libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmRtSys.c 49KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687
  1. //| Copyright: (C) 2009-2020 Kevin Larke <contact AT larke DOT org>
  2. //| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
  3. #include "cmPrefix.h"
  4. #include "cmGlobal.h"
  5. #include "cmFloatTypes.h"
  6. #include "cmRpt.h"
  7. #include "cmErr.h"
  8. #include "cmCtx.h"
  9. #include "cmMem.h"
  10. #include "cmMallocDebug.h"
  11. #include "cmTime.h"
  12. #include "cmAudioPort.h"
  13. #include "cmAudioNrtDev.h"
  14. #include "cmAudioPortFile.h"
  15. #include "cmApBuf.h"
  16. #include "cmJson.h"
  17. #include "cmThread.h"
  18. #include "cmUdpPort.h"
  19. #include "cmUdpNet.h"
  20. #include "cmRtSysMsg.h"
  21. #include "cmRtNet.h"
  22. #include "cmRtSys.h"
  23. #include "cmMidi.h"
  24. #include "cmMidiPort.h"
  25. #include "cmMath.h"
  26. typedef enum
  27. {
  28. kNoCmdId,
  29. kEnableCbCmdId,
  30. kDisableCbCmdId
  31. } kRtCmdId_t;
  32. cmRtSysH_t cmRtSysNullHandle = cmSTATIC_NULL_HANDLE;
  33. struct cmRt_str;
  34. typedef struct
  35. {
  36. struct cmRt_str* p; // pointer to the real-time system instance which owns this sub-system
  37. cmRtSysSubSys_t ss; // sub-system configuration record
  38. cmRtSysCtx_t ctx; // DSP context
  39. cmRtSysStatus_t status; // current runtime status of this sub-system
  40. cmThreadH_t threadH; // real-time system thread
  41. cmTsMp1cH_t htdQueueH; // host-to-dsp thread safe msg queue
  42. cmThreadMutexH_t engMutexH; // thread mutex and condition variable
  43. cmRtNetH_t netH;
  44. bool runFl; // false during finalization otherwise true
  45. bool statusFl; // true if regular status notifications should be sent
  46. bool syncInputFl;
  47. kRtCmdId_t cmdId; // written by app thread, read by rt thread
  48. unsigned cbEnableFl; // written by rt thread, read by app thread
  49. bool noBlockEnaFl; //
  50. unsigned noBlockSleepMs;
  51. double* iMeterArray; //
  52. double* oMeterArray; //
  53. unsigned statusUpdateSmpCnt; // transmit a state update msg every statusUpdateSmpCnt samples
  54. unsigned statusUpdateSmpIdx; // state update phase
  55. } _cmRtCfg_t;
  56. typedef struct cmRt_str
  57. {
  58. cmErr_t err;
  59. cmCtx_t* ctx;
  60. _cmRtCfg_t* ssArray;
  61. unsigned ssCnt;
  62. unsigned waitRtSubIdx; // index of the next sub-system to try with cmRtSysIsMsgWaiting().
  63. cmTsMp1cH_t dthQueH;
  64. bool initFl; // true if the real-time system is initialized
  65. cmTsQueueCb_t clientCbFunc; // These fields are only used during configuration.
  66. void* clientCbArg; // See cmRtBeginCfg() and cmRtCfg().
  67. } cmRt_t;
  68. cmRt_t* _cmRtHandleToPtr( cmRtSysH_t h )
  69. {
  70. cmRt_t* p = (cmRt_t*)h.h;
  71. assert(p != NULL);
  72. return p;
  73. }
  74. cmRtRC_t _cmRtError( cmRt_t* p, cmRtRC_t rc, const char* fmt, ... )
  75. {
  76. va_list vl;
  77. va_start(vl,fmt);
  78. cmErrVMsg(&p->err,rc,fmt,vl);
  79. va_end(vl);
  80. return rc;
  81. }
  82. // Wrapper function to put msgs into thread safe queues and handle related errors.
  83. cmRtRC_t _cmRtEnqueueMsg( cmRt_t* p, cmTsMp1cH_t qH, const void* msgDataPtrArray[], unsigned msgCntArray[], unsigned segCnt, const char* queueLabel )
  84. {
  85. cmRtRC_t rc = kOkRtRC;
  86. switch( cmTsMp1cEnqueueSegMsg(qH, msgDataPtrArray, msgCntArray, segCnt) )
  87. {
  88. case kOkThRC:
  89. break;
  90. case kBufFullThRC:
  91. {
  92. unsigned i;
  93. unsigned byteCnt = 0;
  94. for(i=0; i<segCnt; ++i)
  95. byteCnt += msgCntArray[i];
  96. rc = _cmRtError(p,kMsgEnqueueFailRtRC,"The %s queue was unable to load a msg containing %i bytes. The queue is currently allocated %i bytes and has %i bytes available.",queueLabel,byteCnt,cmTsMp1cAllocByteCount(qH),cmTsMp1cAvailByteCount(qH));
  97. }
  98. break;
  99. default:
  100. rc = _cmRtError(p,kMsgEnqueueFailRtRC,"A %s msg. enqueue failed.",queueLabel);
  101. }
  102. return rc;
  103. }
  104. // This is the function pointed to by ctx->dspToHostFunc.
  105. // It is called by the DSP proces to pass msgs to the host.
  106. // therefore it is always called from inside of _cmRtDspExecCallback().
  107. cmRtRC_t _cmRtDspToHostMsgCallback(struct cmRtSysCtx_str* ctx, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
  108. {
  109. cmRt_t* p = (cmRt_t*)ctx->reserved;
  110. assert( ctx->rtSubIdx < p->ssCnt );
  111. return _cmRtEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
  112. }
  113. cmRtRC_t _cmRtSysDspToHostSegMsg( cmRt_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
  114. {
  115. return _cmRtEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
  116. }
  117. cmRtRC_t cmRtSysDspToHostSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
  118. {
  119. cmRt_t* p = _cmRtHandleToPtr(h);
  120. return _cmRtSysDspToHostSegMsg(p,msgDataPtrArray,msgByteCntArray,msgSegCnt);
  121. }
  122. cmRtRC_t cmRtSysDspToHost( cmRtSysH_t h, const void* msgDataPtr, unsigned msgByteCnt)
  123. {
  124. const void* msgDataArray[] = { msgDataPtr };
  125. unsigned msgByteCntArray[] = { msgByteCnt };
  126. return cmRtSysDspToHostSegMsg(h,msgDataArray,msgByteCntArray,1);
  127. }
  128. cmRtRC_t _cmRtParseNonSubSysMsg( cmRt_t* p, const void* msg, unsigned msgByteCnt )
  129. {
  130. cmRtRC_t rc = kOkRtRC;
  131. cmRtSysMstr_t* m = (cmRtSysMstr_t*)msg;
  132. /*
  133. unsigned devIdx = cmRtSysUiInstIdToDevIndex(h->instId);
  134. unsigned chIdx = cmRtSysUiInstIdToChIndex(h->instId);
  135. unsigned inFl = cmRtSysUiInstIdToInFlag(h->instId);
  136. unsigned ctlId = cmRtSysUiInstIdToCtlId(h->instId);
  137. */
  138. // if the valuu associated with this msg is a mtx then set
  139. // its mtx data area pointer to just after the msg header.
  140. //if( cmDsvIsMtx(&h->value) )
  141. // h->value.u.m.u.vp = ((char*)msg) + sizeof(cmDspUiHdr_t);
  142. unsigned flags = m->inFl ? kInApFl : kOutApFl;
  143. switch( m->ctlId )
  144. {
  145. case kSliderUiRtId: // slider
  146. cmApBufSetGain(m->devIdx,m->chIdx, flags, m->value);
  147. break;
  148. case kMeterUiRtId: // meter
  149. break;
  150. case kMuteUiRtId: // mute
  151. flags += m->value == 0 ? kEnableApFl : 0;
  152. cmApBufEnableChannel(m->devIdx,m->chIdx,flags);
  153. break;
  154. case kToneUiRtId: // tone
  155. flags += m->value > 0 ? kEnableApFl : 0;
  156. cmApBufEnableTone(m->devIdx,m->chIdx,flags);
  157. break;
  158. case kPassUiRtId: // pass
  159. flags += m->value > 0 ? kEnableApFl : 0;
  160. cmApBufEnablePass(m->devIdx,m->chIdx,flags);
  161. break;
  162. default:
  163. { assert(0); }
  164. }
  165. return rc;
  166. }
  167. // Process a UI msg sent from the host to the real-time system
  168. cmRtRC_t _cmRtHandleNonSubSysMsg( cmRt_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt )
  169. {
  170. cmRtRC_t rc = kOkRtRC;
  171. // if the message is contained in a single segment it can be dispatched immediately ...
  172. if( msgSegCnt == 1 )
  173. rc = _cmRtParseNonSubSysMsg(p,msgDataPtrArray[0],msgByteCntArray[0]);
  174. else
  175. {
  176. // ... otherwise deserialize the message into contiguous memory ....
  177. unsigned byteCnt = 0;
  178. unsigned i;
  179. for(i=0; i<msgSegCnt; ++i)
  180. byteCnt += msgByteCntArray[i];
  181. char buf[ byteCnt ];
  182. char* b = buf;
  183. for(i=0; i<msgSegCnt; ++i)
  184. {
  185. memcpy(b, msgDataPtrArray[i], msgByteCntArray[i] );
  186. b += msgByteCntArray[i];
  187. }
  188. // ... and then dispatch it
  189. rc = _cmRtParseNonSubSysMsg(p,buf,byteCnt);
  190. }
  191. return rc;
  192. }
  193. cmRtRC_t _cmRtSendStateStatusToHost( _cmRtCfg_t* cp )
  194. {
  195. cmRtRC_t rc = kOkRtRC;
  196. cp->status.hdr.rtSubIdx = cp->ctx.rtSubIdx;
  197. cp->status.hdr.selId = kStatusSelRtId;
  198. cmApBufGetStatus( cp->ss.args.inDevIdx, kInApFl, cp->iMeterArray, cp->status.iMeterCnt, &cp->status.overflowCnt );
  199. cmApBufGetStatus( cp->ss.args.outDevIdx, kOutApFl, cp->oMeterArray, cp->status.oMeterCnt, &cp->status.underflowCnt );
  200. unsigned iMeterByteCnt = sizeof(cp->iMeterArray[0]) * cp->status.iMeterCnt;
  201. unsigned oMeterByteCnt = sizeof(cp->oMeterArray[0]) * cp->status.oMeterCnt;
  202. const void* msgDataPtrArray[] = { &cp->status, cp->iMeterArray, cp->oMeterArray };
  203. unsigned msgByteCntArray[] = { sizeof(cp->status), iMeterByteCnt, oMeterByteCnt };
  204. unsigned segCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  205. _cmRtSysDspToHostSegMsg(cp->p,msgDataPtrArray,msgByteCntArray, segCnt );
  206. return rc;
  207. }
  208. // This function is called, within the real-time thread,
  209. // with _cmRtRecd.engMutexH locked, to deliver
  210. // messages to the real-time DSP processes via cp->ss.cbFunc()
  211. cmRtRC_t _cmRtDeliverMsgsWithLock( _cmRtCfg_t* cp )
  212. {
  213. int i;
  214. cmRtRC_t rc = kOkThRC;
  215. // as long msg's are in the queue incoming msg queue
  216. for(i=0; rc == kOkThRC; ++i)
  217. {
  218. // if a msg is waiting transmit it via cp->ss.cbFunc()
  219. if((rc = cmTsMp1cDequeueMsg(cp->htdQueueH,NULL,0)) == kOkThRC)
  220. ++cp->status.msgCbCnt;
  221. }
  222. return rc;
  223. }
  224. // This funciton is _cmRtDspExecCallback()->cmRtNetReceive() in the
  225. // real-time thread to deliver msg's to the DSP process.
  226. void _cmRtSysNetRecv( void* cbArg, const char* data, unsigned dataByteCnt, const struct sockaddr_in* fromAddr )
  227. {
  228. _cmRtCfg_t* cp = (_cmRtCfg_t*)cbArg;
  229. if( cp->cbEnableFl )
  230. {
  231. cmRtSysH_t h;
  232. h.h = cp->p;
  233. cmRtSysDeliverMsg(h,data,dataByteCnt,cmInvalidId);
  234. }
  235. }
  236. // The DSP execution callback happens through this function.
  237. // This function is only called from inside _cmRtThreadCallback()
  238. // with the engine mutex locked.
  239. void _cmRtDspExecCallback( _cmRtCfg_t* cp )
  240. {
  241. // Fill iChArray[] and oChArray[] with pointers to the incoming and outgoing sample buffers.
  242. // Notes:
  243. // 1) Buffers associated with disabled input/output channels will be set to NULL in iChArray[]/oChArray[].
  244. // 2) Buffers associated with channels marked for pass-through will be set to NULL in oChArray[].
  245. // 3) All samples returned in oChArray[] buffers will be set to zero.
  246. if( cp->noBlockEnaFl == false )
  247. cmApBufGetIO(cp->ss.args.inDevIdx, cp->ctx.iChArray, cp->ctx.iChCnt, &cp->ctx.iTimeStamp,
  248. cp->ss.args.outDevIdx, cp->ctx.oChArray, cp->ctx.oChCnt, &cp->ctx.oTimeStamp );
  249. // calling this function results in callbacks to _cmRtSysNetRecv()
  250. // which in turn calls cmRtSysDeliverMsg() which queues any incoming messages
  251. // which are then transferred to the DSP processes by the the call to
  252. // _cmRtDeliverMsgWithLock() below.
  253. if( cmRtNetIsValid(cp->netH) )
  254. if( cmRtNetReceive(cp->netH) != kOkNetRC )
  255. _cmRtError(cp->p,kNetErrRtRC,"Network receive failed.");
  256. // NOTE: BY DEQUEUEING MSGS FIRST AND THEN SERVICING THE NETWORK
  257. // WE COULD ELIMINATE QUEUEING NETWORK MESSAGES - THEY COULD BE
  258. // SEND DIRECTLY THROUGH TO THE DSP PROCESSES
  259. // if there are msgs waiting to be sent to the DSP process send them.
  260. if( cp->cbEnableFl )
  261. if( cmTsMp1cMsgWaiting(cp->htdQueueH) )
  262. _cmRtDeliverMsgsWithLock(cp);
  263. // call the application provided DSP process
  264. if( cp->cbEnableFl )
  265. {
  266. cp->ctx.audioRateFl = true;
  267. cp->ss.cbFunc( &cp->ctx, 0, NULL );
  268. cp->ctx.audioRateFl = false;
  269. }
  270. // Notice client callback enable/disable
  271. // requests from the client thread
  272. switch( cp->cmdId )
  273. {
  274. case kNoCmdId:
  275. break;
  276. case kDisableCbCmdId:
  277. if( cp->cbEnableFl )
  278. cmThUIntDecr(&cp->cbEnableFl,1);
  279. break;
  280. case kEnableCbCmdId:
  281. if( cp->cbEnableFl==0)
  282. cmThUIntIncr(&cp->cbEnableFl,1);
  283. break;
  284. }
  285. // advance the audio buffer
  286. if( cp->noBlockEnaFl == false )
  287. {
  288. cmApBufAdvance( cp->ss.args.outDevIdx, kOutApFl );
  289. cmApBufAdvance( cp->ss.args.inDevIdx, kInApFl );
  290. }
  291. // handle periodic status messages to the host
  292. if( (cp->statusUpdateSmpIdx += cp->ss.args.dspFramesPerCycle) >= cp->statusUpdateSmpCnt )
  293. {
  294. cp->statusUpdateSmpIdx -= cp->statusUpdateSmpCnt;
  295. if( cp->statusFl )
  296. _cmRtSendStateStatusToHost(cp);
  297. }
  298. }
  299. // Returns true if audio buffer is has waiting incoming samples and
  300. // available outgoing space.
  301. bool _cmRtBufIsReady( const _cmRtCfg_t* cp )
  302. {
  303. // if there neither the input or output device is valid
  304. if( cp->ss.args.inDevIdx==cmInvalidIdx && cp->ss.args.outDevIdx == cmInvalidIdx )
  305. return false;
  306. bool ibFl = cmApBufIsDeviceReady(cp->ss.args.inDevIdx, kInApFl);
  307. bool obFl = cmApBufIsDeviceReady(cp->ss.args.outDevIdx, kOutApFl);
  308. bool iFl = (cp->ss.args.inDevIdx == cmInvalidIdx) || ibFl;
  309. bool oFl = (cp->ss.args.outDevIdx == cmInvalidIdx) || obFl;
  310. //printf("br: %i %i %i %i\n",ibFl,obFl,iFl,oFl);
  311. return iFl && oFl;
  312. }
  313. // This is the main real-time system loop (and thread callback function).
  314. // It blocks by waiting on a cond. var (which simultaneously unlocks a mutex).
  315. // With the mutex unlocked messages can pass directly to the DSP process
  316. // via calls to cmRtDeliverMsg().
  317. // When the audio buffers need to be serviced the audio device callback
  318. // signals the cond. var. which results in this thread waking up (and
  319. // simultaneously locking the mutex) as soon as the mutex is available.
  320. bool _cmRtThreadCallback(void* arg)
  321. {
  322. cmRtRC_t rc;
  323. _cmRtCfg_t* cp = (_cmRtCfg_t*)arg;
  324. bool noBlockFl = false;
  325. // lock the cmRtSys mutex
  326. if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkRtRC )
  327. {
  328. _cmRtError(cp->p,rc,"The cmRtSys thread mutex lock failed.");
  329. return false;
  330. }
  331. // runFl is always set except during finalization
  332. while( cp->runFl )
  333. {
  334. // if the buffer is NOT ready or the cmRtSys is disabled
  335. if(_cmRtBufIsReady(cp) == false || cp->cbEnableFl==false )
  336. {
  337. // block on the cond var and unlock the mutex
  338. if( noBlockFl )
  339. cmSleepMs(cp->noBlockSleepMs);
  340. else
  341. {
  342. if( (rc = cmThreadMutexWaitOnCondVar(cp->engMutexH,false)) != kOkRtRC )
  343. {
  344. cmThreadMutexUnlock(cp->engMutexH);
  345. _cmRtError(cp->p,rc,"The cmRtSys cond. var. wait failed.");
  346. return false;
  347. }
  348. }
  349. //
  350. // the cond var was signaled and the mutex is now locked
  351. //
  352. ++cp->status.wakeupCnt;
  353. }
  354. noBlockFl = cp->noBlockEnaFl;
  355. // be sure we are still enabled and the buffer is still ready
  356. while( cp->runFl && _cmRtBufIsReady(cp) )
  357. {
  358. ++cp->status.audioCbCnt;
  359. // make the cmRtSys callback
  360. _cmRtDspExecCallback( cp );
  361. // update the signal time
  362. cp->ctx.begSmpIdx += cp->ss.args.dspFramesPerCycle;
  363. }
  364. }
  365. // unlock the mutex
  366. cmThreadMutexUnlock(cp->engMutexH);
  367. return true;
  368. }
  369. void _cmRtGenSignal( cmApAudioPacket_t* outPktArray, unsigned outPktCnt, bool sineFl )
  370. {
  371. static unsigned rtPhase = 0;
  372. //fill output with noise
  373. unsigned i = 0,j =0, k = 0, phs = 0;
  374. for(; i<outPktCnt; ++i)
  375. {
  376. cmApAudioPacket_t* a = outPktArray + i;
  377. cmApSample_t* dp = (cmApSample_t*)a->audioBytesPtr;
  378. phs = a->audioFramesCnt;
  379. if( sineFl )
  380. {
  381. for(j=0; j<a->audioFramesCnt; ++j)
  382. {
  383. cmApSample_t v = (cmApSample_t)(0.7 * sin(2*M_PI/44100.0 * rtPhase + j ));
  384. for(k=0; k<a->chCnt; ++k,++dp)
  385. *dp = v;
  386. }
  387. }
  388. else
  389. {
  390. for(j=0; j<a->audioFramesCnt*a->chCnt; ++j,++dp)
  391. *dp = (cmApSample_t)(rand() - (RAND_MAX/2))/(RAND_MAX/2);
  392. }
  393. }
  394. rtPhase += phs;
  395. }
  396. // This is the audio port callback function.
  397. //
  398. // _cmRtSysAudioUpdate() assumes that at most two audio device threads
  399. // (input and output) may call it. cmApBufUpdate() is safe under these conditions
  400. // since the input and output buffers are updated separately.
  401. // p->syncInputFl is used to allow either the input or output thread to signal
  402. // the condition variable. This flag is necessary to prevent both threads from simultaneously
  403. // attempting to signal the condition variable (which will lock the system).
  404. //
  405. // If more than two audio device threads call the function then this function is not safe.
  406. void _cmRtSysAudioUpdate( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  407. {
  408. _cmRtCfg_t* cp = (_cmRtCfg_t*)(inPktArray!=NULL ? inPktArray[0].userCbPtr : outPktArray[0].userCbPtr);
  409. ++cp->status.updateCnt;
  410. if( cp->runFl )
  411. {
  412. // transfer incoming/outgoing samples from/to the audio device
  413. cmApBufUpdate(inPktArray,inPktCnt,outPktArray,outPktCnt);
  414. // generate a test signal
  415. //_cmRtGenSignal( cmApAudioPacket_t* outPktArray, unsigned outPktCnt, bool sineFl );
  416. //return;
  417. bool testBufFl = (cp->syncInputFl==true && inPktCnt>0) || (cp->syncInputFl==false && outPktCnt>0);
  418. //printf("%i %i %i %i\n",testBufFl,cp->syncInputFl,inPktCnt,outPktCnt);
  419. // if the input/output buffer contain samples to be processed then signal the condition variable
  420. // - this will cause the real-time system thread to unblock and the used defined DSP process will be called.
  421. if( testBufFl && _cmRtBufIsReady(cp) )
  422. {
  423. if( cmThreadMutexSignalCondVar(cp->engMutexH) != kOkThRC )
  424. _cmRtError(cp->p,kMutexErrRtRC,"CmRtSys signal cond. var. failed.");
  425. }
  426. if( cp->noBlockEnaFl )
  427. {
  428. cmApBufGetIO(cp->ss.args.inDevIdx, cp->ctx.iChArray, cp->ctx.iChCnt, &cp->ctx.iTimeStamp,
  429. cp->ss.args.outDevIdx, cp->ctx.oChArray, cp->ctx.oChCnt, &cp->ctx.oTimeStamp );
  430. cmApBufAdvance( cp->ss.args.outDevIdx, kOutApFl );
  431. cmApBufAdvance( cp->ss.args.inDevIdx, kInApFl );
  432. }
  433. }
  434. }
  435. // Called when MIDI messages arrive from external MIDI ports.
  436. void _cmRtSysMidiCallback( const cmMidiPacket_t* pktArray, unsigned pktCnt )
  437. {
  438. unsigned i;
  439. for(i=0; i<pktCnt; ++i)
  440. {
  441. const cmMidiPacket_t* pkt = pktArray + i;
  442. _cmRtCfg_t* cp = (_cmRtCfg_t*)(pkt->cbDataPtr);
  443. if( !cp->runFl )
  444. continue;
  445. cmRtSysH_t asH;
  446. asH.h = cp->p;
  447. cmRtSysMidi_t m;
  448. m.hdr.rtSubIdx = cp->ctx.rtSubIdx;
  449. m.hdr.selId = kMidiMsgArraySelRtId;
  450. m.devIdx = pkt->devIdx;
  451. m.portIdx = pkt->portIdx;
  452. m.msgCnt = pkt->msgCnt;
  453. /*
  454. unsigned selId = kMidiMsgArraySelRtId;
  455. const void* msgPtrArray[] = { &cp->ctx.rtSubIdx, &selId, &pkt->devIdx, &pkt->portIdx, &pkt->msgCnt, pkt->msgArray };
  456. unsigned msgByteCntArray[] = { sizeof(cp->ctx.rtSubIdx), sizeof(selId), sizeof(pkt->devIdx), sizeof(pkt->portIdx), sizeof(pkt->msgCnt), pkt->msgCnt*sizeof(cmMidiMsg) };
  457. unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  458. */
  459. const void* msgPtrArray[] = { &m, pkt->msgArray };
  460. unsigned msgByteCntArray[] = { sizeof(m), pkt->msgCnt*sizeof(cmMidiMsg) };
  461. unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  462. cmRtSysDeliverSegMsg(asH,msgPtrArray,msgByteCntArray,msgSegCnt,cmInvalidId);
  463. }
  464. }
  465. cmRtRC_t cmRtSysAllocate( cmRtSysH_t* hp, cmCtx_t* ctx )
  466. {
  467. cmRtRC_t rc;
  468. if((rc = cmRtSysFree(hp)) != kOkRtRC )
  469. return rc;
  470. cmRt_t* p = cmMemAllocZ( cmRt_t, 1 );
  471. cmErrSetup(&p->err,&ctx->rpt,"Real-Time System");
  472. p->ctx = ctx;
  473. hp->h = p;
  474. return rc;
  475. }
  476. cmRtRC_t cmRtSysFree( cmRtSysH_t* hp )
  477. {
  478. cmRtRC_t rc;
  479. if( hp == NULL || hp->h == NULL )
  480. return kOkRtRC;
  481. if((rc = cmRtSysFinalize(*hp)) != kOkRtRC )
  482. return rc;
  483. cmRt_t* p = _cmRtHandleToPtr(*hp);
  484. cmMemFree(p);
  485. hp->h = NULL;
  486. return rc;
  487. }
  488. cmRtRC_t _cmRtSysEnable( cmRt_t* p, bool enableFl )
  489. {
  490. cmRtRC_t rc = kOkRtRC;
  491. unsigned i;
  492. unsigned n;
  493. unsigned tickMs = 20;
  494. unsigned timeOutMs = 10000;
  495. for(i=0; i<p->ssCnt; ++i)
  496. {
  497. _cmRtCfg_t* cp = p->ssArray + i;
  498. cmApBufOnPortEnable(cp->ss.args.inDevIdx,enableFl);
  499. cmApBufOnPortEnable(cp->ss.args.outDevIdx,enableFl);
  500. if( enableFl )
  501. {
  502. cp->cmdId = kNoCmdId;
  503. cmThUIntIncr(&cp->cmdId,kEnableCbCmdId);
  504. for(n=0; n<timeOutMs && cp->cbEnableFl==false; n+=tickMs )
  505. cmSleepMs(tickMs);
  506. cmThUIntDecr(&cp->cmdId,kEnableCbCmdId);
  507. }
  508. else
  509. {
  510. cp->cmdId = kNoCmdId;
  511. cmThUIntIncr(&cp->cmdId,kDisableCbCmdId);
  512. // wait for the rt thread to return from a client callbacks
  513. for(n=0; n<timeOutMs && cp->cbEnableFl; n+=tickMs )
  514. cmSleepMs(tickMs);
  515. cmThUIntDecr(&cp->cmdId,kDisableCbCmdId);
  516. }
  517. if( n >= timeOutMs )
  518. rc = cmErrMsg(&p->err,kTimeOutErrRtRC,"RT System %s timed out after %i milliseconds.",enableFl?"enable":"disable",timeOutMs);
  519. }
  520. // enable network sync mode
  521. if( enableFl)
  522. for(i=0; i<p->ssCnt; ++i)
  523. {
  524. _cmRtCfg_t* cp = p->ssArray + i;
  525. if( cmRtNetIsValid(cp->netH) )
  526. if( cmRtNetDoSync(cp->netH) != kOkNetRC )
  527. rc = cmErrMsg(&p->err,kNetErrRtRC,"Network Mgr. failed on entering sync mode.");
  528. }
  529. return rc;
  530. }
  531. cmRtRC_t _cmRtSysFinalize( cmRt_t* p )
  532. {
  533. cmRtRC_t rc = kOkRtRC;
  534. unsigned i;
  535. // mark the real-time system as NOT initialized
  536. p->initFl = false;
  537. // be sure all audio callbacks are disabled before continuing.
  538. if((rc = _cmRtSysEnable(p,false)) != kOkRtRC )
  539. return _cmRtError(p,rc,"real-time system finalize failed because device halting failed.");
  540. // stop the audio devices
  541. for(i=0; i<p->ssCnt; ++i)
  542. {
  543. _cmRtCfg_t* cp = p->ssArray + i;
  544. // stop the input device
  545. if((rc = cmApDeviceStop( cp->ss.args.inDevIdx )) != kOkRtRC )
  546. return _cmRtError(p,kAudioDevStopFailRtRC,"The audio input device stop failed.");
  547. // stop the output device
  548. if((rc = cmApDeviceStop( cp->ss.args.outDevIdx )) != kOkRtRC )
  549. return _cmRtError(p,kAudioDevStopFailRtRC,"The audio output device stop failed.");
  550. }
  551. for(i=0; i<p->ssCnt; ++i)
  552. {
  553. _cmRtCfg_t* cp = p->ssArray + i;
  554. if( cmThreadIsValid( cp->threadH ))
  555. {
  556. // inform the thread that it should exit
  557. cp->runFl = false;
  558. cp->statusFl = false;
  559. // signal the cond var to cause the thread to run
  560. if((rc = cmThreadMutexSignalCondVar(cp->engMutexH)) != kOkThRC )
  561. _cmRtError(p,kMutexErrRtRC,"Finalize signal cond. var. failed.");
  562. // wait to take control of the mutex - this will occur when the thread function exits
  563. if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkThRC )
  564. _cmRtError(p,kMutexErrRtRC,"Finalize lock failed.");
  565. // unlock the mutex because it is no longer needed and must be unlocked to be destroyed
  566. if((rc = cmThreadMutexUnlock(cp->engMutexH)) != kOkThRC )
  567. _cmRtError(p,kMutexErrRtRC,"Finalize unlock failed.");
  568. // destroy the thread
  569. if((rc = cmThreadDestroy( &cp->threadH )) != kOkThRC )
  570. _cmRtError(p,kThreadErrRtRC,"Thread destroy failed.");
  571. }
  572. // destroy the mutex
  573. if( cmThreadMutexIsValid(cp->engMutexH) )
  574. if((rc = cmThreadMutexDestroy( &cp->engMutexH )) != kOkThRC )
  575. _cmRtError(p,kMutexErrRtRC,"Mutex destroy failed.");
  576. // release the network mgr
  577. if( cmRtNetFree(&cp->netH) != kOkNetRC )
  578. _cmRtError(p,kNetErrRtRC,"Network Mrr. release failed.");
  579. // remove the MIDI callback
  580. if( cmMpIsInitialized() && cmMpUsesCallback(-1,-1, _cmRtSysMidiCallback, cp) )
  581. if( cmMpRemoveCallback( -1, -1, _cmRtSysMidiCallback, cp ) != kOkMpRC )
  582. _cmRtError(p,kMidiSysFailRtRC,"MIDI callback removal failed.");
  583. // destroy the host-to-dsp msg queue
  584. if( cmTsMp1cIsValid(cp->htdQueueH ) )
  585. if((rc = cmTsMp1cDestroy( &cp->htdQueueH )) != kOkThRC )
  586. _cmRtError(p,kTsQueueErrRtRC,"Host-to-DSP msg queue destroy failed.");
  587. // destroy the dsp-to-host msg queue
  588. if( cmTsMp1cIsValid(p->dthQueH) )
  589. if((rc = cmTsMp1cDestroy( &p->dthQueH )) != kOkThRC )
  590. _cmRtError(p,kTsQueueErrRtRC,"DSP-to-Host msg queue destroy failed.");
  591. cmMemPtrFree(&cp->ctx.iChArray);
  592. cmMemPtrFree(&cp->ctx.oChArray);
  593. cp->ctx.iChCnt = 0;
  594. cp->ctx.oChCnt = 0;
  595. cmMemPtrFree(&cp->iMeterArray);
  596. cmMemPtrFree(&cp->oMeterArray);
  597. cp->status.iMeterCnt = 0;
  598. cp->status.oMeterCnt = 0;
  599. }
  600. cmMemPtrFree(&p->ssArray);
  601. p->ssCnt = 0;
  602. return rc;
  603. }
  604. // A given device may be used as an input device exactly once and an
  605. // output device exactly once. When the input to a given device is used
  606. // by one sub-system and the output is used by another then both sub-systems
  607. // must use the same srate,devFramesPerCycle, audioBufCnt and dspFramesPerCycle.
  608. cmRtRC_t _cmRtSysValidate( cmRt_t* p )
  609. {
  610. unsigned i,j,k;
  611. for(i=0; i<2; ++i)
  612. {
  613. // examine input devices - then output devices
  614. bool inputFl = i==0;
  615. bool outputFl = !inputFl;
  616. for(j=0; j<p->ssCnt; ++j)
  617. {
  618. cmRtSysArgs_t* s0 = &p->ssArray[j].ss.args;
  619. unsigned devIdx = inputFl ? s0->inDevIdx : s0->outDevIdx;
  620. for(k=0; k<p->ssCnt && devIdx != cmInvalidIdx; ++k)
  621. if( k != j )
  622. {
  623. cmRtSysArgs_t* s1 = &p->ssArray[k].ss.args;
  624. // if the device was used as input or output multple times then signal an error
  625. if( (inputFl && (s1->inDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx) )
  626. return cmErrMsg(&p->err,kInvalidArgRtRC,"The device %i was used as an %s by multiple sub-systems.", devIdx, inputFl ? "input" : "output");
  627. // if this device is being used by another subsystem ...
  628. if( (inputFl && (s1->outDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx ) )
  629. {
  630. // ... then some of its buffer spec's must match
  631. if( s0->srate != s1->srate || s0->audioBufCnt != s1->audioBufCnt || s0->dspFramesPerCycle != s1->dspFramesPerCycle || s0->devFramesPerCycle != s1->devFramesPerCycle )
  632. return cmErrMsg(&p->err,kInvalidArgRtRC,"The device %i is used by different sub-system with different audio buffer parameters.",devIdx);
  633. }
  634. }
  635. }
  636. }
  637. return kOkRtRC;
  638. }
  639. cmRtRC_t cmRtSysBeginCfg( cmRtSysH_t h, cmTsQueueCb_t clientCbFunc, void* clientCbArg, unsigned meterMs, unsigned ssCnt )
  640. {
  641. cmRt_t* p = _cmRtHandleToPtr(h);
  642. cmRtRC_t rc;
  643. // always finalize before iniitalize
  644. if((rc = cmRtSysFinalize(h)) != kOkRtRC )
  645. return rc;
  646. p->ssArray = cmMemAllocZ( _cmRtCfg_t, ssCnt );
  647. p->ssCnt = ssCnt;
  648. p->clientCbFunc = clientCbFunc;
  649. p->clientCbArg = clientCbArg;
  650. return rc;
  651. }
  652. cmRtRC_t cmRtSysCfg( cmRtSysH_t h, const cmRtSysSubSys_t* ss, unsigned rtSubIdx )
  653. {
  654. cmRtRC_t rc;
  655. unsigned j;
  656. cmRt_t* p = _cmRtHandleToPtr(h);
  657. assert( rtSubIdx < p->ssCnt);
  658. _cmRtCfg_t* cp = p->ssArray + rtSubIdx;;
  659. cp->p = p;
  660. cp->ss = *ss; // copy the cfg into the internal real-time system state
  661. cp->runFl = false;
  662. cp->statusFl = false;
  663. cp->ctx.reserved = p;
  664. cp->ctx.rtSubIdx = rtSubIdx;
  665. cp->ctx.ss = &cp->ss;
  666. cp->ctx.begSmpIdx = 0;
  667. cp->ctx.dspToHostFunc = _cmRtDspToHostMsgCallback;
  668. // validate the input device index
  669. if( ss->args.inDevIdx != cmInvalidIdx && ss->args.inDevIdx >= cmApDeviceCount() )
  670. {
  671. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"The audio input device index %i is invalid.",ss->args.inDevIdx);
  672. goto errLabel;
  673. }
  674. // validate the output device index
  675. if( ss->args.outDevIdx != cmInvalidIdx && ss->args.outDevIdx >= cmApDeviceCount() )
  676. {
  677. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"The audio output device index %i is invalid.",ss->args.outDevIdx);
  678. goto errLabel;
  679. }
  680. // setup the input device
  681. if( ss->args.inDevIdx != cmInvalidIdx )
  682. if((rc = cmApDeviceSetup( ss->args.inDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmRtSysAudioUpdate, cp )) != kOkRtRC )
  683. {
  684. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"Audio input device setup failed.");
  685. goto errLabel;
  686. }
  687. // setup the output device
  688. if( ss->args.outDevIdx != ss->args.inDevIdx && ss->args.outDevIdx != cmInvalidIdx )
  689. if((rc = cmApDeviceSetup( ss->args.outDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmRtSysAudioUpdate, cp )) != kOkRtRC )
  690. {
  691. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"Audio output device setup failed.");
  692. goto errLabel;
  693. }
  694. // setup the input device buffer
  695. if( ss->args.inDevIdx != cmInvalidIdx )
  696. if((rc = cmApBufSetup( ss->args.inDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.inDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.inDevIdx, false), ss->args.devFramesPerCycle, ss->args.srateMult )) != kOkRtRC )
  697. {
  698. rc = _cmRtError(p,kAudioBufSetupErrRtRC,"Audio buffer input setup failed.");
  699. goto errLabel;
  700. }
  701. cmApBufEnableMeter(ss->args.inDevIdx, -1, kInApFl | kEnableApFl );
  702. cmApBufEnableMeter(ss->args.outDevIdx,-1, kOutApFl | kEnableApFl );
  703. // setup the input audio buffer ptr array - used to send input audio to the DSP system in _cmRtDspExecCallback()
  704. if((cp->ctx.iChCnt = cmApDeviceChannelCount(ss->args.inDevIdx, true)) != 0 )
  705. cp->ctx.iChArray = cmMemAllocZ( cmSample_t*, cp->ctx.iChCnt );
  706. // setup the output device buffer
  707. if( ss->args.outDevIdx != ss->args.inDevIdx )
  708. if((rc = cmApBufSetup( ss->args.outDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.outDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.outDevIdx, false), ss->args.devFramesPerCycle, ss->args.srateMult )) != kOkRtRC )
  709. return _cmRtError(p,kAudioBufSetupErrRtRC,"Audio buffer ouput device setup failed.");
  710. // setup the output audio buffer ptr array - used to recv output audio from the DSP system in _cmRtDspExecCallback()
  711. if((cp->ctx.oChCnt = cmApDeviceChannelCount(ss->args.outDevIdx, false)) != 0 )
  712. cp->ctx.oChArray = cmMemAllocZ( cmSample_t*, cp->ctx.oChCnt );
  713. // determine the sync source
  714. cp->syncInputFl = ss->args.syncInputFl;
  715. // if sync'ing to an unavailable device then sync to the available device
  716. if( ss->args.syncInputFl && cp->ctx.iChCnt == 0 )
  717. cp->syncInputFl = false;
  718. if( ss->args.syncInputFl==false && cp->ctx.oChCnt == 0 )
  719. cp->syncInputFl = true;
  720. // setup the status record
  721. cp->status.hdr.rtSubIdx = cp->ctx.rtSubIdx;
  722. cp->status.iDevIdx = ss->args.inDevIdx;
  723. cp->status.oDevIdx = ss->args.outDevIdx;
  724. cp->status.iMeterCnt = cp->ctx.iChCnt;
  725. cp->status.oMeterCnt = cp->ctx.oChCnt;
  726. cp->iMeterArray = cmMemAllocZ( double, cp->status.iMeterCnt );
  727. cp->oMeterArray = cmMemAllocZ( double, cp->status.oMeterCnt );
  728. cp->noBlockEnaFl = false;
  729. // create the real-time system thread
  730. if((rc = cmThreadCreate( &cp->threadH, _cmRtThreadCallback, cp, ss->args.rpt )) != kOkThRC )
  731. {
  732. rc = _cmRtError(p,kThreadErrRtRC,"Thread create failed.");
  733. goto errLabel;
  734. }
  735. // create the real-time system mutex
  736. if((rc = cmThreadMutexCreate( &cp->engMutexH, ss->args.rpt )) != kOkThRC )
  737. {
  738. rc = _cmRtError(p,kMutexErrRtRC,"Thread mutex create failed.");
  739. goto errLabel;
  740. }
  741. // create the host-to-dsp thread safe msg queue
  742. if((rc = cmTsMp1cCreate( &cp->htdQueueH, ss->args.msgQueueByteCnt, ss->cbFunc, &cp->ctx, ss->args.rpt )) != kOkThRC )
  743. {
  744. rc = _cmRtError(p,kTsQueueErrRtRC,"Host-to-DSP msg queue create failed.");
  745. goto errLabel;
  746. }
  747. // create the dsp-to-host thread safe msg queue
  748. if( cmTsMp1cIsValid( p->dthQueH ) == false )
  749. {
  750. if((rc = cmTsMp1cCreate( &p->dthQueH, ss->args.msgQueueByteCnt, p->clientCbFunc, p->clientCbArg, ss->args.rpt )) != kOkThRC )
  751. {
  752. rc = _cmRtError(p,kTsQueueErrRtRC,"DSP-to-Host msg queue create failed.");
  753. goto errLabel;
  754. }
  755. }
  756. // install an external MIDI port callback handler for incoming MIDI messages
  757. if( cmMpIsInitialized() )
  758. if( cmMpInstallCallback( -1, -1, _cmRtSysMidiCallback, cp ) != kOkMpRC )
  759. {
  760. rc = _cmRtError(p,kMidiSysFailRtRC,"MIDI system callback installation failed.");
  761. goto errLabel;
  762. }
  763. // setup the sub-system status notification
  764. cp->statusUpdateSmpCnt = floor(cmApBufMeterMs() * cp->ss.args.srate / 1000.0 );
  765. cp->statusUpdateSmpIdx = 0;
  766. // allocate the network mgr
  767. if( cmRtNetAlloc(p->ctx,&cp->netH, cp->ctx.rtSubIdx, _cmRtSysNetRecv, cp ) != kOkNetRC )
  768. {
  769. rc = _cmRtError(p,kNetErrRtRC,"Network allocation failed.");
  770. goto errLabel;
  771. }
  772. if( cmRtNetInitialize( cp->netH, ss->bcastAddr, ss->localNodeLabel, ss->localIpAddr, ss->localIpPort) != kOkNetRC )
  773. {
  774. rc = _cmRtError(p,kNetErrRtRC,"Network node initialization failed on label:%s addr:%s port:%i.",cmStringNullGuard(ss->localNodeLabel),cmStringNullGuard(ss->localIpAddr),ss->localIpPort);
  775. goto errLabel;
  776. }
  777. // register the local endpoints
  778. for(j=0; j<ss->endptCnt; ++j)
  779. {
  780. cmRtSysNetEndpt_t* ep = ss->endptArray + j;
  781. if( cmRtNetRegisterEndPoint( cp->netH, ep->label, ep->id ) != kOkNetRC )
  782. {
  783. rc = _cmRtError(p,kNetErrRtRC,"Network end point allocation failed on label:%s id:%i.",cmStringNullGuard(ep->label),ep->id);
  784. goto errLabel;
  785. }
  786. }
  787. errLabel:
  788. if( rc != kOkRtRC )
  789. _cmRtSysFinalize(p);
  790. return rc;
  791. }
  792. cmRtRC_t cmRtSysEndCfg( cmRtSysH_t h )
  793. {
  794. cmRtRC_t rc;
  795. cmRt_t* p = _cmRtHandleToPtr(h);
  796. unsigned i;
  797. if((rc = _cmRtSysValidate(p)) != kOkRtRC )
  798. goto errLabel;
  799. for(i=0; i<p->ssCnt; ++i)
  800. {
  801. _cmRtCfg_t* cp = p->ssArray + i;
  802. cp->runFl = true;
  803. // start the real-time system thread
  804. if( cmThreadPause( cp->threadH, 0 ) != kOkThRC )
  805. {
  806. rc = _cmRtError(p,kThreadErrRtRC,"Thread start failed.");
  807. goto errLabel;
  808. }
  809. // start the input device
  810. if((rc = cmApDeviceStart( cp->ss.args.inDevIdx )) != kOkRtRC )
  811. return _cmRtError(p,kAudioDevStartFailRtRC,"The audio input device start failed.");
  812. // start the output device
  813. if( cmApDeviceStart( cp->ss.args.outDevIdx ) != kOkRtRC )
  814. return _cmRtError(p,kAudioDevStartFailRtRC,"The audio ouput device start failed.");
  815. }
  816. p->initFl = true;
  817. errLabel:
  818. if( rc != kOkRtRC )
  819. _cmRtSysFinalize(p);
  820. return rc;
  821. }
  822. cmRtRC_t cmRtSysFinalize(cmRtSysH_t h )
  823. {
  824. cmRtRC_t rc = kOkRtRC;
  825. if( cmRtSysHandleIsValid(h) == false )
  826. return rc;
  827. cmRt_t* p = _cmRtHandleToPtr(h);
  828. rc = _cmRtSysFinalize(p);
  829. h.h = NULL;
  830. return rc;
  831. }
  832. bool cmRtSysIsInitialized( cmRtSysH_t h )
  833. {
  834. cmRt_t* p = _cmRtHandleToPtr(h);
  835. return p->initFl;
  836. }
  837. cmRtRC_t _cmRtSysVerifyInit( cmRt_t* p, bool errFl )
  838. {
  839. if( p->initFl == false )
  840. {
  841. // if the last msg generated was also a not init msg then don't
  842. // generate another message - just return the error
  843. if( errFl )
  844. if( cmErrLastRC(&p->err) != kNotInitRtRC )
  845. cmErrMsg(&p->err,kNotInitRtRC,"The real-time system is not initialized.");
  846. return kNotInitRtRC;
  847. }
  848. return kOkRtRC;
  849. }
  850. bool cmRtSysIsEnabled( cmRtSysH_t h )
  851. {
  852. if( cmRtSysIsInitialized(h) == false )
  853. return false;
  854. cmRt_t* p = _cmRtHandleToPtr(h);
  855. unsigned i;
  856. for(i=0; i<p->ssCnt; ++i)
  857. if( p->ssArray[i].cbEnableFl )
  858. return true;
  859. return false;
  860. }
  861. cmRtRC_t cmRtSysEnable( cmRtSysH_t h, bool enableFl )
  862. {
  863. cmRt_t* p = _cmRtHandleToPtr(h);
  864. return _cmRtSysEnable(p,enableFl);
  865. }
  866. cmRtRC_t cmRtSysDeliverSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt, unsigned srcNetNodeId )
  867. {
  868. cmRt_t* p = _cmRtHandleToPtr(h);
  869. cmRtRC_t rc;
  870. // the system must be initialized to use this function
  871. if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
  872. return rc;
  873. if( msgSegCnt == 0 )
  874. return kOkRtRC;
  875. // BUG BUG BUG - there is no reason that both the rtSubIdx and the selId must
  876. // be in the first segment but it would be nice.
  877. assert( msgByteCntArray[0] >= 2*sizeof(unsigned) || (msgSegCnt>1 && msgByteCntArray[0]==sizeof(unsigned) && msgByteCntArray[1]>=sizeof(unsigned)) );
  878. // The audio sub-system index is always the first field of the msg
  879. // and the msg selector id is always the second field
  880. unsigned* array = (unsigned*)msgDataPtrArray[0];
  881. unsigned rtSubIdx = array[0];
  882. unsigned selId = array[1];
  883. if( selId == kUiMstrSelRtId )
  884. return _cmRtHandleNonSubSysMsg( p, msgDataPtrArray, msgByteCntArray, msgSegCnt );
  885. // if rtSubIdx == kInvalidIdx then send the msg to all sub-systems
  886. // otherwise send it to the specified sub-system.
  887. unsigned i = 0;
  888. unsigned n = 1;
  889. if( rtSubIdx == cmInvalidIdx )
  890. n = p->ssCnt;
  891. for(; i<n; ++i)
  892. {
  893. unsigned j = rtSubIdx==cmInvalidIdx ? i : rtSubIdx;
  894. if((rc = _cmRtEnqueueMsg(p,p->ssArray[j].htdQueueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"Host-to-DSP")) != kOkRtRC )
  895. break;
  896. }
  897. return rc;
  898. }
  899. cmRtRC_t cmRtSysDeliverMsg( cmRtSysH_t h, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
  900. {
  901. const void* msgDataPtrArray[] = { msgPtr };
  902. unsigned msgByteCntArray[] = { msgByteCnt };
  903. return cmRtSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,1,srcNetNodeId);
  904. }
  905. cmRtRC_t cmRtSysDeliverIdMsg( cmRtSysH_t h, unsigned rtSubIdx, unsigned id, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
  906. {
  907. cmRtRC_t rc;
  908. cmRt_t* p = _cmRtHandleToPtr(h);
  909. // the system must be initialized to use this function
  910. if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
  911. return rc;
  912. const void* msgDataPtrArray[] = { &rtSubIdx, &id, msgPtr };
  913. unsigned msgByteCntArray[] = { sizeof(rtSubIdx), sizeof(id), msgByteCnt };
  914. return cmRtSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,3,srcNetNodeId);
  915. }
  916. unsigned cmRtSysIsMsgWaiting( cmRtSysH_t h )
  917. {
  918. cmRtRC_t rc;
  919. cmRt_t* p = _cmRtHandleToPtr(h);
  920. // the system must be initialized to use this function
  921. if((rc = _cmRtSysVerifyInit(p,false)) != kOkRtRC )
  922. return 0;
  923. unsigned n = 0;
  924. unsigned retByteCnt;
  925. for(n=0; n < p->ssCnt; ++n )
  926. {
  927. if( (retByteCnt = cmTsMp1cDequeueMsgByteCount(p->dthQueH)) > 0 )
  928. return retByteCnt;
  929. p->waitRtSubIdx = (p->waitRtSubIdx + 1) % p->ssCnt;
  930. }
  931. return 0;
  932. }
  933. cmRtRC_t cmRtSysReceiveMsg( cmRtSysH_t h, void* msgDataPtr, unsigned msgByteCnt )
  934. {
  935. cmRtRC_t rc;
  936. cmRt_t* p = _cmRtHandleToPtr(h);
  937. // the system must be initialized to use this function
  938. if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
  939. return rc;
  940. //switch( cmTsMp1cDequeueMsg(p->ssArray[p->waitRtSubIdx].dthQueueH,msgDataPtr,msgByteCnt) )
  941. switch( cmTsMp1cDequeueMsg(p->dthQueH,msgDataPtr,msgByteCnt) )
  942. {
  943. case kOkThRC:
  944. p->waitRtSubIdx = (p->waitRtSubIdx + 1) % p->ssCnt;
  945. return kOkRtRC;
  946. case kBufTooSmallThRC:
  947. return kBufTooSmallRtRC;
  948. case kBufEmptyThRC:
  949. return kNoMsgWaitingRtRC;
  950. }
  951. return _cmRtError(p,kTsQueueErrRtRC,"A deque operation failed on the DSP-to-Host message queue.");
  952. }
  953. void cmRtSysStatus( cmRtSysH_t h, unsigned rtSubIdx, cmRtSysStatus_t* statusPtr )
  954. {
  955. cmRt_t* p = _cmRtHandleToPtr(h);
  956. // the system must be initialized to use this function
  957. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  958. return;
  959. if( rtSubIdx < p->ssCnt )
  960. *statusPtr = p->ssArray[rtSubIdx].status;
  961. }
  962. void cmRtSysStatusNotifyEnable( cmRtSysH_t h, unsigned rtSubIdx, bool enableFl )
  963. {
  964. cmRt_t* p = _cmRtHandleToPtr(h);
  965. // the system must be initialized to use this function
  966. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  967. return;
  968. unsigned i = rtSubIdx == cmInvalidIdx ? 0 : rtSubIdx;
  969. unsigned n = rtSubIdx == cmInvalidIdx ? p->ssCnt : rtSubIdx+1;
  970. for(; i<n; ++i)
  971. p->ssArray[i].statusFl = enableFl;
  972. }
  973. bool cmRtSysHandleIsValid( cmRtSysH_t h )
  974. { return h.h != NULL; }
  975. cmRtSysCtx_t* cmRtSysContext( cmRtSysH_t h, unsigned rtSubIdx )
  976. {
  977. cmRt_t* p = _cmRtHandleToPtr(h);
  978. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  979. return NULL;
  980. if( rtSubIdx >= p->ssCnt )
  981. return NULL;
  982. return &p->ssArray[rtSubIdx].ctx;
  983. }
  984. cmRtRC_t cmRtSysEnableNoBlockMode( cmRtSysH_t h, unsigned rtSubIdx, bool enaFl, unsigned noBlockSleepMs )
  985. {
  986. cmRt_t* p = _cmRtHandleToPtr(h);
  987. cmRtRC_t rc = kOkRtRC;
  988. if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
  989. return rc;
  990. if( rtSubIdx >= p->ssCnt )
  991. return cmErrMsg(&p->err,kInvalidArgRtRC,"Invalid 'rtSubIdx'. Enable non-block mode failed.");
  992. p->ssArray[rtSubIdx].noBlockSleepMs = noBlockSleepMs;
  993. p->ssArray[rtSubIdx].noBlockEnaFl = enaFl;
  994. return kOkRtRC;
  995. }
  996. unsigned cmRtSysSubSystemCount( cmRtSysH_t h )
  997. {
  998. cmRt_t* p = _cmRtHandleToPtr(h);
  999. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  1000. return 0;
  1001. return p->ssCnt;
  1002. }
  1003. bool cmRtSysNetIsInitialized( cmRtSysH_t h )
  1004. {
  1005. cmRt_t* p = _cmRtHandleToPtr(h);
  1006. unsigned i = 0;
  1007. for(; i<p->ssCnt; ++i)
  1008. if( cmRtNetIsInitialized(p->ssArray[i].netH) )
  1009. return true;
  1010. return false;
  1011. }
  1012. cmRtRC_t cmRtSysNetDoSync( cmRtSysH_t h )
  1013. {
  1014. cmRtRC_t rc = kOkRtRC;
  1015. cmRt_t* p = _cmRtHandleToPtr(h);
  1016. unsigned i = 0;
  1017. for(; i<p->ssCnt; ++i)
  1018. if( cmRtNetIsInitialized(p->ssArray[i].netH) )
  1019. cmRtNetDoSync(p->ssArray[i].netH);
  1020. return rc;
  1021. }
  1022. cmRtRC_t cmRtSysNetReport( cmRtSysH_t h )
  1023. {
  1024. cmRtRC_t rc = kOkRtRC;
  1025. cmRt_t* p = _cmRtHandleToPtr(h);
  1026. unsigned i = 0;
  1027. for(; i<p->ssCnt; ++i)
  1028. {
  1029. cmRptPrintf(p->err.rpt,"Sub-system:%i\n",i);
  1030. if( cmRtNetIsValid(p->ssArray[i].netH))
  1031. cmRtNetReport(p->ssArray[i].netH);
  1032. }
  1033. return rc;
  1034. }
  1035. cmRtRC_t cmRtSysNetReportSyncEnable( cmRtSysH_t h, bool enableFl )
  1036. {
  1037. cmRtRC_t rc = kOkRtRC;
  1038. cmRt_t* p = _cmRtHandleToPtr(h);
  1039. unsigned i = 0;
  1040. for(; i<p->ssCnt; ++i)
  1041. if( cmRtNetIsValid(p->ssArray[i].netH))
  1042. cmRtNetReportSyncEnable(p->ssArray[i].netH,enableFl);
  1043. return rc;
  1044. }
  1045. cmRtRC_t cmRtSysNetGetHandle( cmRtSysH_t h, unsigned rtSubIdx, cmRtNetH_t* hp )
  1046. {
  1047. cmRtRC_t rc = kOkRtRC;
  1048. cmRt_t* p = _cmRtHandleToPtr(h);
  1049. assert( rtSubIdx < p->ssCnt );
  1050. if( rtSubIdx < p->ssCnt )
  1051. {
  1052. *hp = p->ssArray[rtSubIdx].netH;
  1053. return rc;
  1054. }
  1055. return cmErrMsg(&p->err,kInvalidArgRtRC,"The rtSubIdx %i is out of range %i.",rtSubIdx,p->ssCnt);
  1056. }
  1057. //===========================================================================================================================
  1058. //
  1059. // cmRtTest()
  1060. //
  1061. /// [cmRtSysTest]
  1062. typedef struct
  1063. {
  1064. double hz; // current synth frq
  1065. long phs; // current synth phase
  1066. double srate; // audio sample rate
  1067. unsigned cbCnt; // DSP cycle count
  1068. bool synthFl; // true=synth false=pass through
  1069. } _cmRtTestCbRecd;
  1070. typedef struct
  1071. {
  1072. unsigned rtSubIdx; // rtSubIdx must always be the first field in the msg
  1073. unsigned id; // 0 = set DSP Hz, 1 = report cbCount to host
  1074. double hz;
  1075. unsigned uint;
  1076. } _cmRtTestMsg;
  1077. long _cmRtSynthSine( _cmRtTestCbRecd* r, cmApSample_t* p, unsigned chCnt, unsigned frmCnt )
  1078. {
  1079. long ph = 0;
  1080. unsigned i;
  1081. for(i=0; i<chCnt; ++i)
  1082. {
  1083. unsigned j;
  1084. cmApSample_t* op = p + i;
  1085. ph = r->phs;
  1086. for(j=0; j<frmCnt; j++, op+=chCnt, ph++)
  1087. *op = (cmApSample_t)(0.9 * sin( 2.0 * M_PI * r->hz * ph / r->srate ));
  1088. }
  1089. return ph;
  1090. }
  1091. unsigned _cmRtTestChIdx = 0;
  1092. cmRC_t _cmRtTestCb( void* cbPtr, unsigned msgByteCnt, const void* msgDataPtr )
  1093. {
  1094. cmRC_t rc = cmOkRC;
  1095. cmRtSysCtx_t* ctx = (cmRtSysCtx_t*)cbPtr;
  1096. cmRtSysSubSys_t* ss = ctx->ss;
  1097. _cmRtTestCbRecd* r = (_cmRtTestCbRecd*)ss->cbDataPtr;
  1098. // update the calback counter
  1099. ++r->cbCnt;
  1100. // if this is an audio update request
  1101. if( msgByteCnt == 0 )
  1102. {
  1103. unsigned i;
  1104. if( r->synthFl )
  1105. {
  1106. long phs = 0;
  1107. if(0)
  1108. {
  1109. for(i=0; i<ctx->oChCnt; ++i)
  1110. if( ctx->oChArray[i] != NULL )
  1111. phs = _cmRtSynthSine(r, ctx->oChArray[i], 1, ss->args.dspFramesPerCycle );
  1112. }
  1113. else
  1114. {
  1115. if( _cmRtTestChIdx < ctx->oChCnt )
  1116. phs = _cmRtSynthSine(r, ctx->oChArray[_cmRtTestChIdx], 1, ss->args.dspFramesPerCycle );
  1117. }
  1118. r->phs = phs;
  1119. }
  1120. else
  1121. {
  1122. // BUG BUG BUG - this assumes that the input and output channels are the same.
  1123. unsigned chCnt = cmMin(ctx->oChCnt,ctx->iChCnt);
  1124. for(i=0; i<chCnt; ++i)
  1125. memcpy(ctx->oChArray[i],ctx->iChArray[i],sizeof(cmSample_t)*ss->args.dspFramesPerCycle);
  1126. }
  1127. }
  1128. else // ... otherwise it is a msg for the DSP process from the host
  1129. {
  1130. _cmRtTestMsg* msg = (_cmRtTestMsg*)msgDataPtr;
  1131. msg->rtSubIdx = ctx->rtSubIdx;
  1132. switch(msg->id)
  1133. {
  1134. case 0:
  1135. r->hz = msg->hz;
  1136. break;
  1137. case 1:
  1138. msg->uint = r->cbCnt;
  1139. msgByteCnt = sizeof(_cmRtTestMsg);
  1140. rc = ctx->dspToHostFunc(ctx,(const void **)&msg,&msgByteCnt,1);
  1141. break;
  1142. }
  1143. }
  1144. return rc;
  1145. }
  1146. // print the usage message for cmAudioPortTest.c
  1147. void _cmRtPrintUsage( cmRpt_t* rpt )
  1148. {
  1149. char msg[] =
  1150. "cmRtSysTest() command switches:\n"
  1151. "-r <srate> -c <chcnt> -b <bufcnt> -f <frmcnt> -i <idevidx> -o <odevidx> -m <msgqsize> -d <dspsize> -t -p -h \n"
  1152. "\n"
  1153. "-r <srate> = sample rate (48000)\n"
  1154. "-c <chcnt> = audio channels (2)\n"
  1155. "-b <bufcnt> = count of buffers (3)\n"
  1156. "-f <frmcnt> = count of samples per buffer (512)\n"
  1157. "-i <idevidx> = input device index (0)\n"
  1158. "-o <odevidx> = output device index (2)\n"
  1159. "-m <msgqsize> = message queue byte count (1024)\n"
  1160. "-d <dspsize> = samples per DSP frame (64)\n"
  1161. "-s = true: sync to input port false: sync to output port\n"
  1162. "-t = copy input to output otherwise synthesize a 1000 Hz sine (false)\n"
  1163. "-p = report but don't start audio devices\n"
  1164. "-h = print this usage message\n";
  1165. cmRptPrintf(rpt,"%s",msg);
  1166. }
  1167. // Get a command line option.
  1168. int _cmRtGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl )
  1169. {
  1170. int i = 0;
  1171. for(; i<argc; ++i)
  1172. if( strcmp(label,argv[i]) == 0 )
  1173. {
  1174. if(boolFl)
  1175. return 1;
  1176. if( i == (argc-1) )
  1177. return defaultVal;
  1178. return atoi(argv[i+1]);
  1179. }
  1180. return defaultVal;
  1181. }
  1182. bool _cmRtGetBoolOpt( int argc, const char* argv[], const char* label, bool defaultVal )
  1183. { return _cmRtGetOpt(argc,argv,label,defaultVal?1:0,true)!=0; }
  1184. int _cmRtGetIntOpt( int argc, const char* argv[], const char* label, int defaultVal )
  1185. { return _cmRtGetOpt(argc,argv,label,defaultVal,false); }
  1186. void cmRtSysTest( cmCtx_t* ctx, int argc, const char* argv[] )
  1187. {
  1188. cmRtSysSubSys_t ss;
  1189. cmRtSysH_t h = cmRtSysNullHandle;
  1190. cmRtSysStatus_t status;
  1191. _cmRtTestCbRecd cbRecd = {1000.0,0,48000.0,0};
  1192. cmRpt_t* rpt = &ctx->rpt;
  1193. memset(&status,0,sizeof(status));
  1194. unsigned meterMs = 50;
  1195. unsigned ssCnt = 1;
  1196. unsigned rtSubIdx = 0;
  1197. if(_cmRtGetBoolOpt(argc,argv,"-h",false))
  1198. _cmRtPrintUsage(rpt);
  1199. cbRecd.srate = _cmRtGetIntOpt(argc,argv,"-r",48000);
  1200. cbRecd.synthFl = _cmRtGetBoolOpt(argc,argv,"-t",false)==false;
  1201. ss.args.rpt = rpt;
  1202. ss.args.inDevIdx = _cmRtGetIntOpt( argc,argv,"-i",0);
  1203. ss.args.outDevIdx = _cmRtGetIntOpt( argc,argv,"-o",2);
  1204. ss.args.syncInputFl = _cmRtGetBoolOpt(argc,argv,"-s",true);
  1205. ss.args.msgQueueByteCnt = _cmRtGetIntOpt( argc,argv,"-m",8192);
  1206. ss.args.devFramesPerCycle = _cmRtGetIntOpt( argc,argv,"-f",512);
  1207. ss.args.dspFramesPerCycle = _cmRtGetIntOpt( argc,argv,"-d",64);;
  1208. ss.args.audioBufCnt = _cmRtGetIntOpt( argc,argv,"-b",3);
  1209. ss.args.srate = cbRecd.srate;
  1210. ss.cbFunc = _cmRtTestCb; // set the DSP entry function
  1211. ss.cbDataPtr = &cbRecd; // set the DSP function argument record
  1212. cmRptPrintf(rpt,"in:%i out:%i syncFl:%i que:%i fpc:%i dsp:%i bufs:%i sr:%f\n",ss.args.inDevIdx,ss.args.outDevIdx,ss.args.syncInputFl,
  1213. ss.args.msgQueueByteCnt,ss.args.devFramesPerCycle,ss.args.dspFramesPerCycle,ss.args.audioBufCnt,ss.args.srate);
  1214. if( cmApNrtAllocate(rpt) != kOkApRC )
  1215. goto errLabel;
  1216. if( cmApFileAllocate(rpt) != kOkApRC )
  1217. goto errLabel;
  1218. // initialize the audio device system
  1219. if( cmApInitialize(rpt) != kOkApRC )
  1220. goto errLabel;
  1221. cmApReport(rpt);
  1222. // initialize the audio buffer
  1223. if( cmApBufInitialize( cmApDeviceCount(), meterMs ) != kOkApRC )
  1224. goto errLabel;
  1225. // initialize the real-time system
  1226. if( cmRtSysAllocate(&h,ctx) != kOkRtRC )
  1227. goto errLabel;
  1228. if( cmRtSysBeginCfg(h,NULL,NULL,meterMs,ssCnt) != kOkRtRC )
  1229. goto errLabel;
  1230. if( cmRtSysCfg(h,&ss,rtSubIdx) != kOkRtRC )
  1231. goto errLabel;
  1232. if( cmRtSysEndCfg(h) != kOkRtRC )
  1233. goto errLabel;
  1234. // start the real-time system
  1235. cmRtSysEnable(h,true);
  1236. char c = 0;
  1237. printf("q=quit a-g=note n=ch r=rqst s=status\n");
  1238. // simulate a host event loop
  1239. while(c != 'q')
  1240. {
  1241. _cmRtTestMsg msg = {0,0,0,0};
  1242. bool fl = true;
  1243. // wait here for a key press
  1244. c =(char)fgetc(stdin);
  1245. fflush(stdin);
  1246. switch(c)
  1247. {
  1248. case 'c': msg.hz = cmMidiToHz(60); break;
  1249. case 'd': msg.hz = cmMidiToHz(62); break;
  1250. case 'e': msg.hz = cmMidiToHz(64); break;
  1251. case 'f': msg.hz = cmMidiToHz(65); break;
  1252. case 'g': msg.hz = cmMidiToHz(67); break;
  1253. case 'a': msg.hz = cmMidiToHz(69); break;
  1254. case 'b': msg.hz = cmMidiToHz(71); break;
  1255. case 'r': msg.id = 1; break; // request DSP process to send a callback count
  1256. case 'n': ++_cmRtTestChIdx; printf("ch:%i\n",_cmRtTestChIdx); break;
  1257. case 's':
  1258. // report the real-time system status
  1259. cmRtSysStatus(h,0,&status);
  1260. printf("phs:%li cb count:%i (upd:%i wake:%i acb:%i msgs:%i)\n",cbRecd.phs, cbRecd.cbCnt, status.updateCnt, status.wakeupCnt, status.audioCbCnt, status.msgCbCnt);
  1261. //printf("%f \n",status.oMeterArray[0]);
  1262. fl = false;
  1263. break;
  1264. default:
  1265. fl=false;
  1266. }
  1267. if( fl )
  1268. {
  1269. // transmit a command to the DSP process
  1270. cmRtSysDeliverMsg(h,&msg, sizeof(msg), cmInvalidId);
  1271. }
  1272. // check if messages are waiting to be delivered from the DSP process
  1273. unsigned msgByteCnt;
  1274. if((msgByteCnt = cmRtSysIsMsgWaiting(h)) > 0 )
  1275. {
  1276. char buf[ msgByteCnt ];
  1277. // rcv a msg from the DSP process
  1278. if( cmRtSysReceiveMsg(h,buf,msgByteCnt) == kOkRtRC )
  1279. {
  1280. _cmRtTestMsg* msg = (_cmRtTestMsg*)buf;
  1281. switch(msg->id)
  1282. {
  1283. case 1:
  1284. printf("RCV: Callback count:%i\n",msg->uint);
  1285. break;
  1286. }
  1287. }
  1288. }
  1289. // report the audio buffer status
  1290. //cmApBufReport(ss.args.rpt);
  1291. }
  1292. // stop the real-time system
  1293. cmRtSysEnable(h,false);
  1294. goto exitLabel;
  1295. errLabel:
  1296. printf("REAL-TIME SYSTEM TEST ERROR\n");
  1297. exitLabel:
  1298. cmRtSysFree(&h);
  1299. cmApFinalize();
  1300. cmApFileFree();
  1301. cmApNrtFree();
  1302. cmApBufFinalize();
  1303. }
  1304. /// [cmRtSysTest]