libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmProc5.c 19KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmCtx.h"
  6. #include "cmMem.h"
  7. #include "cmMallocDebug.h"
  8. #include "cmLinkedHeap.h"
  9. #include "cmFloatTypes.h"
  10. #include "cmComplexTypes.h"
  11. #include "cmFileSys.h"
  12. #include "cmJson.h"
  13. #include "cmSymTbl.h"
  14. #include "cmAudioFile.h"
  15. #include "cmText.h"
  16. #include "cmProcObj.h"
  17. #include "cmProcTemplate.h"
  18. #include "cmMath.h"
  19. #include "cmFile.h"
  20. #include "cmTime.h"
  21. #include "cmMidi.h"
  22. #include "cmProc.h"
  23. #include "cmProc2.h"
  24. #include "cmProc5.h"
  25. #include "cmVectOps.h"
  26. //=======================================================================================================================
  27. cmGoertzel* cmGoertzelAlloc( cmCtx* c, cmGoertzel* p, double srate, const double* fcHzV, unsigned chCnt, unsigned procSmpCnt, unsigned hopSmpCnt, unsigned wndSmpCnt )
  28. {
  29. cmGoertzel* op = cmObjAlloc(cmGoertzel,c,p);
  30. op->shb = cmShiftBufAlloc(c,NULL,0,0,0);
  31. if( srate > 0 )
  32. if( cmGoertzelInit(op,srate,fcHzV,chCnt,procSmpCnt,wndSmpCnt,hopSmpCnt) != cmOkRC )
  33. cmGoertzelFree(&op);
  34. return op;
  35. }
  36. cmRC_t cmGoertzelFree( cmGoertzel** pp )
  37. {
  38. cmRC_t rc = cmOkRC;
  39. if( pp==NULL || *pp==NULL )
  40. return rc;
  41. cmGoertzel* p = *pp;
  42. if((rc = cmGoertzelFinal(p)) != cmOkRC )
  43. return rc;
  44. cmShiftBufFree(&p->shb);
  45. cmMemFree(p->ch);
  46. cmMemFree(p->wnd);
  47. cmObjFree(pp);
  48. return rc;
  49. }
  50. cmRC_t cmGoertzelInit( cmGoertzel* p, double srate, const double* fcHzV, unsigned chCnt, unsigned procSmpCnt, unsigned hopSmpCnt, unsigned wndSmpCnt )
  51. {
  52. cmRC_t rc;
  53. unsigned i;
  54. if((rc = cmGoertzelFinal(p)) != cmOkRC )
  55. return rc;
  56. p->ch = cmMemResizeZ(cmGoertzelCh,p->ch,chCnt);
  57. p->chCnt = chCnt;
  58. p->srate = srate;
  59. p->wnd = cmMemResizeZ(cmSample_t,p->wnd,wndSmpCnt);
  60. cmVOS_Hann(p->wnd,wndSmpCnt);
  61. cmShiftBufInit(p->shb,procSmpCnt,wndSmpCnt,hopSmpCnt);
  62. for(i=0; i<p->chCnt; ++i)
  63. {
  64. cmGoertzelSetFcHz(p,i,fcHzV[i]);
  65. }
  66. return rc;
  67. }
  68. cmRC_t cmGoertzelFinal( cmGoertzel* p )
  69. { return cmOkRC; }
  70. cmRC_t cmGoertzelSetFcHz( cmGoertzel* p, unsigned chIdx, double hz )
  71. {
  72. assert( chIdx < p->chCnt );
  73. p->ch[chIdx].hz = hz;
  74. p->ch[chIdx].coeff = 2*cos(2*M_PI*hz/p->srate);
  75. return cmOkRC;
  76. }
  77. cmRC_t cmGoertzelExec( cmGoertzel* p, const cmSample_t* inpV, unsigned procSmpCnt, double* outV, unsigned chCnt )
  78. {
  79. unsigned i,j;
  80. while( cmShiftBufExec(p->shb,inpV,procSmpCnt) )
  81. {
  82. unsigned xn = p->shb->wndSmpCnt;
  83. cmSample_t x[ xn ];
  84. cmVOS_MultVVV(x,xn,p->wnd,p->shb->outV);
  85. for(i=0; i<chCnt; ++i)
  86. {
  87. cmGoertzelCh* ch = p->ch + i;
  88. ch->s2 = x[0];
  89. ch->s1 = x[1] + 2 * x[0] * ch->coeff;
  90. for(j=2; j<xn; ++j)
  91. {
  92. ch->s0 = x[j] + ch->coeff * ch->s1 - ch->s2;
  93. ch->s2 = ch->s1;
  94. ch->s1 = ch->s0;
  95. }
  96. outV[i] = ch->s2*ch->s2 + ch->s1*ch->s1 - ch->coeff * ch->s2 * ch->s1;
  97. }
  98. }
  99. return cmOkRC;
  100. }
  101. //=======================================================================================================================
  102. double _cmGoldSigSinc( double t, double T )
  103. {
  104. double x = t/T;
  105. return x == 0 ? 1.0 : sin(M_PI*x)/(M_PI*x);
  106. }
  107. void _cmGoldSigRaisedCos( cmSample_t* yV, int yN, double sPc, double beta )
  108. {
  109. int i;
  110. for(i=0; i<yN; ++i)
  111. {
  112. double t = i - yN/2;
  113. double den = 1 - (4*(beta*beta)*(t*t) / (sPc*sPc));
  114. double a;
  115. if(fabs(den) < 0.00001 )
  116. a = 1;
  117. else
  118. a = cos(M_PI * beta * t/ sPc ) / den;
  119. yV[i] = _cmGoldSigSinc(t,sPc) * a;
  120. }
  121. }
  122. void _cmGoldSigConv( cmGoldSig_t* p, unsigned chIdx )
  123. {
  124. int i;
  125. int sPc = p->a.samplesPerChip;
  126. int osf = p->a.rcosOSFact;
  127. // for each bit in the spreading-code
  128. for(i=0; i<p->mlsN; ++i)
  129. {
  130. int j = (i*sPc) + sPc/2; // index into bbV[] of center of impulse response
  131. int k = j - (sPc*osf)/2; // index into bbV[] of start of impulse response
  132. int h;
  133. // for each sample in the impulse response
  134. for(h=0; h<p->rcosN; ++h,++k)
  135. {
  136. while( k<0 )
  137. k += p->sigN;
  138. while( k>=p->sigN )
  139. k -= p->sigN;
  140. p->ch[chIdx].bbV[k] += p->ch[chIdx].pnV[i] * p->rcosV[h];
  141. }
  142. }
  143. }
  144. void _cmGoldSigModulate( cmGoldSig_t* p, unsigned chIdx )
  145. {
  146. unsigned i;
  147. double rps = 2.0 * M_PI * p->a.carrierHz / p->a.srate;
  148. cmSample_t* yV = p->ch[chIdx].mdV;
  149. cmSample_t* bbV = p->ch[chIdx].bbV;
  150. for(i=0; i<p->sigN; ++i)
  151. yV[ i ] = bbV[i]*cos(rps*i) + bbV[i]*sin(rps*i);
  152. // apply a half Hann envelope to the onset/offset of the id signal
  153. if( p->a.envMs > 0 )
  154. {
  155. unsigned wndMs = p->a.envMs * 2;
  156. unsigned wndN = wndMs * p->a.srate / 1000;
  157. wndN += wndN % 2 ? 0 : 1; // force the window length to be odd
  158. unsigned wNo2 = wndN/2 + 1;
  159. cmSample_t wndV[ wndN ];
  160. cmVOS_Hann(wndV,wndN);
  161. cmVOS_MultVV(yV,wNo2,wndV);
  162. cmVOS_MultVV(yV + p->sigN - wNo2, wNo2, wndV + wNo2 - 1);
  163. }
  164. }
  165. cmGoldSig_t* cmGoldSigAlloc( cmCtx* ctx, cmGoldSig_t* p, const cmGoldSigArg_t* a )
  166. {
  167. cmGoldSig_t* op = cmObjAlloc(cmGoldSig_t,ctx,p);
  168. if( a != NULL )
  169. if( cmGoldSigInit(op,a) != cmOkRC )
  170. cmGoldSigFree(&op);
  171. return op;
  172. }
  173. cmRC_t cmGoldSigFree( cmGoldSig_t** pp )
  174. {
  175. cmRC_t rc = cmOkRC;
  176. if( pp == NULL || *pp == NULL )
  177. return rc;
  178. cmGoldSig_t* p = *pp;
  179. if((rc = cmGoldSigFinal(p)) != cmOkRC )
  180. return rc;
  181. unsigned i;
  182. for(i=0; i<p->a.chN; ++i)
  183. {
  184. cmMemFree(p->ch[i].bbV);
  185. cmMemFree(p->ch[i].mdV);
  186. }
  187. cmMemFree(p->ch);
  188. cmMemFree(p->rcosV);
  189. cmMemFree(p->pnM);
  190. cmMemFree(p);
  191. *pp = NULL;
  192. return rc;
  193. }
  194. cmRC_t cmGoldSigInit( cmGoldSig_t* p, const cmGoldSigArg_t* a )
  195. {
  196. cmRC_t rc = cmOkRC;
  197. unsigned i;
  198. p->a = *a; // store arg recd
  199. p->ch = cmMemResizeZ(cmGoldSigCh_t,p->ch,a->chN); // alloc channel array
  200. p->mlsN = (1 << a->lfsrN) - 1; // calc spreading code length
  201. p->rcosN = a->samplesPerChip * a->rcosOSFact; // calc rcos imp. resp. length
  202. p->rcosN += (p->rcosN % 2)==0; // force rcos imp. length odd
  203. p->rcosV = cmMemResizeZ(cmSample_t,p->rcosV,p->rcosN); // alloc rcos imp. resp. vector
  204. p->pnM = cmMemResizeZ(int,p->pnM,p->mlsN*a->chN); // alloc spreading-code mtx
  205. p->sigN = p->mlsN * a->samplesPerChip; // calc audio signal length
  206. // generate spreading codes
  207. if( cmGenGoldCodes(a->lfsrN, a->mlsCoeff0, a->mlsCoeff1, a->chN, p->pnM, p->mlsN ) == false )
  208. {
  209. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Unable to generate sufficient balanced Gold codes.");
  210. goto errLabel;
  211. }
  212. // generate the rcos impulse response
  213. _cmGoldSigRaisedCos(p->rcosV,p->rcosN,a->samplesPerChip,a->rcosBeta);
  214. // for each channel
  215. for(i=0; i<a->chN; ++i)
  216. {
  217. // Note: if (i*p->mlsN) is set to 0 in the following line then all channels
  218. // will use the same spreading code.
  219. p->ch[i].pnV = p->pnM + (i*p->mlsN); // get ch. spreading code
  220. p->ch[i].bbV = cmMemResizeZ(cmSample_t,p->ch[i].bbV,p->sigN); // alloc baseband signal vector
  221. p->ch[i].mdV = cmMemResizeZ(cmSample_t,p->ch[i].mdV,p->sigN); // alloc output audio vector
  222. // Convolve spreading code with rcos impulse reponse to form baseband signal.
  223. _cmGoldSigConv(p, i );
  224. // Modulate baseband signal to carrier frq. and apply attack/decay envelope.
  225. _cmGoldSigModulate(p, i );
  226. }
  227. errLabel:
  228. if((rc = cmErrLastRC(&p->obj.err)) != cmOkRC )
  229. cmGoldSigFree(&p);
  230. return rc;
  231. }
  232. cmRC_t cmGoldSigFinal( cmGoldSig_t* p )
  233. { return cmOkRC; }
  234. cmRC_t cmGoldSigWrite( cmCtx* ctx, cmGoldSig_t* p, const char* fn )
  235. {
  236. cmVectArray_t* vap = NULL;
  237. unsigned i;
  238. vap = cmVectArrayAlloc(ctx,kSampleVaFl);
  239. for(i=0; i<p->a.chN; ++i)
  240. {
  241. cmVectArrayAppendS(vap,p->ch[i].bbV,p->sigN);
  242. cmVectArrayAppendS(vap,p->ch[i].mdV,p->sigN);
  243. }
  244. cmVectArrayWrite(vap,fn);
  245. cmVectArrayFree(&vap);
  246. return cmOkRC;
  247. }
  248. cmRC_t cmGoldSigGen( cmGoldSig_t* p, unsigned chIdx, unsigned prefixN, unsigned dsN, unsigned *bsiV, unsigned bsiN, double noiseGain, cmSample_t** yVRef, unsigned* yNRef )
  249. {
  250. unsigned yN = prefixN + bsiN * (p->sigN + dsN);
  251. cmSample_t* yV = cmMemAllocZ(cmSample_t,yN);
  252. unsigned i;
  253. cmVOS_Random(yV, yN, -noiseGain, noiseGain );
  254. for(i=0; i<bsiN; ++i)
  255. {
  256. bsiV[i] = prefixN + i*(p->sigN + dsN);
  257. cmVOS_AddVV(yV + bsiV[i], p->sigN, p->ch[chIdx].mdV );
  258. }
  259. if( yVRef != NULL )
  260. *yVRef = yV;
  261. if( yNRef != NULL )
  262. *yNRef = yN;
  263. return cmOkRC;
  264. }
  265. //=======================================================================================================================
  266. cmPhat_t* cmPhatAlloc( cmCtx* ctx, cmPhat_t* ap, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags )
  267. {
  268. cmPhat_t* p = cmObjAlloc(cmPhat_t,ctx,ap);
  269. // The FFT buffer and the delay line is at least twice the size of the
  270. // id signal. This will guarantee that at least one complete id signal
  271. // is inside the buffer. In practice it means that it is possible
  272. // that there will be two id's in the buffer therefore if there are
  273. // two correlation spikes it is important that we take the second.
  274. unsigned fhN = cmNextPowerOfTwo(mult*hN);
  275. // allocate the FFT object
  276. cmFftAllocSR(ctx,&p->fft,NULL,fhN,kToPolarFftFl);
  277. cmIFftAllocRS(ctx,&p->ifft,fhN/2 + 1 );
  278. if( chN != 0 )
  279. if( cmPhatInit(p,chN,hN,alpha,mult,flags) != cmOkRC )
  280. cmPhatFree(&p);
  281. return p;
  282. }
  283. cmRC_t cmPhatFree( cmPhat_t** pp )
  284. {
  285. cmRC_t rc = cmOkRC;
  286. if( pp == NULL || *pp == NULL )
  287. return rc;
  288. cmPhat_t* p = *pp;
  289. if((rc = cmPhatFinal(p)) != cmOkRC )
  290. return rc;
  291. cmMemFree(p->t0V);
  292. cmMemFree(p->t1V);
  293. cmMemFree(p->dV);
  294. cmMemFree(p->xV);
  295. cmMemFree(p->fhM);
  296. cmMemFree(p->mhM);
  297. cmMemFree(p->wndV);
  298. cmObjFreeStatic(cmFftFreeSR, cmFftSR, p->fft);
  299. cmObjFreeStatic(cmIFftFreeRS, cmIFftRS, p->ifft);
  300. cmVectArrayFree(&p->ftVa);
  301. cmObjFree(pp);
  302. return rc;
  303. }
  304. cmRC_t cmPhatInit( cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags )
  305. {
  306. cmRC_t rc = cmOkRC;
  307. if((rc = cmPhatFinal(cmOkRC)) != cmOkRC )
  308. return rc;
  309. p->fhN = cmNextPowerOfTwo(mult*hN);
  310. if((cmFftInitSR(&p->fft, NULL, p->fhN, kToPolarFftFl)) != cmOkRC )
  311. return rc;
  312. if((cmIFftInitRS(&p->ifft, p->fft.binCnt )) != cmOkRC )
  313. return rc;
  314. p->alpha = alpha;
  315. p->flags = flags;
  316. // allocate the delay line
  317. p->dV = cmMemResizeZ(cmSample_t,p->dV,p->fhN);
  318. p->di = 0;
  319. // allocate the linear buffer
  320. p->xV = cmMemResizeZ(cmSample_t,p->xV,p->fhN);
  321. p->t0V = cmMemResizeZ(cmComplexR_t,p->t0V,p->fhN);
  322. p->t1V = cmMemResizeZ(cmComplexR_t,p->t1V,p->fhN);
  323. // allocate the window function
  324. p->wndV = cmMemResizeZ(cmSample_t,p->wndV,p->fhN);
  325. cmVOS_Hann(p->wndV,p->fhN);
  326. // allocate the signal id matrix
  327. p->chN = chN;
  328. p->hN = hN;
  329. p->binN = p->fft.binCnt; //atFftRealBinCount(p->fftH);
  330. p->fhM = cmMemResizeZ(cmComplexR_t, p->fhM, p->fhN * chN);
  331. p->mhM = cmMemResizeZ(float, p->mhM, p->binN * chN);
  332. cmPhatReset(p);
  333. //if( cmIsFlag(p->flags,kDebugAtPhatFl))
  334. // cmVectArrayAlloc(ctx, &p->ftVa, kSampleVaFl );
  335. //else
  336. // p->ftVa = NULL;
  337. return rc;
  338. }
  339. cmRC_t cmPhatFinal( cmPhat_t* p )
  340. { return cmOkRC; }
  341. cmRC_t cmPhatReset( cmPhat_t* p )
  342. {
  343. p->di = 0;
  344. p->absIdx = 0;
  345. cmVOS_Zero(p->dV,p->fhN);
  346. return cmOkRC;
  347. }
  348. cmRC_t cmPhatSetId( cmPhat_t* p, unsigned chIdx, const cmSample_t* hV, unsigned hN )
  349. {
  350. unsigned i;
  351. assert( chIdx < p->chN );
  352. assert( hN == p->hN );
  353. // Allocate a window vector
  354. cmSample_t* wndV = cmMemAllocZ(cmSample_t,hN);
  355. cmVOS_Hann(wndV,hN);
  356. // get ptr to output column in p->fhM[].
  357. cmComplexR_t* yV = p->fhM + (chIdx*p->fhN);
  358. // Zero pad hV[hN] to p->fhN;
  359. assert( hN <= p->fhN );
  360. cmVOS_Zero(p->xV,p->fhN);
  361. cmVOS_Copy(p->xV,hN,hV);
  362. // Apply the window function to the id signal
  363. if(cmIsFlag(p->flags,kHannAtPhatFl) )
  364. cmVOS_MultVVV(p->xV,hN,hV,wndV);
  365. // take FFT of id signal. The result is in fft->complexV and fft->magV,phsV
  366. cmFftExecSR(&p->fft, p->xV, p->fhN );
  367. // Store the magnitude of the id signal
  368. //atFftComplexAbs(p->mhM + (chIdx*p->binN), yV, p->binN);
  369. cmVOF_CopyR(p->mhM + (chIdx*p->binN), p->binN, p->fft.magV );
  370. // Scale the magnitude
  371. cmVOS_MultVS( p->mhM + (chIdx*p->binN), p->binN, p->alpha);
  372. // store the complex conjugate of the FFT result in yV[]
  373. //atFftComplexConj(yV,p->binN);
  374. for(i=0; i<p->binN; ++i)
  375. yV[i] = cmCconjR(p->fft.complexV[i]);
  376. cmMemFree(wndV);
  377. return cmOkRC;
  378. }
  379. cmSample_t* _cmPhatReadVector( cmCtx* ctx, cmPhat_t* p, const char* fn, unsigned* vnRef )
  380. {
  381. cmVectArray_t* vap = NULL;
  382. cmSample_t* v = NULL;
  383. cmRC_t rc = cmOkRC;
  384. // instantiate a VectArray from a file
  385. if( (vap = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
  386. {
  387. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Id component vector file read failed '%s'.",fn);
  388. goto errLabel;
  389. }
  390. // get the count of elements in the vector
  391. *vnRef = cmVectArrayEleCount(vap);
  392. // allocate memory to hold the vector
  393. v = cmMemAlloc(cmSample_t,*vnRef);
  394. // copy the vector from the vector array object into v[]
  395. if((rc = cmVectArrayGetF(vap,v,vnRef)) != cmOkRC )
  396. {
  397. cmMemFree(v);
  398. v = NULL;
  399. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Id component vector copy out failed '%s'.",fn);
  400. goto errLabel;
  401. }
  402. cmRptPrintf(p->obj.err.rpt,"%i : %s",*vnRef,fn);
  403. errLabel:
  404. cmVectArrayFree(&vap);
  405. return v;
  406. }
  407. cmRC_t cmPhatExec( cmPhat_t* p, const cmSample_t* xV, unsigned xN )
  408. {
  409. unsigned n = cmMin(xN,p->fhN-p->di);
  410. // update the delay line
  411. cmVOS_Copy(p->dV+p->di,n,xV);
  412. if( n < xN )
  413. cmVOS_Copy(p->dV,xN-n,xV+n);
  414. p->di = cmModIncr(p->di,xN,p->fhN);
  415. // p->absIdx is the absolute sample index associated with di
  416. p->absIdx += xN;
  417. return cmOkRC;
  418. }
  419. void cmPhatChExec(
  420. cmPhat_t* p,
  421. unsigned chIdx,
  422. unsigned sessionId,
  423. unsigned roleId)
  424. {
  425. unsigned n0 = p->fhN - p->di;
  426. unsigned n1 = p->fhN - n0;
  427. // Linearize the delay line into xV[]
  428. cmVOS_Copy(p->xV, n0, p->dV + p->di );
  429. cmVOS_Copy(p->xV+n0, n1, p->dV );
  430. if( cmIsFlag(p->flags,kDebugAtPhatFl))
  431. cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
  432. // apply a window function to the incoming signal
  433. if( cmIsFlag(p->flags,kHannAtPhatFl) )
  434. cmVOS_MultVV(p->xV,p->fhN,p->wndV);
  435. // Take the FFT of the delay line.
  436. // p->t0V[p->binN] = fft(p->xV)
  437. //atFftRealForward(p->fftH, p->xV, p->fhN, p->t0V, p->binN );
  438. cmFftExecSR(&p->fft, p->xV, p->fhN );
  439. // Calc. the Cross Power Spectrum (aka cross spectral density) of the
  440. // input signal with the id signal.
  441. // Note that the CPS is equivalent to the Fourier Transform of the
  442. // cross-correlation of the two signals.
  443. // t0V[] *= p->fhM[:,chIdx]
  444. //atFftComplexMult( p->t0V, p->fhM + (chIdx * p->fhN), p->binN );
  445. cmVOCR_MultVVV( p->t0V, p->fft.complexV, p->fhM + (chIdx * p->fhN), p->binN);
  446. // Calculate the magnitude of the CPS.
  447. // xV[] = | t0V[] |
  448. cmVOCR_Abs( p->xV, p->t0V, p->binN );
  449. // Weight the CPS by the scaled magnitude of the id signal
  450. // (we want to emphasize the limited frequencies where the
  451. // id signal contains energy)
  452. // t0V[] *= p->mhM[:,chIdx]
  453. if( p->alpha > 0 )
  454. cmVOCR_MultVFV( p->t0V, p->mhM + (chIdx*p->binN), p->binN);
  455. // Divide through by the magnitude of the CPS
  456. // This has the effect of whitening the spectram and thereby
  457. // minimizing the effect of the magnitude correlation
  458. // while maximimizing the effect of the phase correlation.
  459. //
  460. // t0V[] /= xV[]
  461. cmVOCR_DivVFV( p->t0V, p->xV, p->binN );
  462. // Take the IFFT of the weighted CPS to recover the cross correlation.
  463. // xV[] = IFFT(t0V[])
  464. cmIFftExecRS( &p->ifft, p->t0V );
  465. // Normalize the result by the length of the transform.
  466. cmVOS_DivVVS( p->xV, p->fhN, p->ifft.outV, p->fhN );
  467. // Shift the correlation spike to mark the end of the id
  468. cmVOS_Rotate( p->xV, p->fhN, -((int)p->hN) );
  469. // normalize by the length of the correlation
  470. cmVOS_DivVS(p->xV,p->fhN,p->fhN);
  471. if( cmIsFlag(p->flags,kDebugAtPhatFl))
  472. {
  473. cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
  474. cmSample_t v[] = { sessionId, roleId };
  475. cmVectArrayAppendS(p->ftVa, v, sizeof(v)/sizeof(v[0]));
  476. }
  477. }
  478. cmRC_t cmPhatWrite( cmPhat_t* p, const char* dirStr )
  479. {
  480. cmRC_t rc = cmOkRC;
  481. if( cmIsFlag(p->flags, kDebugAtPhatFl))
  482. {
  483. const char* path = NULL;
  484. if( p->ftVa != NULL )
  485. if((rc = cmVectArrayWrite(p->ftVa, path = cmFsMakeFn(path,"cmPhatFT","va",dirStr,NULL) )) != cmOkRC )
  486. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT debug file write failed.");
  487. cmFsFreeFn(path);
  488. }
  489. return rc;
  490. }
  491. //=======================================================================================================================
  492. //
  493. //
  494. cmReflectCalc_t* cmReflectCalcAlloc( cmCtx* ctx, cmReflectCalc_t* p, const cmGoldSigArg_t* gsa, float phat_alpha, unsigned phat_mult )
  495. {
  496. cmReflectCalc_t* op = cmObjAlloc(cmReflectCalc_t,ctx,p);
  497. cmRC_t rc = cmOkRC;
  498. // allocate the Gold code signal generator
  499. if( (p->gs = cmGoldSigAlloc(ctx,NULL,NULL)) == NULL )
  500. {
  501. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Gold sig allocate failed.");
  502. goto errLabel;
  503. }
  504. // allocate the PHAT object
  505. if( (p->phat = cmPhatAlloc(ctx,NULL,0,0,0,0,0)) == NULL )
  506. {
  507. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT allocate failed.");
  508. goto errLabel;
  509. }
  510. op->va = cmVectArrayAlloc(ctx,kSampleVaFl);
  511. // allocate 'this'
  512. if( gsa != NULL )
  513. rc = cmReflectCalcInit(op,gsa,phat_alpha,phat_mult);
  514. errLabel:
  515. if( rc != cmOkRC )
  516. cmReflectCalcFree(&op);
  517. return op;
  518. }
  519. cmRC_t cmReflectCalcFree( cmReflectCalc_t** pp )
  520. {
  521. cmRC_t rc = cmOkRC;
  522. if( pp == NULL || *pp == NULL )
  523. return rc;
  524. cmReflectCalc_t* p = *pp;
  525. if((rc = cmReflectCalcFinal(p)) != cmOkRC )
  526. return rc;
  527. cmVectArrayFree(&p->va);
  528. cmGoldSigFree(&p->gs);
  529. cmPhatFree(&p->phat);
  530. cmMemFree(p);
  531. *pp = NULL;
  532. return rc;
  533. }
  534. cmRC_t cmReflectCalcInit( cmReflectCalc_t* p, const cmGoldSigArg_t* gsa, float phat_alpha, unsigned phat_mult )
  535. {
  536. cmRC_t rc;
  537. if((rc = cmReflectCalcFinal(p)) != cmOkRC )
  538. return rc;
  539. // initialize the Gold code signal generator
  540. if((rc = cmGoldSigInit(p->gs,gsa)) != cmOkRC )
  541. {
  542. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Gold code signal initialize failed.");
  543. goto errLabel;
  544. }
  545. unsigned phat_chN = 1;
  546. unsigned phat_hN = p->gs->sigN;
  547. unsigned phat_flags = 0;
  548. unsigned phat_chIdx = 0;
  549. // initialize the PHAT
  550. if((rc = cmPhatInit(p->phat,phat_chN,phat_hN,phat_alpha,phat_mult,phat_flags)) != cmOkRC )
  551. {
  552. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT intialize failed.");
  553. goto errLabel;
  554. }
  555. // register a target signal with the PHAT
  556. if((rc = cmPhatSetId( p->phat, phat_chIdx, p->gs->ch[phat_chIdx].mdV, p->gs->sigN )) != cmOkRC )
  557. {
  558. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT signal registration failed.");
  559. goto errLabel;
  560. }
  561. p->xi = 0;
  562. p->zeroFl = false;
  563. errLabel:
  564. return rc;
  565. }
  566. cmRC_t cmReflectCalcFinal( cmReflectCalc_t* p )
  567. {
  568. cmGoldSigFinal(p->gs);
  569. cmPhatFinal(p->phat);
  570. return cmOkRC;
  571. }
  572. cmRC_t cmReflectCalcExec( cmReflectCalc_t* p, const cmSample_t xV, cmSample_t* yV, unsigned xyN )
  573. {
  574. unsigned i;
  575. for(i=0; i<xyN; ++i,++p->xi)
  576. {
  577. if( p->xi < p->gs->sigN )
  578. yV[i] = p->gs->ch[0].mdV[p->xi];
  579. else
  580. yV[i] = 0;
  581. if( p->xi == p->phat->fhN )
  582. {
  583. p->xi = 0;
  584. cmPhatChExec(p->phat,0,0,0);
  585. if( p->va != NULL )
  586. cmVectArrayAppendS(p->va,p->phat->xV,p->phat->fhN );
  587. }
  588. }
  589. return cmOkRC;
  590. }