cmMatrixBufFree(&mbp); cmMatrixBufFree(&vbp); cmCtxFree(&c); } //------------------------------------------------------------------------------------------------------------ cmSigGen* cmSigGenAlloc( cmCtx* c, cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt ) { cmSigGen* op = cmObjAlloc( cmSigGen, c, p ); if( procSmpCnt > 0 && srate > 0 && wfId != kInvalidWfId ) if( cmSigGenInit( op, procSmpCnt, srate, wfId, fundFrqHz, overToneCnt ) != cmOkRC ) cmObjFree(&op); return op; } cmRC_t cmSigGenFree( cmSigGen** pp ) { cmRC_t rc = cmOkRC; if( pp != NULL && *pp != NULL ) { cmSigGen* p = *pp; if((rc = cmSigGenFinal(p)) == cmOkRC ) { cmMemPtrFree(&p->outV); cmObjFree(pp); } } return rc; } cmRC_t cmSigGenInit( cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt ) { assert( srate > 0 && procSmpCnt > 0 ); p->outV = cmMemResize( cmSample_t, p->outV, procSmpCnt ); p->outN = procSmpCnt; p->wfId = wfId; p->overToneCnt = overToneCnt; p->fundFrqHz = fundFrqHz; p->phase = 0; p->delaySmp = 0; p->srate = srate; return cmOkRC; } cmRC_t cmSigGenFinal( cmSigGen* p ) { return cmOkRC; } cmRC_t cmSigGenExec( cmSigGen* p ) { switch( p->wfId ) { case kSineWfId: p->phase = cmVOS_SynthSine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break; case kCosWfId: p->phase = cmVOS_SynthCosine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break; case kSquareWfId: p->phase = cmVOS_SynthSquare( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break; case kTriangleWfId: p->phase = cmVOS_SynthTriangle( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break; case kSawtoothWfId: p->phase = cmVOS_SynthSawtooth( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break; case kWhiteWfId: cmVOS_Random( p->outV, p->outN, -1.0, 1.0 ); break; case kPinkWfId: p->delaySmp = cmVOS_SynthPinkNoise(p->outV, p->outN, p->delaySmp ); break; case kPulseWfId: p->phase = cmVOS_SynthPulseCos( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break; case kImpulseWfId: p->phase = cmVOS_SynthImpulse( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break; case kSilenceWfId: cmVOS_Fill( p->outV, p->outN, 0 ); break; case kPhasorWfId: p->phase = cmVOS_SynthPhasor( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break; case kSeqWfId: p->phase = cmVOS_Seq( p->outV, p->outN, p->phase, 1 ); break; case kInvalidWfId: default: return cmCtxRtAssertFailed( &p->obj, 0, "Invalid waveform shape."); } return cmOkRC; } //------------------------------------------------------------------------------------------------------------ cmDelay* cmDelayAlloc( cmCtx* c, cmDelay* ap, unsigned procSmpCnt, unsigned delaySmpCnt ) { cmDelay* p = cmObjAlloc( cmDelay, c, ap ); if( procSmpCnt > 0 && delaySmpCnt > 0 ) if( cmDelayInit( p,procSmpCnt,delaySmpCnt) != cmOkRC && ap == NULL ) cmObjFree(&p); return p; } cmRC_t cmDelayFree( cmDelay** pp ) { cmRC_t rc = cmOkRC; if( pp != NULL && *pp != NULL ) { cmDelay* p = *pp; if((rc = cmDelayFinal(*pp)) == cmOkRC ) { cmMemPtrFree(&p->bufPtr); cmObjFree(pp); } } return rc; } cmRC_t cmDelayInit( cmDelay* p, unsigned procSmpCnt, unsigned delaySmpCnt ) { p->procSmpCnt = procSmpCnt; p->delaySmpCnt = delaySmpCnt; p->bufSmpCnt = delaySmpCnt + procSmpCnt; p->bufPtr = cmMemResizeZ( cmSample_t, p->bufPtr, p->bufSmpCnt); p->delayInIdx = 0; p->outCnt = 1; p->outV[0] = p->bufPtr; p->outN[0] = p->procSmpCnt; p->outV[1] = NULL; p->outN[1] = 0; return cmOkRC; } cmRC_t cmDelayFinal( cmDelay* p ) { return cmOkRC; } cmRC_t cmDelayCopyIn( cmDelay* p, const cmSample_t* sp, unsigned sn ) { assert(sn<=p->procSmpCnt); unsigned n0 = cmMin(sn,p->bufSmpCnt - p->delayInIdx); // copy as many samples as possible from the input to the delayInIdx cmVOS_Copy(p->bufPtr + p->delayInIdx, n0, sp); p->delayInIdx = (p->delayInIdx + n0) % p->bufSmpCnt; // if there was not enough room to copy all the samples into the end of the buffer .... if( n0 < sn ) { assert( p->delayInIdx == 0 ); // ... then copy the rest to the beginning of the buffer unsigned n1 = sn - n0; cmVOS_Copy(p->bufPtr,n1, sp + n0 ); p->delayInIdx = (p->delayInIdx + n1) % p->bufSmpCnt; } return cmOkRC; } cmRC_t cmDelayAdvance( cmDelay* p, unsigned sn ) { // advance the output by sn and make sn samples available int delayOutIdx = ((p->outV[0] - p->bufPtr) + sn) % p->bufSmpCnt; p->outV[0] = p->bufPtr + delayOutIdx; p->outN[0] = cmMin(p->bufSmpCnt - delayOutIdx , sn ); p->outCnt = p->outN[0] == sn ? 1 : 2 ; p->outV[1] = p->outCnt == 1 ? NULL : p->bufPtr; p->outN[1] = p->outCnt == 1 ? 0 : sn - p->outN[0]; return cmOkRC; } cmRC_t cmDelayExec( cmDelay* p, const cmSample_t* sp, unsigned sn, bool bypassFl ) { cmRC_t rc = cmOkRC; if( bypassFl ) memcpy(p->outV,sp,sn*sizeof(cmSample_t)); else { cmDelayCopyIn(p,sp,sn); rc = cmDelayAdvance(p,sn); } return rc; } void cmDelayTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH ) { cmCtx ctx; cmDelay delay; cmSigGen sigGen; unsigned procCnt = 4; unsigned procSmpCnt = 5; unsigned delaySmpCnt = 3; unsigned i; cmCtx* c = cmCtxAlloc( &ctx, rpt, lhH, stH ); cmDelay* dlp = cmDelayAlloc( c, &delay, procSmpCnt, delaySmpCnt ); cmSigGen* sgp = cmSigGenAlloc( c, &sigGen, procSmpCnt, 0, kSeqWfId,0, 0); for(i=0; ioutV,sgp->outN,false); //cmVOS_Print( c->outFp, 1, sgp->outN, sgp->outV, 5, 0 ); cmCtxPrint(c,"%i %i : ",i,0); cmVOS_PrintE( rpt, 1, dlp->outN[0], dlp->outV[0] ); if( dlp->outN[1] > 0 ) { cmCtxPrint(c,"%i %i : ",i,1); cmVOS_PrintE( rpt, 1, dlp->outN[1], dlp->outV[1] ); } } cmSigGenFinal(sgp); cmDelayFinal(dlp); cmCtxFinal(c); } //------------------------------------------------------------------------------------------------------------ cmFIR* cmFIRAllocKaiser(cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb, unsigned flags ) { cmFIR* op = cmObjAlloc( cmFIR, c, p ); if( procSmpCnt > 0 && srate > 0 ) if( cmFIRInitKaiser(op,procSmpCnt,srate,passHz,stopHz,passDb,stopDb,flags) != cmOkRC ) cmObjFree(&op); return op; } cmFIR* cmFIRAllocSinc( cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags, const double* wndV ) { cmFIR* op = cmObjAlloc( cmFIR, c, p ); if( srate > 0 && sincSmpCnt > 0 ) if( cmFIRInitSinc(op,procSmpCnt,srate,sincSmpCnt,fcHz,flags,wndV) != cmOkRC ) cmObjFree(&op); return op; } cmRC_t cmFIRFree( cmFIR** pp ) { cmRC_t rc = cmOkRC; if( pp != NULL && *pp != NULL) { cmFIR* p = *pp; if((rc = cmFIRFinal(*pp)) == cmOkRC ) { cmMemPtrFree(&p->coeffV); cmMemPtrFree(&p->outV); cmMemPtrFree(&p->delayV); cmObjFree(pp); } } return rc; } cmRC_t cmFIRInitKaiser( cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb, unsigned flags ) { // pass/stop frequencies above nyquist produce incorrect results assert( passHz <= srate/2 && stopHz<=srate/2); // based on Orfandis, Introduction to Signal Processing, p.551 Prentice Hall, 1996 double fcHz = (passHz + stopHz) / 2; // fc is half way between passHz and stopHz double dHz = fabs(stopHz-passHz); // convert ripple spec from db to linear double dPass = (pow(10,passDb/20)-1) / (pow(10,passDb/20)+1); double dStop = pow(10,-stopDb/20); // in practice the ripple must be equal in the stop and pass band - so take the minimum between the two double d = cmMin(dPass,dStop); // convert the ripple bcmk to db double A = -20 * log10(d); // compute the kaiser alpha coeff double alpha = 0; if( A >= 50.0 ) // for ripple > 50 alpha = 0.1102 * (A-8.7); else // for ripple <= 21 { if( A > 21 ) alpha = (0.5842 * (pow(A-21.0,0.4))) + (0.07886*(A-21)); } double D = 0.922; if( A > 21 ) D = (A - 7.95) / 14.36; // compute the filter order unsigned N = (unsigned)(floor(D * srate / dHz) + 1); //if N is even if( cmIsEvenU(N) ) N = N + 1; //printf("fc=%f df=%f dPass=%f dStop=%f d=%f alpha=%f A=%f D=%f N=%i\n",fcHz,dHz,dPass,dStop,d,alpha,A,D,N); // compute a kaiser function to truncate the sinc double wnd[ N ]; cmVOD_Kaiser( wnd, N, alpha ); // form an ideal FIR LP impulse response based on a sinc function cmFIRInitSinc(p,procSmpCnt,srate,N,fcHz,flags, wnd); //cmVOD_Print(stdout,1,p->coeffCnt,p->coeffV); return cmOkRC; } cmRC_t cmFIRInitSinc( cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags, const double* wndV ) { cmRC_t rc; if((rc = cmFIRFinal(p)) != cmOkRC ) return rc; p->coeffCnt = sincSmpCnt; p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt ); p->outN = procSmpCnt; p->coeffV = cmMemResizeZ( double, p->coeffV, p->coeffCnt ); p->delayV = cmMemResizeZ( double, p->delayV, p->coeffCnt-1 ); // there is always one less delay than coeff p->delayIdx = 0; unsigned lp_flags = kNormalize_LPSincFl; lp_flags |= cmIsFlag(flags,kHighPassFIRFl) ? kHighPass_LPSincFl : 0; cmVOD_LP_Sinc(p->coeffV, p->coeffCnt, wndV, srate, fcHz, lp_flags ); return cmOkRC; } cmRC_t cmFIRFinal( cmFIR* p ) { return cmOkRC; } cmRC_t cmFIRExec( cmFIR* p, const cmSample_t* sbp, unsigned sn ) { unsigned delayCnt = p->coeffCnt-1; int di = p->delayIdx; const cmSample_t* sep = sbp + sn; cmSample_t* op = p->outV; assert( di < delayCnt ); assert( sn <= p->outN ); // for each input sample while( sbp < sep ) { // advance the delay line p->delayIdx = (p->delayIdx + 1) % delayCnt; const double* cbp = p->coeffV; const double* cep = cbp + p->coeffCnt; // mult input sample by coeff[0] double v = *sbp * *cbp++; // calc the output sample while( cbpdelayV[di]; --di; } // store the output sample *op++ = v; // insert the input sample p->delayV[ p->delayIdx ] = *sbp++; // store the position of the newest ele in the delay line di = p->delayIdx; } return cmOkRC; } void cmFIRTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH ) { unsigned N = 512; cmKbRecd kb; cmCtx c; cmCtxInit(&c,rpt,lhH,stH); double srate = N; unsigned procSmpCnt = N; cmPlotSetup("Test Proc Impl",2,1); cmSample_t in[ procSmpCnt ]; cmVOS_Fill(in,procSmpCnt,0); in[0] = 1; cmVOS_Random(in,procSmpCnt, -1.0, 1.0 ); cmFIR* ffp = cmFIRAllocKaiser( &c, NULL, procSmpCnt,srate, srate*0.025, srate/2, 10, 60, 0 ); //cmFIR* ffp = cmFIRAllocSinc( &c, NULL, 32, 1000, 0 ); cmFftSR* ftp = cmFftAllocSR( &c, NULL, ffp->outV, ffp->outN, kToPolarFftFl ); cmFIRExec( ffp, in, procSmpCnt ); cmFftExecSR( ftp, NULL, 0 ); cmVOR_AmplitudeToDb(ftp->magV,ftp->binCnt,ftp->magV); printf("coeff cnt:%i\n",ffp->coeffCnt ); cmPlotClear(); cmPlotLineR( "test", NULL, ftp->magV, NULL, ftp->binCnt, NULL, kSolidPlotLineId ); cmPlotDraw(); cmKeyPress(&kb); cmFftFreeSR(&ftp); cmFIRFree(&ffp); } //------------------------------------------------------------------------------------------------------------ cmFuncFilter* cmFuncFilterAlloc( cmCtx* c, cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt ) { cmRC_t rc; cmFuncFilter* op = cmObjAlloc( cmFuncFilter,c, p ); if( procSmpCnt > 0 && funcPtr != NULL && wndSmpCnt > 0 ) { if( cmShiftBufAlloc(c,&p->shiftBuf,0,0,0) != NULL ) if((rc = cmFuncFilterInit(op,procSmpCnt,funcPtr,userPtr,wndSmpCnt)) != cmOkRC ) { cmShiftBuf* sbp = &p->shiftBuf; cmShiftBufFree(&sbp); cmObjFree(&op); } } return op; } cmRC_t cmFuncFilterFree( cmFuncFilter** pp ) { cmRC_t rc = cmOkRC; if( pp!=NULL && *pp != NULL ) { cmFuncFilter* p = *pp; if((rc = cmFuncFilterFinal(*pp)) == cmOkRC ) { cmShiftBuf* sbp = &p->shiftBuf; cmShiftBufFree(&sbp); cmMemPtrFree(&p->outV); cmObjFree(pp); } } return rc; } cmRC_t cmFuncFilterInit( cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt ) { cmRC_t rc; if(( rc = cmFuncFilterFinal(p)) != cmOkRC ) return rc; // The shift buffer always consits of the p->wndSmpCnt-1 samples from the previous // exec followed by the latest procSmpCnt samples at the end of the buffer cmShiftBufInit( &p->shiftBuf, procSmpCnt, wndSmpCnt + procSmpCnt - 1, procSmpCnt ); p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt); p->outN = procSmpCnt; p->funcPtr = funcPtr; p->curWndSmpCnt = 1; p->wndSmpCnt = wndSmpCnt; return rc; } cmRC_t cmFuncFilterFinal( cmFuncFilter* p ) { return cmOkRC; } cmRC_t cmFuncFilterExec( cmFuncFilter* p, const cmSample_t* sp, unsigned sn ) { assert( sn <= p->outN); // The window used by this function is always causal. At the very beginning of the signal // the window length begins at 1 and increases until is has the length p->wndSmpCnt. // Note that this approach ignores any zeros automatically prepended to the beginning of the // signal by the shift buffer. The first window processed always has a length of 1 and // begins with the first actual sample given to the shift buffer. Successive windows increase // by one and start at the first actual sample until the full window length is available // from the shift buffer. At this point the window length remains constant and it is hopped // by one sample for each window. while(cmShiftBufExec(&p->shiftBuf,sp,sn)) { const cmSample_t* fsp = p->shiftBuf.outV; cmSample_t* dp = p->outV; cmSample_t* ep = p->outV + sn; // produce as many output values as there are input samples // for each output sample while( dp < ep ) { // the source range should never extend outside the shift buffer assert( fsp + p->curWndSmpCnt <= p->shiftBuf.outV + p->shiftBuf.wndSmpCnt ); // calc the next output value *dp++ = p->funcPtr( fsp, p->curWndSmpCnt, p->userPtr ); // if the window has not yet achieved its full length ... if( p->curWndSmpCnt < p->wndSmpCnt ) ++p->curWndSmpCnt; // ... then increase its length by 1 else ++fsp; // ... otherwise shift it ahead by 1 } } return cmOkRC; } cmSample_t cmFuncFiltTestFunc( const cmSample_t* sp, unsigned sn, void* vp ) { //printf("% f % f %p % i\n",*sp,*sp+(sn-1),sp,sn); cmSample_t v = cmVOS_Median(sp,sn); printf("%f ",v); return v; //return *sp; } void cmFuncFilterTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH ) { unsigned procSmpCnt = 1; unsigned N = 32; cmSample_t v[N]; cmCtx c; unsigned i; cmCtxAlloc(&c,rpt,lhH,stH); cmVOS_Seq(v,N,0,1); cmVOS_Print(rpt,1,32,v); cmFuncFilter* ffp = NULL; ffp = cmFuncFilterAlloc( &c, NULL, procSmpCnt, cmFuncFiltTestFunc, NULL, 5 ); for(i=0; i 0 && symN > 0 ) if( cmDhmmInit(p, stateN, symN, initV, transM, stsM ) != cmOkRC ) cmObjFree(&p); return p; } cmRC_t cmDhmmFree( cmDhmm** pp ) { cmRC_t rc = cmOkRC; cmDhmm* p = *pp; if( pp==NULL || *pp==NULL ) return cmOkRC; if((rc = cmDhmmFinal(p)) != cmOkRC ) return cmOkRC; cmObjFree(pp); return rc; } cmRC_t cmDhmmInit( cmDhmm* p, unsigned stateN, unsigned symN, cmReal_t* initV, cmReal_t* transM, cmReal_t* stsM ) { cmRC_t rc; if((rc = cmDhmmFinal(p)) != cmOkRC ) return rc; p->stateN = stateN; p->symN = symN; p->initV = initV; p->transM = transM; p->stsM = stsM; return cmOkRC; } cmRC_t cmDhmmFinal( cmDhmm* p ) { return cmOkRC; } cmRC_t cmDhmmExec( cmDhmm* p ) { return cmOkRC; } // Generate a random matrix with rows that sum to 1.0. void _cmDhmmGenRandMatrix( cmReal_t* dp, unsigned rn, unsigned cn ) { cmReal_t v[ cn ]; unsigned i,j; for(i=0; i 1 ) { cmVOR_CopyStride( tmp, probN, probV, stride ); sp = tmp; } cmVOR_CumSum( cumSumV+1, probN, sp ); return cmVOR_BinIndex( cumSumV, probN+1, (cmReal_t)rand()/RAND_MAX ); } cmRC_t cmDhmmGenObsSequence( cmDhmm* p, unsigned* dbp, unsigned dn ) { const unsigned* dep = dbp + dn; // generate the first state based on the init state prob. vector unsigned state = _cmDhmmGenRandInt( p->initV, p->stateN, 1 ); // generate an observation from the state based on the symbol prob. vector *dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN ); while( dbp < dep ) { // get the next state based on the previous state state = _cmDhmmGenRandInt( p->transM + state, p->stateN, p->stateN ); // given a state generate an observation *dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN ); } return cmOkRC; } /// Perform a forward evaluation of the model given a set of observations. /// initPrV[ stateN ] is the probability of the model being in each state at the start of the evaluation. /// alphaM[ stateN, obsN ] is a return value and represents the probability of seeing each symbol at each time step. enum { kNoLogScaleHmmFl = 0x00, kLogScaleHmmFl = 0x01 }; cmRC_t cmDHmmForwardEval( cmDhmm* p, const cmReal_t* initPrV, const unsigned* obsV, unsigned obsN, cmReal_t* alphaM, unsigned flags, cmReal_t* logProbPtr ) { bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl); cmReal_t logProb = 0; cmReal_t* abp = alphaM; // define first dest. column const cmReal_t* aep = abp + p->stateN; const cmReal_t* sts = p->stsM + (obsV[0] * p->stateN); // stsM[] column for assoc'd with first obs. symbol unsigned i; // calc the prob of begining in each state given the obs. symbol for(i=0; abp < aep; ++i ) *abp++ = *initPrV++ * *sts++; // scale to prevent underflow if( scaleFl ) { cmReal_t sum = cmVOR_Sum(abp-p->stateN,p->stateN); if( sum > 0 ) { cmVOR_DivVS( abp-p->stateN,p->stateN,sum); logProb += log(sum); } } // for each time step for(i=1; itransM; // pick the stsM[] column assoc'd with ith observation symbol const cmReal_t* sts = p->stsM + (obsV[i] * p->stateN); // store a pointer to the alpha column assoc'd with obsV[i-1] const cmReal_t* app0 = abp - p->stateN; aep = abp + p->stateN; // for each dest state while( abp < aep ) { // prob of being in each state on the previous time step const cmReal_t* app = app0; const cmReal_t* ape = app + p->stateN; *abp = 0; // for each src state - calc prob. of trans from src to dest while( appstateN,p->stateN); if( sum > 0 ) { cmVOR_DivVS( abp-p->stateN,p->stateN,sum); logProb += log(sum); } } } if( logProbPtr != NULL ) *logProbPtr = logProb; return cmOkRC; } cmRC_t cmDHmmBcmkwardEval( cmDhmm* p, const unsigned* obsV, unsigned obsN, cmReal_t* betaM, unsigned flags ) { bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl); int i,j,t; cmVOR_Fill(betaM+((obsN-1)*p->stateN),p->stateN,1.0); // for each time step for(t=obsN-2; t>=0; --t) { // for each state at t for(i=0; istateN; ++i) { double Bt = 0; // for each state at t+1 for(j=0; jstateN; ++j) { double aij = p->transM[ (j * p->stateN) + i ]; double bj = p->stsM[ (obsV[t+1] * p->stateN) + j ]; double Bt1 = betaM[ ((t+1) * p->stateN) + j ]; Bt += aij * bj * Bt1; } betaM[ (t * p->stateN) + i ] = Bt; } if( scaleFl ) { double* bp = betaM + (t * p->stateN); double sum = cmVOR_Sum(bp, p->stateN ); if( sum > 0 ) cmVOR_DivVS( bp, p->stateN, sum ); } } return cmOkRC; } void _cmDhmmNormRow( cmReal_t* p, unsigned pn, unsigned stride, const cmReal_t* sp ) { if( sp == NULL ) sp = p; cmReal_t sum = 0; unsigned n = pn * stride; const cmReal_t* bp = sp; const cmReal_t* ep = bp + n; for(; bpstateN * obsN ]; cmReal_t betaM[ p->stateN * obsN ]; cmReal_t g[ p->stateN * obsN ]; cmReal_t q[ p->stateN * p->symN ]; cmReal_t E[ p->stateN * p->stateN ]; cmReal_t logProb = 0; //cmDhmmReport(p->obj.ctx,p); for(k=0; kstateN * p->symN), 0 ); cmVOR_Fill( E, (p->stateN * p->stateN), 0 ); // calculate alpha and beta cmDHmmForwardEval( p, p->initV, obsV, obsN, alphaM, flags, &logProb); cmDHmmBcmkwardEval( p, obsV, obsN, betaM, flags ); // gamma[ stateN, obsN ] = alphaM .* betaM - gamma is the probability of being in each state at each time step cmVOR_MultVVV( g,(p->stateN*obsN), alphaM, betaM ); // normalize gamma for(i=0; istateN), p->stateN ); //printf("ITER:%i logProb:%f\n",k,logProb); // count the number of times state i emits obsV[0] in the starting location cmVOR_Copy( q + (obsV[0] * p->stateN), p->stateN, g ); for(t=0; tstateN); const cmReal_t* beta_t1 = betaM + ((t+1)*p->stateN); cmReal_t Et[ p->stateN * p->stateN ]; cmReal_t Esum = 0; // for each source state for(i=0; istateN; ++i) { // for each dest state for(j=0; jstateN; ++j) { // prob of transitioning from state i to j and emitting obs[t] at time t cmReal_t Eps = alpha_t0[i] * p->transM[ (j*p->stateN) + i ] * p->stsM[ (obsV[t+1]*p->stateN) + j ] * beta_t1[j]; // count the number of transitions from i to j Et[ (j*p->stateN) + i ] = Eps; Esum += Eps; } // count the number of times state i emits obsV[t] q[ (obsV[t+1] * p->stateN) + i ] += g[ ((t+1)*p->stateN) + i ]; } // normalize Et and sum it into E cmVOR_DivVS( Et, (p->stateN*p->stateN), Esum ); cmVOR_AddVV( E, (p->stateN*p->stateN), Et ); } // update the model _cmDhmmNormMtxRows( p->initV, 1, p->stateN, g ); _cmDhmmNormMtxRows( p->transM, p->stateN, p->stateN, E ); _cmDhmmNormMtxRows( p->stsM, p->stateN, p->symN, q ); } return cmOkRC; } cmRC_t cmDhmmReport( cmDhmm* p ) { cmVOR_PrintL("initV:\n", p->obj.err.rpt, 1, p->stateN, p->initV ); cmVOR_PrintL("transM:\n", p->obj.err.rpt, p->stateN, p->stateN, p->transM ); cmVOR_PrintL("symM:\n", p->obj.err.rpt, p->stateN, p->symN, p->stsM ); return cmOkRC; } void cmDhmmTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH ) { unsigned stateN = 2; unsigned symN = 3; unsigned obsN = 4; unsigned iterN = 10; cmReal_t initV0[ stateN ]; cmReal_t transM0[ stateN * stateN ]; cmReal_t stsM0[ symN * stateN ]; cmReal_t initV1[ stateN ]; cmReal_t transM1[ stateN * stateN ]; cmReal_t stsM1[ symN * stateN ]; unsigned obsV[ obsN ]; unsigned hist[ symN ]; unsigned genFl = kManualProbHmmFl; cmReal_t initV[] = { 0.44094, 0.55906 }; cmReal_t transM[] = { 0.48336, 0.81353, 0.51664, 0.18647, }; cmReal_t stsM[] = { 0.20784, 0.18698, 0.43437, 0.24102, 0.35779, 0.57199 }; unsigned obsM[] = { 2, 2, 2, 0 }; cmReal_t initV2[] = { 0.79060, 0.20940 }; cmReal_t transM2[] = { 0.508841, 0.011438, 0.491159, 0.988562 }; cmReal_t stsM2[] = { 0.25789, 0.35825, 0.61981, 0.42207, 0.12230, 0.21969 }; //srand( time(NULL) ); // generate a random HMM _cmDhmmGenProb( initV0, 1, stateN, genFl, initV ); _cmDhmmGenProb( transM0, stateN, stateN, genFl, transM ); _cmDhmmGenProb( stsM0, stateN, symN, genFl, stsM ); cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH); cmDhmm* h0p = cmDhmmAlloc( c, NULL, stateN, symN, initV0, transM0, stsM0 ); // generate an observation sequence based on the random HMM //cmDhmmGenObsSequence(c, h0p, obsV, obsN ); memcpy(obsV,obsM,obsN*sizeof(unsigned)); if( 0 ) { // print the HMM cmDhmmReport( h0p); // print the observation symbols cmVOU_PrintL("obs:\n", rpt, 1, obsN, obsV ); // print the histogram of the obs. symbols cmVOU_Hist( hist, symN, obsV, obsN ); cmVOU_PrintL("hist:\n", rpt, 1, symN, hist ); // calc alpha (the forward probabilities) cmReal_t alphaM[ h0p->stateN*obsN ]; cmReal_t logProb=0; cmDHmmForwardEval( h0p, h0p->initV, obsV, obsN, alphaM, kLogScaleHmmFl, &logProb); printf("log prob:%f\n alpha:\n", logProb ); cmVOR_Print( rpt, h0p->stateN, obsN, alphaM ); // calc beta (the bcmkward probabilities) cmReal_t betaM[ h0p->stateN*obsN ]; logProb=0; cmDHmmBcmkwardEval( h0p, obsV, obsN, betaM, kLogScaleHmmFl); printf("log prob:%f\n beta:\n", logProb ); cmVOR_Print( h0p->obj.err.rpt, h0p->stateN, obsN, betaM ); } // initialize a second HMM with random probabilities _cmDhmmGenProb( initV1, 1, stateN, kManualProbHmmFl, initV2 ); _cmDhmmGenProb( transM1, stateN, stateN, kManualProbHmmFl, transM2 ); _cmDhmmGenProb( stsM1, stateN, symN, kManualProbHmmFl, stsM2 ); cmDhmm* h1p = cmDhmmAlloc( c, NULL, stateN, symN, initV1, transM1, stsM1 ); cmDhmmTrainEM( h1p, obsV, obsN, iterN, kLogScaleHmmFl ); cmDhmmFree(&h1p); cmDhmmFree(&h0p); cmCtxFree(&c); } //------------------------------------------------------------------------------------------------------------ cmConvolve* cmConvolveAlloc( cmCtx* c, cmConvolve* ap, const cmSample_t* h, unsigned hn, unsigned procSmpCnt ) { cmConvolve* p = cmObjAlloc( cmConvolve, c, ap); p->fft = cmFftAllocSR( c,NULL,NULL,0,kNoConvertFftFl); p->ifft= cmIFftAllocRS(c,NULL,p->fft->binCnt); if( hn > 0 && procSmpCnt > 0 ) if( cmConvolveInit(p,h,hn,procSmpCnt) != cmOkRC ) cmObjFree(&p); return p; } cmRC_t cmConvolveFree( cmConvolve** pp ) { cmRC_t rc; cmConvolve* p = *pp; if( pp == NULL || *pp == NULL ) return cmOkRC; if((rc = cmConvolveFinal(p)) != cmOkRC ) return cmOkRC; cmFftFreeSR(&p->fft); cmIFftFreeRS(&p->ifft); cmMemPtrFree(&p->H); cmMemPtrFree(&p->outV); cmObjFree(pp); return cmOkRC; } cmRC_t cmConvolveInit( cmConvolve* p, const cmSample_t* h, unsigned hn, unsigned procSmpCnt ) { cmRC_t rc; unsigned i; unsigned cn = cmNextPowerOfTwo( hn + procSmpCnt - 1 ); if((rc = cmConvolveFinal(p)) != cmOkRC ) return rc; cmFftInitSR( p->fft, NULL, cn, kNoConvertFftFl ); cmIFftInitRS( p->ifft, p->fft->binCnt); p->H = cmMemResizeZ( cmComplexR_t,p->H, p->fft->binCnt ); p->outV = cmMemResizeZ( cmSample_t,p->outV, cn ); p->olaV = p->outV + procSmpCnt; p->outN = procSmpCnt; p->hn = hn; // take the FFT of the impulse response cmFftExecSR( p->fft, h, hn ); // copy the FFT of the impulse response to p->H[] for(i=0; ifft->binCnt; ++i) p->H[i] = p->fft->complexV[i] / p->fft->wndSmpCnt; return cmOkRC; } cmRC_t cmConvolveFinal( cmConvolve* p ) { return cmOkRC; } cmRC_t cmConvolveExec( cmConvolve* p, const cmSample_t* x, unsigned xn ) { unsigned i; // take FT of input signal cmFftExecSR( p->fft, x, xn ); // multiply the signal spectra of the input signal and impulse response for(i=0; ifft->binCnt; ++i) p->ifft->complexV[i] = p->H[i] * p->fft->complexV[i]; // take the IFFT of the convolved spectrum cmIFftExecRS(p->ifft,NULL); // sum with previous impulse response tail cmVOS_AddVVV( p->outV, p->outN-1, p->olaV, p->ifft->outV ); // first sample of the impulse response tail is complete p->outV[p->outN-1] = p->ifft->outV[p->outN-1]; // store the new impulse response tail cmVOS_Copy(p->olaV,p->hn-1,p->ifft->outV + p->outN ); return cmOkRC; } cmRC_t cmConvolveSignal( cmCtx* c, const cmSample_t* h, unsigned hn, const cmSample_t* x, unsigned xn, cmSample_t* y, unsigned yn ) { cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn); cmConvolveExec(p,x,xn); unsigned n = cmMin(p->outN,yn); cmVOS_Copy(y,n,p->outV); if( yn > p->outN ) { unsigned m = cmMin(yn-p->outN,p->hn-1); cmVOS_Copy(y+n,m,p->olaV); } cmConvolveFree(&p); return cmOkRC; } cmRC_t cmConvolveTest(cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH ) { cmCtx *c = cmCtxAlloc(NULL,rpt,lhH,stH); cmSample_t h[] = { 1, .5, .25, 0, 0 }; unsigned hn = sizeof(h) / sizeof(h[0]); cmSample_t x[] = { 1, 0, 0, 0, 1, 0, 0, 0 }; unsigned xn = sizeof(x) / sizeof(x[0]); unsigned yn = xn+hn-1; cmSample_t y[yn]; //cmVOS_Hann(h,5); cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn); cmConvolveExec(p,x,xn); cmVOS_Print( rpt, 1, p->outN, p->outV ); cmVOS_Print( rpt, 1, p->hn-1, p->olaV ); cmConvolveFree(&p); cmConvolveSignal(c,h,hn,x,xn,y,yn); cmVOS_Print( rpt, 1, hn+xn-1, y ); cmCtxFree(&c); return cmOkRC; } //------------------------------------------------------------------------------------------------------------ cmBfcc* cmBfccAlloc( cmCtx* ctx, cmBfcc* ap, unsigned bandCnt, unsigned binCnt, double binHz ) { cmBfcc* p = cmObjAlloc( cmBfcc, ctx, ap ); if( bandCnt > 0 ) if( cmBfccInit( p, bandCnt, binCnt, binHz ) != cmOkRC ) cmBfccFree(&p); return p; } cmRC_t cmBfccFree( cmBfcc** pp ) { cmRC_t rc; if( pp== NULL || *pp==NULL) return cmOkRC; cmBfcc* p = *pp; if((rc = cmBfccFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->dctMtx); cmMemPtrFree(&p->filtMask); cmMemPtrFree(&p->outV); cmObjFree(pp); return rc; } cmRC_t cmBfccInit( cmBfcc* p, unsigned bandCnt, unsigned binCnt, double binHz ) { cmRC_t rc; if((rc = cmBfccFinal(p)) != cmOkRC ) return rc; p->dctMtx = cmMemResizeZ( cmReal_t, p->dctMtx, bandCnt*bandCnt); p->filtMask = cmMemResizeZ( cmReal_t, p->filtMask, bandCnt*binCnt); p->outV = cmMemResizeZ( cmReal_t, p->outV, bandCnt ); p->binCnt = binCnt; p->bandCnt = bandCnt; cmVOR_BarkMask( p->filtMask, bandCnt, binCnt, binHz ); cmVOR_DctMatrix(p->dctMtx, bandCnt, bandCnt ); return rc; } cmRC_t cmBfccFinal( cmBfcc* p ) { return cmOkRC; } cmRC_t cmBfccExec( cmBfcc* p, const cmReal_t* magV, unsigned binCnt ) { assert( binCnt <= p->binCnt ); cmReal_t t[ p->bandCnt ]; cmReal_t v[ binCnt ]; // convert magnitude to power cmVOR_PowVVS(v,binCnt,magV,2.0); // apply the filter mask to the power spectrum cmVOR_MultVMV( t, p->bandCnt, p->filtMask, binCnt, v ); //cmVOR_PrintL("\t:\n", p->obj.ctx->outFuncPtr, 1, p->bandCnt, t); cmVOR_ReplaceLte( t, p->bandCnt, t, 0, 0.1e-5 ); cmVOR_LogV( t, p->bandCnt, t ); // decorellate the bands with a DCT cmVOR_MultVMV( p->outV, p->bandCnt, p->dctMtx, p->bandCnt, t ); return cmOkRC; } void cmBfccTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH ) { double srate = 11025; unsigned binCnt = 129; double binHz = srate/(binCnt-1); unsigned bandCnt = kDefaultBarkBandCnt; cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH ); cmBfcc* b = cmBfccAlloc( c, NULL, bandCnt, binCnt, binHz ); cmReal_t powV[] = { 0.8402, 0.3944, 0.7831, 0.7984, 0.9116, 0.1976, 0.3352, 0.7682, 0.2778, 0.5540, 0.4774, 0.6289, 0.3648, 0.5134, 0.9522, 0.9162, 0.6357, 0.7173, 0.1416, 0.6070, 0.0163, 0.2429, 0.1372, 0.8042, 0.1567, 0.4009, 0.1298, 0.1088, 0.9989, 0.2183, 0.5129, 0.8391, 0.6126, 0.2960, 0.6376, 0.5243, 0.4936, 0.9728, 0.2925, 0.7714, 0.5267, 0.7699, 0.4002, 0.8915, 0.2833, 0.3525, 0.8077, 0.9190, 0.0698, 0.9493, 0.5260, 0.0861, 0.1922, 0.6632, 0.8902, 0.3489, 0.0642, 0.0200, 0.4577, 0.0631, 0.2383, 0.9706, 0.9022, 0.8509, 0.2667, 0.5398, 0.3752, 0.7602, 0.5125, 0.6677, 0.5316, 0.0393, 0.4376, 0.9318, 0.9308, 0.7210, 0.2843, 0.7385, 0.6400, 0.3540, 0.6879, 0.1660, 0.4401, 0.8801, 0.8292, 0.3303, 0.2290, 0.8934, 0.3504, 0.6867, 0.9565, 0.5886, 0.6573, 0.8587, 0.4396, 0.9240, 0.3984, 0.8148, 0.6842, 0.9110, 0.4825, 0.2158, 0.9503, 0.9201, 0.1477, 0.8811, 0.6411, 0.4320, 0.6196, 0.2811, 0.7860, 0.3075, 0.4470, 0.2261, 0.1875, 0.2762, 0.5564, 0.4165, 0.1696, 0.9068, 0.1032, 0.1261, 0.4954, 0.7605, 0.9848, 0.9350, 0.6844, 0.3832, 0.7498 }; //cmVOR_Random(powV, binCnt, 0.0, 1.0 ); cmBfccExec(b,powV,binCnt); //cmVOR_PrintL("\nin:\n", rpt, 1, binCnt, powV); //cmVOR_PrintL("\nfilt:\n", rpt, bandCnt, binCnt, b->filtMask); //cmVOR_PrintL("\ndct:\n", rpt, bandCnt, bandCnt,b->dctMtx); cmVOR_PrintL("\nbfcc:\n", rpt, 1, bandCnt, b->outV); cmBfccFree(&b); cmCtxFree(&c); } //------------------------------------------------------------------------------------------------------------ cmCeps* cmCepsAlloc( cmCtx* ctx, cmCeps* ap, unsigned binCnt, unsigned outN ) { cmCeps* p = cmObjAlloc( cmCeps, ctx, ap ); //cmIFftAllocRR( ctx, &p->ft, 0 ); if( binCnt > 0 ) if( cmCepsInit( p, binCnt, outN ) != cmOkRC ) cmCepsFree(&p); return p; } cmRC_t cmCepsFree( cmCeps** pp ) { cmRC_t rc; if( pp== NULL || *pp==NULL) return cmOkRC; cmCeps* p = *pp; if((rc = cmCepsFinal(p)) != cmOkRC ) return rc; //cmObjFreeStatic( cmIFftFreeRR, cmIFftRR, p->ft ); cmMemPtrFree(&p->dctM); cmMemPtrFree(&p->outV); cmObjFree(pp); return rc; } cmRC_t cmCepsInit( cmCeps* p, unsigned binCnt, unsigned outN ) { cmRC_t rc; if((rc = cmCepsFinal(p)) != cmOkRC ) return rc; //cmIFftInitRR( &p->ft, binCnt ); p->dct_cn = (binCnt-1)*2; p->dctM = cmMemResize( cmReal_t, p->dctM, outN*p->dct_cn ); p->outN = outN; //p->ft.outN; p->outV = cmMemResizeZ( cmReal_t, p->outV, outN ); //p->ft.outV; p->binCnt = binCnt; assert( outN <= p->dct_cn ); cmVOR_DctMatrix( p->dctM, outN, p->dct_cn ); return rc; } cmRC_t cmCepsFinal( cmCeps* p ) { return cmOkRC; } cmRC_t cmCepsExec( cmCeps* p, const cmReal_t* magV, const cmReal_t* phsV, unsigned binCnt ) { assert( binCnt == p->binCnt ); cmReal_t v[ p->dct_cn ]; // guard against zeros in the magn spectrum cmVOR_ReplaceLte(v,binCnt,magV,0.0,0.00001); // take the log of the spectrum cmVOR_LogV(v,binCnt,v); // reconstruct the negative frequencies int i,j; for(i=1,j=p->dct_cn-1; ioutV, p->outN, p->dctM, p->dct_cn, v ); //cmIFftExecPolarRR( &p->ft, v, phsV ); return cmOkRC; } //------------------------------------------------------------------------------------------------------------ cmOla* cmOlaAlloc( cmCtx* ctx, cmOla* ap, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId ) { cmOla* p = cmObjAlloc( cmOla, ctx, ap ); cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0); if( wndSmpCnt > 0 ) if( cmOlaInit(p,wndSmpCnt,hopSmpCnt,procSmpCnt,wndTypeId) != cmOkRC ) cmOlaFree(&p); return p; } cmRC_t cmOlaFree( cmOla** pp ) { cmRC_t rc; if( pp==NULL || *pp==NULL ) return cmOkRC; cmOla* p = *pp; if(( rc = cmOlaFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->bufV); cmMemPtrFree(&p->outV); cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf ); cmObjFree(pp); return rc; } cmRC_t cmOlaInit( cmOla* p, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId ) { cmRC_t rc; if((rc = cmOlaFinal(p)) != cmOkRC ) return rc; if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC ) return rc; p->bufV = cmMemResizeZ( cmSample_t, p->bufV, wndSmpCnt ); p->outV = cmMemResizeZ( cmSample_t, p->outV, hopSmpCnt ); p->outPtr = p->outV + hopSmpCnt; // hopSmpCnt must be an even multiple of procSmpCnt assert( hopSmpCnt % procSmpCnt == 0 ); assert( wndSmpCnt >= hopSmpCnt ); p->wndSmpCnt = wndSmpCnt; p->hopSmpCnt = hopSmpCnt; p->procSmpCnt= procSmpCnt; p->idx = 0; return rc; } cmRC_t cmOlaFinal( cmOla* p ) { return cmOkRC; } // The incoming buffer and the ola buf (bufV) // can be divided into three logical parts: // // [head][middle][tail] // // head = hopSmpCnt values // tail = hopSmpCnt values // middle = wndSmpCnt - (2*hopSmpCnt) values // // Each exec can be broken into three phases: // // outV = bufV[tail] + in[head] // bufV[middle] += in[middle] // bufV[tail] = in[tail] // cmRC_t cmOlaExecS( cmOla* p, const cmSample_t* sp, unsigned sN ) { assert( sN == p->wndSmpCnt ); cmRC_t rc = cmOkRC; const cmSample_t* ep = sp + sN; const cmSample_t* wp = p->wf.wndV; int i,j,k,n; // [Sum head of incoming samples with tail of ola buf] // fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt] for(i=0; ihopSmpCnt; ++i) { p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++); if( p->idx == p->wndSmpCnt ) p->idx = 0; } // [Sum middle of incoming samples with middle of ola buf] // sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[] n = p->wndSmpCnt - (2*p->hopSmpCnt); k = p->idx; for(j=0; jbufV[k++] += (*sp++ * *wp++); if( k == p->wndSmpCnt ) k = 0; } // [Assign tail of incoming to tail of ola buf] // assign ending samples from sp[] into bufV[] while( sp < ep ) { p->bufV[k++] = (*sp++ * *wp++); if( k == p->wndSmpCnt ) k = 0; } p->outPtr = p->outV; return rc; } cmRC_t cmOlaExecR( cmOla* p, const cmReal_t* sp, unsigned sN ) { assert( sN == p->wndSmpCnt ); cmRC_t rc = cmOkRC; const cmReal_t* ep = sp + sN; const cmSample_t* wp = p->wf.wndV; int i,j,k,n; // fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt] for(i=0; ihopSmpCnt; ++i) { p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++); if( p->idx == p->wndSmpCnt ) p->idx = 0; } // sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[] n = p->wndSmpCnt - (2*p->hopSmpCnt); k = p->idx; for(j=0; jbufV[k++] += (*sp++ * *wp++); if( k == p->wndSmpCnt ) k = 0; } // assign ending samples from sp[] into bufV[] while( sp < ep ) { p->bufV[k++] = (*sp++ * *wp++); if( k == p->wndSmpCnt ) k = 0; } p->outPtr = p->outV; return rc; } const cmSample_t* cmOlaExecOut(cmOla* p) { const cmSample_t* sp = p->outPtr; if( sp >= p->outV + p->hopSmpCnt ) return NULL; p->outPtr += p->procSmpCnt; return sp; } //------------------------------------------------------------------------------------------------------------ cmPhsToFrq* cmPhsToFrqAlloc( cmCtx* c, cmPhsToFrq* ap, double srate, unsigned binCnt, unsigned hopSmpCnt ) { cmPhsToFrq* p = cmObjAlloc( cmPhsToFrq, c, ap ); if( srate != 0 ) if( cmPhsToFrqInit( p, srate, binCnt, hopSmpCnt ) != cmOkRC ) cmPhsToFrqFree(&p); return p; } cmRC_t cmPhsToFrqFree( cmPhsToFrq** pp ) { cmRC_t rc = cmOkRC; cmPhsToFrq* p = *pp; if( pp==NULL || *pp== NULL ) return rc; if((rc = cmPhsToFrqFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->hzV); cmMemPtrFree(&p->phsV); cmMemPtrFree(&p->wV); cmObjFree(pp); return rc; } cmRC_t cmPhsToFrqInit( cmPhsToFrq* p, double srate, unsigned binCnt, unsigned hopSmpCnt ) { cmRC_t rc; unsigned i; if((rc = cmPhsToFrqFinal(p)) != cmOkRC ) return rc; p->hzV = cmMemResizeZ( cmReal_t, p->hzV, binCnt ); p->phsV = cmMemResizeZ( cmReal_t, p->phsV, binCnt ); p->wV = cmMemResizeZ( cmReal_t, p->wV, binCnt ); p->srate = srate; p->binCnt = binCnt; p->hopSmpCnt = hopSmpCnt; for(i=0; iwV[i] = M_PI * i * hopSmpCnt / (binCnt-1); return rc; } cmRC_t cmPhsToFrqFinal(cmPhsToFrq* p ) { return cmOkRC; } cmRC_t cmPhsToFrqExec( cmPhsToFrq* p, const cmReal_t* phsV ) { cmRC_t rc = cmOkRC; unsigned i; double twoPi = 2.0 * M_PI; double den = twoPi * p->hopSmpCnt; for(i=0; ibinCnt; ++i) { cmReal_t dPhs = phsV[i] - p->phsV[i]; // unwrap phase - see phase_study.m for explanation cmReal_t k = round( (p->wV[i] - dPhs) / twoPi); // convert phase change to Hz p->hzV[i] = (k * twoPi + dPhs) * p->srate / den; // store phase for next iteration p->phsV[i] = phsV[i]; } return rc; } //------------------------------------------------------------------------------------------------------------ cmPvAnl* cmPvAnlAlloc( cmCtx* ctx, cmPvAnl* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags ) { cmRC_t rc; cmPvAnl* p = cmObjAlloc( cmPvAnl, ctx, ap ); cmShiftBufAlloc(ctx, &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt ); cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0); cmFftAllocSR( ctx, &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl); cmPhsToFrqAlloc(ctx, &p->pf, srate, p->ft.binCnt, hopSmpCnt ); if( procSmpCnt > 0 ) if((rc = cmPvAnlInit(p,procSmpCnt,srate,wndSmpCnt,hopSmpCnt,flags)) != cmOkRC ) cmPvAnlFree(&p); return p; } cmRC_t cmPvAnlFree( cmPvAnl** pp ) { cmRC_t rc; if( pp==NULL || *pp==NULL ) return cmOkRC; cmPvAnl* p = *pp; if((rc = cmPvAnlFinal(p) ) != cmOkRC ) return rc; cmObjFreeStatic( cmPhsToFrqFree, cmPhsToFrq, p->pf ); cmObjFreeStatic( cmFftFreeSR, cmFftSR, p->ft ); cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf ); cmObjFreeStatic( cmShiftBufFree, cmShiftBuf, p->sb ); cmObjFree(pp); return rc; } cmRC_t cmPvAnlInit( cmPvAnl* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags ) { cmRC_t rc; if((rc = cmPvAnlFinal(p)) != cmOkRC ) return rc; if((rc = cmShiftBufInit( &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt )) != cmOkRC ) return rc; if((rc = cmWndFuncInit( &p->wf, kHannWndId | kNormByLengthWndFl, wndSmpCnt, 0)) != cmOkRC ) return rc; if((rc = cmFftInitSR( &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl)) != cmOkRC ) return rc; if((rc = cmPhsToFrqInit( &p->pf, srate, p->ft.binCnt, hopSmpCnt)) != cmOkRC ) return rc; // if the window was just initialized // divide the window to indirectly apply the magnitude normalization //if( p->wndSmpCnt != wndSmpCnt ) // cmVOS_DivVS( p->wf.wndV, p->wf.outN, wndSmpCnt ); p->flags = flags; p->procSmpCnt = procSmpCnt; p->wndSmpCnt = wndSmpCnt; p->hopSmpCnt = hopSmpCnt; p->binCnt = p->ft.binCnt; p->magV = p->ft.magV; p->phsV = p->ft.phsV; p->hzV = p->pf.hzV; return rc; } cmRC_t cmPvAnlFinal(cmPvAnl* p ) { return cmOkRC; } bool cmPvAnlExec( cmPvAnl* p, const cmSample_t* x, unsigned xN ) { bool fl = false; while( cmShiftBufExec(&p->sb,x,xN) ) { cmWndFuncExec(&p->wf, p->sb.outV, p->sb.wndSmpCnt ); cmFftExecSR(&p->ft,NULL,0); if( cmIsFlag(p->flags,kCalcHzPvaFl) ) cmPhsToFrqExec(&p->pf,p->phsV); fl = true; } return fl; } //------------------------------------------------------------------------------------------------------------ cmPvSyn* cmPvSynAlloc( cmCtx* ctx, cmPvSyn* ap, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId ) { cmRC_t rc; cmPvSyn* p = cmObjAlloc( cmPvSyn, ctx, ap ); cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0); cmIFftAllocRS( ctx, &p->ft, wndSmpCnt/2+1 ); cmOlaAlloc( ctx, &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId ); if( procSmpCnt ) if((rc = cmPvSynInit(p,procSmpCnt,outSrate,wndSmpCnt,hopSmpCnt,wndTypeId)) != cmOkRC ) cmPvSynFree(&p); return p; } cmRC_t cmPvSynFree( cmPvSyn** pp ) { cmRC_t rc; if( pp==NULL || *pp==NULL ) return cmOkRC; cmPvSyn* p = *pp; if((rc = cmPvSynFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->minRphV); cmMemPtrFree(&p->maxRphV); cmMemPtrFree(&p->itrV); cmMemPtrFree(&p->phs0V); cmMemPtrFree(&p->phsV); cmMemPtrFree(&p->mag0V); cmMemPtrFree(&p->magV); cmObjFreeStatic( cmOlaFree, cmOla, p->ola); cmObjFreeStatic( cmIFftFreeRS, cmIFftRS, p->ft ); cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf ); cmObjFree(pp); return cmOkRC; } cmRC_t cmPvSynInit( cmPvSyn* p, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId ) { cmRC_t rc; int k; double twoPi = 2.0 * M_PI; bool useHannFl = true; int m = useHannFl ? 2 : 1; if((rc = cmPvSynFinal(p)) != cmOkRC ) return rc; p->outSrate = outSrate; p->procSmpCnt = procSmpCnt; p->wndSmpCnt = wndSmpCnt; p->hopSmpCnt = hopSmpCnt; p->binCnt = wndSmpCnt / 2 + 1; p->minRphV = cmMemResizeZ( cmReal_t, p->minRphV, p->binCnt ); p->maxRphV = cmMemResizeZ( cmReal_t, p->maxRphV, p->binCnt ); p->itrV = cmMemResizeZ( cmReal_t, p->itrV, p->binCnt ); p->phs0V = cmMemResizeZ( cmReal_t, p->phs0V, p->binCnt ); p->phsV = cmMemResizeZ( cmReal_t, p->phsV, p->binCnt ); p->mag0V = cmMemResizeZ( cmReal_t, p->mag0V, p->binCnt ); p->magV = cmMemResizeZ( cmReal_t, p->magV, p->binCnt ); if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC ) return rc; if((rc = cmIFftInitRS( &p->ft, p->binCnt )) != cmOkRC ) return rc; if((rc = cmOlaInit( &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId )) != cmOkRC ) return rc; for(k=0; kbinCnt; ++k) { // complete revolutions per hop in radians p->itrV[k] = twoPi * floor((double)k * hopSmpCnt / wndSmpCnt ); p->minRphV[k] = ((cmReal_t)(k-m)) * hopSmpCnt * twoPi / wndSmpCnt; p->maxRphV[k] = ((cmReal_t)(k+m)) * hopSmpCnt * twoPi / wndSmpCnt; //printf("%f %f %f\n",p->itrV[k],p->minRphV[k],p->maxRphV[k]); } return rc; } cmRC_t cmPvSynFinal(cmPvSyn* p ) { return cmOkRC; } cmRC_t cmPvSynExec( cmPvSyn* p, const cmReal_t* magV, const cmReal_t* phsV ) { double twoPi = 2.0 * M_PI; unsigned k; for(k=0; kbinCnt; ++k) { // phase dist between cur and prv frame cmReal_t dp = phsV[k] - p->phs0V[k]; // dist must be positive (accum phase always increases) if( dp < -0.00001 ) dp += twoPi; // add in complete revolutions based on the bin frequency // (these would have been lost from 'dp' due to phase wrap) dp += p->itrV[k]; // constrain the phase change to lie within the range of the kth bin if( dp < p->minRphV[k] ) dp += twoPi; if( dp > p->maxRphV[k] ) dp -= twoPi; p->phsV[k] = p->phs0V[k] + dp; p->magV[k] = p->mag0V[k]; p->phs0V[k] = phsV[k]; p->mag0V[k] = magV[k]; } cmIFftExecPolarRS( &p->ft, magV, phsV ); cmOlaExecS( &p->ola, p->ft.outV, p->ft.outN ); //printf("%i %i\n",p->binCnt,p->ft.binCnt ); //cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, magV ); //cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, p->phsV ); //cmVOS_Print( p->obj.ctx->outFuncPtr, 1, 10, p->ft.outV ); return cmOkRC; } cmRC_t cmPvSynDoIt( cmPvSyn* p, const cmSample_t* v ) { cmOlaExecS( &p->ola, v, p->wndSmpCnt ); //printf("%f\n",cmVOS_RMS(s,p->wndSmpCnt,p->wndSmpCnt)); return cmOkRC; } const cmSample_t* cmPvSynExecOut(cmPvSyn* p ) { return cmOlaExecOut(&p->ola); } //------------------------------------------------------------------------------------------------------------ cmMidiSynth* cmMidiSynthAlloc( cmCtx* ctx, cmMidiSynth* ap, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate ) { cmMidiSynth* p = cmObjAlloc( cmMidiSynth, ctx, ap ); if( pgmArray != NULL ) if( cmMidiSynthInit( p, pgmArray, pgmCnt, voiceCnt, procSmpCnt, outChCnt, srate ) != cmOkRC ) cmMidiSynthFree(&p); return p; } cmRC_t cmMidiSynthFree( cmMidiSynth** pp ) { cmRC_t rc; if( pp==NULL || *pp==NULL) return cmOkRC; cmMidiSynth* p = *pp; if((rc = cmMidiSynthFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->voiceArray); cmMemPtrFree(&p->outM); cmMemPtrFree(&p->outChArray); cmObjFree(pp); return cmOkRC; } cmRC_t cmMidiSynthInit( cmMidiSynth* p, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate ) { // at least one pgm must be given assert( pgmCnt > 0 ); unsigned i; cmRC_t rc; if((rc = cmMidiSynthFinal(p)) != cmOkRC ) return rc; p->voiceArray = cmMemResizeZ( cmMidiVoice, p->voiceArray, voiceCnt ); p->outM = cmMemResizeZ( cmSample_t, p->outM, outChCnt * procSmpCnt ); p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt ); p->avail = p->voiceArray; p->voiceCnt = voiceCnt; p->activeVoiceCnt = 0; p->voiceStealCnt = 0; p->procSmpCnt = procSmpCnt; p->outChCnt = outChCnt; p->srate = srate; for(i=0; ioutChArray[i] = p->outM + (i*procSmpCnt); for(i=0; ichArray[i].pgm = 0; p->chArray[i].active = NULL; p->chArray[i].pitchBend = 0; p->chArray[i].synthPtr = p; memset(p->chArray[i].midiCtl, 0, kMidiCtlCnt * sizeof(cmMidiByte_t)); } for(i=0; ivoiceArray[i].index = i; p->voiceArray[i].flags = 0; p->voiceArray[i].pitch = kInvalidMidiPitch; p->voiceArray[i].velocity = kInvalidMidiVelocity; p->voiceArray[i].pgm.pgm = kInvalidMidiPgm; p->voiceArray[i].pgm.cbPtr = NULL; p->voiceArray[i].pgm.cbDataPtr = NULL; p->voiceArray[i].chPtr = NULL; p->voiceArray[i].link = ivoiceArray + i + 1 : NULL; } for(i=0; i= kMidiPgmCnt ) rc = cmCtxRtCondition( &p->obj, cmArgAssertRC, "MIDI program change values must be less than %i.",kMidiPgmCnt); else { p->pgmArray[ idx ].cbPtr = pgmArray[i].cbPtr; p->pgmArray[ idx ].cbDataPtr = pgmArray[i].cbDataPtr; p->pgmArray[ idx ].pgm = idx; } } return rc; } cmRC_t cmMidiSynthFinal( cmMidiSynth* p ) { return cmOkRC; } cmRC_t _cmMidiSynthOnNoteOn( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel ) { assert( ch < kMidiChCnt ); if( p->activeVoiceCnt == p->voiceCnt ) { ++p->voiceStealCnt; return cmOkRC; } assert( p->avail != NULL ); cmMidiSynthCh* chPtr = p->chArray + ch; cmMidiVoice* vp = p->avail; ++p->activeVoiceCnt; // update avail p->avail = p->avail->link; // update active vp->flags |= kActiveMsFl | kKeyGateMsFl; vp->pitch = pitch; vp->velocity = vel; vp->pgm = p->pgmArray[ chPtr->pgm ]; vp->chPtr = chPtr; vp->link = chPtr->active; chPtr->active = vp; vp->pgm.cbPtr( vp, kAttackMsId, NULL, 0 ); return cmOkRC; } cmRC_t _cmMidiSynthOnNoteOff( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel ) { assert( ch < kMidiChCnt ); cmMidiSynthCh* cp = p->chArray + ch; cmMidiVoice* vp = cp->active; // find the voice for the given pitch while( vp != NULL ) { if( (vp->pitch == pitch) && (cmIsFlag(vp->flags,kKeyGateMsFl)==true) ) break; vp = vp->link; } // if no voice had a key down on this pitch if( vp == NULL ) { return cmOkRC; } // mark the key as 'up' vp->flags = cmClrFlag(vp->flags,kKeyGateMsFl); // if the sustain pedal is up if( cp->midiCtl[ kSustainCtlMdId ] == 0 ) vp->pgm.cbPtr( vp, kReleaseMsId, NULL, 0 ); return cmOkRC; } cmRC_t _cmMidiSynthOnCtl( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t ctlId, cmMidiByte_t ctlValue ) { assert( ch < kMidiChCnt && ctlId < kMidiCtlCnt ); cmMidiSynthCh* cp = p->chArray + ch; cp->midiCtl[ ctlId ] = ctlValue; // if the sustain pedal is going up if( ctlId == kSustainCtlMdId && ctlValue == 0 ) { cmMidiVoice* vp = cp->active; while(vp != NULL) { if( cmIsFlag(vp->flags,kKeyGateMsFl)==false ) vp->pgm.cbPtr(vp, kReleaseMsId, NULL, 0 ); vp = vp->link; } } //printf("%i %i %f\n",ctlId,ctlValue,ctlValue/127.0); return cmOkRC; } cmRC_t cmMidiSynthOnMidi( cmMidiSynth* p, const cmMidiPacket_t* pktArray, unsigned pktCnt ) { unsigned i=0; for(i=0; istatus & 0x0f; cmMidiByte_t status = mp->status & 0xf0; switch( status ) { case kNoteOnMdId: if( mp->d1 != 0 ) { _cmMidiSynthOnNoteOn(p,ch,mp->d0,mp->d1); break; } // fall through case kNoteOffMdId: _cmMidiSynthOnNoteOff(p,ch,mp->d0,mp->d1); break; case kPolyPresMdId: break; case kCtlMdId: _cmMidiSynthOnCtl( p, ch, mp->d0, mp->d1 ); break; case kPgmMdId: break; case kChPresMdId: break; case kPbendMdId: break; default: printf("Unknown MIDI status:%i %i\n",(int)status,(int)mp->status); break; } } } return cmOkRC; } cmRC_t cmMidiSynthExec( cmMidiSynth* p, cmSample_t* outChArray[], unsigned outChCnt ) { unsigned i; cmSample_t** chArray = outChArray == NULL ? p->outChArray : outChArray; unsigned chCnt = outChArray == NULL ? p->outChCnt : outChCnt; // FIX: make one active chain attached to cmMidiSynth rather than many // active chains attached to each channel - this will avoid the extra // iterations below. // for each channel for(i=0; ichArray[i].active; cmMidiVoice* prv = NULL; // for each voice assigned to this channel while(vp != NULL) { // tell the voice to perform its DSP function - returns 0 if the voice is no longer active if( vp->pgm.cbPtr( vp, kDspMsId, chArray, chCnt ) ) { prv = vp; vp = vp->link; } else { cmMidiVoice* nvp = vp->link; // remove vp from the active chain if( prv != NULL ) prv->link = vp->link; else { assert( vp == p->chArray[i].active ); // vp is first recd on active chain, nvp becomes first ... p->chArray[i].active = vp->link; prv = NULL; // ... so prv must be NULL } // insert this voice on the available chain vp->link = p->avail; p->avail = vp; --p->activeVoiceCnt; vp = nvp; } } } return cmOkRC; } //------------------------------------------------------------------------------------------------------------ cmWtVoice* cmWtVoiceAlloc( cmCtx* ctx, cmWtVoice* ap, unsigned procSmpCnt, cmReal_t hz ) { cmWtVoice* p = cmObjAlloc( cmWtVoice, ctx, ap ); if( procSmpCnt != 0 ) if( cmWtVoiceInit( p, procSmpCnt, hz ) != cmOkRC ) cmWtVoiceFree(&p); return p; } cmRC_t cmWtVoiceFree( cmWtVoice** pp ) { cmRC_t rc = cmOkRC; if( pp==NULL || *pp==NULL ) return cmOkRC; cmWtVoice* p = *pp; if((rc = cmWtVoiceFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->outV); cmObjFree(pp); return rc; } cmRC_t cmWtVoiceInit( cmWtVoice* p, unsigned procSmpCnt, cmReal_t hz ) { p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt ); p->outN = procSmpCnt; p->hz = hz; p->level = 0; p->durSmpCnt = 0; p->phase = 0; p->state = kOffWtId; return cmOkRC; } cmRC_t cmWtVoiceFinal( cmWtVoice* p ) { return cmOkRC; } int cmWtVoiceExec( cmWtVoice* p, struct cmMidiVoice_str* mvp, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt ) { switch( sel ) { case kAttackMsId: p->state = kAtkWtId; p->hz = (13.75 * pow(2,(-9.0/12.0))) * pow(2,((double)mvp->pitch / 12)); //printf("%fhz\n",p->hz); break; case kReleaseMsId: p->state = kRlsWtId; //printf("rls:%f\n",p->phase); break; case kDspMsId: { if( p->state == kRlsWtId ) { p->state = kOffWtId; return 0; } cmMidiSynth* sp = mvp->chPtr->synthPtr; cmSample_t* dp = outChCnt == 0 ? p->outV : outChArray[0]; cmSample_t* ep = dp + p->outN; cmReal_t rps = (2.0 * M_PI * p->hz) / sp->srate; cmReal_t sum=0; unsigned i=0; for(; dp < ep; ++dp) { *dp += (cmSample_t)(0.5 * sin( p->phase )); sum += *dp; ++i; p->phase += rps; } //printf("(%f %f %i %i %p) ",p->phase,sum,i,p->outN,outChArray[0] ); } break; default: assert(0); break; } return 1; } //------------------------------------------------------------------------------------------------------------ cmWtVoiceBank* cmWtVoiceBankAlloc( cmCtx* ctx, cmWtVoiceBank* ap, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt ) { cmWtVoiceBank* p = cmObjAlloc( cmWtVoiceBank, ctx, ap ); if( srate != 0 ) if( cmWtVoiceBankInit( p, srate, procSmpCnt, voiceCnt, chCnt ) != cmOkRC ) cmWtVoiceBankFree(&p); return p; } cmRC_t cmWtVoiceBankFree( cmWtVoiceBank** pp ) { cmRC_t rc; if( pp==NULL || *pp==NULL) return cmOkRC; cmWtVoiceBank* p = *pp; if((rc = cmWtVoiceBankFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->voiceArray); cmMemPtrFree(&p->chArray); cmMemPtrFree(&p->buf); cmObjFree(pp); return rc; } cmRC_t cmWtVoiceBankInit( cmWtVoiceBank* p, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt ) { cmRC_t rc; unsigned i; if((rc = cmWtVoiceBankFinal(p)) != cmOkRC ) return rc; p->voiceArray = cmMemResizeZ( cmWtVoice*, p->voiceArray, voiceCnt ); for(i=0; ivoiceArray[i] = cmWtVoiceAlloc(p->obj.ctx,NULL,procSmpCnt,0); p->voiceCnt = voiceCnt; p->buf = cmMemResizeZ( cmSample_t, p->buf, chCnt * procSmpCnt ); p->chArray = cmMemResizeZ( cmSample_t*, p->chArray, chCnt ); for(i=0; ichArray[i] = p->buf + (i*procSmpCnt); p->chCnt = chCnt; p->procSmpCnt = procSmpCnt; return cmOkRC; } cmRC_t cmWtVoiceBankFinal( cmWtVoiceBank* p ) { unsigned i; for(i=0; ivoiceCnt; ++i) cmWtVoiceFree(&p->voiceArray[i]); return cmOkRC; } int cmWtVoiceBankExec( cmWtVoiceBank* p, struct cmMidiVoice_str* voicePtr, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt ) { cmWtVoice* vp = p->voiceArray[ voicePtr->index ]; bool fl = outChArray==NULL || outChCnt==0; cmSample_t** chArray = fl ? p->chArray : outChArray; unsigned chCnt = fl ? p->chCnt : outChCnt; return cmWtVoiceExec( vp, voicePtr, sel, chArray, chCnt ); } //------------------------------------------------------------------------------------------------------------ cmAudioFileBuf* cmAudioFileBufAlloc( cmCtx* ctx, cmAudioFileBuf* ap, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt ) { cmAudioFileBuf* p = cmObjAlloc( cmAudioFileBuf, ctx, ap ); if( procSmpCnt != 0 ) if( cmAudioFileBufInit( p, procSmpCnt, fn, audioChIdx, begSmpIdx, durSmpCnt ) != cmOkRC ) cmAudioFileBufFree(&p); return p; } cmRC_t cmAudioFileBufFree( cmAudioFileBuf** pp ) { cmRC_t rc; if( pp==NULL || *pp==NULL) return cmOkRC; cmAudioFileBuf* p = *pp; if((rc = cmAudioFileBufFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->bufV); cmMemPtrFree(&p->fn); cmObjFree(pp); return rc; } cmRC_t cmAudioFileBufInit( cmAudioFileBuf* p, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt ) { cmAudioFileH_t afH; cmRC_t rc; if((rc = cmAudioFileBufFinal(p)) != cmOkRC ) return rc; // open the audio file for reading if( cmAudioFileIsValid( afH = cmAudioFileNewOpen( fn, &p->info, &rc, p->obj.err.rpt ))==false || rc != kOkAfRC ) return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file '%s' could not be opend.",fn ); // validate the audio channel if( audioChIdx >= p->info.chCnt ) return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file channel index %i is out of range for the audio file '%s'.",audioChIdx,fn); // validate the start sample index if( begSmpIdx > p->info.frameCnt ) return cmCtxRtCondition(&p->obj, cmOkRC, "The start sample index %i is past the end of the audio file '%s'.",begSmpIdx,fn); if( durSmpCnt == cmInvalidCnt ) durSmpCnt = p->info.frameCnt - begSmpIdx; // validate the duration if( begSmpIdx + durSmpCnt > p->info.frameCnt ) { unsigned newDurSmpCnt = p->info.frameCnt - begSmpIdx; cmCtxRtCondition(&p->obj, cmOkRC, "The selected sample duration %i is past the end of the audio file '%s' and has been shorted to %i samples.",durSmpCnt,fn,newDurSmpCnt); durSmpCnt = newDurSmpCnt; } // seek to the starting sample if( cmAudioFileSeek( afH, begSmpIdx ) != kOkAfRC ) return cmCtxRtCondition(&p->obj, cmArgAssertRC,"Seek to sample index %i failed on the audio file '%s'.",begSmpIdx,fn); // allocate the buffer memory p->bufV = cmMemResizeZ( cmSample_t, p->bufV, durSmpCnt ); p->fn = cmMemResize( char, p->fn, strlen(fn)+1 ); p->bufN = durSmpCnt; p->begSmpIdx = begSmpIdx; p->chIdx = audioChIdx; strcpy(p->fn,fn); cmSample_t* outV = p->bufV; // read the file into the buffer unsigned rdSmpCnt = cmMin(4096,durSmpCnt); unsigned cmc = 0; while( cmc < durSmpCnt ) { unsigned actualReadCnt = 0; unsigned n = rdSmpCnt; cmSample_t* chArray[] = {outV}; if( cmc + n > durSmpCnt ) n = durSmpCnt - cmc; if((rc=cmAudioFileReadSample( afH, n, audioChIdx, 1, chArray, &actualReadCnt)) != kOkAfRC ) break; cmc += actualReadCnt; outV += actualReadCnt; } if( rc==kOkAfRC || (rc != kOkAfRC && cmAudioFileIsEOF(afH))) rc = cmOkRC; return rc; } cmRC_t cmAudioFileBufFinal(cmAudioFileBuf* p ) { return cmOkRC; } unsigned cmAudioFileBufExec( cmAudioFileBuf* p, unsigned smpIdx, cmSample_t* outV, unsigned outN, bool sumIntoOutFl ) { if( outV == NULL || outN == 0 || smpIdx >= p->bufN ) return 0; unsigned n = cmMin(outN,p->bufN-smpIdx); if( sumIntoOutFl ) cmVOS_AddVV(outV,n,p->bufV + smpIdx); else cmVOS_Copy(outV,n,p->bufV + smpIdx ); if( n < outN ) memset(outV+n,0,(outN-n)*sizeof(cmSample_t)); return n; } //------------------------------------------------------------------------------------------------------------ cmMDelay* cmMDelayAlloc( cmCtx* ctx, cmMDelay* ap, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray ) { cmMDelay* p = cmObjAlloc( cmMDelay, ctx, ap ); if( procSmpCnt != 0 ) if( cmMDelayInit( p, procSmpCnt, srate, fbCoeff, delayCnt, delayMsArray, delayGainArray ) != cmOkRC ) cmMDelayFree(&p); return p; } cmRC_t cmMDelayFree( cmMDelay** pp ) { cmRC_t rc; if( pp == NULL || *pp==NULL) return cmOkRC; cmMDelay* p = *pp; if((rc = cmMDelayFinal(p)) != cmOkRC ) return rc; unsigned i; for(i=0; idelayCnt; ++i) cmMemPtrFree(&p->delayArray[i].delayBuf); cmMemPtrFree(&p->delayArray); cmMemPtrFree(&p->outV); cmObjFree(pp); return cmOkRC; } cmRC_t cmMDelayInit( cmMDelay* p, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray ) { cmRC_t rc; if((rc = cmMDelayFinal(p)) != cmOkRC ) return rc; if( delayCnt <= 0 ) return rc; p->delayArray = cmMemResizeZ( cmMDelayHead, p->delayArray, delayCnt ); unsigned i; for(i=0; idelayArray[i].delayGain = delayGainArray == NULL ? 1.0 : delayGainArray[i]; p->delayArray[i].delayMs = delayMsArray[i]; p->delayArray[i].delaySmpFrac = delayMsArray[i] * srate / 1000.0; p->delayArray[i].delayBufSmpCnt = ceil(delayMsArray[i] * srate / 1000)+2; p->delayArray[i].delayBuf = cmMemResizeZ( cmSample_t, p->delayArray[i].delayBuf, p->delayArray[i].delayBufSmpCnt ); p->delayArray[i].inIdx = 0; } p->delayCnt= delayCnt; p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt ); p->outN = procSmpCnt; p->fbCoeff = fbCoeff; p->srate = srate; return cmOkRC; } cmRC_t cmMDelayFinal( cmMDelay* p ) { return cmOkRC; } void _cmMDelayExec( cmMDelay* p, cmMDelayHead* hp, const cmSample_t inV[], cmSample_t outV[], unsigned sigN ) { cmSample_t* dl = hp->delayBuf; // ptr to the base of the delay line cmReal_t dfi = (cmReal_t)(hp->inIdx - hp->delaySmpFrac) + hp->delayBufSmpCnt; // fractional delay in samples int dii0 = ((int)dfi) % hp->delayBufSmpCnt; // index to the sample just before the delay position int dii1 = (dii0 + 1) % hp->delayBufSmpCnt; // index to the sample just after the delay position //cmReal_t frac = 0; //dfi - dii0; // interpolation coeff. unsigned i; for(i=0; idelayCnt; dl[hp->inIdx] = (p->fbCoeff * outSmp) + inV[i]; hp->inIdx = (hp->inIdx+1) % hp->delayBufSmpCnt; dii0 = (dii0+1) % hp->delayBufSmpCnt; dii1 = (dii1+1) % hp->delayBufSmpCnt; } } cmRC_t cmMDelayExec( cmMDelay* p, const cmSample_t* inV, cmSample_t* outV, unsigned sigN, bool bypassFl ) { assert( sigN <= p->outN); if( outV == NULL ) { outV = p->outV; sigN = cmMin(sigN,p->outN); cmVOS_Fill(outV,sigN,0); } else { cmVOS_Zero(outV,sigN); } if( inV == NULL ) return cmOkRC; if( bypassFl ) { memcpy(outV,inV,sigN*sizeof(cmSample_t)); return cmOkRC; } unsigned di; for( di=0; didelayCnt; ++di) { cmMDelayHead* hp = p->delayArray + di; hp->delaySmpFrac = hp->delayMs * p->srate / 1000.0; _cmMDelayExec(p,hp,inV,outV,sigN); } return cmOkRC; } void cmMDelaySetTapMs( cmMDelay* p, unsigned tapIdx, cmReal_t ms ) { assert( tapIdx < p->delayCnt ); p->delayArray[tapIdx].delayMs = ms; } void cmMDelaySetTapGain(cmMDelay* p, unsigned tapIdx, cmReal_t gain ) { assert( tapIdx < p->delayCnt ); p->delayArray[tapIdx].delayGain = gain; } void cmMDelayReport( cmMDelay* p, cmRpt_t* rpt ) { cmRptPrintf(rpt,"tap cnt:%i fb:%f sr:%f\n",p->delayCnt,p->fbCoeff,p->srate); } //------------------------------------------------------------------------------------------------------------ cmAudioSegPlayer* cmAudioSegPlayerAlloc( cmCtx* ctx, cmAudioSegPlayer* ap, unsigned procSmpCnt, unsigned outChCnt ) { cmAudioSegPlayer* p = cmObjAlloc( cmAudioSegPlayer, ctx, ap ); if( procSmpCnt != 0 ) if( cmAudioSegPlayerInit( p, procSmpCnt, outChCnt ) != cmOkRC ) cmAudioSegPlayerFree(&p); return p; } cmRC_t cmAudioSegPlayerFree( cmAudioSegPlayer** pp ) { if( pp == NULL || *pp == NULL ) return cmOkRC; cmAudioSegPlayer* p = *pp; cmMemPtrFree(&p->segArray); cmMemPtrFree(&p->outM); cmObjFree(pp); return cmOkRC; } cmRC_t cmAudioSegPlayerInit( cmAudioSegPlayer* p, unsigned procSmpCnt, unsigned outChCnt ) { cmRC_t rc = cmOkRC; if((rc = cmAudioSegPlayerFinal(p)) != cmOkRC ) return rc; p->procSmpCnt = procSmpCnt; p->outChCnt = outChCnt; p->segCnt = 0; if( outChCnt ) { unsigned i; p->outM = cmMemResizeZ( cmSample_t, p->outM, procSmpCnt * outChCnt ); p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt ); for(i=0; ioutChArray[i] = p->outM + (i*procSmpCnt); } return rc; } cmRC_t cmAudioSegPlayerFinal( cmAudioSegPlayer* p ) { return cmOkRC; } cmRC_t _cmAudioSegPlayerSegSetup( cmAudioSeg* sp, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx ) { sp->bufPtr = bufPtr; sp->id = id; sp->smpIdx = smpIdx; sp->smpCnt = smpCnt; sp->outChIdx = outChIdx; sp->outSmpIdx = 0; sp->flags = 0; return cmOkRC; } cmAudioSeg* _cmAudioSegPlayerIdToSegPtr( cmAudioSegPlayer* p, unsigned id, bool ignoreErrFl ) { unsigned i = 0; for(i=0; isegCnt; ++i) if( p->segArray[i].id == id ) return p->segArray + i; if( !ignoreErrFl ) cmCtxRtCondition(&p->obj, cmArgAssertRC,"Unable to locate an audio segment with id=%i.",id); return NULL; } cmRC_t cmAudioSegPlayerInsert( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx ) { cmRC_t rc; assert( _cmAudioSegPlayerIdToSegPtr( p, id, true ) == NULL ); p->segArray = cmMemResizePZ( cmAudioSeg, p->segArray, p->segCnt + 1 ); cmAudioSeg* sp = p->segArray + p->segCnt; if((rc = _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx )) == cmOkRC ) ++p->segCnt; return rc; } cmRC_t cmAudioSegPlayerEdit( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx ) { cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false); return _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx ); } cmRC_t cmAudioSegPlayerRemove( cmAudioSegPlayer* p, unsigned id, bool delFl ) { cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false); if( sp == NULL ) return cmArgAssertRC; sp->flags = cmEnaFlag( sp->flags, kDelAspFl, delFl ); return cmOkRC; } cmRC_t cmAudioSegPlayerEnable( cmAudioSegPlayer* p, unsigned id, bool enableFl, unsigned outSmpIdx ) { cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false); if( sp == NULL ) return cmArgAssertRC; if( outSmpIdx != cmInvalidIdx ) sp->outSmpIdx = outSmpIdx; sp->flags = cmEnaFlag( sp->flags, kEnableAspFl, enableFl ); return cmOkRC; } void _cmAudioSegPlayerResetSeg( cmAudioSeg* sp ) { sp->outSmpIdx = 0; sp->flags = cmClrFlag(sp->flags, kEnableAspFl ); } cmRC_t cmAudioSegPlayerReset( cmAudioSegPlayer* p ) { unsigned i; for(i=0; isegCnt; ++i) { cmAudioSeg* sp = p->segArray + i; _cmAudioSegPlayerResetSeg(sp); } return cmOkRC; } cmRC_t cmAudioSegPlayerExec( cmAudioSegPlayer* p, cmSample_t** outChPtr, unsigned outChCnt, unsigned procSmpCnt ) { unsigned i; if( outChPtr == NULL || outChCnt == 0 ) { assert( p->outChCnt > 0 ); outChPtr = p->outChArray; outChCnt = p->outChCnt; assert( p->procSmpCnt <= procSmpCnt ); } for(i=0; isegCnt; ++i) { cmAudioSeg* sp = p->segArray + i; // if the output channel is valid and the segment is enabled and not deleted if( sp->outChIdx < outChCnt && (sp->flags & (kEnableAspFl | kDelAspFl)) == kEnableAspFl ) { unsigned bufSmpIdx = sp->smpIdx + sp->outSmpIdx; unsigned bufSmpCnt = 0; // if all the samples have been played if( sp->bufPtr->bufN <= bufSmpIdx ) _cmAudioSegPlayerResetSeg(sp); else { // prevent playing past the end of the buffer bufSmpCnt = cmMin( procSmpCnt, sp->bufPtr->bufN - bufSmpIdx ); // limit the number of samples to the segment length bufSmpCnt = cmMin( bufSmpCnt, sp->smpCnt - sp->outSmpIdx ); // sum the samples into the output channel cmVOS_AddVV( outChPtr[ sp->outChIdx ], bufSmpCnt, sp->bufPtr->bufV + bufSmpIdx ); // incr the next output sample index sp->outSmpIdx += bufSmpCnt; } if( bufSmpCnt < procSmpCnt ) cmVOS_Zero( outChPtr[ sp->outChIdx ] + bufSmpCnt, procSmpCnt - bufSmpCnt ); } } return cmOkRC; } //------------------------------------------------------------------------------------------------------------ /* cmCluster0* cmCluster0Alloc( cmCtx* ctx, cmCluster0* ap, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* dstUserPtr ) { cmCluster0* p = cmObjAlloc( cmCluster0, ctx, ap ); if( stateCnt != 0 ) if( cmCluster0Init( p, stateCnt, binCnt, flags, distFunc, distUserPtr ) != cmOkRC ) cmCluster0Free(&p); return p; } cmRC_t cmCluster0Free( cmCluster0** pp ) { if( pp == NULL || *pp == NULL ) return cmOkRC; cmCluster0* p = *pp; cmMemPtrFree(&p->oM); cmMemPtrFree(&p->tM); cmMemPtrFree(&p->dV); cmObjFree(pp); return cmOkRC; } cmRC_t cmCluster0Init( cmCluster0* p, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* distUserPtr ) { cmRC_t rc; if((rc = cmCluster0Final(p)) != cmOkRC ) return rc; p->oM = cmMemResizeZ( cmReal_t, p->oM, binCnt * stateCnt ); p->tM = cmMemResizeZ( cmReal_t, p->tM, stateCnt * stateCnt ); p->stateCnt = stateCnt; p->binCnt = binCnt; p->flags = flags; p->distFunc = distFunc; p->distUserPtr = distUserPtr; p->cnt = 0; } cmRC_t cmCluster0Final( cmCluster0* p ) { return cmOkRC; } cmRC_t cmCluster0Exec( cmCluster0* p, const cmReal_t* v, unsigned vn ) { assert( vn <= p->binCnt ); ++cnt; if( cnt <= stateCnt ) { cmVOR_Copy( p->oM + ((cnt-1)*binCnt), vn, v ); return cmOkRC; } return cmOkRC; } */ cmNmf_t* cmNmfAlloc( cmCtx* ctx, cmNmf_t* ap, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt ) { cmNmf_t* p = cmObjAlloc( cmNmf_t, ctx, ap ); if( n != 0 ) if( cmNmfInit( p, n, m, r, maxIterCnt, convergeCnt ) != cmOkRC ) cmNmfFree(&p); return p; } cmRC_t cmNmfFree( cmNmf_t** pp ) { if( pp== NULL || *pp == NULL ) return cmOkRC; cmNmf_t* p = *pp; cmMemPtrFree(&p->V); cmMemPtrFree(&p->W); cmMemPtrFree(&p->H); cmMemPtrFree(&p->tr); cmMemPtrFree(&p->x); cmMemPtrFree(&p->t0nm); cmMemPtrFree(&p->t1nm); cmMemPtrFree(&p->Wt); cmMemPtrFree(&p->trm); cmMemPtrFree(&p->crm); cmMemPtrFree(&p->c0); cmMemPtrFree(&p->c1); cmMemPtrFree(&p->idxV); cmObjFree(pp); return cmOkRC; } cmRC_t cmNmfInit( cmNmf_t* p, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt ) { cmRC_t rc; if((rc = cmNmfFinal(p)) != cmOkRC ) return rc; p->n = n; p->m = m; p->r = r; p->maxIterCnt = maxIterCnt; p->convergeCnt= convergeCnt; p->V = cmMemResizeZ(cmReal_t, p->V, n*m ); p->W = cmMemResize( cmReal_t, p->W, n*r ); p->H = cmMemResize( cmReal_t, p->H, r*m ); p->tr = cmMemResize( cmReal_t, p->tr, r ); p->x = cmMemResize( cmReal_t, p->x, r*cmMax(m,n) ); p->t0nm = cmMemResize( cmReal_t, p->t0nm, cmMax(r,n)*m ); p->Ht = p->t0nm; p->t1nm = cmMemResize( cmReal_t, p->t1nm, n*m ); p->Wt = cmMemResize( cmReal_t, p->Wt, r*n ); p->trm = cmMemResize( cmReal_t, p->trm, r*cmMax(m,n) ); p->crm = cmMemResizeZ(unsigned, p->crm, r*m); p->tnr = p->trm; p->c0 = cmMemResizeZ(unsigned, p->c0, m*m); p->c1 = cmMemResizeZ(unsigned, p->c1, m*m); p->idxV = cmMemResizeZ(unsigned, p->idxV, m ); p->c0m = p->c0; p->c1m = p->c1; cmVOR_Random(p->W,n*r,0.0,1.0); cmVOR_Random(p->H,r*m,0.0,1.0); return rc; } cmRC_t cmNmfFinal(cmNmf_t* p ) { return cmOkRC; } // NMF base on: Lee and Seung, 2001, Algo's for Non-negative Matrix Fcmtorization // Connectivity stopping technique based on: http://www.broadinstitute.org/mpr/publications/projects/NMF/nmf.m cmRC_t cmNmfExec( cmNmf_t* p, const cmReal_t* vM, unsigned cn ) { cmRC_t rc = cmOkRC; unsigned i,j,k; unsigned n = p->n; unsigned m = p->m; unsigned r = p->r; unsigned stopIter = 0; assert(cn <= m ); // shift in the incoming columns of V[] if( cn < m ) cmVOR_Shift(p->V, n*m, n*cn,0); cmVOR_Copy( p->V, n*cn,vM ); // shift H[] by the same amount as V[] if( cn < m ) cmVOR_Shift( p->H, r*m, r*cn,0); cmVOR_Random(p->H, r*cn, 0.0, 1.0 ); cmVOU_Zero( p->c1m, m*m ); for(i=0,j=0; imaxIterCnt && stopIterconvergeCnt; ++i) { // x[r,m] =repmat(sum(W,1)',1,m); cmVOR_SumM( p->W, n, r, p->tr ); for(j=0; jx + (j*r), r, p->tr ); cmVOR_Transpose(p->Wt,p->W,n,r); //H=H.*(W'*(V./(W*H)))./x; cmVOR_MultMMM(p->t0nm,n,m,p->W,p->H,r); // t0nm[n,m] = W*H cmVOR_DivVVV( p->t1nm,n*m,p->V,p->t0nm); // t1nm[n,m] = V./(W*H) cmVOR_MultMMM(p->trm,r,m,p->Wt,p->t1nm,n); // trm[r,m] = W'*(V./(W*H)) cmVOR_MultVV(p->H,r*m,p->trm); // H[r,m] = H .* (W'*(V./(W*H))) cmVOR_DivVV(p->H,r*m, p->x ); // H[r,m] = (H .* (W'*(V./(W*H)))) ./ x // x[n,r]=repmat(sum(H,2)',n,1); cmVOR_SumMN(p->H, r, m, p->tr ); for(j=0; jx + j, r, n, p->tr, 1 ); cmVOR_Transpose(p->Ht,p->H,r,m); // W=W.*((V./(W*H))*H')./x; cmVOR_MultMMM(p->tnr,n,r,p->t1nm,p->Ht,m); // tnr[n,r] = (V./(W*H))*Ht cmVOR_MultVV(p->W,n*r,p->tnr); // W[n,r] = W.*(V./(W*H))*Ht cmVOR_DivVV(p->W,n*r,p->x); // W[n,r] = W.*(V./(W*H))*Ht ./x if( i % 10 == 0 ) { cmVOR_ReplaceLte( p->H, r*m, p->H, 2.2204e-16, 2.2204e-16 ); cmVOR_ReplaceLte( p->W, n*r, p->W, 2.2204e-16, 2.2204e-16 ); cmVOR_MaxIndexM( p->idxV, p->H, r, m ); unsigned mismatchCnt = 0; for(j=0; jc0m[ c_idx ] = p->idxV[j] == p->idxV[k]; mismatchCnt += p->c0m[ c_idx ] != p->c1m[ c_idx ]; } if( mismatchCnt == 0 ) ++stopIter; else stopIter = 0; printf("%i %i %i\n",i,stopIter,mismatchCnt); fflush(stdout); unsigned* tcm = p->c0m; p->c0m = p->c1m; p->c1m = tcm; } } return rc; } //------------------------------------------------------------------------------------------------------------ unsigned _cmVectArrayTypeByteCnt( cmVectArray_t* p, unsigned flags ) { switch( flags & kVaMask ) { case kFloatVaFl: return sizeof(float); case kDoubleVaFl: return sizeof(double); case kIntVaFl: return sizeof(int); case kUIntVaFl: return sizeof(unsigned); } if( p != NULL ) cmCtxRtCondition(&p->obj,cmInvalidArgRC,"Unknown data type."); return 0; } cmRC_t _cmVectArrayAppend( cmVectArray_t* p, const void* v, unsigned typeByteCnt, unsigned valCnt ) { cmRC_t rc = cmSubSysFailRC; cmVectArrayVect_t* ep = NULL; unsigned byteCnt = typeByteCnt * valCnt; if( byteCnt == 0 || v == NULL ) return rc; // verify that all vectors written to this vector array contain the same data type. if( typeByteCnt != _cmVectArrayTypeByteCnt(p,p->flags) ) return cmCtxRtCondition(&p->obj,cmInvalidArgRC,"All data stored to a cmVectArray_t must be a consistent type."); // allocate space for the link record if((ep = cmMemAllocZ(cmVectArrayVect_t,1)) == NULL ) goto errLabel; // allocate space for the vector data if((ep->u.v = cmMemAlloc(char,typeByteCnt*valCnt)) == NULL ) goto errLabel; // append the link recd to the end of the element list if( p->ep != NULL ) p->ep->link = ep; else { p->bp = ep; p->cur = p->bp; } p->ep = ep; // store the length of the vector ep->n = valCnt; // copy in the vector data memcpy(ep->u.v,v,byteCnt); // track the number of vectors stored p->vectCnt += 1; // track the longest data vector if( valCnt > p->maxEleCnt ) p->maxEleCnt = valCnt; rc = cmOkRC; errLabel: if(rc != cmOkRC ) { cmMemFree(ep->u.v); cmMemFree(ep); } return rc; } cmVectArray_t* cmVectArrayAlloc( cmCtx* ctx, unsigned flags ) { cmRC_t rc = cmOkRC; cmVectArray_t* p = cmObjAlloc(cmVectArray_t,ctx,NULL); assert(p != NULL); switch( flags & kVaMask ) { case kIntVaFl: p->flags |= kIntVaFl; p->typeByteCnt = sizeof(int); break; case kUIntVaFl: p->flags |= kUIntVaFl; p->typeByteCnt = sizeof(unsigned); break; case kFloatVaFl: p->flags |= kFloatVaFl; p->typeByteCnt = sizeof(float); break; case kDoubleVaFl: p->flags |= kDoubleVaFl; p->typeByteCnt = sizeof(double); break; default: rc = cmCtxRtCondition(&p->obj,cmInvalidArgRC,"The vector array value type flag was not recognized."); } if(rc != cmOkRC) cmVectArrayFree(&p); return p; } cmVectArray_t* cmVectArrayAllocFromFile(cmCtx* ctx, const char* fn ) { cmRC_t rc = cmOkRC; FILE* fp = NULL; char* buf = NULL; cmVectArray_t* p = NULL; unsigned hn = 4; unsigned hdr[hn]; // create the file if((fp = fopen(fn,"rb")) == NULL ) { rc = cmCtxRtCondition(&ctx->obj,cmSystemErrorRC,"The vector array file '%s' could not be opened.",cmStringNullGuard(fn)); goto errLabel; } if( fread(hdr,sizeof(unsigned),hn,fp) != hn ) { rc = cmCtxRtCondition(&ctx->obj,cmSystemErrorRC,"The vector array file header could not be read from '%s'.",cmStringNullGuard(fn)); goto errLabel; } unsigned flags = hdr[0]; unsigned typeByteCnt = hdr[1]; unsigned vectCnt = hdr[2]; unsigned maxEleCnt = hdr[3]; unsigned i; buf = cmMemAlloc(char,maxEleCnt*typeByteCnt); if((p = cmVectArrayAlloc(ctx, flags )) == NULL ) goto errLabel; for(i=0; iobj,cmSystemErrorRC,"The vector array file element count read failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn)); goto errLabel; } assert( vn <= maxEleCnt ); if( fread(buf,typeByteCnt,vn,fp) != vn ) { rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array data read failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn)); goto errLabel; } if((rc = _cmVectArrayAppend(p,buf, typeByteCnt, vn )) != cmOkRC ) { rc = cmCtxRtCondition(&p->obj,rc,"The vector array data store failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn)); goto errLabel; } } errLabel: if( fp != NULL ) fclose(fp); cmMemFree(buf); if(rc != cmOkRC && p != NULL) cmVectArrayFree(&p); return p; } cmRC_t cmVectArrayFree( cmVectArray_t** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return rc; cmVectArray_t* p = *pp; if((rc = cmVectArrayClear(p)) != cmOkRC ) return rc; cmMemFree(p->tempV); cmObjFree(pp); return rc; } cmRC_t cmVectArrayClear( cmVectArray_t* p ) { cmVectArrayVect_t* ep = p->bp; while( ep!=NULL ) { cmVectArrayVect_t* np = ep->link; cmMemFree(ep->u.v); cmMemFree(ep); ep = np; } p->bp = NULL; p->ep = NULL; p->maxEleCnt = 0; p->vectCnt = 0; return cmOkRC; } unsigned cmVectArrayCount( const cmVectArray_t* p ) { return p->vectCnt; } unsigned cmVectArrayMaxRowCount( const cmVectArray_t* p ) { const cmVectArrayVect_t* np = p->bp; unsigned maxN = 0; for(; np!=NULL; np=np->link) if( np->n > maxN ) maxN = np->n; return maxN; } cmRC_t cmVectArrayAppendV( cmVectArray_t* p, const void* v, unsigned vn ) { return _cmVectArrayAppend(p,v,_cmVectArrayTypeByteCnt(p,p->flags), vn); } cmRC_t cmVectArrayAppendS( cmVectArray_t* p, const cmSample_t* v, unsigned vn ) { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); } cmRC_t cmVectArrayAppendR( cmVectArray_t* p, const cmReal_t* v, unsigned vn ) { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); } cmRC_t cmVectArrayAppendF( cmVectArray_t* p, const float* v, unsigned vn ) { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); } cmRC_t cmVectArrayAppendD( cmVectArray_t* p, const double* v, unsigned vn ) { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); } cmRC_t cmVectArrayAppendI( cmVectArray_t* p, const int* v, unsigned vn ) { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); } cmRC_t cmVectArrayAppendU( cmVectArray_t* p, const unsigned* v, unsigned vn ) { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); } cmRC_t cmVectArrayWrite( cmVectArray_t* p, const char* fn ) { cmRC_t rc = cmOkRC; FILE* fp = NULL; cmVectArrayVect_t* ep; unsigned i; unsigned hn = 4; unsigned hdr[hn]; hdr[0] = p->flags; hdr[1] = p->typeByteCnt; hdr[2] = p->vectCnt; hdr[3] = p->maxEleCnt; // create the file if((fp = fopen(fn,"wb")) == NULL ) return cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array file '%s' could not be created.",cmStringNullGuard(fn)); // write the header if( fwrite(hdr,sizeof(unsigned),hn,fp) != hn ) { rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file header write failed in '%s'.",cmStringNullGuard(fn)); goto errLabel; } // write each vector element for(ep=p->bp,i=0; ep!=NULL; ep=ep->link,++i) { // write the count of data values in the vector if( fwrite(&ep->n,sizeof(ep->n),1,fp) != 1 ) { rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file write failed on element header %i in '%s'.",i,cmStringNullGuard(fn)); goto errLabel; } // write the vector if(fwrite(ep->u.v,p->typeByteCnt,ep->n,fp) != ep->n ) { rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file write failed on data vector %i in '%s'.",i,cmStringNullGuard(fn)); goto errLabel; } } errLabel: if( fp != NULL ) fclose(fp); return rc; } cmRC_t cmVectArrayPrint( cmVectArray_t* p, cmRpt_t* rpt ) { cmRC_t rc = cmOkRC; cmVectArrayVect_t* rp = p->bp; for(; rp!=NULL; rp=rp->link) { switch( p->flags & kVaMask ) { case kFloatVaFl: cmVOF_Print(rpt,1,rp->n,rp->u.fV); break; case kDoubleVaFl: cmVOD_Print(rpt,1,rp->n,rp->u.dV); break; case kIntVaFl: cmVOI_Print(rpt,1,rp->n,rp->u.iV); break; case kUIntVaFl: cmVOU_Print(rpt,1,rp->n,rp->u.uV); break; default: rc = cmCtxRtCondition(&p->obj,cmInvalidArgRC,"The vector array value type flag was not recognized."); break; } } return rc; } unsigned cmVectArrayForEachS( cmVectArray_t* p, unsigned idx, unsigned cnt, cmVectArrayForEachFuncS_t func, void* arg ) { cmVectArrayVect_t* ep = p->bp; unsigned i = 0; unsigned n = 0; // for each sub-array for(; ep!=NULL && nlink ) { // if the cur sub-array is in the range of idx:idx+cnt if( i <= idx && idx < i + ep->n ) { unsigned j = idx - i; // starting idx into cur sub-array assert(jn); unsigned m = cmMin(ep->n - j,cnt-n); // cnt of ele's to send from cur sub-array // do callback if( func(arg, idx, ep->u.sV + j, m ) != cmOkRC ) break; idx += m; n += m; } i += ep->n; } return n; } cmRC_t _cmVectArrayWriteMatrix( cmCtx* ctx, const char* fn, unsigned flags, const void* m, unsigned rn, unsigned cn ) { cmRC_t rc = cmOkRC; cmVectArray_t* p; const char* b = (const char*)m; unsigned tbc = _cmVectArrayTypeByteCnt( NULL, flags ); unsigned ri = 0; char* vv = cmMemAlloc(char,cn*tbc); if((p = cmVectArrayAlloc(ctx,flags)) == NULL ) return cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to allocate a cmVectArray_t in %s().",__FUNCTION__); for(ri=0; riobj,rc,"Vector append failed in %s().",__FUNCTION__); goto errLabel; } } if((rc = cmVectArrayWrite(p,fn)) != cmOkRC ) rc = cmCtxRtCondition(&p->obj,rc,"Vector array write failed in %s().",__FUNCTION__); errLabel: if((rc = cmVectArrayFree(&p)) != cmOkRC ) rc = cmCtxRtCondition(&ctx->obj,rc,"Vector array free failed in %s().",__FUNCTION__); cmMemFree(vv); return rc; } cmRC_t cmVectArrayWriteVectorV( cmCtx* ctx, const char* fn, const void* v, unsigned vn, unsigned flags ) { return _cmVectArrayWriteMatrix( ctx, fn, flags, v, 1, vn ); } cmRC_t cmVectArrayWriteVectorS( cmCtx* ctx, const char* fn, const cmSample_t* v, unsigned vn ) { return _cmVectArrayWriteMatrix( ctx, fn, kSampleVaFl, v, 1, vn ); } cmRC_t cmVectArrayWriteVectorR( cmCtx* ctx, const char* fn, const cmReal_t* v, unsigned vn ) { return _cmVectArrayWriteMatrix( ctx, fn, kRealVaFl, v, 1, vn ); } cmRC_t cmVectArrayWriteVectorD( cmCtx* ctx, const char* fn, const double* v, unsigned vn ) { return _cmVectArrayWriteMatrix( ctx, fn, kDoubleVaFl, v, 1, vn ); } cmRC_t cmVectArrayWriteVectorF( cmCtx* ctx, const char* fn, const float* v, unsigned vn ) { return _cmVectArrayWriteMatrix( ctx, fn, kFloatVaFl, v, 1, vn ); } cmRC_t cmVectArrayWriteVectorI( cmCtx* ctx, const char* fn, const int* v, unsigned vn ) { return _cmVectArrayWriteMatrix( ctx, fn, kIntVaFl, v, 1, vn ); } cmRC_t cmVectArrayWriteVectorU( cmCtx* ctx, const char* fn, const unsigned* v, unsigned vn ) { return _cmVectArrayWriteMatrix( ctx, fn, kUIntVaFl, v, 1, vn ); } cmRC_t cmVectArrayWriteMatrixV( cmCtx* ctx, const char* fn, const void* v, unsigned rn, unsigned cn, unsigned flags ) { return _cmVectArrayWriteMatrix( ctx, fn, flags, v, rn, cn); } cmRC_t cmVectArrayWriteMatrixS( cmCtx* ctx, const char* fn, const cmSample_t* v, unsigned rn, unsigned cn ) { return _cmVectArrayWriteMatrix( ctx, fn, kSampleVaFl, v, rn, cn); } cmRC_t cmVectArrayWriteMatrixR( cmCtx* ctx, const char* fn, const cmReal_t* v, unsigned rn, unsigned cn ) { return _cmVectArrayWriteMatrix( ctx, fn, kRealVaFl, v, rn, cn); } cmRC_t cmVectArrayWriteMatrixD( cmCtx* ctx, const char* fn, const double* v, unsigned rn, unsigned cn ) { return _cmVectArrayWriteMatrix( ctx, fn, kDoubleVaFl, v, rn, cn); } cmRC_t cmVectArrayWriteMatrixF( cmCtx* ctx, const char* fn, const float* v, unsigned rn, unsigned cn ) { return _cmVectArrayWriteMatrix( ctx, fn, kFloatVaFl, v, rn, cn); } cmRC_t cmVectArrayWriteMatrixI( cmCtx* ctx, const char* fn, const int* v, unsigned rn, unsigned cn ) { return _cmVectArrayWriteMatrix( ctx, fn, kIntVaFl, v, rn, cn); } cmRC_t cmVectArrayWriteMatrixU( cmCtx* ctx, const char* fn, const unsigned* v, unsigned rn, unsigned cn ) { return _cmVectArrayWriteMatrix( ctx, fn, kUIntVaFl, v, rn, cn); } // Fill v[(*vnRef)*tbc] with the data from the current row of p. // Return the count of elements copied to v[] in *vnRef. cmRC_t _cmVectArrayGetV( cmVectArray_t* p, void* v, unsigned* vnRef, unsigned tbc ) { assert( tbc == p->typeByteCnt ); if( cmVectArrayIsEOL(p) ) return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"%s failed because the state is EOL.",__FUNCTION__); unsigned n = cmMin((*vnRef)*tbc, p->cur->n * p->typeByteCnt ); memcpy(v, p->cur->u.v, n ); *vnRef = n/tbc; return cmOkRC; } cmRC_t _cmVectArrayReadMatrixV( cmCtx* ctx, const char* fn, void** mRef, unsigned* rnRef, unsigned* cnRef ) { assert( mRef != NULL ); assert( cnRef != NULL ); assert( rnRef != NULL ); *mRef = NULL; *cnRef = 0; *rnRef = 0; cmRC_t rc = cmOkRC; cmVectArray_t* va; if((va = cmVectArrayAllocFromFile(ctx, fn )) == NULL ) rc = cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to read the vectarray from the file '%s'.", cmStringNullGuard(fn)); else { unsigned rn = cmVectArrayCount(va); // count of rows unsigned cn = cmVectArrayMaxRowCount(va); // max count of ele's among all rows char* m = cmMemAllocZ(char,va->typeByteCnt*rn*cn); // allocate the matrix unsigned ci = 0; cmVectArrayRewind(va); // read each vector into a column of m[] for(; !cmVectArrayIsEOL(va); ++ci) { unsigned n = cmVectArrayEleCount(va); assert( m+(ci*rn+n)*va->typeByteCnt <= m + rn*cn*va->typeByteCnt ); if( _cmVectArrayGetV(va, m + ci*rn*va->typeByteCnt, &n, va->typeByteCnt) != cmOkRC ) goto errLabel; cmVectArrayAdvance(va,1); } *mRef = m; *cnRef = cn; *rnRef = rn; } errLabel: if( va != NULL ) cmVectArrayFree(&va); return rc; } cmRC_t cmVectArrayReadMatrixV( cmCtx* ctx, const char* fn, void** mRef, unsigned* rnRef, unsigned* cnRef ) { return _cmVectArrayReadMatrixV(ctx, fn, mRef, rnRef, cnRef ); } cmRC_t cmVectArrayReadMatrixS( cmCtx* ctx, const char* fn, cmSample_t** mRef, unsigned* rnRef, unsigned* cnRef ) { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); } cmRC_t cmVectArrayReadMatrixR( cmCtx* ctx, const char* fn, cmReal_t** mRef, unsigned* rnRef, unsigned* cnRef ) { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); } cmRC_t cmVectArrayReadMatrixD( cmCtx* ctx, const char* fn, double** mRef, unsigned* rnRef, unsigned* cnRef ) { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); } cmRC_t cmVectArrayReadMatrixF( cmCtx* ctx, const char* fn, float** mRef, unsigned* rnRef, unsigned* cnRef ) { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); } cmRC_t cmVectArrayReadMatrixI( cmCtx* ctx, const char* fn, int** mRef, unsigned* rnRef, unsigned* cnRef ) { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); } cmRC_t cmVectArrayReadMatrixU( cmCtx* ctx, const char* fn, unsigned** mRef, unsigned* rnRef, unsigned* cnRef ) { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); } cmRC_t cmVectArrayForEachTextFuncS( void* arg, unsigned idx, const cmSample_t* xV, unsigned xN ) { assert(0); return cmOkRC; } cmRC_t cmVectArrayRewind( cmVectArray_t* p ) { p->cur = p->bp; return cmOkRC; } cmRC_t cmVectArrayAdvance( cmVectArray_t* p, unsigned n ) { unsigned i; for(i=0; icur == NULL ) break; p->cur = p->cur->link; } return cmOkRC; } bool cmVectArrayIsEOL( const cmVectArray_t* p ) { return p->cur == NULL; } unsigned cmVectArrayEleCount( const cmVectArray_t* p ) { if( p->cur == NULL ) return 0; return p->cur->n; } cmRC_t cmVectArrayGetV( cmVectArray_t* p, void* v, unsigned* vnRef ) { return _cmVectArrayGetV(p,v,vnRef,_cmVectArrayTypeByteCnt(p,p->flags)); } cmRC_t cmVectArrayGetS( cmVectArray_t* p, cmSample_t* v, unsigned* vnRef ) { assert( cmIsFlag(p->flags,kSampleVaFl) ); return _cmVectArrayGetV(p,v,vnRef,sizeof(cmSample_t)); } cmRC_t cmVectArrayGetR( cmVectArray_t* p, cmReal_t* v, unsigned* vnRef ) { assert( cmIsFlag(p->flags,kRealVaFl) ); return _cmVectArrayGetV(p,v,vnRef,sizeof(cmReal_t)); } cmRC_t cmVectArrayGetD( cmVectArray_t* p, double* v, unsigned* vnRef ) { assert( cmIsFlag(p->flags,kDoubleVaFl) ); return _cmVectArrayGetV(p,v,vnRef,sizeof(double)); } cmRC_t cmVectArrayGetF( cmVectArray_t* p, float* v, unsigned* vnRef ) { assert( cmIsFlag(p->flags,kFloatVaFl) ); return _cmVectArrayGetV(p,v,vnRef,sizeof(float)); } cmRC_t cmVectArrayGetI( cmVectArray_t* p, int* v, unsigned* vnRef ) { assert( cmIsFlag(p->flags,kIntVaFl) ); return _cmVectArrayGetV(p,v,vnRef,sizeof(int)); } cmRC_t cmVectArrayGetU( cmVectArray_t* p, unsigned* v, unsigned* vnRef ) { assert( cmIsFlag(p->flags,kUIntVaFl) ); return _cmVectArrayGetV(p,v,vnRef,sizeof(unsigned)); } cmRC_t _cmVectArrayMatrixIsEqual( cmCtx* ctx, const char* fn, const void* mm, unsigned rn, unsigned cn, unsigned flags, bool* resultFlRef ) { assert( resultFlRef != NULL ); cmRC_t rc = cmOkRC; cmVectArray_t* p = NULL; const char* m = (const char*)mm; unsigned tbc = _cmVectArrayTypeByteCnt(NULL,flags); unsigned ri = 0; char* vv = cmMemAlloc(char,cn*tbc); *resultFlRef = false; // read the vector array if((p = cmVectArrayAllocFromFile(ctx, fn )) == NULL) { rc = cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to read the VectArray from the file '%s'.", cmStringNullGuard(fn)); goto errLabel; } // verify that the matrix type matches the vector array type if( (p->flags & kVaMask) != (flags & kVaMask) ) { rc = cmCtxRtCondition(&ctx->obj,cmInvalidArgRC,"Invalid type conversion in '%s'.",__FUNCTION__); goto errLabel; } // the row count of the VectArray and m[] must be the same if( cmVectArrayCount(p) != rn ) { *resultFlRef = false; goto errLabel; } // for each row in VectArray for(; !cmVectArrayIsEOL(p); ++ri ) { unsigned vn = cmVectArrayEleCount(p); char v[ vn*p->typeByteCnt ]; unsigned ci; // get the current row from the VectArray into v[vn] if( _cmVectArrayGetV(p,v,&vn,p->typeByteCnt) != cmOkRC ) goto errLabel; // if the size of the current row does not match the row element count of the matrix if( vn != cn ) goto errLabel; for(ci=0; citypeByteCnt ) != 0 ) goto errLabel; cmVectArrayAdvance(p,1); } *resultFlRef = true; errLabel: if( p != NULL ) cmVectArrayFree(&p); cmMemFree(vv); return rc; } cmRC_t cmVectArrayMatrixIsEqualV( cmCtx* ctx, const char* fn, const void* m, unsigned rn, unsigned cn, bool* resultFlRef, unsigned flags ) { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, flags, resultFlRef); } cmRC_t cmVectArrayMatrixIsEqualS( cmCtx* ctx, const char* fn, const cmSample_t* m, unsigned rn, unsigned cn, bool* resultFlRef ) { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kSampleVaFl, resultFlRef ); } cmRC_t cmVectArrayMatrixIsEqualR( cmCtx* ctx, const char* fn, const cmReal_t* m, unsigned rn, unsigned cn, bool* resultFlRef ) { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kRealVaFl, resultFlRef ); } cmRC_t cmVectArrayMatrixIsEqualD( cmCtx* ctx, const char* fn, const double* m, unsigned rn, unsigned cn, bool* resultFlRef ) { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kDoubleVaFl, resultFlRef ); } cmRC_t cmVectArrayMatrixIsEqualF( cmCtx* ctx, const char* fn, const float* m, unsigned rn, unsigned cn, bool* resultFlRef ) { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kFloatVaFl, resultFlRef ); } cmRC_t cmVectArrayMatrixIsEqualI( cmCtx* ctx, const char* fn, const int* m, unsigned rn, unsigned cn, bool* resultFlRef ) { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kIntVaFl, resultFlRef ); } cmRC_t cmVectArrayMatrixIsEqualU( cmCtx* ctx, const char* fn, const unsigned* m, unsigned rn, unsigned cn, bool* resultFlRef ) { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kUIntVaFl, resultFlRef ); } unsigned cmVectArrayVectEleCount( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt ) { unsigned n = 0; cmVectArrayVect_t* pos = p->cur; if( cmVectArrayRewind(p) != cmOkRC ) goto errLabel; if( cmVectArrayAdvance(p,groupIdx) != cmOkRC ) goto errLabel; while( !cmVectArrayIsEOL(p) ) { n += cmVectArrayEleCount(p); if(cmVectArrayAdvance(p,groupCnt) != cmOkRC ) goto errLabel; } errLabel: p->cur = pos; return n; } cmRC_t cmVectArrayFormVectF( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, float** vRef, unsigned* vnRef ) { cmRC_t rc = cmOkRC; *vRef = NULL; *vnRef = 0; unsigned N = cmVectArrayVectEleCount(p,groupIdx,groupCnt); if( N == 0 ) return rc; float* v = cmMemAllocZ(float,N); unsigned i = 0; cmVectArrayVect_t* pos = p->cur; if( cmVectArrayRewind(p) != cmOkRC ) goto errLabel; if( cmVectArrayAdvance(p,groupIdx) != cmOkRC ) goto errLabel; while( !cmVectArrayIsEOL(p) ) { unsigned n = cmVectArrayEleCount(p); assert(i+n <= N); cmVectArrayGetF(p,v+i,&n); i += n; cmVectArrayAdvance(p,groupCnt); } *vRef = v; *vnRef = i; errLabel: p->cur = pos; return rc; } cmRC_t cmVectArrayFormVectColF( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, unsigned colIdx, float** vRef, unsigned* vnRef ) { cmRC_t rc = cmOkRC; *vRef = NULL; *vnRef = 0; // assume there will be one output element for each group unsigned N = cmVectArrayCount(p)/groupCnt + 1; if( N == 0 ) return rc; float* v = cmMemAllocZ(float,N); unsigned i = 0; cmVectArrayVect_t* pos = p->cur; if( cmVectArrayRewind(p) != cmOkRC ) goto errLabel; if( cmVectArrayAdvance(p,groupIdx) != cmOkRC ) goto errLabel; while( icur = pos; return rc; } cmRC_t cmVectArrayFormVectColU( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, unsigned colIdx, unsigned** vRef, unsigned* vnRef ) { cmRC_t rc = cmOkRC; *vRef = NULL; *vnRef = 0; // assume there will be one output element for each group unsigned N = cmVectArrayCount(p)/groupCnt + 1; if( N == 0 ) return rc; unsigned* v = cmMemAllocZ(unsigned,N); unsigned i = 0; cmVectArrayVect_t* pos = p->cur; if( cmVectArrayRewind(p) != cmOkRC ) goto errLabel; if( cmVectArrayAdvance(p,groupIdx) != cmOkRC ) goto errLabel; while( icur = pos; return rc; } cmRC_t cmVectArrayTest( cmCtx* ctx, const char* fn, bool genFl ) { cmRC_t rc = cmOkRC; cmVectArray_t* p = NULL; if( fn == NULL || strlen(fn)==0 ) return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Invalid test output file name."); if( genFl ) { unsigned flags = kSampleVaFl; cmSample_t v[] = { 0, 1, 2, 3, 4, 5 }; if( (p = cmVectArrayAlloc(ctx,flags)) == NULL ) return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vectory array object allocation failed."); if( cmVectArrayAppendS(p,v,1) != cmOkRC ) { rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 1 failed."); goto errLabel; } if( cmVectArrayAppendS(p,v+1,2) != cmOkRC ) { rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 2 failed."); goto errLabel; } if( cmVectArrayAppendS(p,v+3,3) != cmOkRC ) { rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 3 failed."); goto errLabel; } if( cmVectArrayWrite(p,fn) != cmOkRC ) { rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector array write failed."); goto errLabel; } //cmVectArrayForEachS(p,0,cmVectArrayEleCount(p),cmVectArrayForEachTextFuncS,&ctx->printRpt); //if( cmVectArrayFree(&p) != cmOkRC ) //{ // rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vectory array release failed."); // goto errLabel; //} } else { if((p = cmVectArrayAllocFromFile(ctx, fn )) == NULL ) { rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"VectArray alloc from file failed."); goto errLabel; } while(!cmVectArrayIsEOL(p)) { unsigned n = cmVectArrayEleCount(p); cmSample_t v[n]; if( cmVectArrayGetS(p,v,&n) != cmOkRC ) { rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"VectArrayGetS() failed."); goto errLabel; } //cmVOS_PrintL("v:",NULL,1,n,v); cmVectArrayAdvance(p,1); } // Test matrix reading cmSample_t* m; unsigned rn,cn; if( cmVectArrayReadMatrixS(ctx, fn, &m, &rn, &cn ) != cmOkRC ) goto errLabel; else { //cmVOS_PrintL("v:",NULL,rn,cn,m); cmMemFree(m); } } errLabel: if( cmVectArrayFree(&p) != cmOkRC ) rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vector array release failed."); return rc; } //----------------------------------------------------------------------------------------------------------------------- cmWhFilt* cmWhFiltAlloc( cmCtx* c, cmWhFilt* p, unsigned binCnt, cmReal_t binHz, cmReal_t coeff, cmReal_t maxHz ) { cmWhFilt* op = cmObjAlloc(cmWhFilt,c,p); if( binCnt > 0 ) if( cmWhFiltInit(op,binCnt,binHz,coeff,maxHz) != cmOkRC ) cmWhFiltFree(&op); return op; } cmRC_t cmWhFiltFree( cmWhFilt** pp ) { cmRC_t rc = cmOkRC; if( pp==NULL || *pp==NULL ) return rc; cmWhFilt* p = *pp; if((rc = cmWhFiltFinal(p)) != cmOkRC ) return rc; cmMemFree(p->whM); cmMemFree(p->whiV); cmMemFree(p->iV); cmObjFree(pp); return rc; } cmRC_t cmWhFiltInit( cmWhFilt* p, unsigned binCnt, cmReal_t binHz, cmReal_t coeff, cmReal_t maxHz ) { cmRC_t rc; if((rc = cmWhFiltFinal(p)) != cmOkRC ) return rc; p->binCnt = binCnt; p->binHz = binHz; p->bandCnt = maxHz == 0 ? 34 : ceil(log10(maxHz/229.0 + 1) * 21.4 - 1)-1; if( p->bandCnt <= 0 ) return cmCtxRtCondition(&p->obj, cmInvalidArgRC, "Max. Hz too low to form any frequency bands."); cmReal_t flV[ p->bandCnt ]; cmReal_t fcV[ p->bandCnt ]; cmReal_t fhV[ p->bandCnt ]; int i; for(i=0; ibandCnt; ++i) { fcV[i] = 229.0 * (pow(10.0,(i+2)/21.4) - 1.0); flV[i] = i==0 ? 0 : fcV[i-1]; } for(i=0; ibandCnt-1; ++i) fhV[i] = fcV[i+1]; fhV[p->bandCnt-1] = fcV[p->bandCnt-1] + (fcV[p->bandCnt-1] - fcV[p->bandCnt-2]); //cmVOR_PrintL("flV",NULL,1,p->bandCnt,flV); //cmVOR_PrintL("fcV",NULL,1,p->bandCnt,fcV); //cmVOR_PrintL("fhV",NULL,1,p->bandCnt,fhV); cmReal_t* tM = cmMemAlloc(cmReal_t,p->bandCnt * p->binCnt); p->whM = cmMemResizeZ(cmReal_t,p->whM,p->binCnt * p->bandCnt); p->iV = cmMemResizeZ(cmReal_t,p->iV,p->binCnt); // generate the bin index values for(i=0; ibinCnt; ++i) p->iV[i] = i; cmReal_t stSpread = 0; // set stSpread to 0 to use flV/fhV[] cmVOR_TriangleMask(tM, p->bandCnt, p->binCnt, fcV, p->binHz, stSpread, flV, fhV ); cmVOR_Transpose(p->whM, tM, p->bandCnt, p->binCnt ); cmMemFree(tM); //cmVOR_PrintL("whM",NULL,p->bandCnt,p->binCnt,p->whM); //cmVectArrayWriteMatrixR(p->obj.ctx, "/home/kevin/temp/frqtrk/whM.va", p->whM, p->binCnt, p->bandCnt ); unsigned whiN = p->bandCnt+2; p->whiV = cmMemResizeZ(cmReal_t,p->whiV,whiN); for(i=0; iwhiV[i] = 0; else if( i == whiN-1 ) p->whiV[i] = fhV[p->bandCnt-1]/binHz; else p->whiV[i] = fcV[i-1]/binHz; } //cmVOR_PrintL("whiV",NULL,1,whiN,p->whiV); //cmVectArrayWriteMatrixR(p->obj.ctx, "/home/kevin/temp/frqtrk/whiV.va", p->whiV, whiN, 1 ); return rc; } cmRC_t cmWhFiltFinal( cmWhFilt* p ) { return cmOkRC; } cmRC_t cmWhFiltExec( cmWhFilt* p, const cmReal_t* xV, cmReal_t* yV, unsigned xyN ) { assert( xyN == p->binCnt); cmRC_t rc = cmOkRC; unsigned whiN = p->bandCnt + 2; unsigned mbi = cmMin(xyN, floor(p->whiV[whiN-1])); // calculate the level in each band to form a composite filter cmReal_t y0V[ whiN ]; cmReal_t* b0V = y0V + 1; cmVOR_MultVVM(b0V, p->bandCnt, xV, p->binCnt, p->whM ); //cmVOR_PrintL("b0V",NULL,1,p->bandCnt,b0V); // BEWARE: zeros in b0V will generate Inf's when sent // through the cmVOR_PowVS() function. int i; for(i=0; ibandCnt; ++i) if( b0V[i] < 0.000001 ) b0V[i] = 0.000001; // apply a non-linear expansion function to each band cmVOR_PowVS(b0V,p->bandCnt,p->coeff-1); //cmVOR_PrintL("b0V",NULL,1,p->bandCnt,b0V); // add edge values to the filter y0V[0] = b0V[0]; y0V[whiN-1] = b0V[p->bandCnt-1]; //cmVOR_PrintL("y0V",NULL,1,whiN,y0V); cmVOR_Interp1(yV,p->iV,p->binCnt,p->whiV,y0V,whiN); cmVOR_Fill(yV+mbi,xyN-mbi,1.0); //cmVOR_PrintL("yV",NULL,1,p->binCnt,yV); cmVOR_MultVV(yV,xyN,xV); return rc; } //----------------------------------------------------------------------------------------------------------------------- cmFrqTrk* cmFrqTrkAlloc( cmCtx* c, cmFrqTrk* p, const cmFrqTrkArgs_t* a ) { cmFrqTrk* op = cmObjAlloc(cmFrqTrk,c,p); op->logVa = cmVectArrayAlloc(c,kRealVaFl); op->levelVa = cmVectArrayAlloc(c,kRealVaFl); op->specVa = cmVectArrayAlloc(c,kRealVaFl); op->attenVa = cmVectArrayAlloc(c,kRealVaFl); op->wf = cmWhFiltAlloc(c,NULL,0,0,0,0); if( a != NULL ) if( cmFrqTrkInit(op,a) != cmOkRC ) cmFrqTrkFree(&op); return op; } cmRC_t cmFrqTrkFree( cmFrqTrk** pp ) { cmRC_t rc = cmOkRC; if( pp==NULL || *pp==NULL ) return rc; cmFrqTrk* p = *pp; if((rc = cmFrqTrkFinal(p)) != cmOkRC ) return rc; unsigned i; for(i=0; ia.chCnt; ++i) { cmMemFree(p->ch[i].dbV); cmMemFree(p->ch[i].hzV); } cmMemFree(p->ch); cmMemFree(p->dbM); cmMemFree(p->pkiV); cmMemFree(p->dbV); cmMemFree(p->aV); cmVectArrayFree(&p->logVa); cmVectArrayFree(&p->levelVa); cmVectArrayFree(&p->specVa); cmVectArrayFree(&p->attenVa); cmWhFiltFree(&p->wf); cmMemFree(p->logFn); cmMemFree(p->levelFn); cmMemFree(p->specFn); cmMemFree(p->attenFn); cmObjFree(pp); return rc; } cmRC_t cmFrqTrkInit( cmFrqTrk* p, const cmFrqTrkArgs_t* a ) { cmRC_t rc; if((rc = cmFrqTrkFinal(p)) != cmOkRC ) return rc; p->a = *a; p->ch = cmMemResizeZ(cmFrqTrkCh_t,p->ch,a->chCnt ); p->hN = cmMax(1,a->wndSecs * a->srate / a->hopSmpCnt ); p->sN = 4*p->hN; p->binHz = a->srate / ((p->a.binCnt-1)*2); p->bN = cmMin( p->a.binCnt, ceil(p->a.pkMaxHz / p->binHz )); p->dbM = cmMemResizeZ(cmReal_t,p->dbM,p->hN*p->bN); p->hi = 0; p->fN = 0; p->dbV = cmMemResizeZ(cmReal_t,p->dbV,p->bN); p->pkiV = cmMemResizeZ(unsigned,p->pkiV,p->bN); p->deadN_max = a->maxTrkDeadSec * a->srate / a->hopSmpCnt; p->minTrkN = a->minTrkSec * a->srate / a->hopSmpCnt; p->nextTrkId = 1; p->aV = cmMemResizeZ(cmReal_t,p->aV,p->a.binCnt); p->attenDlyPhsMax = cmMax(3,a->attenDlySec * a->srate / a->hopSmpCnt ); p->attenPhsMax = cmMax(3,a->attenAtkSec * a->srate / a->hopSmpCnt ); if( a->logFn != NULL ) p->logFn = cmMemResizeStr(p->logFn,a->logFn); if( a->levelFn != NULL ) p->levelFn = cmMemResizeStr(p->levelFn,a->levelFn); if( a->specFn != NULL ) p->specFn = cmMemResizeStr(p->specFn,a->specFn); if( a->attenFn != NULL ) p->attenFn = cmMemResizeStr(p->attenFn,a->attenFn); if(cmWhFiltInit(p->wf,p->bN,p->binHz,p->a.whFiltCoeff,p->a.pkMaxHz) != cmOkRC ) cmCtxRtCondition(&p->obj, cmSubSysFailRC, "Whitening filter intitialization failed."); unsigned i; for(i=0; ia.chCnt; ++i) { p->ch[i].dbV = cmMemResizeZ(cmReal_t,p->ch[i].dbV,p->sN); p->ch[i].hzV = cmMemResizeZ(cmReal_t,p->ch[i].hzV,p->sN); } return rc; } cmRC_t cmFrqTrkFinal( cmFrqTrk* p ) { cmRC_t rc = cmOkRC; if( p->logFn != NULL ) cmVectArrayWrite(p->logVa,p->logFn); if( p->levelFn != NULL ) cmVectArrayWrite(p->levelVa,p->levelFn); if( p->specFn != NULL ) cmVectArrayWrite(p->specVa,p->specFn); if( p->attenFn != NULL ) cmVectArrayWrite(p->attenVa,p->attenFn); cmWhFiltFinal(p->wf); return rc; } // Return an available channel record or NULL if all channel records are in use. cmFrqTrkCh_t* _cmFrqTrkFindAvailCh( cmFrqTrk* p ) { unsigned i; for(i=0; ia.chCnt; ++i) if( p->ch[i].activeFl == false ) return p->ch + i; return NULL; } // Estimate the peak frequency by parabolic interpolotion into hzV[p->bN] void _cmFrqTrkMagnToHz( cmFrqTrk* p, const cmReal_t* dbV, unsigned* pkiV, unsigned pkN, cmReal_t* hzV ) { unsigned i; for(i=0; i0 ? dbV[ pki-1 ] : dbV[pki]; cmReal_t y1 = dbV[ pki ]; cmReal_t y2 = pkibN-1 ? dbV[ pki+1 ] : dbV[pki]; cmReal_t den = y0 - (2.*y1) + y2; cmReal_t offs = den==0 ? 0 : 0.5 * ((y0 - y2) / den); hzV[pki] = p->binHz * (pki+offs); //if( hzV[pki] < 0 ) //{ // printf("%f : %f %f %f : %f %f\n",hzV[pki],y0,y1,y2,den,offs); //} } } unsigned _cmFrqTrkActiveChCount( cmFrqTrk* p ) { unsigned n = 0; unsigned i; for(i=0; ia.chCnt; ++i) if( p->ch[i].activeFl ) ++n; return n; } void _cmFrqTrkWriteLevel( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned bN ) { if( p->levelFn != NULL ) { double maxHz = 5000.0; unsigned maxBinIdx = cmMin(bN,maxHz / p->binHz); unsigned vn = 3; cmReal_t v[vn]; unsigned idx = cmVOR_MaxIndex(dbV,maxBinIdx,1); v[0] = cmVOR_Mean(dbV,maxBinIdx); v[1] = dbV[idx]; v[2] = hzV[idx]; cmVectArrayAppendR(p->levelVa,v,vn); } } void _cmFrqTrkWriteLog( cmFrqTrk* p ) { unsigned n; cmReal_t* vb = NULL; if( p->logFn == NULL ) return; if((n = _cmFrqTrkActiveChCount(p)) > 0 ) { unsigned i,j; // sn = count of elements in the summary sub-vector unsigned sn = 3; // each active channel will emit 7 values unsigned nn = 1 + n*7 + sn; // allocate the row vector vb = cmMemResize(cmReal_t,vb,nn); // row format // [ nn idV[n] hzV[n] ... hsV[n] smV[sn] ] // n = (nn - (1 + sn)) / 7 *vb = nn; // the first element in the vector contains the length of the row cmReal_t* v = vb + 1; // setup the base pointer to each sub-vector cmReal_t* idV = v + n * 0; cmReal_t* hzV = v + n * 1; cmReal_t* dbV = v + n * 2; cmReal_t* stV = v + n * 3; cmReal_t* dsV = v + n * 4; cmReal_t* hsV = v + n * 5; cmReal_t* agV = v + n * 6; cmReal_t* smV = v + n * 7; // summary information smV[0] = p->newTrkCnt; smV[1] = p->curTrkCnt; smV[2] = p->deadTrkCnt; // for each active channel for(i=0,j=0; ia.chCnt; ++i) if( p->ch[i].activeFl ) { assert(j < n); // elements of each sub-vector associated with a given // index refer to the same track record - element i therefore // refers to active track index i. idV[j] = p->ch[i].id; hzV[j] = p->ch[i].hz; dbV[j] = p->ch[i].db; stV[j] = p->ch[i].dN; dsV[j] = p->ch[i].db_std; hsV[j] = p->ch[i].hz_std; agV[j] = p->ch[i].attenGain; ++j; } cmVectArrayAppendR(p->logVa, vb, nn ); } cmMemFree(vb); } void _cmFrqTrkPrintChs( const cmFrqTrk* p ) { unsigned i; for(i=0; ia.chCnt; ++i) { cmFrqTrkCh_t* c = p->ch + i; printf("%i : %i tN:%i hz:%f db:%f\n",i,c->activeFl,c->tN,c->hz,c->db); } } // Used to sort the channels into descending dB order. int _cmFrqTrkChCompare( const void* p0, const void* p1 ) { return ((cmFrqTrkCh_t*)p0)->db - ((cmFrqTrkCh_t*)p1)->db; } // Return the index of the peak associated with pkiV[i] which best matches the tracker 'c' // or cmInvalidIdx if no valid peaks were found. // pkiV[ pkN ] holds the indexes into dbV[] and hzV[] which are peaks. // Some elements of pkiV[] may be set to cmInvalidIdx if the associated peak has already // been selected by another tracker. unsigned _cmFrqTrkFindPeak( cmFrqTrk* p, const cmFrqTrkCh_t* c, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN ) { unsigned i,pki; cmReal_t d_max = p->a.pkThreshDb; unsigned d_idx = cmInvalidIdx; cmReal_t hz_min = c->hz * pow(2,-p->a.stRange/12.0); cmReal_t hz_max = c->hz * pow(2, p->a.stRange/12.0); // find the peak with the most energy inside the frequency range hz_min to hz_max. for(i=0; id_max ) { d_max= dbV[pki]; d_idx = i; } return d_idx; } void _cmFrqTrkScoreChs( cmFrqTrk* p ) { unsigned i; for(i=0; ia.chCnt; ++i) if( p->ch[i].activeFl ) { cmFrqTrkCh_t* c = p->ch + i; c->dbV[ c->si ] = c->db; c->hzV[ c->si ] = c->hz; c->si = (c->si + 1) % p->sN; c->sn += 1; unsigned n = cmMin(c->sn,p->sN); c->db_mean = cmVOR_Mean(c->dbV,n); c->db_std = sqrt(cmVOR_Variance( c->dbV,n,&c->db_mean)); c->hz_mean = cmVOR_Mean(c->hzV,n); c->hz_std = sqrt(cmVOR_Variance( c->hzV,n,&c->hz_mean)); //c->score = c->db / ((cmMax(0.1,c->db_std) + cmMax(0.1,c->hz_std))/2); c->score = c->db - (c->db_std * 5) - (c->hz_std/50); //printf("%f %f %f %f %f\n",c->db,cmMin(0.1,c->db_std),c->hz,cmMin(0.1,c->hz_std),c->score); } } // Generate a filter that is wider for higher frequencies than lower frequencies. unsigned _cmFrqTrkFillMap( cmFrqTrk* p, cmReal_t* map, unsigned maxN, cmReal_t hz ) { assert( maxN % 2 == 1 ); unsigned i; cmReal_t maxHz = p->a.srate/2; unsigned mapN = cmMin(maxN,ceil(hz/maxHz * maxN)); if( mapN % 2 == 0 ) mapN += 1; mapN = cmMin(maxN,mapN); unsigned N = floor(mapN/2); double COEFF = 0.3; for(i=0; ia.binCnt,cmMax(0,round(hz/p->binHz))); //cmReal_t map[] = { .25, .5, 1, .5, .25 }; //int mapN = sizeof(map)/sizeof(map[0]); unsigned maxN = 30; // must be odd cmReal_t map[ maxN ]; int mapN = _cmFrqTrkFillMap(p, map, maxN, hz ); int j; int ai = cbi - mapN/2; for(j=0; ja.binCnt ) aV[ai] *= 1.0 - (map[j] * gain); } void _cmFrqTrkUpdateFilter( cmFrqTrk* p ) { unsigned i; cmVOR_Fill(p->aV,p->a.binCnt,1.0); for(i=0; ia.chCnt; ++i) if( p->ch[i].activeFl ) { cmFrqTrkCh_t* c = p->ch + i; // if( c->score >= p->a.attenThresh && c->state == kNoStateFrqTrkId ) { //printf("%f\n",c->score); c->attenPhsIdx = 0; c->state = kDlyFrqTrkId; } switch( c->state ) { case kNoStateFrqTrkId: break; case kDlyFrqTrkId: c->attenPhsIdx += 1; if( c->attenPhsIdx >= p->attenDlyPhsMax && c->dN == 0 ) c->state = kAtkFrqTrkId; break; case kAtkFrqTrkId: if( c->attenPhsIdx < p->attenDlyPhsMax + p->attenPhsMax ) { c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax); _cmFrqTrkApplyAtten(p, p->aV, c->attenGain, c->hz); } c->attenPhsIdx += 1; if( c->attenPhsIdx >= p->attenDlyPhsMax + p->attenPhsMax ) c->state = kSusFrqTrkId; break; case kSusFrqTrkId: if( c->dN > 0 ) { if( c->attenPhsIdx > 0 ) { c->attenPhsIdx -= 1; c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax); } } _cmFrqTrkApplyAtten(p,p->aV, c->attenGain, c->hz); if( c->dN >= p->deadN_max ) c->state = kDcyFrqTrkId; break; case kDcyFrqTrkId: if( c->attenPhsIdx > 0 ) { c->attenPhsIdx -= 1; c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax); _cmFrqTrkApplyAtten(p,p->aV, c->attenGain, c->hz); } if( c->attenPhsIdx == 0 ) c->activeFl = false; break; } } } // Extend the existing trackers void _cmFrqTrkExtendChs( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN ) { unsigned i; p->curTrkCnt = 0; p->deadTrkCnt = 0; // sort the channels in descending order qsort(p->ch,p->a.chCnt,sizeof(cmFrqTrkCh_t),_cmFrqTrkChCompare); // for each active channel for(i=0; ia.chCnt; ++i) { cmFrqTrkCh_t* c = p->ch + i; if( c->activeFl ) { unsigned pki; // find the best peak to extend tracker 'c'. if((pki = _cmFrqTrkFindPeak(p,c,dbV,hzV,pkiV,pkN)) == cmInvalidIdx ) { // no valid track was found to extend tracker 'c' c->dN += 1; c->tN += 1; if( c->dN >= p->deadN_max ) { if( c->attenPhsIdx == 0 ) c->activeFl = false; p->deadTrkCnt += 1; } } else // ... update the tracker using the matching peak { unsigned j = pkiV[pki]; c->dN = 0; c->db = dbV[ j ]; c->hz = hzV[ j ]; c->tN += 1; pkiV[pki] = cmInvalidIdx; // mark the peak as unavailable. p->curTrkCnt += 1; } } } } // disable peaks which are within 'stRange' semitones of the frequency of active trackers. void _cmFrqTrkDisableClosePeaks( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN ) { unsigned i; for(i=0; ia.chCnt; ++i) { const cmFrqTrkCh_t* c = p->ch + i; if( !c->activeFl ) continue; cmReal_t hz_min = c->hz * pow(2,-p->a.stRange/12.0); cmReal_t hz_max = c->hz * pow(2, p->a.stRange/12.0); unsigned j; // find all peaks within the frequency range hz_min to hz_max. for(j=0; jhz && c->hz <= hz_max ) pkiV[j] = cmInvalidIdx; } } // Return the index into pkiV[] of the maximum energy peak in dbV[] // that is also above kAtkThreshDb. unsigned _cmFrqTrkMaxEnergyPeakIndex( const cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, const unsigned* pkiV, unsigned pkN ) { cmReal_t mv = p->a.pkAtkThreshDb; unsigned mi = cmInvalidIdx; unsigned i; for(i=0; i= mv && hzV[pkiV[i]] < p->a.pkMaxHz ) { mi = i; mv = dbV[pkiV[i]]; } return mi; } // start new trackers void _cmFrqTrkNewChs( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN ) { p->newTrkCnt = 0; while(1) { unsigned db_max_idx; cmFrqTrkCh_t* c; // find an inactive channel if((c = _cmFrqTrkFindAvailCh(p)) == NULL ) break; // find the largest peak that is above pkAtkThreshDb && less than pkAtkHz. if((db_max_idx = _cmFrqTrkMaxEnergyPeakIndex(p,dbV,hzV,pkiV,pkN)) == cmInvalidIdx ) break; // activate a new channel c->activeFl = true; c->tN = 1; c->dN = 0; c->hz = hzV[ pkiV[ db_max_idx ] ]; c->db = dbV[ pkiV[ db_max_idx ] ]; c->id = p->nextTrkId++; c->si = 0; c->sn = 0; c->score = 0; c->state = kNoStateFrqTrkId; c->attenPhsIdx = cmInvalidIdx; c->attenGain = 1.0; // mark the peak as unavailable pkiV[ db_max_idx ] = cmInvalidIdx; p->newTrkCnt += 1; } } void _cmFrqTrkApplyFrqBias( cmFrqTrk* p, cmReal_t* xV ) { // convert to decibel scale (0.0 - 100.0) and then scale to (0.0 to 1.0) unsigned i; for(i=0; ibN; ++i) xV[i] = cmMax(0.0, (20*log10( cmMax(xV[i]/1.5,0.00001)) + 100.0)/100.0); } cmRC_t cmFrqTrkExec( cmFrqTrk* p, const cmReal_t* magV, const cmReal_t* phsV, const cmReal_t* hertzV ) { cmRC_t rc = cmOkRC; cmReal_t hzV[ p->bN ]; //cmReal_t powV[ p->bN ]; //cmReal_t yV[ p->bN]; //cmVOR_MultVVV(powV,p->bN,magV,magV); //cmWhFiltExec(p->wf,powV,p->dbV,p->bN); // convert magV to Decibels //cmVOR_AmplToDbVV(p->dbV,p->bN, magV, -200.0); // copy p->dbV to dbM[hi,:] //cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, p->dbV, 1 ); //cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, whV, 1 ); if( 1 ) { cmReal_t powV[ p->bN ]; cmVOR_MultVVV(powV,p->bN,magV,magV); cmWhFiltExec(p->wf,powV,p->dbV,p->bN); _cmFrqTrkApplyFrqBias(p,p->dbV); } else { // convert magV to Decibels cmVOR_AmplToDbVV(p->dbV,p->bN, magV, -200.0); } // copy p->dbV to dbM[hi,:] cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, p->dbV, 1 ); // increment hi to next column to fill in dbM[] p->hi = (p->hi + 1) % p->hN; // Set dbV[] to spectral magnitude profile by taking the mean over time // of the last hN magnitude vectors cmVOR_MeanM2(p->dbV, p->dbM, p->hN, p->bN, 0, cmMin(p->fN+1,p->hN)); //cmVOR_MeanM(p->dbV, p->dbM, p->hN, p->bN, 0); if( p->fN >= p->hN ) { // set pkiV[] to the indexes of the peaks above pkThreshDb in i0[] unsigned pkN = cmVOR_PeakIndexes(p->pkiV, p->bN, p->dbV, p->bN, p->a.pkThreshDb ); // set hzV[] to the peak frequencies assoc'd with peaks at dbV[ pkiV[] ]. _cmFrqTrkMagnToHz(p, p->dbV, p->pkiV, pkN, hzV ); // extend the existing trackers _cmFrqTrkExtendChs(p, p->dbV, hzV, p->pkiV, pkN ); //_cmFrqTrkDisableClosePeaks(p, p->dbV, hzV, p->pkiV, pkN ); // create new trackers _cmFrqTrkNewChs(p,p->dbV,hzV,p->pkiV,pkN); // _cmFrqTrkScoreChs(p); // _cmFrqTrkUpdateFilter(p); /* // write the log file _cmFrqTrkWriteLog(p); // write the spectrum output file if( p->specFn != NULL ) cmVectArrayAppendR(p->specVa,p->dbV,p->bN); // write the atten output file if( p->attenFn != NULL ) cmVectArrayAppendR(p->attenVa,p->aV,p->bN); // write the the level file _cmFrqTrkWriteLevel(p,p->dbV,hzV,p->bN); */ } p->fN += 1; return rc; } void cmFrqTrkPrint( cmFrqTrk* p ) { printf("srate: %f\n",p->a.srate); printf("chCnt: %i\n",p->a.chCnt); printf("binCnt: %i (bN=%i)\n",p->a.binCnt,p->bN); printf("hopSmpCnt: %i\n",p->a.hopSmpCnt); printf("stRange: %f\n",p->a.stRange); printf("wndSecs: %f (%i)\n",p->a.wndSecs,p->hN); printf("minTrkSec: %f (%i)\n",p->a.minTrkSec,p->minTrkN); printf("maxTrkDeadSec: %f (%i)\n",p->a.maxTrkDeadSec,p->deadN_max); printf("pkThreshDb: %f\n",p->a.pkThreshDb); printf("pkAtkThreshDb: %f\n",p->a.pkAtkThreshDb); } //------------------------------------------------------------------------------------------------------------ cmFbCtl_t* cmFbCtlAlloc( cmCtx* c, cmFbCtl_t* ap, const cmFbCtlArgs_t* a ) { cmFbCtl_t* p = cmObjAlloc( cmFbCtl_t, c, ap ); p->sva = cmVectArrayAlloc(c,kRealVaFl); p->uva = cmVectArrayAlloc(c,kRealVaFl); if( a != NULL ) { if( cmFbCtlInit( p, a ) != cmOkRC ) cmFbCtlFree(&p); } return p; } cmRC_t cmFbCtlFree( cmFbCtl_t** pp ) { if( pp == NULL || *pp == NULL ) return cmOkRC; cmFbCtl_t* p = *pp; cmVectArrayWrite(p->sva, "/home/kevin/temp/frqtrk/fb_ctl_s.va"); cmVectArrayWrite(p->uva, "/home/kevin/temp/frqtrk/fb_ctl_u.va"); cmMemFree(p->bM); cmMemFree(p->rmsV); cmVectArrayFree(&p->sva); cmVectArrayFree(&p->uva); cmObjFree(pp); return cmOkRC; } cmRC_t cmFbCtlInit( cmFbCtl_t* p, const cmFbCtlArgs_t* a ) { cmRC_t rc; if((rc = cmFbCtlFinal(p)) != cmOkRC ) return rc; double binHz = a->srate / ((a->binCnt-1)*2); p->a = *a; p->frmCnt = (a->bufMs * a->srate / 1000.0) /a->hopSmpCnt; p->binCnt = cmMin(p->a.binCnt, a->maxHz/binHz); p->bM = cmMemResizeZ(cmReal_t, p->bM, p->binCnt*p->frmCnt); p->rmsV = cmMemResizeZ(cmReal_t, p->rmsV, p->frmCnt); p->sV = cmMemResizeZ(cmReal_t, p->sV, p->binCnt); p->uV = cmMemResizeZ(cmReal_t, p->uV, p->binCnt); printf("cmFbCtl: frmCnt:%i binCnt:%i \n",p->frmCnt,p->binCnt); return rc; } cmRC_t cmFbCtlFinal(cmFbCtl_t* p ) { return cmOkRC; } cmRC_t cmFbCtlExec( cmFbCtl_t* p, const cmReal_t* x0V ) { unsigned i; cmRC_t rc = cmOkRC; cmReal_t xV[ p->binCnt ]; cmVOR_AmplToDbVV(xV, p->binCnt, x0V, -1000.0 ); cmVOR_Shift( p->rmsV, p->frmCnt, -1, 0 ); p->rmsV[0] = cmVOR_Mean(xV,p->binCnt); cmVOR_CopyN(p->bM + p->bfi, p->binCnt, p->frmCnt, xV, 1 ); p->bfi = (p->bfi + 1) % p->frmCnt; p->bfN = cmMin(p->bfN+1,p->frmCnt); for(i=0; ibinCnt; ++i) { const cmReal_t* v = p->bM + i * p->frmCnt; cmReal_t u = cmVOR_Mean(v, p->bfN ); cmReal_t s = sqrt(cmVOR_Variance(v, p->bfN,&u)); p->sV[i] = (0.0002 - s); p->uV[i] = u; } cmVectArrayAppendR(p->sva,p->sV,p->binCnt); cmVectArrayAppendR(p->uva,p->uV,p->binCnt); return rc; } //======================================================================================================================= cmExpander* cmExpanderAlloc( cmCtx* c, cmExpander* p, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs ) { cmExpander* op = cmObjAlloc(cmExpander,c,p); if( srate > 0 ) if( cmExpanderInit(op,srate, procSmpCnt, threshDb, rlsDb, threshMs, rmsMs, atkMs, rlsMs) != cmOkRC ) cmExpanderFree(&op); return op; } cmRC_t cmExpanderFree( cmExpander** pp ) { cmRC_t rc = cmOkRC; if( pp==NULL || *pp==NULL ) return rc; cmExpander* p = *pp; if((rc = cmExpanderFinal(p)) != cmOkRC ) return rc; cmMemFree(p->rmsV); cmMemFree(p->envV); cmObjFree(pp); return rc; } cmRC_t cmExpanderInit( cmExpander* p, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs ) { cmRC_t rc; unsigned i; if((rc = cmExpanderFinal(p)) != cmOkRC ) return rc; unsigned atkN = cmMax(1,ceil( atkMs / (srate * 1000.0))); unsigned rlsN = cmMax(1,ceil( rlsMs / (srate * 1000.0))); p->rmsN = cmMax(1,ceil(rmsMs / (srate * 1000.0))); p->rmsV = cmMemResizeZ(cmReal_t,p->rmsV,p->rmsN); p->rmsIdx = 0; p->envN = atkN + rlsN; p->envV = cmMemResizeZ(cmSample_t,p->envV,p->envN); p->envIdx = p->envN; p->threshN = cmMax(1,ceil(threshMs / (srate * 1000.0))); p->threshIdx = 0; p->threshLvl = pow(10.0,(threshDb/20.0)); p->rlsLvl = pow(10.0,(rlsDb/20.0)); p->gain = 1.0; p->atkCnt = 0; cmSample_t G = (1.0 - p->rlsLvl); for(i=0; ienvV[i] = 1.0 - G*i/atkN; } for(i=0; ienvV[atkN+i] = p->rlsLvl + (G*i/rlsN); } printf("rmsN:%i atkN:%i rlsN:%i thr:%f %f rls:%f %f\n",p->rmsN,atkN,rlsN,threshDb,p->threshLvl,rlsDb,p->rlsLvl); //for(i=0; ienvN; ++i) // printf("%i %f\n",i,p->envV[i]); //printf("\n"); return cmOkRC; } cmRC_t cmExpanderFinal( cmExpander* p ) { return cmOkRC; } cmRC_t cmExpanderExec( cmExpander* p, cmSample_t* x, cmSample_t* y, unsigned xyN ) { unsigned i; // update the RMS buffer for(i=0; irmsV[p->rmsIdx] = abs(x[i]); if( ++p->rmsIdx >= p->rmsN ) p->rmsIdx = 0; } // calculate the RMS double rms = cmVOR_Mean(p->rmsV,p->rmsN); // update the duration that the signal has been above the threshold if( rms > p->threshLvl ) p->threshIdx += 1; else p->threshIdx = 0; // begin the atk phase? if( p->threshIdx > p->threshN && p->envIdx >= p->envN ) { p->envIdx = 0; } // update the output if( p->envIdx >= p->envN ) { if( y != NULL ) cmVOS_Copy(y,xyN,x); } else { if( y == NULL ) y = x; for(i=0; ienvIdxenvN; ++i,++p->envIdx) y[i] = p->envV[p->envIdx] * x[i]; } return cmOkRC; } cmRC_t cmExpanderExecD( cmExpander* p, double* x, double* y, unsigned xyN ) { unsigned i; // update the RMS buffer for(i=0; irmsV[p->rmsIdx] = x[i]; p->rmsIdx += 1; if( p->rmsIdx >= p->rmsN ) p->rmsIdx = 0; } // calculate the RMS p->rmsValue = cmVOR_Mean(p->rmsV,p->rmsN); // update the duration that the signal has been above the threshold if( p->rmsValue > p->threshLvl ) p->threshIdx += 1; else p->threshIdx = 0; // begin the atk phase? if( p->threshIdx > p->threshN && p->envIdx >= p->envN ) { p->envIdx = 0; p->atkCnt += 1; } /* if( p->envIdx >= p->envN ) p->gain = 1.0; else { p->gain = p->envV[p->envIdx]; p->envIdx += 1; } */ // update the output if( p->envIdx >= p->envN ) { if( y != NULL ) cmVOD_Copy(y,xyN,x); } else { if( y == NULL ) y = x; for(i=0; ienvIdxenvN; ++i,++p->envIdx) y[i] = p->envV[p->envIdx] * x[i]; } return cmOkRC; } //======================================================================================================================= cmExpanderBank* cmExpanderBankAlloc( cmCtx* c, cmExpanderBank* p, unsigned bandN, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs ) { cmExpanderBank* op = cmObjAlloc(cmExpanderBank,c,p); if( bandN > 0 ) if( cmExpanderBankInit(op,bandN,srate, procSmpCnt, threshDb, rlsDb, threshMs, rmsMs, atkMs, rlsMs) != cmOkRC ) cmExpanderBankFree(&op); return op; } cmRC_t cmExpanderBankFree( cmExpanderBank** pp ) { cmRC_t rc = cmOkRC; if( pp==NULL || *pp==NULL ) return rc; cmExpanderBank* p = *pp; if((rc = cmExpanderBankFinal(p)) != cmOkRC ) return rc; cmMemFree(p->b); cmObjFree(pp); return rc; } cmRC_t cmExpanderBankInit( cmExpanderBank* p, unsigned bandN, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs ) { cmRC_t rc; unsigned i; if((rc = cmExpanderBankFinal(p)) != cmOkRC ) return rc; p->bandN = bandN; p->b = cmMemResizeZ(cmExpander*,p->b,p->bandN); for(i=0; ib[i] = cmExpanderAlloc(p->obj.ctx,NULL,srate, procSmpCnt,threshDb,rlsDb,threshMs,rmsMs,atkMs,rlsMs); return cmOkRC; } cmRC_t cmExpanderBankFinal( cmExpanderBank* p ) { unsigned i; for(i=0; ibandN; ++i) cmExpanderFree(&p->b[i]); return cmOkRC; } cmRC_t cmExpanderBankExec( cmExpanderBank* p, cmSample_t* x, unsigned bandN ) { assert( bandN <= p->bandN); unsigned i; for(i=0; ib[i],&x[i],NULL,1); } return cmOkRC; } /* cmRC_t cmExpanderBankExecD( cmExpanderBank* p, double* x, unsigned binN ) { unsigned i; p->rmsValue = 0; for(i=0; ibandN; ++i) { double sum = cmVOD_Sum(x,binN); cmExpanderExecD(p->b[i],&sum,NULL,1); //printf("%f %f\n",sum, p->b[i]->rmsValue); p->rmsValue += p->b[i]->rmsValue; cmVOR_MultVS(x,binN,p->b[i]->gain); } p->rmsValue /= p->bandN; return cmOkRC; } */ cmRC_t cmExpanderBankExecD( cmExpanderBank* p, double* x, unsigned bandN ) { unsigned i; //unsigned n = 3; //unsigned no2 = n/2; double xx; p->rmsValue = 0; p->atkCnt = 0; for(i=0; ibandN; ++i) { unsigned atkCnt = p->b[i]->atkCnt; //if( i >= no2 && i < bandN-no2 ) // xx = cmVOR_Mean(x-no2,n); //else xx = x[i]; cmExpanderExecD(p->b[i],&xx,NULL,1); p->rmsValue += p->b[i]->rmsValue; p->atkCnt += p->b[i]->atkCnt != atkCnt; } p->rmsValue /= p->bandN; return cmOkRC; } //------------------------------------------------------------------------------------------------------------ cmSpecDist_t* cmSpecDistAlloc( cmCtx* ctx,cmSpecDist_t* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId ) { cmSpecDist_t* p = cmObjAlloc( cmSpecDist_t, ctx, ap ); //p->iSpecVa = cmVectArrayAlloc(ctx,kRealVaFl); p->oSpecVa = cmVectArrayAlloc(ctx,kRealVaFl); if( procSmpCnt != 0 ) { if( cmSpecDistInit( p, procSmpCnt, srate, wndSmpCnt, hopFcmt, olaWndTypeId ) != cmOkRC ) cmSpecDistFree(&p); } return p; } cmRC_t cmSpecDistFree( cmSpecDist_t** pp ) { if( pp == NULL || *pp == NULL ) return cmOkRC; cmSpecDist_t* p = *pp; cmSpecDistFinal(p); //cmVectArrayFree(&p->iSpecVa); cmVectArrayFree(&p->oSpecVa); cmMemPtrFree(&p->hzV); cmMemPtrFree(&p->iSpecM); cmMemPtrFree(&p->oSpecM); cmMemPtrFree(&p->iSpecV); cmMemPtrFree(&p->oSpecV); cmObjFree(pp); return cmOkRC; } cmRC_t cmSpecDistInit( cmSpecDist_t* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId ) { //cmFrqTrkArgs_t fta; cmRC_t rc; if((rc = cmSpecDistFinal(p)) != cmOkRC ) return rc; unsigned flags = 0; p->srate = srate; p->wndSmpCnt = wndSmpCnt; p->hopSmpCnt = (unsigned)floor(wndSmpCnt/hopFcmt); p->procSmpCnt = procSmpCnt; p->mode = kBasicModeSdId; p->thresh = 60; p->offset = 0; p->invertFl = false; p->uprSlope = 0.0; p->lwrSlope = 2.0; p->pva = cmPvAnlAlloc( p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, flags ); p->pvs = cmPvSynAlloc( p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, olaWndTypeId ); /* fta.srate = srate; fta.chCnt = 50; fta.binCnt = p->pva->binCnt; fta.hopSmpCnt = p->pva->hopSmpCnt; fta.stRange = 0.25; fta.wndSecs = 0.25; fta.minTrkSec = 0.25; fta.maxTrkDeadSec = 0.25; fta.pkThreshDb = 0.1; //-110.0; fta.pkAtkThreshDb = 0.4; //-60.0; fta.pkMaxHz = 20000; fta.whFiltCoeff = 0.33; fta.attenThresh = 0.4; fta.attenGain = 0.5; fta.attenDlySec = 1.0; fta.attenAtkSec = 1.0; fta.logFn = "/home/kevin/temp/frqtrk/trk_log.va"; fta.levelFn = "/home/kevin/temp/frqtrk/level.va"; fta.specFn = "/home/kevin/temp/frqtrk/spec.va"; fta.attenFn = "/home/kevin/temp/frqtrk/atten.va"; */ //p->ft = cmFrqTrkAlloc( p->obj.ctx, NULL, &fta ); /* cmFbCtlArgs_t fba; fba.srate = srate; fba.binCnt = p->pva->binCnt; fba.hopSmpCnt = p->hopSmpCnt; fba.bufMs = 500; fba.maxHz = 5000; */ //p->fbc = cmFbCtlAlloc( p->obj.ctx, NULL, &fba ); //unsigned expBandN = 1; // unsigned expBandN = 20000.0 / (p->srate / p->pva->binCnt); double expSrate = p->pva->hopSmpCnt / srate; unsigned expProcSmpCnt = 1; double expThreshDb = -80.0; double expRlsDb = -18.0; double expThreshMs = 250.0; double expRmsMs = 100.0; double expAtkMs = 25.0; double expRlsMs = 1000.0; p->exb = cmExpanderBankAlloc( p->obj.ctx, NULL, expBandN, expSrate, expProcSmpCnt, expThreshDb, expRlsDb, expThreshMs, expRmsMs, expAtkMs, expRlsMs ); p->spcBwHz = cmMin(srate/2,10000); p->spcSmArg = 0.05; p->spcMin = p->spcBwHz; p->spcMax = 0.0; p->spcSum = 0.0; p->spcCnt = 0; double binHz = srate / p->pva->wndSmpCnt; p->spcBinCnt = (unsigned)floor(p->spcBwHz / binHz); p->hzV = cmMemResizeZ(cmReal_t,p->hzV,p->spcBinCnt); cmVOR_Seq( p->hzV, p->spcBinCnt, 0, 1 ); cmVOR_MultVS( p->hzV, p->spcBinCnt, binHz ); p->aeUnit = 0; p->aeMin = 1000; p->aeMax = -1000; double histSecs = 0.05; p->hN = cmMax(1,histSecs * p->srate / p->hopSmpCnt ); p->iSpecM = cmMemResizeZ(cmReal_t,p->iSpecM,p->hN*p->pva->binCnt); p->oSpecM = cmMemResizeZ(cmReal_t,p->oSpecM,p->hN*p->pva->binCnt); p->iSpecV = cmMemResizeZ(cmReal_t,p->iSpecV, p->pva->binCnt); p->oSpecV = cmMemResizeZ(cmReal_t,p->oSpecV, p->pva->binCnt); p->hi = 0; //p->bypOut = cmMemResizeZ(cmSample_t, p->bypOut, procSmpCnt ); return rc; } cmRC_t cmSpecDistFinal(cmSpecDist_t* p ) { cmRC_t rc = cmOkRC; //cmVectArrayWrite(p->iSpecVa, "/home/kevin/temp/frqtrk/iSpec.va"); cmVectArrayWrite(p->oSpecVa, "/home/kevin/temp/expand/oSpec.va"); cmPvAnlFree(&p->pva); cmPvSynFree(&p->pvs); //cmFrqTrkFree(&p->ft); //cmFbCtlFree(&p->fbc); cmExpanderBankFree(&p->exb); return rc; } void _cmSpecDistBasicMode0(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh ) { // octavez> thresh = 60; // octave> X1m = [-62 -61 -60 -59]; // octave> -abs(abs(X1m+thresh)-(X1m+thresh)) - thresh // octave> ans = -64 -62 -60 -60 unsigned i=0; for(i=0; i 0 ) X1m[i] -= 2*d; } } void _cmSpecDistBasicMode(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh ) { unsigned i=0; if( p->lwrSlope < 0.3 ) p->lwrSlope = 0.3; for(i=0; i 0 ) X1m[i] -= (p->lwrSlope*d); else X1m[i] -= (p->uprSlope*d); } } cmReal_t _cmSpecDistCentMode( cmSpecDist_t* p, cmReal_t* X1m ) { // calc the spectral centroid double num = cmVOR_MultSumVV( p->pva->magV, p->hzV, p->spcBinCnt ); double den = cmVOR_Sum( p->pva->magV, p->spcBinCnt ); double result = 0; if( den != 0 ) result = num/den; // apply smoothing filter to spectral centroid p->spc = (result * p->spcSmArg) + (p->spc * (1.0-p->spcSmArg)); // track spec. cetr. min and max p->spcMin = cmMin(p->spcMin,p->spc); p->spcMax = cmMax(p->spcMax,p->spc); //----------------------------------------------------- ++p->spcCnt; p->spcSum += p->spc; p->spcSqSum += p->spc * p->spc; // use the one-pass std-dev calc. trick //double mean = p->spcSum / p->spcCnt; //double variance = p->spcSqSum / p->spcCnt - mean * mean; //double std_dev = sqrt(variance); double smin = p->spcMin; double smax = p->spcMax; //smin = mean - std_dev; //smax = mean + std_dev; //----------------------------------------------------- // convert spec. cent. to unit range double spcUnit = (p->spc - smin) / (smax - smin); spcUnit = cmMin(1.0,cmMax(0.0,spcUnit)); if( p->invertFl ) spcUnit = 1.0 - spcUnit; //if( p->spcMin==p->spc || p->spcMax==p->spc ) // printf("min:%f avg:%f sd:%f max:%f\n",p->spcMin,p->spcSum/p->spcCnt,std_dev,p->spcMax); return spcUnit; } void _cmSpecDistBump( cmSpecDist_t* p, cmReal_t* x, unsigned binCnt, double thresh) { /* thresh *= -1; minDb = -100; if db < minDb db = minDb; endif if db > thresh y = 1; else x = (minDb - db)/(minDb - thresh); y = x + (x - (x.^coeff)); endif y = minDb + abs(minDb) * y; */ unsigned i=0; //printf("%f %f %f\n",thresh,p->lwrSlope,x[0]); double minDb = -100.0; thresh = -thresh; for(i=0; i thresh ) y = 1; else { y = (minDb - x[i])/(minDb - thresh); y += y - pow(y,p->lwrSlope); } x[i] = minDb + (-minDb) * y; } } void _cmSpecDistAmpEnvMode( cmSpecDist_t* p, cmReal_t* X1m ) { cmReal_t smCoeff = 0.1; // cmReal_t mx = cmVOR_Max(X1m,p->pva->binCnt,1); p->aeSmMax = (mx * smCoeff) + (p->aeSmMax * (1.0-smCoeff)); cmReal_t a = cmVOR_Mean(X1m,p->pva->binCnt); p->ae = (a * smCoeff) + (p->ae * (1.0-smCoeff)); p->aeMin = cmMin(p->ae,p->aeMin); p->aeMax = cmMax(p->ae,p->aeMax); p->aeUnit = (p->ae - p->aeMin) / (p->aeMax-p->aeMin); p->aeUnit = cmMin(1.0,cmMax(0.0,p->aeUnit)); if( p->invertFl ) p->aeUnit = 1.0 - p->aeUnit; //printf("%f\n",p->aeSmMax); } void _cmSpecDistPhaseMod( cmSpecDist_t* p, cmReal_t* phsV, unsigned binCnt ) { unsigned i; cmReal_t offs = sin( 0.1 * 2.0 * M_PI * (p->phaseModIndex++) / (p->srate/p->hopSmpCnt) ); //printf("offs %f %i %i %f\n",offs,p->phaseModIndex,p->hopSmpCnt,p->srate); cmReal_t new_phs = phsV[0] + offs; for(i=0; i M_PI ) new_phs -= 2.0*M_PI; while( new_phs < -M_PI ) new_phs += 2.0*M_PI; cmReal_t d = phsV[i+1] - phsV[i]; phsV[i] = new_phs; new_phs += d; } } cmRC_t cmSpecDistExec( cmSpecDist_t* p, const cmSample_t* sp, unsigned sn ) { assert( sn == p->procSmpCnt ); bool recordFl = false; // cmPvAnlExec() returns true when it calc's a new spectral output frame if( cmPvAnlExec( p->pva, sp, sn ) ) { cmReal_t X1m[p->pva->binCnt]; // take the mean of the the input magntitude spectrum cmReal_t u0 = cmVOR_Mean(p->pva->magV,p->pva->binCnt); if(recordFl) { // store a time windowed average of the input spectrum to p->iSpecV cmVOR_CopyN(p->iSpecM + p->hi, p->pva->binCnt, p->hN, X1m, 1 ); cmVOR_MeanM2(p->iSpecV, p->iSpecM, p->hN, p->pva->binCnt, 0, cmMin(p->fi+1,p->hN)); } cmVOR_AmplToDbVV(X1m, p->pva->binCnt, p->pva->magV, -1000.0 ); //cmVOR_AmplToDbVV(X1m, p->pva->binCnt, X1m, -1000.0 ); switch( p->mode ) { case kBypassModeSdId: break; case kBasicModeSdId: _cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh); break; case kSpecCentSdId: { _cmSpecDistAmpEnvMode(p,X1m); double spcUnit = _cmSpecDistCentMode(p,X1m); double thresh = fabs(p->aeSmMax) - (spcUnit*p->offset); _cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh); } break; case kAmpEnvSdId: { _cmSpecDistAmpEnvMode(p,X1m); //double thresh = fabs(p->aeSmMax) - p->offset; double thresh = fabs(p->aeSmMax) - (p->aeUnit*p->offset); thresh = fabs(p->thresh) - (p->aeUnit*p->offset); _cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh); } break; case kBumpSdId: _cmSpecDistBump(p,X1m, p->pva->binCnt, p->offset); _cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh); break; case 5: break; default: break; } cmVOR_DbToAmplVV(X1m, p->pva->binCnt, X1m ); // run and apply the tracker/supressor //cmFrqTrkExec(p->ft, X1m, p->pva->phsV, NULL ); //cmVOR_MultVV(X1m, p->pva->binCnt,p->ft->aV ); // convert the mean input magnitude to db cmReal_t idb = 20*log10(u0); // get the mean output magnitude spectra cmReal_t u1 = cmVOR_Mean(X1m,p->pva->binCnt); if( idb > -150.0 ) { // set the output gain such that the mean output magnitude // will match the mean input magnitude p->ogain = u0/u1; } else { cmReal_t a0 = 0.9; p->ogain *= a0; } cmVOR_MultVS(X1m,p->pva->binCnt,cmMin(4.0,p->ogain)); //cmFbCtlExec(p->fbc,X1m); //cmReal_t v[ p->pva->binCnt ]; //cmVOR_Copy(v,p->pva->binCnt,p->pva->phsV); //_cmSpecDistPhaseMod(p, v, p->pva->binCnt ); if(recordFl) { // store a time windowed average of the output spectrum to p->iSpecV cmVOR_CopyN(p->oSpecM + p->hi, p->pva->binCnt, p->hN, X1m, 1 ); cmVOR_MeanM2(p->oSpecV, p->oSpecM, p->hN, p->pva->binCnt, 0, cmMin(p->fi+1,p->hN)); // store iSpecV and oSpecV to iSpecVa and oSpecVa to create debugging files //cmVectArrayAppendR(p->iSpecVa,p->iSpecV,p->pva->binCnt); //cmVectArrayAppendR(p->oSpecVa,p->oSpecV,p->pva->binCnt); p->hi = (p->hi + 1) % p->hN; } //unsigned binN = 12500.0 / (p->srate / p->pva->binCnt); //cmExpanderBankExecD(p->exb, X1m, binN ); /* cmExpanderBankExecD(p->exb, X1m, p->exb->bandN ); cmReal_t mean = cmVOR_Mean(X1m,p->exb->bandN); cmReal_t arr[3] = { p->exb->rmsValue, mean, p->exb->atkCnt }; cmVectArrayAppendR(p->oSpecVa,arr,3); */ cmPvSynExec(p->pvs, X1m, p->pva->phsV ); p->fi += 1; } return cmOkRC; } const cmSample_t* cmSpecDistOut( cmSpecDist_t* p ) { return cmPvSynExecOut(p->pvs); } //------------------------------------------------------------------------------------------------------------ cmRC_t _cmBinMtxFileWriteHdr( cmBinMtxFile_t* p ) { cmFileRC_t fileRC; unsigned n = 3; unsigned hdr[n]; hdr[0] = p->rowCnt; hdr[1] = p->maxRowEleCnt; hdr[2] = p->eleByteCnt; if((fileRC = cmFileSeek(p->fh,kBeginFileFl,0)) != kOkFileRC ) return cmCtxRtCondition(&p->obj, fileRC, "File seek failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh))); if((fileRC = cmFileWriteUInt(p->fh,hdr,n)) != kOkFileRC ) return cmCtxRtCondition( &p->obj, fileRC, "Header write failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh)) ); return cmOkRC; } cmBinMtxFile_t* cmBinMtxFileAlloc( cmCtx* ctx, cmBinMtxFile_t* ap, const cmChar_t* fn ) { cmBinMtxFile_t* p = cmObjAlloc( cmBinMtxFile_t, ctx, ap ); if( fn != NULL ) if( cmBinMtxFileInit( p, fn ) != cmOkRC ) cmBinMtxFileFree(&p); return p; } cmRC_t cmBinMtxFileFree( cmBinMtxFile_t** pp ) { cmRC_t rc; if( pp==NULL || *pp == NULL ) return cmOkRC; cmBinMtxFile_t* p = *pp; if((rc = cmBinMtxFileFinal(p)) == cmOkRC ) { cmObjFree(pp); } return rc; } cmRC_t cmBinMtxFileInit( cmBinMtxFile_t* p, const cmChar_t* fn ) { cmRC_t rc; cmFileRC_t fileRC; if((rc = cmBinMtxFileFinal(p)) != cmOkRC ) return rc; // open the output file for writing if((fileRC = cmFileOpen(&p->fh,fn,kWriteFileFl | kBinaryFileFl, p->obj.err.rpt)) != kOkFileRC ) return cmCtxRtCondition( &p->obj, fileRC, "Unable to open the matrix file:'%s'", cmStringNullGuard(fn) ); // iniitlaize the object p->rowCnt = 0; p->maxRowEleCnt = 0; p->eleByteCnt = 0; // write the blank header as place holder if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC ) return rc; return rc; } cmRC_t cmBinMtxFileFinal( cmBinMtxFile_t* p ) { cmRC_t rc; cmFileRC_t fileRC; if( p != NULL && cmFileIsValid(p->fh)) { // re-write the file header if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC ) return rc; // close the file if((fileRC = cmFileClose(&p->fh)) != kOkFileRC ) return cmCtxRtCondition(&p->obj, fileRC, "Matrix file close failed on:'%s'",cmStringNullGuard(cmFileName(p->fh))); } return cmOkRC; } bool cmBinMtxFileIsValid( cmBinMtxFile_t* p ) { return p != NULL && cmFileIsValid(p->fh); } cmRC_t _cmBinMtxFileWriteRow( cmBinMtxFile_t* p, const void* buf, unsigned eleCnt, unsigned eleByteCnt ) { cmFileRC_t fileRC; if((fileRC = cmFileWrite(p->fh,&eleCnt,sizeof(eleCnt))) != kOkFileRC ) return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i element count write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh))); if((fileRC = cmFileWrite(p->fh,buf,eleCnt*eleByteCnt)) != kOkFileRC ) return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i data write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh))); if( eleCnt > p->maxRowEleCnt ) p->maxRowEleCnt = eleCnt; ++p->rowCnt; return cmOkRC; } cmRC_t cmBinMtxFileExecS( cmBinMtxFile_t* p, const cmSample_t* x, unsigned xn ) { // verify that all rows are written as cmSample_t assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmSample_t)); p->eleByteCnt = sizeof(cmSample_t); return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt); } cmRC_t cmBinMtxFileExecR( cmBinMtxFile_t* p, const cmReal_t* x, unsigned xn ) { // verify that all rows are written as cmReal_t assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmReal_t)); p->eleByteCnt = sizeof(cmReal_t); return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt); } cmRC_t cmBinMtxFileWrite( const cmChar_t* fn, unsigned rowCnt, unsigned colCnt, const cmSample_t* sp, const cmReal_t* rp, cmCtx* ctx, cmRpt_t* rpt ) { assert( sp == NULL || rp == NULL ); cmCtx* ctxp = NULL; cmBinMtxFile_t* bp = NULL; if( ctx == NULL ) ctx = ctxp = cmCtxAlloc(NULL,rpt,cmLHeapNullHandle,cmSymTblNullHandle); if((bp = cmBinMtxFileAlloc(ctx,NULL,fn)) != NULL ) { unsigned i = 0; cmSample_t* sbp = sp == NULL ? NULL : cmMemAlloc(cmSample_t,colCnt); cmReal_t* rbp = rp == NULL ? NULL : cmMemAlloc(cmReal_t,colCnt); for(i=0; ierr,cmSubSysFailRC,"Binary matrix file header read failed on '%s'.",cmStringNullGuard(fn)); goto errLabel; } if( rowCntPtr != NULL ) *rowCntPtr = hdr[0]; if( colCntPtr != NULL ) *colCntPtr = hdr[1]; if( eleByteCntPtr != NULL ) *eleByteCntPtr = hdr[2]; errLabel: return rc; } cmRC_t cmBinMtxFileSize( cmCtx_t* ctx, const cmChar_t* fn, unsigned* rowCntPtr, unsigned* colCntPtr, unsigned* eleByteCntPtr ) { cmFileH_t h = cmFileNullHandle; cmRC_t rc = cmOkRC; if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, ctx->err.rpt) != kOkFileRC ) { rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn)); goto errLabel; } rc = _cmBinMtxFileReadHdr(ctx,h,rowCntPtr,colCntPtr,eleByteCntPtr,fn); errLabel: cmFileClose(&h); return rc; } cmRC_t cmBinMtxFileRead( cmCtx_t* ctx, const cmChar_t* fn, unsigned mRowCnt, unsigned mColCnt, unsigned mEleByteCnt, void* retBuf, unsigned* colCntV ) { cmFileH_t h = cmFileNullHandle; cmRC_t rc = cmOkRC; char* rowBuf = NULL; unsigned rowCnt,colCnt,eleByteCnt,i; cmErr_t err; cmErrSetup(&err,ctx->err.rpt,"Binary Matrix File Reader"); if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, err.rpt) != kOkFileRC ) { rc = cmErrMsg(&err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn)); goto errLabel; } if((rc = _cmBinMtxFileReadHdr(ctx,h,&rowCnt,&colCnt,&eleByteCnt,fn)) != cmOkRC ) goto errLabel; if( mRowCnt != rowCnt ) rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file row count and the return buffer row count are not the same."); if( mColCnt != colCnt ) rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file column count and the return buffer column count are not the same."); if( mEleByteCnt != eleByteCnt ) rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file element byte count and the return buffer element byte count are not the same."); if( rc == cmOkRC ) { rowBuf = cmMemAllocZ(char,colCnt*eleByteCnt); for(i=0; i colCnt ) { rc = cmErrMsg(&err,cmSubSysFailRC,"The actual column count:%i exceeds the max column count:%i.",cn,colCnt); goto errLabel; } //read the row data if( cmFileReadChar(h,rowBuf,cn*eleByteCnt) != kOkFileRC ) { rc = cmErrMsg(&err,cmSubSysFailRC,"File read failed at row index:%i.",i); goto errLabel; } char* dp = ((char*)retBuf) + i * eleByteCnt; // the data is read in row-major order but the matrix must be // returned on col major order - rearrange the columns here. switch(eleByteCnt) { case sizeof(cmSample_t): cmVOS_CopyN(((cmSample_t*)dp), cn, rowCnt, (cmSample_t*)rowBuf, 1 ); break; case sizeof(cmReal_t): cmVOR_CopyN(((cmReal_t*)dp), cn, rowCnt, (cmReal_t*)rowBuf, 1 ); break; default: rc = cmErrMsg(&err,cmSubSysFailRC,"Invalid element byte count:%i.",eleByteCnt); goto errLabel; } } } errLabel: cmMemPtrFree(&rowBuf); cmFileClose(&h); return rc; }