libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmProcTemplateCode.h 5.5KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. //| Copyright: (C) 2009-2020 Kevin Larke <contact AT larke DOT org>
  2. //| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
  3. #ifdef cmProcTemplateCode_h
  4. //-----------------------------------------------------------------------------------------------------------
  5. // FFT
  6. //
  7. CLASS(Fft)* MEMBER(FftAlloc)( cmCtx* c, CLASS(Fft)* ap, T0* inPtr, unsigned wndSmpCnt, unsigned flags )
  8. {
  9. CLASS(Fft)* p = cmObjAlloc( CLASS(Fft), c, ap );
  10. if( wndSmpCnt > 0 )
  11. if( MEMBER(FftInit)( p,inPtr,wndSmpCnt,flags) != cmOkRC )
  12. MEMBER(FftFree)(&p);
  13. return p;
  14. }
  15. cmRC_t MEMBER(FftFree)( CLASS(Fft)** pp )
  16. {
  17. if( pp != NULL && *pp != NULL )
  18. {
  19. CLASS(Fft)* p = *pp;
  20. if( MEMBER(FftFinal)( *pp ) == cmOkRC )
  21. {
  22. cmMemPtrFree( &p->complexV );
  23. cmMemPtrFree( &p->magV );
  24. cmMemPtrFree( &p->phsV);
  25. if( p->copyFl )
  26. cmMemPtrFree( &p->inPtr );
  27. cmObjFree(pp);
  28. }
  29. }
  30. return cmOkRC;
  31. }
  32. cmRC_t MEMBER(FftInit)( CLASS(Fft)* p, T0* inPtr, unsigned wndSmpCnt, unsigned flags )
  33. {
  34. cmRC_t rc;
  35. if( cmIsPowerOfTwo(wndSmpCnt) == false )
  36. return cmCtxRtAssertFailed(&p->obj,cmArgAssertRC,"The FFT window sample count (%i) is not a power of two.",wndSmpCnt);
  37. if((rc = MEMBER(FftFinal)(p)) != cmOkRC )
  38. return rc;
  39. p->wndSmpCnt = wndSmpCnt;
  40. p->binCnt = wndSmpCnt / 2 + 1;
  41. p->flags = flags;
  42. p->magV = cmMemResize( T1, p->magV, p->binCnt );
  43. p->phsV = cmMemResize( T1, p->phsV, p->binCnt );
  44. p->copyFl = inPtr == NULL;
  45. p->complexV = cmMemResize( COMPLEX_T0, p->complexV, p->wndSmpCnt );
  46. p->inPtr = p->copyFl ? cmMemResizeZ( T0, p->inPtr, p->wndSmpCnt ) : inPtr;
  47. p->plan = FFT_FUNC_T0(FftPlanAlloc)( p->wndSmpCnt, p->inPtr, p->complexV, FFTW_ESTIMATE );
  48. //p->mfp = cmCtxAllocDebugFile( p->obj.ctx,"fft");
  49. return cmOkRC;
  50. }
  51. cmRC_t MEMBER(FftFinal)( CLASS(Fft)* p )
  52. {
  53. if( p != NULL )
  54. {
  55. //cmCtxFreeDebugFile(p->obj.ctx, &p->mfp);
  56. if( p->plan != NULL )
  57. {
  58. FFT_FUNC_T0(FftPlanFree)( p->plan );
  59. p->plan = NULL;
  60. }
  61. }
  62. return cmOkRC;
  63. }
  64. cmRC_t MEMBER(FftExec)( CLASS(Fft)* p, const T0* sp, unsigned sn )
  65. {
  66. // if a fixed input buffer is not being used then copy in the source samples
  67. if( sp != NULL && p->copyFl == true )
  68. {
  69. assert( p->inPtr != NULL );
  70. unsigned n = cmMin(sn,p->wndSmpCnt);
  71. VOP_T0(Copy)( p->inPtr,n, sp );
  72. if( n < p->wndSmpCnt )
  73. VOP_T0(Fill)( p->inPtr+n, p->wndSmpCnt-n, 0 );
  74. }
  75. // perform the Fourier transform
  76. FFT_FUNC_T0(FftExecute)(p->plan);
  77. COMPLEX_T0* cp = p->complexV;
  78. T1* mp = p->magV;
  79. T1* pp = p->phsV;
  80. T1* ep = mp + p->binCnt;
  81. // if polar conversion was requested
  82. if( cmIsFlag(p->flags, kToPolarFftFl ) )
  83. {
  84. while( mp < ep )
  85. {
  86. *mp++ = cmCabsR(*cp);
  87. *pp++ = cmCargR(*cp++);
  88. }
  89. }
  90. else
  91. // if rectangular splitting was requested
  92. if( cmIsFlag(p->flags, kToRectFftFl ) )
  93. {
  94. while( mp < ep )
  95. {
  96. *mp++ = cmCrealR(*cp);
  97. *pp++ = cmCimagR(*cp++);
  98. }
  99. }
  100. /*
  101. if( p->mfp != NULL )
  102. {
  103. cmMtxFileRealExec( p->mfp, p->magV, p->binCnt );
  104. cmMtxFileRealExec( p->mfp, p->phsV, p->binCnt );
  105. }
  106. */
  107. return cmOkRC;
  108. }
  109. //-----------------------------------------------------------------------------------------------------------
  110. // IFft
  111. //
  112. CLASS(IFft)* MEMBER(IFftAlloc)( cmCtx* c, CLASS(IFft)* ap, unsigned binCnt )
  113. {
  114. CLASS(IFft)* p = cmObjAlloc( CLASS(IFft), c, ap );
  115. if( binCnt > 0 )
  116. if( MEMBER(IFftInit)( p,binCnt) != cmOkRC )
  117. MEMBER(IFftFree)(&p);
  118. return p;
  119. }
  120. cmRC_t MEMBER(IFftFree)( CLASS(IFft)** pp )
  121. {
  122. if( pp != NULL && pp != NULL)
  123. {
  124. CLASS(IFft)* p = *pp;
  125. if( MEMBER(IFftFinal)(p) == cmOkRC )
  126. {
  127. cmMemPtrFree(&p->complexV);
  128. cmMemPtrFree(&p->outV);
  129. cmObjFree(pp);
  130. }
  131. }
  132. return cmOkRC;
  133. }
  134. cmRC_t MEMBER(IFftInit)( CLASS(IFft)* p, unsigned binCnt )
  135. {
  136. cmRC_t rc;
  137. if((rc = MEMBER(IFftFinal)(p)) != cmOkRC )
  138. return rc;
  139. p->outN = (binCnt-1)*2;
  140. p->outV = cmMemResizeZ(T1, p->outV, p->outN);
  141. p->complexV = cmMemResizeZ(COMPLEX_T1, p->complexV,p->outN);
  142. if( p->binCnt != binCnt )
  143. {
  144. p->binCnt = binCnt;
  145. p->plan = FFT_FUNC_T1(IFftPlanAlloc)( p->outN, p->complexV, p->outV, FFTW_ESTIMATE );
  146. }
  147. return cmOkRC;
  148. }
  149. cmRC_t MEMBER(IFftFinal)( CLASS(IFft)* p )
  150. { return cmOkRC; }
  151. // x must contain 'binCnt' elements.
  152. cmRC_t MEMBER(IFftExec)( CLASS(IFft)* p, COMPLEX_T0* x )
  153. {
  154. unsigned i,j;
  155. if( x != NULL )
  156. for(i=0; i<p->binCnt; ++i)
  157. p->complexV[i] = x[i];
  158. for(i=p->outN-1,j=1; j<p->binCnt-1; --i,++j)
  159. p->complexV[i] = (COMPLEX_T1)conj(p->complexV[j]);
  160. FFT_FUNC_T1(FftExecute)(p->plan);
  161. return cmOkRC;
  162. }
  163. cmRC_t MEMBER(IFftExecPolar)( CLASS(IFft)* p, const T0* magV, const T0* phsV )
  164. {
  165. unsigned i,j;
  166. for(i=0; i<p->binCnt; ++i)
  167. p->complexV[i] = (COMPLEX_T1)(magV[i] * cos(phsV[i])) + (magV[i] * I * sin(phsV[i]));
  168. for(i=p->outN-1,j=1; j<p->binCnt-1; --i,++j)
  169. p->complexV[i] = (COMPLEX_T1)(magV[j] * cos(phsV[j])) + (magV[j] * I * sin(phsV[j]));
  170. FFT_FUNC_T1(FftExecute)(p->plan);
  171. return cmOkRC;
  172. }
  173. cmRC_t MEMBER(IFftExecRect)( CLASS(IFft)* p, const T0* rV, const T0* iV )
  174. {
  175. unsigned i,j;
  176. for(i=0; i<p->binCnt; ++i)
  177. p->complexV[i] = rV[i] + (I * iV[i]);
  178. for(i=p->outN-1,j=1; j<p->binCnt-1; --i,++j)
  179. p->complexV[i] = rV[j] + (I * iV[j]);
  180. FFT_FUNC_T1(FftExecute)(p->plan);
  181. return cmOkRC;
  182. }
  183. #endif