cmProc5.h/c : Added cmGoldCode.
This commit is contained in:
parent
032d359a90
commit
b1ff1dfb07
220
cmProc5.c
220
cmProc5.c
@ -16,7 +16,11 @@
|
|||||||
#include "cmProcObj.h"
|
#include "cmProcObj.h"
|
||||||
#include "cmProcTemplate.h"
|
#include "cmProcTemplate.h"
|
||||||
#include "cmMath.h"
|
#include "cmMath.h"
|
||||||
|
#include "cmFile.h"
|
||||||
|
#include "cmTime.h"
|
||||||
|
#include "cmMidi.h"
|
||||||
#include "cmProc.h"
|
#include "cmProc.h"
|
||||||
|
#include "cmProc2.h"
|
||||||
#include "cmProc5.h"
|
#include "cmProc5.h"
|
||||||
|
|
||||||
#include "cmVectOps.h"
|
#include "cmVectOps.h"
|
||||||
@ -123,3 +127,219 @@ cmRC_t cmGoertzelExec( cmGoertzel* p, const cmSample_t* inpV, unsigned procSmpCn
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//=======================================================================================================================
|
||||||
|
double _cmGoldSigSinc( double t, double T )
|
||||||
|
{
|
||||||
|
double x = t/T;
|
||||||
|
return x == 0 ? 1.0 : sin(M_PI*x)/(M_PI*x);
|
||||||
|
}
|
||||||
|
|
||||||
|
void _cmGoldSigRaisedCos( cmSample_t* yV, int yN, double sPc, double beta )
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
|
||||||
|
for(i=0; i<yN; ++i)
|
||||||
|
{
|
||||||
|
double t = i - yN/2;
|
||||||
|
double den = 1 - (4*(beta*beta)*(t*t) / (sPc*sPc));
|
||||||
|
double a;
|
||||||
|
|
||||||
|
if(fabs(den) < 0.00001 )
|
||||||
|
a = 1;
|
||||||
|
else
|
||||||
|
a = cos(M_PI * beta * t/ sPc ) / den;
|
||||||
|
|
||||||
|
yV[i] = _cmGoldSigSinc(t,sPc) * a;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void _cmGoldSigConv( cmGoldSig_t* p, unsigned chIdx )
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
int sPc = p->a.samplesPerChip;
|
||||||
|
int osf = p->a.rcosOSFact;
|
||||||
|
|
||||||
|
// for each bit in the spreading-code
|
||||||
|
for(i=0; i<p->mlsN; ++i)
|
||||||
|
{
|
||||||
|
int j = (i*sPc) + sPc/2; // index into bbV[] of center of impulse response
|
||||||
|
int k = j - (sPc*osf)/2; // index into bbV[] of start of impulse response
|
||||||
|
int h;
|
||||||
|
|
||||||
|
// for each sample in the impulse response
|
||||||
|
for(h=0; h<p->rcosN; ++h,++k)
|
||||||
|
{
|
||||||
|
|
||||||
|
while( k<0 )
|
||||||
|
k += p->sigN;
|
||||||
|
|
||||||
|
while( k>=p->sigN )
|
||||||
|
k -= p->sigN;
|
||||||
|
|
||||||
|
p->ch[chIdx].bbV[k] += p->ch[chIdx].pnV[i] * p->rcosV[h];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void _cmGoldSigModulate( cmGoldSig_t* p, unsigned chIdx )
|
||||||
|
{
|
||||||
|
unsigned i;
|
||||||
|
double rps = 2.0 * M_PI * p->a.carrierHz / p->a.srate;
|
||||||
|
cmSample_t* yV = p->ch[chIdx].mdV;
|
||||||
|
cmSample_t* bbV = p->ch[chIdx].bbV;
|
||||||
|
|
||||||
|
for(i=0; i<p->sigN; ++i)
|
||||||
|
yV[ i ] = bbV[i]*cos(rps*i) + bbV[i]*sin(rps*i);
|
||||||
|
|
||||||
|
// apply a half Hann envelope to the onset/offset of the id signal
|
||||||
|
if( p->a.envMs > 0 )
|
||||||
|
{
|
||||||
|
unsigned wndMs = p->a.envMs * 2;
|
||||||
|
unsigned wndN = wndMs * p->a.srate / 1000;
|
||||||
|
wndN += wndN % 2 ? 0 : 1; // force the window length to be odd
|
||||||
|
unsigned wNo2 = wndN/2 + 1;
|
||||||
|
cmSample_t wndV[ wndN ];
|
||||||
|
cmVOS_Hann(wndV,wndN);
|
||||||
|
cmVOS_MultVV(yV,wNo2,wndV);
|
||||||
|
cmVOS_MultVV(yV + p->sigN - wNo2, wNo2, wndV + wNo2 - 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
cmGoldSig_t* cmGoldSigAlloc( cmCtx* ctx, cmGoldSig_t* p, const cmGoldSigArg_t* a )
|
||||||
|
{
|
||||||
|
cmGoldSig_t* op = cmObjAlloc(cmGoldSig_t,ctx,p);
|
||||||
|
|
||||||
|
if( a != NULL )
|
||||||
|
if( cmGoldSigInit(op,a) != cmOkRC )
|
||||||
|
cmGoldSigFree(&op);
|
||||||
|
|
||||||
|
return op;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
cmRC_t cmGoldSigFree( cmGoldSig_t** pp )
|
||||||
|
{
|
||||||
|
cmRC_t rc = cmOkRC;
|
||||||
|
|
||||||
|
if( pp == NULL || *pp == NULL )
|
||||||
|
return rc;
|
||||||
|
|
||||||
|
cmGoldSig_t* p = *pp;
|
||||||
|
|
||||||
|
if((rc = cmGoldSigFinal(p)) != cmOkRC )
|
||||||
|
return rc;
|
||||||
|
|
||||||
|
unsigned i;
|
||||||
|
for(i=0; i<p->a.chN; ++i)
|
||||||
|
{
|
||||||
|
cmMemFree(p->ch[i].bbV);
|
||||||
|
cmMemFree(p->ch[i].mdV);
|
||||||
|
}
|
||||||
|
|
||||||
|
cmMemFree(p->ch);
|
||||||
|
cmMemFree(p->rcosV);
|
||||||
|
cmMemFree(p->pnM);
|
||||||
|
cmMemFree(p);
|
||||||
|
*pp = NULL;
|
||||||
|
|
||||||
|
return rc;
|
||||||
|
}
|
||||||
|
|
||||||
|
cmRC_t cmGoldSigInit( cmGoldSig_t* p, const cmGoldSigArg_t* a )
|
||||||
|
{
|
||||||
|
cmRC_t rc = cmOkRC;
|
||||||
|
unsigned i;
|
||||||
|
|
||||||
|
p->a = *a; // store arg recd
|
||||||
|
p->ch = cmMemResizeZ(cmGoldSigCh_t,p->ch,a->chN); // alloc channel array
|
||||||
|
p->mlsN = (1 << a->lfsrN) - 1; // calc spreading code length
|
||||||
|
p->rcosN = a->samplesPerChip * a->rcosOSFact; // calc rcos imp. resp. length
|
||||||
|
p->rcosN += (p->rcosN % 2)==0; // force rcos imp. length odd
|
||||||
|
p->rcosV = cmMemResizeZ(cmSample_t,p->rcosV,p->rcosN); // alloc rcos imp. resp. vector
|
||||||
|
p->pnM = cmMemResizeZ(int,p->pnM,p->mlsN*a->chN); // alloc spreading-code mtx
|
||||||
|
p->sigN = p->mlsN * a->samplesPerChip; // calc audio signal length
|
||||||
|
|
||||||
|
// generate spreading codes
|
||||||
|
if( cmGenGoldCodes(a->lfsrN, a->mlsCoeff0, a->mlsCoeff1, a->chN, p->pnM, p->mlsN ) == false )
|
||||||
|
{
|
||||||
|
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Unable to generate sufficient balanced Gold codes.");
|
||||||
|
goto errLabel;
|
||||||
|
}
|
||||||
|
|
||||||
|
// generate the rcos impulse response
|
||||||
|
_cmGoldSigRaisedCos(p->rcosV,p->rcosN,a->samplesPerChip,a->rcosBeta);
|
||||||
|
|
||||||
|
// for each channel
|
||||||
|
for(i=0; i<a->chN; ++i)
|
||||||
|
{
|
||||||
|
// Note: if (i*p->mlsN) is set to 0 in the following line then all channels
|
||||||
|
// will use the same spreading code.
|
||||||
|
p->ch[i].pnV = p->pnM + (i*p->mlsN); // get ch. spreading code
|
||||||
|
p->ch[i].bbV = cmMemResizeZ(cmSample_t,p->ch[i].bbV,p->sigN); // alloc baseband signal vector
|
||||||
|
p->ch[i].mdV = cmMemResizeZ(cmSample_t,p->ch[i].mdV,p->sigN); // alloc output audio vector
|
||||||
|
|
||||||
|
// Convolve spreading code with rcos impulse reponse to form baseband signal.
|
||||||
|
_cmGoldSigConv(p, i );
|
||||||
|
|
||||||
|
// Modulate baseband signal to carrier frq. and apply attack/decay envelope.
|
||||||
|
_cmGoldSigModulate(p, i );
|
||||||
|
}
|
||||||
|
|
||||||
|
errLabel:
|
||||||
|
if((rc = cmErrLastRC(&p->obj.err)) != cmOkRC )
|
||||||
|
cmGoldSigFree(&p);
|
||||||
|
|
||||||
|
return rc;
|
||||||
|
}
|
||||||
|
|
||||||
|
cmRC_t cmGoldSigFinal( cmGoldSig_t* p )
|
||||||
|
{ return cmOkRC; }
|
||||||
|
|
||||||
|
cmRC_t cmGoldSigWrite( cmCtx* ctx, cmGoldSig_t* p, const char* fn )
|
||||||
|
{
|
||||||
|
cmVectArray_t* vap = NULL;
|
||||||
|
unsigned i;
|
||||||
|
|
||||||
|
vap = cmVectArrayAlloc(ctx,kSampleVaFl);
|
||||||
|
|
||||||
|
for(i=0; i<p->a.chN; ++i)
|
||||||
|
{
|
||||||
|
cmVectArrayAppendS(vap,p->ch[i].bbV,p->sigN);
|
||||||
|
cmVectArrayAppendS(vap,p->ch[i].mdV,p->sigN);
|
||||||
|
}
|
||||||
|
|
||||||
|
cmVectArrayWrite(vap,fn);
|
||||||
|
|
||||||
|
cmVectArrayFree(&vap);
|
||||||
|
|
||||||
|
return cmOkRC;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
cmRC_t cmGoldSigGen( cmGoldSig_t* p, unsigned chIdx, unsigned prefixN, unsigned dsN, unsigned *bsiV, unsigned bsiN, double noiseGain, cmSample_t** yVRef, unsigned* yNRef )
|
||||||
|
{
|
||||||
|
unsigned yN = prefixN + bsiN * (p->sigN + dsN);
|
||||||
|
cmSample_t* yV = cmMemAllocZ(cmSample_t,yN);
|
||||||
|
unsigned i;
|
||||||
|
|
||||||
|
cmVOS_Random(yV, yN, -noiseGain, noiseGain );
|
||||||
|
|
||||||
|
for(i=0; i<bsiN; ++i)
|
||||||
|
{
|
||||||
|
bsiV[i] = prefixN + i*(p->sigN + dsN);
|
||||||
|
|
||||||
|
cmVOS_AddVV(yV + bsiV[i], p->sigN, p->ch[chIdx].mdV );
|
||||||
|
}
|
||||||
|
|
||||||
|
if( yVRef != NULL )
|
||||||
|
*yVRef = yV;
|
||||||
|
|
||||||
|
if( yNRef != NULL )
|
||||||
|
*yNRef = yN;
|
||||||
|
|
||||||
|
return cmOkRC;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
69
cmProc5.h
69
cmProc5.h
@ -39,6 +39,75 @@ extern "C" {
|
|||||||
cmRC_t cmGoertzelExec( cmGoertzel* p, const cmSample_t* in, unsigned procSmpCnt, double* outV, unsigned chCnt );
|
cmRC_t cmGoertzelExec( cmGoertzel* p, const cmSample_t* in, unsigned procSmpCnt, double* outV, unsigned chCnt );
|
||||||
|
|
||||||
|
|
||||||
|
//=======================================================================================================================
|
||||||
|
// Gold Code Signal Generator
|
||||||
|
//
|
||||||
|
|
||||||
|
typedef struct
|
||||||
|
{
|
||||||
|
unsigned chN; // count of channels (each channel has a unique id)
|
||||||
|
double srate; // system sample rate (samples/second)
|
||||||
|
unsigned lfsrN; // linear feedback shift register (LFSR) length used to form Gold codes
|
||||||
|
unsigned mlsCoeff0; // LFSR coeff. 0
|
||||||
|
unsigned mlsCoeff1; // LFSR coeff. 1
|
||||||
|
unsigned samplesPerChip; // samples per spreading code bit
|
||||||
|
double rcosBeta; // raised cosine impulse response beta coeff.
|
||||||
|
unsigned rcosOSFact; // raised cosine impulse response oversample factor
|
||||||
|
double carrierHz; // carrier frequency
|
||||||
|
double envMs; // attack/decay envelope duration
|
||||||
|
} cmGoldSigArg_t;
|
||||||
|
|
||||||
|
typedef struct
|
||||||
|
{
|
||||||
|
int* pnV; // pnV[ mlsN ] spread code (aliased from pnM[:,i])
|
||||||
|
cmSample_t* bbV; // bbV[ sigN ] baseband signal at audio rate
|
||||||
|
cmSample_t* mdV; // mdV[ sigN ] modulated signal at audio rate
|
||||||
|
} cmGoldSigCh_t;
|
||||||
|
|
||||||
|
typedef struct
|
||||||
|
{
|
||||||
|
cmObj obj; //
|
||||||
|
cmGoldSigArg_t a; // argument record
|
||||||
|
cmGoldSigCh_t* ch; // ch[ chN ] channel array
|
||||||
|
int* pnM; // pnM[mlsN,chN] (aliased to ch[].pnV)
|
||||||
|
cmSample_t* rcosV; // rcosV[rcosN] raised cosine impulse response
|
||||||
|
unsigned rcosN; // length of raised cosine impulse response
|
||||||
|
unsigned mlsN; // length of Gold codes (Maximum length sequence length)
|
||||||
|
unsigned sigN; // length of channel signals bbV[] and mdV[]
|
||||||
|
} cmGoldSig_t;
|
||||||
|
|
||||||
|
|
||||||
|
cmGoldSig_t* cmGoldSigAlloc( cmCtx* ctx, cmGoldSig_t* p, const cmGoldSigArg_t* a );
|
||||||
|
cmRC_t cmGoldSigFree( cmGoldSig_t** pp );
|
||||||
|
|
||||||
|
cmRC_t cmGoldSigInit( cmGoldSig_t* p, const cmGoldSigArg_t* a );
|
||||||
|
cmRC_t cmGoldSigFinal( cmGoldSig_t* p );
|
||||||
|
|
||||||
|
cmRC_t cmGoldSigWrite( cmCtx* ctx, cmGoldSig_t* p, const char* fn );
|
||||||
|
|
||||||
|
// Generate a signal consisting of underlying white noise with
|
||||||
|
// bsiN repeated copies of the id signal associated with
|
||||||
|
// channel 'chIdx'. Each discrete id signal copy is separated by 'dsN' samples.
|
||||||
|
// The signal will be prefixed with 'prefixN' samples of silence (noise).
|
||||||
|
// On return sets 'yVRef' to point to the generated signal and 'yNRef'
|
||||||
|
// to the count of samples in 'yVRef'.
|
||||||
|
// On error sets yVRef to NULL and yNRef to zero.
|
||||||
|
// The vector returned in 'yVRef' should be freed via atMemFree().
|
||||||
|
// On return sets bsiV[bsiN] to the onset sample index of each id signal copy.
|
||||||
|
// The background noise signal is limited to the range -noiseGain to noiseGain.
|
||||||
|
cmRC_t cmGoldSigGen(
|
||||||
|
cmGoldSig_t* p,
|
||||||
|
unsigned chIdx,
|
||||||
|
unsigned prefixN,
|
||||||
|
unsigned dsN,
|
||||||
|
unsigned *bsiV,
|
||||||
|
unsigned bsiN,
|
||||||
|
double noiseGain,
|
||||||
|
cmSample_t** yVRef,
|
||||||
|
unsigned* yNRef );
|
||||||
|
|
||||||
|
cmRC_t cmGoldSigTest( cmCtx* ctx );
|
||||||
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user