libcm/cmProc5.c

784 lines
19 KiB
C
Raw Normal View History

#include "cmPrefix.h"
#include "cmGlobal.h"
#include "cmRpt.h"
#include "cmErr.h"
#include "cmCtx.h"
#include "cmMem.h"
#include "cmMallocDebug.h"
#include "cmLinkedHeap.h"
#include "cmFloatTypes.h"
#include "cmComplexTypes.h"
#include "cmFileSys.h"
#include "cmJson.h"
#include "cmSymTbl.h"
#include "cmAudioFile.h"
#include "cmText.h"
#include "cmProcObj.h"
#include "cmProcTemplate.h"
#include "cmMath.h"
2015-07-03 16:36:54 +00:00
#include "cmFile.h"
#include "cmTime.h"
#include "cmMidi.h"
#include "cmProc.h"
2015-07-03 16:36:54 +00:00
#include "cmProc2.h"
#include "cmProc5.h"
#include "cmVectOps.h"
//=======================================================================================================================
cmGoertzel* cmGoertzelAlloc( cmCtx* c, cmGoertzel* p, double srate, const double* fcHzV, unsigned chCnt, unsigned procSmpCnt, unsigned hopSmpCnt, unsigned wndSmpCnt )
{
cmGoertzel* op = cmObjAlloc(cmGoertzel,c,p);
op->shb = cmShiftBufAlloc(c,NULL,0,0,0);
if( srate > 0 )
if( cmGoertzelInit(op,srate,fcHzV,chCnt,procSmpCnt,wndSmpCnt,hopSmpCnt) != cmOkRC )
cmGoertzelFree(&op);
return op;
}
cmRC_t cmGoertzelFree( cmGoertzel** pp )
{
cmRC_t rc = cmOkRC;
if( pp==NULL || *pp==NULL )
return rc;
cmGoertzel* p = *pp;
if((rc = cmGoertzelFinal(p)) != cmOkRC )
return rc;
cmShiftBufFree(&p->shb);
cmMemFree(p->ch);
cmMemFree(p->wnd);
cmObjFree(pp);
return rc;
}
cmRC_t cmGoertzelInit( cmGoertzel* p, double srate, const double* fcHzV, unsigned chCnt, unsigned procSmpCnt, unsigned hopSmpCnt, unsigned wndSmpCnt )
{
cmRC_t rc;
unsigned i;
if((rc = cmGoertzelFinal(p)) != cmOkRC )
return rc;
p->ch = cmMemResizeZ(cmGoertzelCh,p->ch,chCnt);
p->chCnt = chCnt;
p->srate = srate;
p->wnd = cmMemResizeZ(cmSample_t,p->wnd,wndSmpCnt);
cmVOS_Hann(p->wnd,wndSmpCnt);
cmShiftBufInit(p->shb,procSmpCnt,wndSmpCnt,hopSmpCnt);
for(i=0; i<p->chCnt; ++i)
{
cmGoertzelSetFcHz(p,i,fcHzV[i]);
}
return rc;
}
cmRC_t cmGoertzelFinal( cmGoertzel* p )
{ return cmOkRC; }
cmRC_t cmGoertzelSetFcHz( cmGoertzel* p, unsigned chIdx, double hz )
{
assert( chIdx < p->chCnt );
p->ch[chIdx].hz = hz;
p->ch[chIdx].coeff = 2*cos(2*M_PI*hz/p->srate);
return cmOkRC;
}
cmRC_t cmGoertzelExec( cmGoertzel* p, const cmSample_t* inpV, unsigned procSmpCnt, double* outV, unsigned chCnt )
{
unsigned i,j;
while( cmShiftBufExec(p->shb,inpV,procSmpCnt) )
{
unsigned xn = p->shb->wndSmpCnt;
cmSample_t x[ xn ];
cmVOS_MultVVV(x,xn,p->wnd,p->shb->outV);
for(i=0; i<chCnt; ++i)
{
cmGoertzelCh* ch = p->ch + i;
ch->s2 = x[0];
ch->s1 = x[1] + 2 * x[0] * ch->coeff;
for(j=2; j<xn; ++j)
{
ch->s0 = x[j] + ch->coeff * ch->s1 - ch->s2;
ch->s2 = ch->s1;
ch->s1 = ch->s0;
}
outV[i] = ch->s2*ch->s2 + ch->s1*ch->s1 - ch->coeff * ch->s2 * ch->s1;
}
}
return cmOkRC;
}
2015-07-03 16:36:54 +00:00
//=======================================================================================================================
double _cmGoldSigSinc( double t, double T )
{
double x = t/T;
return x == 0 ? 1.0 : sin(M_PI*x)/(M_PI*x);
}
void _cmGoldSigRaisedCos( cmSample_t* yV, int yN, double sPc, double beta )
{
int i;
for(i=0; i<yN; ++i)
{
double t = i - yN/2;
double den = 1 - (4*(beta*beta)*(t*t) / (sPc*sPc));
double a;
if(fabs(den) < 0.00001 )
a = 1;
else
a = cos(M_PI * beta * t/ sPc ) / den;
yV[i] = _cmGoldSigSinc(t,sPc) * a;
}
}
void _cmGoldSigConv( cmGoldSig_t* p, unsigned chIdx )
{
int i;
int sPc = p->a.samplesPerChip;
int osf = p->a.rcosOSFact;
// for each bit in the spreading-code
for(i=0; i<p->mlsN; ++i)
{
int j = (i*sPc) + sPc/2; // index into bbV[] of center of impulse response
int k = j - (sPc*osf)/2; // index into bbV[] of start of impulse response
int h;
// for each sample in the impulse response
for(h=0; h<p->rcosN; ++h,++k)
{
while( k<0 )
k += p->sigN;
while( k>=p->sigN )
k -= p->sigN;
p->ch[chIdx].bbV[k] += p->ch[chIdx].pnV[i] * p->rcosV[h];
}
}
}
void _cmGoldSigModulate( cmGoldSig_t* p, unsigned chIdx )
{
unsigned i;
double rps = 2.0 * M_PI * p->a.carrierHz / p->a.srate;
cmSample_t* yV = p->ch[chIdx].mdV;
cmSample_t* bbV = p->ch[chIdx].bbV;
for(i=0; i<p->sigN; ++i)
yV[ i ] = bbV[i]*cos(rps*i) + bbV[i]*sin(rps*i);
// apply a half Hann envelope to the onset/offset of the id signal
if( p->a.envMs > 0 )
{
unsigned wndMs = p->a.envMs * 2;
unsigned wndN = wndMs * p->a.srate / 1000;
wndN += wndN % 2 ? 0 : 1; // force the window length to be odd
unsigned wNo2 = wndN/2 + 1;
cmSample_t wndV[ wndN ];
cmVOS_Hann(wndV,wndN);
cmVOS_MultVV(yV,wNo2,wndV);
cmVOS_MultVV(yV + p->sigN - wNo2, wNo2, wndV + wNo2 - 1);
}
}
cmGoldSig_t* cmGoldSigAlloc( cmCtx* ctx, cmGoldSig_t* p, const cmGoldSigArg_t* a )
{
cmGoldSig_t* op = cmObjAlloc(cmGoldSig_t,ctx,p);
if( a != NULL )
if( cmGoldSigInit(op,a) != cmOkRC )
cmGoldSigFree(&op);
return op;
}
cmRC_t cmGoldSigFree( cmGoldSig_t** pp )
{
cmRC_t rc = cmOkRC;
if( pp == NULL || *pp == NULL )
return rc;
cmGoldSig_t* p = *pp;
if((rc = cmGoldSigFinal(p)) != cmOkRC )
return rc;
unsigned i;
for(i=0; i<p->a.chN; ++i)
{
cmMemFree(p->ch[i].bbV);
cmMemFree(p->ch[i].mdV);
}
cmMemFree(p->ch);
cmMemFree(p->rcosV);
cmMemFree(p->pnM);
cmMemFree(p);
*pp = NULL;
return rc;
}
cmRC_t cmGoldSigInit( cmGoldSig_t* p, const cmGoldSigArg_t* a )
{
cmRC_t rc = cmOkRC;
unsigned i;
p->a = *a; // store arg recd
p->ch = cmMemResizeZ(cmGoldSigCh_t,p->ch,a->chN); // alloc channel array
p->mlsN = (1 << a->lfsrN) - 1; // calc spreading code length
p->rcosN = a->samplesPerChip * a->rcosOSFact; // calc rcos imp. resp. length
p->rcosN += (p->rcosN % 2)==0; // force rcos imp. length odd
p->rcosV = cmMemResizeZ(cmSample_t,p->rcosV,p->rcosN); // alloc rcos imp. resp. vector
p->pnM = cmMemResizeZ(int,p->pnM,p->mlsN*a->chN); // alloc spreading-code mtx
p->sigN = p->mlsN * a->samplesPerChip; // calc audio signal length
// generate spreading codes
if( cmGenGoldCodes(a->lfsrN, a->mlsCoeff0, a->mlsCoeff1, a->chN, p->pnM, p->mlsN ) == false )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Unable to generate sufficient balanced Gold codes.");
goto errLabel;
}
// generate the rcos impulse response
_cmGoldSigRaisedCos(p->rcosV,p->rcosN,a->samplesPerChip,a->rcosBeta);
// for each channel
for(i=0; i<a->chN; ++i)
{
// Note: if (i*p->mlsN) is set to 0 in the following line then all channels
// will use the same spreading code.
p->ch[i].pnV = p->pnM + (i*p->mlsN); // get ch. spreading code
p->ch[i].bbV = cmMemResizeZ(cmSample_t,p->ch[i].bbV,p->sigN); // alloc baseband signal vector
p->ch[i].mdV = cmMemResizeZ(cmSample_t,p->ch[i].mdV,p->sigN); // alloc output audio vector
// Convolve spreading code with rcos impulse reponse to form baseband signal.
_cmGoldSigConv(p, i );
// Modulate baseband signal to carrier frq. and apply attack/decay envelope.
_cmGoldSigModulate(p, i );
}
errLabel:
if((rc = cmErrLastRC(&p->obj.err)) != cmOkRC )
cmGoldSigFree(&p);
return rc;
}
cmRC_t cmGoldSigFinal( cmGoldSig_t* p )
{ return cmOkRC; }
cmRC_t cmGoldSigWrite( cmCtx* ctx, cmGoldSig_t* p, const char* fn )
{
cmVectArray_t* vap = NULL;
unsigned i;
vap = cmVectArrayAlloc(ctx,kSampleVaFl);
for(i=0; i<p->a.chN; ++i)
{
cmVectArrayAppendS(vap,p->ch[i].bbV,p->sigN);
cmVectArrayAppendS(vap,p->ch[i].mdV,p->sigN);
}
cmVectArrayWrite(vap,fn);
cmVectArrayFree(&vap);
return cmOkRC;
}
cmRC_t cmGoldSigGen( cmGoldSig_t* p, unsigned chIdx, unsigned prefixN, unsigned dsN, unsigned *bsiV, unsigned bsiN, double noiseGain, cmSample_t** yVRef, unsigned* yNRef )
{
unsigned yN = prefixN + bsiN * (p->sigN + dsN);
cmSample_t* yV = cmMemAllocZ(cmSample_t,yN);
unsigned i;
cmVOS_Random(yV, yN, -noiseGain, noiseGain );
for(i=0; i<bsiN; ++i)
{
bsiV[i] = prefixN + i*(p->sigN + dsN);
cmVOS_AddVV(yV + bsiV[i], p->sigN, p->ch[chIdx].mdV );
}
if( yVRef != NULL )
*yVRef = yV;
if( yNRef != NULL )
*yNRef = yN;
return cmOkRC;
}
//=======================================================================================================================
cmPhat_t* cmPhatAlloc( cmCtx* ctx, cmPhat_t* ap, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags )
{
cmPhat_t* p = cmObjAlloc(cmPhat_t,ctx,ap);
// The FFT buffer and the delay line is at least twice the size of the
// id signal. This will guarantee that at least one complete id signal
// is inside the buffer. In practice it means that it is possible
// that there will be two id's in the buffer therefore if there are
// two correlation spikes it is important that we take the second.
unsigned fhN = cmNextPowerOfTwo(mult*hN);
// allocate the FFT object
cmFftAllocSR(ctx,&p->fft,NULL,fhN,kToPolarFftFl);
cmIFftAllocRS(ctx,&p->ifft,fhN/2 + 1 );
if( chN != 0 )
if( cmPhatInit(p,chN,hN,alpha,mult,flags) != cmOkRC )
cmPhatFree(&p);
return p;
}
cmRC_t cmPhatFree( cmPhat_t** pp )
{
cmRC_t rc = cmOkRC;
if( pp == NULL || *pp == NULL )
return rc;
cmPhat_t* p = *pp;
if((rc = cmPhatFinal(p)) != cmOkRC )
return rc;
cmMemFree(p->t0V);
cmMemFree(p->t1V);
cmMemFree(p->dV);
cmMemFree(p->xV);
cmMemFree(p->fhM);
cmMemFree(p->mhM);
cmMemFree(p->wndV);
cmObjFreeStatic(cmFftFreeSR, cmFftSR, p->fft);
cmObjFreeStatic(cmIFftFreeRS, cmIFftRS, p->ifft);
cmVectArrayFree(&p->ftVa);
cmObjFree(pp);
return rc;
}
cmRC_t cmPhatInit( cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags )
{
cmRC_t rc = cmOkRC;
if((rc = cmPhatFinal(cmOkRC)) != cmOkRC )
return rc;
p->fhN = cmNextPowerOfTwo(mult*hN);
if((cmFftInitSR(&p->fft, NULL, p->fhN, kToPolarFftFl)) != cmOkRC )
return rc;
if((cmIFftInitRS(&p->ifft, p->fft.binCnt )) != cmOkRC )
return rc;
p->alpha = alpha;
p->flags = flags;
// allocate the delay line
p->dV = cmMemResizeZ(cmSample_t,p->dV,p->fhN);
p->di = 0;
// allocate the linear buffer
p->xV = cmMemResizeZ(cmSample_t,p->xV,p->fhN);
p->t0V = cmMemResizeZ(cmComplexR_t,p->t0V,p->fhN);
p->t1V = cmMemResizeZ(cmComplexR_t,p->t1V,p->fhN);
// allocate the window function
p->wndV = cmMemResizeZ(cmSample_t,p->wndV,p->fhN);
cmVOS_Hann(p->wndV,p->fhN);
// allocate the signal id matrix
p->chN = chN;
p->hN = hN;
p->binN = p->fft.binCnt; //atFftRealBinCount(p->fftH);
p->fhM = cmMemResizeZ(cmComplexR_t, p->fhM, p->fhN * chN);
p->mhM = cmMemResizeZ(float, p->mhM, p->binN * chN);
cmPhatReset(p);
//if( cmIsFlag(p->flags,kDebugAtPhatFl))
// cmVectArrayAlloc(ctx, &p->ftVa, kSampleVaFl );
//else
// p->ftVa = NULL;
return rc;
}
cmRC_t cmPhatFinal( cmPhat_t* p )
{ return cmOkRC; }
cmRC_t cmPhatReset( cmPhat_t* p )
{
p->di = 0;
p->absIdx = 0;
cmVOS_Zero(p->dV,p->fhN);
return cmOkRC;
}
cmRC_t cmPhatSetId( cmPhat_t* p, unsigned chIdx, const cmSample_t* hV, unsigned hN )
{
unsigned i;
assert( chIdx < p->chN );
assert( hN == p->hN );
// Allocate a window vector
cmSample_t* wndV = cmMemAllocZ(cmSample_t,hN);
cmVOS_Hann(wndV,hN);
// get ptr to output column in p->fhM[].
cmComplexR_t* yV = p->fhM + (chIdx*p->fhN);
// Zero pad hV[hN] to p->fhN;
assert( hN <= p->fhN );
cmVOS_Zero(p->xV,p->fhN);
cmVOS_Copy(p->xV,hN,hV);
// Apply the window function to the id signal
if(cmIsFlag(p->flags,kHannAtPhatFl) )
cmVOS_MultVVV(p->xV,hN,hV,wndV);
2015-07-03 16:36:54 +00:00
// take FFT of id signal. The result is in fft->complexV and fft->magV,phsV
cmFftExecSR(&p->fft, p->xV, p->fhN );
// Store the magnitude of the id signal
//atFftComplexAbs(p->mhM + (chIdx*p->binN), yV, p->binN);
cmVOF_CopyR(p->mhM + (chIdx*p->binN), p->binN, p->fft.magV );
// Scale the magnitude
cmVOS_MultVS( p->mhM + (chIdx*p->binN), p->binN, p->alpha);
// store the complex conjugate of the FFT result in yV[]
//atFftComplexConj(yV,p->binN);
for(i=0; i<p->binN; ++i)
yV[i] = cmCconjR(p->fft.complexV[i]);
cmMemFree(wndV);
return cmOkRC;
}
cmSample_t* _cmPhatReadVector( cmCtx* ctx, cmPhat_t* p, const char* fn, unsigned* vnRef )
{
cmVectArray_t* vap = NULL;
cmSample_t* v = NULL;
cmRC_t rc = cmOkRC;
// instantiate a VectArray from a file
if( (vap = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Id component vector file read failed '%s'.",fn);
goto errLabel;
}
// get the count of elements in the vector
*vnRef = cmVectArrayEleCount(vap);
// allocate memory to hold the vector
v = cmMemAlloc(cmSample_t,*vnRef);
// copy the vector from the vector array object into v[]
if((rc = cmVectArrayGetF(vap,v,vnRef)) != cmOkRC )
{
cmMemFree(v);
v = NULL;
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Id component vector copy out failed '%s'.",fn);
goto errLabel;
}
cmRptPrintf(p->obj.err.rpt,"%i : %s",*vnRef,fn);
errLabel:
cmVectArrayFree(&vap);
return v;
}
cmRC_t cmPhatExec( cmPhat_t* p, const cmSample_t* xV, unsigned xN )
{
unsigned n = cmMin(xN,p->fhN-p->di);
// update the delay line
cmVOS_Copy(p->dV+p->di,n,xV);
if( n < xN )
cmVOS_Copy(p->dV,xN-n,xV+n);
p->di = cmModIncr(p->di,xN,p->fhN);
// p->absIdx is the absolute sample index associated with di
p->absIdx += xN;
return cmOkRC;
}
void cmPhatChExec(
cmPhat_t* p,
unsigned chIdx,
unsigned sessionId,
unsigned roleId)
{
unsigned n0 = p->fhN - p->di;
unsigned n1 = p->fhN - n0;
// Linearize the delay line into xV[]
cmVOS_Copy(p->xV, n0, p->dV + p->di );
cmVOS_Copy(p->xV+n0, n1, p->dV );
if( cmIsFlag(p->flags,kDebugAtPhatFl))
cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
// apply a window function to the incoming signal
if( cmIsFlag(p->flags,kHannAtPhatFl) )
cmVOS_MultVV(p->xV,p->fhN,p->wndV);
// Take the FFT of the delay line.
// p->t0V[p->binN] = fft(p->xV)
//atFftRealForward(p->fftH, p->xV, p->fhN, p->t0V, p->binN );
cmFftExecSR(&p->fft, p->xV, p->fhN );
// Calc. the Cross Power Spectrum (aka cross spectral density) of the
// input signal with the id signal.
// Note that the CPS is equivalent to the Fourier Transform of the
// cross-correlation of the two signals.
// t0V[] *= p->fhM[:,chIdx]
//atFftComplexMult( p->t0V, p->fhM + (chIdx * p->fhN), p->binN );
cmVOCR_MultVVV( p->t0V, p->fft.complexV, p->fhM + (chIdx * p->fhN), p->binN);
// Calculate the magnitude of the CPS.
// xV[] = | t0V[] |
cmVOCR_Abs( p->xV, p->t0V, p->binN );
// Weight the CPS by the scaled magnitude of the id signal
// (we want to emphasize the limited frequencies where the
// id signal contains energy)
// t0V[] *= p->mhM[:,chIdx]
if( p->alpha > 0 )
cmVOCR_MultVFV( p->t0V, p->mhM + (chIdx*p->binN), p->binN);
// Divide through by the magnitude of the CPS
// This has the effect of whitening the spectram and thereby
// minimizing the effect of the magnitude correlation
// while maximimizing the effect of the phase correlation.
//
// t0V[] /= xV[]
cmVOCR_DivVFV( p->t0V, p->xV, p->binN );
// Take the IFFT of the weighted CPS to recover the cross correlation.
// xV[] = IFFT(t0V[])
cmIFftExecRS( &p->ifft, p->t0V );
// Normalize the result by the length of the transform.
cmVOS_DivVVS( p->xV, p->fhN, p->ifft.outV, p->fhN );
// Shift the correlation spike to mark the end of the id
cmVOS_Rotate( p->xV, p->fhN, -((int)p->hN) );
// normalize by the length of the correlation
cmVOS_DivVS(p->xV,p->fhN,p->fhN);
if( cmIsFlag(p->flags,kDebugAtPhatFl))
{
cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
cmSample_t v[] = { sessionId, roleId };
cmVectArrayAppendS(p->ftVa, v, sizeof(v)/sizeof(v[0]));
}
}
cmRC_t cmPhatWrite( cmPhat_t* p, const char* dirStr )
{
cmRC_t rc = cmOkRC;
if( cmIsFlag(p->flags, kDebugAtPhatFl))
{
const char* path = NULL;
if( p->ftVa != NULL )
if((rc = cmVectArrayWrite(p->ftVa, path = cmFsMakeFn(path,"cmPhatFT","va",dirStr,NULL) )) != cmOkRC )
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT debug file write failed.");
cmFsFreeFn(path);
}
return rc;
}
//=======================================================================================================================
//
//
cmReflectCalc_t* cmReflectCalcAlloc( cmCtx* ctx, cmReflectCalc_t* p, const cmGoldSigArg_t* gsa, float phat_alpha, unsigned phat_mult )
{
cmReflectCalc_t* op = cmObjAlloc(cmReflectCalc_t,ctx,p);
cmRC_t rc = cmOkRC;
// allocate the Gold code signal generator
if( (p->gs = cmGoldSigAlloc(ctx,NULL,NULL)) == NULL )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Gold sig allocate failed.");
goto errLabel;
}
// allocate the PHAT object
if( (p->phat = cmPhatAlloc(ctx,NULL,0,0,0,0,0)) == NULL )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT allocate failed.");
goto errLabel;
}
op->va = cmVectArrayAlloc(ctx,kSampleVaFl);
// allocate 'this'
if( gsa != NULL )
rc = cmReflectCalcInit(op,gsa,phat_alpha,phat_mult);
errLabel:
if( rc != cmOkRC )
cmReflectCalcFree(&op);
return op;
}
cmRC_t cmReflectCalcFree( cmReflectCalc_t** pp )
{
cmRC_t rc = cmOkRC;
if( pp == NULL || *pp == NULL )
return rc;
cmReflectCalc_t* p = *pp;
if((rc = cmReflectCalcFinal(p)) != cmOkRC )
return rc;
cmVectArrayFree(&p->va);
cmGoldSigFree(&p->gs);
cmPhatFree(&p->phat);
cmMemFree(p);
*pp = NULL;
return rc;
}
cmRC_t cmReflectCalcInit( cmReflectCalc_t* p, const cmGoldSigArg_t* gsa, float phat_alpha, unsigned phat_mult )
{
cmRC_t rc;
if((rc = cmReflectCalcFinal(p)) != cmOkRC )
return rc;
// initialize the Gold code signal generator
if((rc = cmGoldSigInit(p->gs,gsa)) != cmOkRC )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Gold code signal initialize failed.");
goto errLabel;
}
unsigned phat_chN = 1;
unsigned phat_hN = p->gs->sigN;
unsigned phat_flags = 0;
unsigned phat_chIdx = 0;
// initialize the PHAT
if((rc = cmPhatInit(p->phat,phat_chN,phat_hN,phat_alpha,phat_mult,phat_flags)) != cmOkRC )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT intialize failed.");
goto errLabel;
}
// register a target signal with the PHAT
if((rc = cmPhatSetId( p->phat, phat_chIdx, p->gs->ch[phat_chIdx].mdV, p->gs->sigN )) != cmOkRC )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT signal registration failed.");
goto errLabel;
}
p->xi = 0;
p->zeroFl = false;
errLabel:
return rc;
}
cmRC_t cmReflectCalcFinal( cmReflectCalc_t* p )
{
cmGoldSigFinal(p->gs);
cmPhatFinal(p->phat);
return cmOkRC;
}
cmRC_t cmReflectCalcExec( cmReflectCalc_t* p, const cmSample_t xV, cmSample_t* yV, unsigned xyN )
{
unsigned i;
for(i=0; i<xyN; ++i,++p->xi)
{
if( p->xi < p->gs->sigN )
yV[i] = p->gs->ch[0].mdV[p->xi];
else
yV[i] = 0;
if( p->xi == p->phat->fhN )
{
p->xi = 0;
cmPhatChExec(p->phat,0,0,0);
if( p->va != NULL )
cmVectArrayAppendS(p->va,p->phat->xV,p->phat->fhN );
}
}
return cmOkRC;
}