fc1a0d8a61
Added plot_calibrate.ipynb jupyter notebook.
151 lines
4.2 KiB
Python
151 lines
4.2 KiB
Python
import sys,os,json,types
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib._color_data as mcd
|
|
from matplotlib.pyplot import figure
|
|
|
|
from rms_analysis import calibrate_recording_analysis
|
|
|
|
def plot_by_pitch( inDir, pitch=None ):
|
|
|
|
anlD = calibrate_recording_analysis( inDir )
|
|
jsonFn = os.path.join(inDir, "meas.json" )
|
|
audioFn = os.path.join(inDir, "audio.wav" )
|
|
|
|
with open(jsonFn,"r") as f:
|
|
r = json.load(f)
|
|
|
|
measD = r['measD']
|
|
cfg = types.SimpleNamespace(**r['cfg'])
|
|
|
|
axN = len(measD) if pitch is None else 1
|
|
fig,axL = plt.subplots(axN,1)
|
|
fig.set_size_inches(18.5, 10.5*axN)
|
|
|
|
|
|
# for each pitch
|
|
for axi,(midi_pitch,measL)in enumerate(measD.items()):
|
|
|
|
midi_pitch = int(midi_pitch)
|
|
|
|
if pitch is not None and pitch != midi_pitch:
|
|
continue
|
|
|
|
if pitch is not None:
|
|
axi = 0
|
|
axL = [ axL ]
|
|
|
|
targetDbS = set()
|
|
hmPulseDbL = []
|
|
tdPulseDbL = []
|
|
anPulseDbL = []
|
|
|
|
# for each measurement on this pitch
|
|
for mi,d in enumerate(measL):
|
|
m = types.SimpleNamespace(**d)
|
|
|
|
# form a list of pulse/db measurements associated with this pitch
|
|
hmPulseDbL.append( (m.pulse_us,m.hm['db'],m.matchFl,m.hm['durMs'],m.skipMeasFl) )
|
|
tdPulseDbL.append( (m.pulse_us,m.td['db'],m.matchFl,m.td['durMs'],m.skipMeasFl) )
|
|
|
|
ar = next(ad for ad in anlD[midi_pitch] if ad['meas_idx']==mi )
|
|
anPulseDbL.append( (m.pulse_us,ar['db'],m.matchFl,m.hm['durMs'],m.skipMeasFl))
|
|
|
|
# get the unique set of targets
|
|
targetDbS.add(m.targetDb)
|
|
|
|
|
|
# sort measurements on pulse length
|
|
hmPulseDbL = sorted(hmPulseDbL,key=lambda x: x[0])
|
|
tdPulseDbL = sorted(tdPulseDbL,key=lambda x: x[0])
|
|
anPulseDbL = sorted(anPulseDbL,key=lambda x: x[0])
|
|
|
|
# plot the re-analysis
|
|
pulseL,dbL,matchFlL,_,_ = zip(*anPulseDbL)
|
|
axL[axi].plot( pulseL, dbL, label="post", marker='.' )
|
|
|
|
# plot harmonic measurements
|
|
pulseL,dbL,matchFlL,durMsL,skipFlL = zip(*hmPulseDbL)
|
|
axL[axi].plot( pulseL, dbL, label="harm", marker='.' )
|
|
|
|
# plot time-domain based measuremented
|
|
pulseL,dbL,matchFlL,_,_ = zip(*tdPulseDbL)
|
|
axL[axi].plot( pulseL, dbL, label="td", marker='.' )
|
|
|
|
|
|
# plot target boundaries
|
|
for targetDb in targetDbS:
|
|
lwr = targetDb * ((100.0 - cfg.tolDbPct)/100.0)
|
|
upr = targetDb * ((100.0 + cfg.tolDbPct)/100.0 )
|
|
|
|
axL[axi].axhline(targetDb)
|
|
axL[axi].axhline(lwr,color='lightgray')
|
|
axL[axi].axhline(upr,color='gray')
|
|
|
|
# plot match and 'too-short' markers
|
|
for i,matchFl in enumerate(matchFlL):
|
|
|
|
if durMsL[i] < cfg.minMeasDurMs:
|
|
axL[axi].plot( pulseL[i], dbL[i], marker='x', color='black', linestyle='None')
|
|
|
|
if skipFlL[i]:
|
|
axL[axi].plot( pulseL[i], dbL[i], marker='+', color='blue', linestyle='None')
|
|
|
|
if matchFl:
|
|
axL[axi].plot( pulseL[i], dbL[i], marker='.', color='red', linestyle='None')
|
|
|
|
|
|
|
|
|
|
axL[axi].set_title("pitch:%i " % (midi_pitch))
|
|
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
def plot_all_notes( inDir ):
|
|
|
|
jsonFn = os.path.join(inDir, "meas.json" )
|
|
audioFn = os.path.join(inDir, "audio.wav" )
|
|
|
|
with open(jsonFn,"r") as f:
|
|
r = json.load(f)
|
|
|
|
measD = r['measD']
|
|
|
|
axN = 0
|
|
for midi_pitch,measL in measD.items():
|
|
axN += len(measL)
|
|
|
|
print(axN)
|
|
fig,axL = plt.subplots(axN,1)
|
|
fig.set_size_inches(18.5, 10.5*axN)
|
|
|
|
|
|
i = 0
|
|
for midi_pitch,measL in measD.items():
|
|
for d in measL:
|
|
axL[i].plot(d['td']['rmsDbV'])
|
|
axL[i].plot(d['hm']['rmsDbV'])
|
|
|
|
axL[i].axvline(d['td']['pk_idx'],color='red')
|
|
axL[i].axvline(d['hm']['pk_idx'],color='green')
|
|
|
|
i += 1
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
pitch = None
|
|
inDir = sys.argv[1]
|
|
if len(sys.argv) > 2:
|
|
pitch = int(sys.argv[2])
|
|
|
|
#plot_all_notes( inDir )
|
|
plot_by_pitch(inDir,pitch)
|
|
#calibrate_recording_analysis( inDir )
|
|
|
|
|