libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmProc5.c 8.4KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmCtx.h"
  6. #include "cmMem.h"
  7. #include "cmMallocDebug.h"
  8. #include "cmLinkedHeap.h"
  9. #include "cmFloatTypes.h"
  10. #include "cmComplexTypes.h"
  11. #include "cmFileSys.h"
  12. #include "cmJson.h"
  13. #include "cmSymTbl.h"
  14. #include "cmAudioFile.h"
  15. #include "cmText.h"
  16. #include "cmProcObj.h"
  17. #include "cmProcTemplate.h"
  18. #include "cmMath.h"
  19. #include "cmFile.h"
  20. #include "cmTime.h"
  21. #include "cmMidi.h"
  22. #include "cmProc.h"
  23. #include "cmProc2.h"
  24. #include "cmProc5.h"
  25. #include "cmVectOps.h"
  26. //=======================================================================================================================
  27. cmGoertzel* cmGoertzelAlloc( cmCtx* c, cmGoertzel* p, double srate, const double* fcHzV, unsigned chCnt, unsigned procSmpCnt, unsigned hopSmpCnt, unsigned wndSmpCnt )
  28. {
  29. cmGoertzel* op = cmObjAlloc(cmGoertzel,c,p);
  30. op->shb = cmShiftBufAlloc(c,NULL,0,0,0);
  31. if( srate > 0 )
  32. if( cmGoertzelInit(op,srate,fcHzV,chCnt,procSmpCnt,wndSmpCnt,hopSmpCnt) != cmOkRC )
  33. cmGoertzelFree(&op);
  34. return op;
  35. }
  36. cmRC_t cmGoertzelFree( cmGoertzel** pp )
  37. {
  38. cmRC_t rc = cmOkRC;
  39. if( pp==NULL || *pp==NULL )
  40. return rc;
  41. cmGoertzel* p = *pp;
  42. if((rc = cmGoertzelFinal(p)) != cmOkRC )
  43. return rc;
  44. cmShiftBufFree(&p->shb);
  45. cmMemFree(p->ch);
  46. cmMemFree(p->wnd);
  47. cmObjFree(pp);
  48. return rc;
  49. }
  50. cmRC_t cmGoertzelInit( cmGoertzel* p, double srate, const double* fcHzV, unsigned chCnt, unsigned procSmpCnt, unsigned hopSmpCnt, unsigned wndSmpCnt )
  51. {
  52. cmRC_t rc;
  53. unsigned i;
  54. if((rc = cmGoertzelFinal(p)) != cmOkRC )
  55. return rc;
  56. p->ch = cmMemResizeZ(cmGoertzelCh,p->ch,chCnt);
  57. p->chCnt = chCnt;
  58. p->srate = srate;
  59. p->wnd = cmMemResizeZ(cmSample_t,p->wnd,wndSmpCnt);
  60. cmVOS_Hann(p->wnd,wndSmpCnt);
  61. cmShiftBufInit(p->shb,procSmpCnt,wndSmpCnt,hopSmpCnt);
  62. for(i=0; i<p->chCnt; ++i)
  63. {
  64. cmGoertzelSetFcHz(p,i,fcHzV[i]);
  65. }
  66. return rc;
  67. }
  68. cmRC_t cmGoertzelFinal( cmGoertzel* p )
  69. { return cmOkRC; }
  70. cmRC_t cmGoertzelSetFcHz( cmGoertzel* p, unsigned chIdx, double hz )
  71. {
  72. assert( chIdx < p->chCnt );
  73. p->ch[chIdx].hz = hz;
  74. p->ch[chIdx].coeff = 2*cos(2*M_PI*hz/p->srate);
  75. return cmOkRC;
  76. }
  77. cmRC_t cmGoertzelExec( cmGoertzel* p, const cmSample_t* inpV, unsigned procSmpCnt, double* outV, unsigned chCnt )
  78. {
  79. unsigned i,j;
  80. while( cmShiftBufExec(p->shb,inpV,procSmpCnt) )
  81. {
  82. unsigned xn = p->shb->wndSmpCnt;
  83. cmSample_t x[ xn ];
  84. cmVOS_MultVVV(x,xn,p->wnd,p->shb->outV);
  85. for(i=0; i<chCnt; ++i)
  86. {
  87. cmGoertzelCh* ch = p->ch + i;
  88. ch->s2 = x[0];
  89. ch->s1 = x[1] + 2 * x[0] * ch->coeff;
  90. for(j=2; j<xn; ++j)
  91. {
  92. ch->s0 = x[j] + ch->coeff * ch->s1 - ch->s2;
  93. ch->s2 = ch->s1;
  94. ch->s1 = ch->s0;
  95. }
  96. outV[i] = ch->s2*ch->s2 + ch->s1*ch->s1 - ch->coeff * ch->s2 * ch->s1;
  97. }
  98. }
  99. return cmOkRC;
  100. }
  101. //=======================================================================================================================
  102. double _cmGoldSigSinc( double t, double T )
  103. {
  104. double x = t/T;
  105. return x == 0 ? 1.0 : sin(M_PI*x)/(M_PI*x);
  106. }
  107. void _cmGoldSigRaisedCos( cmSample_t* yV, int yN, double sPc, double beta )
  108. {
  109. int i;
  110. for(i=0; i<yN; ++i)
  111. {
  112. double t = i - yN/2;
  113. double den = 1 - (4*(beta*beta)*(t*t) / (sPc*sPc));
  114. double a;
  115. if(fabs(den) < 0.00001 )
  116. a = 1;
  117. else
  118. a = cos(M_PI * beta * t/ sPc ) / den;
  119. yV[i] = _cmGoldSigSinc(t,sPc) * a;
  120. }
  121. }
  122. void _cmGoldSigConv( cmGoldSig_t* p, unsigned chIdx )
  123. {
  124. int i;
  125. int sPc = p->a.samplesPerChip;
  126. int osf = p->a.rcosOSFact;
  127. // for each bit in the spreading-code
  128. for(i=0; i<p->mlsN; ++i)
  129. {
  130. int j = (i*sPc) + sPc/2; // index into bbV[] of center of impulse response
  131. int k = j - (sPc*osf)/2; // index into bbV[] of start of impulse response
  132. int h;
  133. // for each sample in the impulse response
  134. for(h=0; h<p->rcosN; ++h,++k)
  135. {
  136. while( k<0 )
  137. k += p->sigN;
  138. while( k>=p->sigN )
  139. k -= p->sigN;
  140. p->ch[chIdx].bbV[k] += p->ch[chIdx].pnV[i] * p->rcosV[h];
  141. }
  142. }
  143. }
  144. void _cmGoldSigModulate( cmGoldSig_t* p, unsigned chIdx )
  145. {
  146. unsigned i;
  147. double rps = 2.0 * M_PI * p->a.carrierHz / p->a.srate;
  148. cmSample_t* yV = p->ch[chIdx].mdV;
  149. cmSample_t* bbV = p->ch[chIdx].bbV;
  150. for(i=0; i<p->sigN; ++i)
  151. yV[ i ] = bbV[i]*cos(rps*i) + bbV[i]*sin(rps*i);
  152. // apply a half Hann envelope to the onset/offset of the id signal
  153. if( p->a.envMs > 0 )
  154. {
  155. unsigned wndMs = p->a.envMs * 2;
  156. unsigned wndN = wndMs * p->a.srate / 1000;
  157. wndN += wndN % 2 ? 0 : 1; // force the window length to be odd
  158. unsigned wNo2 = wndN/2 + 1;
  159. cmSample_t wndV[ wndN ];
  160. cmVOS_Hann(wndV,wndN);
  161. cmVOS_MultVV(yV,wNo2,wndV);
  162. cmVOS_MultVV(yV + p->sigN - wNo2, wNo2, wndV + wNo2 - 1);
  163. }
  164. }
  165. cmGoldSig_t* cmGoldSigAlloc( cmCtx* ctx, cmGoldSig_t* p, const cmGoldSigArg_t* a )
  166. {
  167. cmGoldSig_t* op = cmObjAlloc(cmGoldSig_t,ctx,p);
  168. if( a != NULL )
  169. if( cmGoldSigInit(op,a) != cmOkRC )
  170. cmGoldSigFree(&op);
  171. return op;
  172. }
  173. cmRC_t cmGoldSigFree( cmGoldSig_t** pp )
  174. {
  175. cmRC_t rc = cmOkRC;
  176. if( pp == NULL || *pp == NULL )
  177. return rc;
  178. cmGoldSig_t* p = *pp;
  179. if((rc = cmGoldSigFinal(p)) != cmOkRC )
  180. return rc;
  181. unsigned i;
  182. for(i=0; i<p->a.chN; ++i)
  183. {
  184. cmMemFree(p->ch[i].bbV);
  185. cmMemFree(p->ch[i].mdV);
  186. }
  187. cmMemFree(p->ch);
  188. cmMemFree(p->rcosV);
  189. cmMemFree(p->pnM);
  190. cmMemFree(p);
  191. *pp = NULL;
  192. return rc;
  193. }
  194. cmRC_t cmGoldSigInit( cmGoldSig_t* p, const cmGoldSigArg_t* a )
  195. {
  196. cmRC_t rc = cmOkRC;
  197. unsigned i;
  198. p->a = *a; // store arg recd
  199. p->ch = cmMemResizeZ(cmGoldSigCh_t,p->ch,a->chN); // alloc channel array
  200. p->mlsN = (1 << a->lfsrN) - 1; // calc spreading code length
  201. p->rcosN = a->samplesPerChip * a->rcosOSFact; // calc rcos imp. resp. length
  202. p->rcosN += (p->rcosN % 2)==0; // force rcos imp. length odd
  203. p->rcosV = cmMemResizeZ(cmSample_t,p->rcosV,p->rcosN); // alloc rcos imp. resp. vector
  204. p->pnM = cmMemResizeZ(int,p->pnM,p->mlsN*a->chN); // alloc spreading-code mtx
  205. p->sigN = p->mlsN * a->samplesPerChip; // calc audio signal length
  206. // generate spreading codes
  207. if( cmGenGoldCodes(a->lfsrN, a->mlsCoeff0, a->mlsCoeff1, a->chN, p->pnM, p->mlsN ) == false )
  208. {
  209. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Unable to generate sufficient balanced Gold codes.");
  210. goto errLabel;
  211. }
  212. // generate the rcos impulse response
  213. _cmGoldSigRaisedCos(p->rcosV,p->rcosN,a->samplesPerChip,a->rcosBeta);
  214. // for each channel
  215. for(i=0; i<a->chN; ++i)
  216. {
  217. // Note: if (i*p->mlsN) is set to 0 in the following line then all channels
  218. // will use the same spreading code.
  219. p->ch[i].pnV = p->pnM + (i*p->mlsN); // get ch. spreading code
  220. p->ch[i].bbV = cmMemResizeZ(cmSample_t,p->ch[i].bbV,p->sigN); // alloc baseband signal vector
  221. p->ch[i].mdV = cmMemResizeZ(cmSample_t,p->ch[i].mdV,p->sigN); // alloc output audio vector
  222. // Convolve spreading code with rcos impulse reponse to form baseband signal.
  223. _cmGoldSigConv(p, i );
  224. // Modulate baseband signal to carrier frq. and apply attack/decay envelope.
  225. _cmGoldSigModulate(p, i );
  226. }
  227. errLabel:
  228. if((rc = cmErrLastRC(&p->obj.err)) != cmOkRC )
  229. cmGoldSigFree(&p);
  230. return rc;
  231. }
  232. cmRC_t cmGoldSigFinal( cmGoldSig_t* p )
  233. { return cmOkRC; }
  234. cmRC_t cmGoldSigWrite( cmCtx* ctx, cmGoldSig_t* p, const char* fn )
  235. {
  236. cmVectArray_t* vap = NULL;
  237. unsigned i;
  238. vap = cmVectArrayAlloc(ctx,kSampleVaFl);
  239. for(i=0; i<p->a.chN; ++i)
  240. {
  241. cmVectArrayAppendS(vap,p->ch[i].bbV,p->sigN);
  242. cmVectArrayAppendS(vap,p->ch[i].mdV,p->sigN);
  243. }
  244. cmVectArrayWrite(vap,fn);
  245. cmVectArrayFree(&vap);
  246. return cmOkRC;
  247. }
  248. cmRC_t cmGoldSigGen( cmGoldSig_t* p, unsigned chIdx, unsigned prefixN, unsigned dsN, unsigned *bsiV, unsigned bsiN, double noiseGain, cmSample_t** yVRef, unsigned* yNRef )
  249. {
  250. unsigned yN = prefixN + bsiN * (p->sigN + dsN);
  251. cmSample_t* yV = cmMemAllocZ(cmSample_t,yN);
  252. unsigned i;
  253. cmVOS_Random(yV, yN, -noiseGain, noiseGain );
  254. for(i=0; i<bsiN; ++i)
  255. {
  256. bsiV[i] = prefixN + i*(p->sigN + dsN);
  257. cmVOS_AddVV(yV + bsiV[i], p->sigN, p->ch[chIdx].mdV );
  258. }
  259. if( yVRef != NULL )
  260. *yVRef = yV;
  261. if( yNRef != NULL )
  262. *yNRef = yN;
  263. return cmOkRC;
  264. }