libcm is a C development framework with an emphasis on audio signal processing applications.
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

cmProcTemplateCode.h 5.5KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. //| Copyright: (C) 2009-2020 Kevin Larke <contact AT larke DOT org>
  2. //| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
  3. #ifdef cmProcTemplateCode_h
  4. //-----------------------------------------------------------------------------------------------------------
  5. // FFT
  6. //
  7. CLASS(Fft)* MEMBER(FftAlloc)( cmCtx* c, CLASS(Fft)* ap, T0* inPtr, unsigned wndSmpCnt, unsigned flags )
  8. {
  9. CLASS(Fft)* p = cmObjAlloc( CLASS(Fft), c, ap );
  10. if( wndSmpCnt > 0 )
  11. if( MEMBER(FftInit)( p,inPtr,wndSmpCnt,flags) != cmOkRC )
  12. MEMBER(FftFree)(&p);
  13. return p;
  14. }
  15. cmRC_t MEMBER(FftFree)( CLASS(Fft)** pp )
  16. {
  17. if( pp != NULL && *pp != NULL )
  18. {
  19. CLASS(Fft)* p = *pp;
  20. if( MEMBER(FftFinal)( *pp ) == cmOkRC )
  21. {
  22. cmMemPtrFree( &p->complexV );
  23. cmMemPtrFree( &p->magV );
  24. cmMemPtrFree( &p->phsV);
  25. if( p->copyFl )
  26. cmMemPtrFree( &p->inPtr );
  27. cmObjFree(pp);
  28. }
  29. }
  30. return cmOkRC;
  31. }
  32. cmRC_t MEMBER(FftInit)( CLASS(Fft)* p, T0* inPtr, unsigned wndSmpCnt, unsigned flags )
  33. {
  34. cmRC_t rc;
  35. if( cmIsPowerOfTwo(wndSmpCnt) == false )
  36. return cmCtxRtAssertFailed(&p->obj,cmArgAssertRC,"The FFT window sample count (%i) is not a power of two.",wndSmpCnt);
  37. if((rc = MEMBER(FftFinal)(p)) != cmOkRC )
  38. return rc;
  39. p->wndSmpCnt = wndSmpCnt;
  40. p->binCnt = wndSmpCnt / 2 + 1;
  41. p->flags = flags;
  42. p->magV = cmMemResize( T1, p->magV, p->binCnt );
  43. p->phsV = cmMemResize( T1, p->phsV, p->binCnt );
  44. p->copyFl = inPtr == NULL;
  45. p->complexV = cmMemResize( COMPLEX_T0, p->complexV, p->wndSmpCnt );
  46. p->inPtr = p->copyFl ? cmMemResizeZ( T0, p->inPtr, p->wndSmpCnt ) : inPtr;
  47. p->plan = FFT_FUNC_T0(FftPlanAlloc)( p->wndSmpCnt, p->inPtr, p->complexV, FFTW_ESTIMATE );
  48. //p->mfp = cmCtxAllocDebugFile( p->obj.ctx,"fft");
  49. return cmOkRC;
  50. }
  51. cmRC_t MEMBER(FftFinal)( CLASS(Fft)* p )
  52. {
  53. if( p != NULL )
  54. {
  55. //cmCtxFreeDebugFile(p->obj.ctx, &p->mfp);
  56. if( p->plan != NULL )
  57. {
  58. FFT_FUNC_T0(FftPlanFree)( p->plan );
  59. p->plan = NULL;
  60. }
  61. }
  62. return cmOkRC;
  63. }
  64. cmRC_t MEMBER(FftExec)( CLASS(Fft)* p, const T0* sp, unsigned sn )
  65. {
  66. // if a fixed input buffer is not being used then copy in the source samples
  67. if( sp != NULL && p->copyFl == true )
  68. {
  69. assert( p->inPtr != NULL );
  70. unsigned n = cmMin(sn,p->wndSmpCnt);
  71. VOP_T0(Copy)( p->inPtr,n, sp );
  72. if( n < p->wndSmpCnt )
  73. VOP_T0(Fill)( p->inPtr+n, p->wndSmpCnt-n, 0 );
  74. }
  75. // perform the Fourier transform
  76. FFT_FUNC_T0(FftExecute)(p->plan);
  77. COMPLEX_T0* cp = p->complexV;
  78. T1* mp = p->magV;
  79. T1* pp = p->phsV;
  80. T1* ep = mp + p->binCnt;
  81. // if polar conversion was requested
  82. if( cmIsFlag(p->flags, kToPolarFftFl ) )
  83. {
  84. while( mp < ep )
  85. {
  86. *mp++ = cmCabsR(*cp);
  87. *pp++ = cmCargR(*cp++);
  88. }
  89. }
  90. else
  91. // if rectangular splitting was requested
  92. if( cmIsFlag(p->flags, kToRectFftFl ) )
  93. {
  94. while( mp < ep )
  95. {
  96. *mp++ = cmCrealR(*cp);
  97. *pp++ = cmCimagR(*cp++);
  98. }
  99. }
  100. /*
  101. if( p->mfp != NULL )
  102. {
  103. cmMtxFileRealExec( p->mfp, p->magV, p->binCnt );
  104. cmMtxFileRealExec( p->mfp, p->phsV, p->binCnt );
  105. }
  106. */
  107. return cmOkRC;
  108. }
  109. //-----------------------------------------------------------------------------------------------------------
  110. // IFft
  111. //
  112. CLASS(IFft)* MEMBER(IFftAlloc)( cmCtx* c, CLASS(IFft)* ap, unsigned binCnt )
  113. {
  114. CLASS(IFft)* p = cmObjAlloc( CLASS(IFft), c, ap );
  115. if( binCnt > 0 )
  116. if( MEMBER(IFftInit)( p,binCnt) != cmOkRC )
  117. MEMBER(IFftFree)(&p);
  118. return p;
  119. }
  120. cmRC_t MEMBER(IFftFree)( CLASS(IFft)** pp )
  121. {
  122. if( pp != NULL && pp != NULL)
  123. {
  124. CLASS(IFft)* p = *pp;
  125. if( MEMBER(IFftFinal)(p) == cmOkRC )
  126. {
  127. cmMemPtrFree(&p->complexV);
  128. cmMemPtrFree(&p->outV);
  129. cmObjFree(pp);
  130. }
  131. }
  132. return cmOkRC;
  133. }
  134. cmRC_t MEMBER(IFftInit)( CLASS(IFft)* p, unsigned binCnt )
  135. {
  136. cmRC_t rc;
  137. if((rc = MEMBER(IFftFinal)(p)) != cmOkRC )
  138. return rc;
  139. p->outN = (binCnt-1)*2;
  140. p->outV = cmMemResizeZ(T1, p->outV, p->outN);
  141. p->complexV = cmMemResizeZ(COMPLEX_T1, p->complexV,p->outN);
  142. if( p->binCnt != binCnt )
  143. {
  144. p->binCnt = binCnt;
  145. p->plan = FFT_FUNC_T1(IFftPlanAlloc)( p->outN, p->complexV, p->outV, FFTW_ESTIMATE );
  146. }
  147. return cmOkRC;
  148. }
  149. cmRC_t MEMBER(IFftFinal)( CLASS(IFft)* p )
  150. { return cmOkRC; }
  151. // x must contain 'binCnt' elements.
  152. cmRC_t MEMBER(IFftExec)( CLASS(IFft)* p, COMPLEX_T0* x )
  153. {
  154. unsigned i,j;
  155. if( x != NULL )
  156. for(i=0; i<p->binCnt; ++i)
  157. p->complexV[i] = x[i];
  158. for(i=p->outN-1,j=1; j<p->binCnt-1; --i,++j)
  159. p->complexV[i] = (COMPLEX_T1)conj(p->complexV[j]);
  160. FFT_FUNC_T1(FftExecute)(p->plan);
  161. return cmOkRC;
  162. }
  163. cmRC_t MEMBER(IFftExecPolar)( CLASS(IFft)* p, const T0* magV, const T0* phsV )
  164. {
  165. unsigned i,j;
  166. for(i=0; i<p->binCnt; ++i)
  167. p->complexV[i] = (COMPLEX_T1)(magV[i] * cos(phsV[i])) + (magV[i] * I * sin(phsV[i]));
  168. for(i=p->outN-1,j=1; j<p->binCnt-1; --i,++j)
  169. p->complexV[i] = (COMPLEX_T1)(magV[j] * cos(phsV[j])) + (magV[j] * I * sin(phsV[j]));
  170. FFT_FUNC_T1(FftExecute)(p->plan);
  171. return cmOkRC;
  172. }
  173. cmRC_t MEMBER(IFftExecRect)( CLASS(IFft)* p, const T0* rV, const T0* iV )
  174. {
  175. unsigned i,j;
  176. for(i=0; i<p->binCnt; ++i)
  177. p->complexV[i] = rV[i] + (I * iV[i]);
  178. for(i=p->outN-1,j=1; j<p->binCnt-1; --i,++j)
  179. p->complexV[i] = rV[j] + (I * iV[j]);
  180. FFT_FUNC_T1(FftExecute)(p->plan);
  181. return cmOkRC;
  182. }
  183. #endif