123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840 |
- ##| Copyright: (C) 2019-2020 Kevin Larke <contact AT larke DOT org>
- ##| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
- import os, sys,json
- import matplotlib.pyplot as plt
- import numpy as np
- from common import parse_yaml_cfg
- import rms_analysis
- import elbow
-
- def fit_to_reference( pkL, refTakeId ):
-
- us_outL = []
- db_outL = []
- dur_outL = []
- tid_outL = []
-
-
- dbL,usL,durMsL,takeIdL = tuple(zip(*pkL))
-
- us_refL,db_refL,dur_refL = zip(*[(usL[i],dbL[i],durMsL[i]) for i in range(len(usL)) if takeIdL[i]==refTakeId])
-
-
- for takeId in set(takeIdL):
- us0L,db0L,dur0L = zip(*[(usL[i],dbL[i],durMsL[i]) for i in range(len(usL)) if takeIdL[i]==takeId ])
-
-
- if takeId == refTakeId:
- db_outL += db0L
- else:
- db1V = elbow.fit_points_to_reference(us0L,db0L,us_refL,db_refL)
-
- if db1V is not None:
- db_outL += db1V.tolist()
-
- us_outL += us0L
- dur_outL+= dur0L
- tid_outL+= [takeId] * len(us0L)
-
- return zip(db_outL,us_outL,dur_outL,tid_outL)
-
-
- def get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD ):
-
- inDir = os.path.join(inDir,"%i" % (midi_pitch))
-
- takeDirL = os.listdir(inDir)
-
- pkL = []
-
- refTakeId = None
- usRefL = None
- dbRefL = None
-
- # for each take in this directory
- for take_folder in takeDirL:
-
- take_number = int(take_folder)
-
- if refTakeId is None:
- refTakeId = take_number
-
- # analyze this takes audio and locate the note peaks
- r = rms_analysis.rms_analysis_main( os.path.join(inDir,str(take_number)), midi_pitch, **analysisArgsD )
-
- # store the peaks in pkL[ (db,us) ]
- for db,us,stats in zip(r.pkDbL,r.pkUsL,r.statsL):
- pkL.append( (db,us,stats.durMs,take_number) )
-
-
- pkUsL = []
- pkDbL = []
- durMsL = []
- takeIdL = []
- holdDutyPctL = []
-
- if refTakeId is None:
- print("No valid data files at %s pitch:%i" % (inDir,midi_pitch))
- else:
-
- pkL = fit_to_reference( pkL, refTakeId )
-
- # sort the peaks on increasing attack pulse microseconds
- pkL = sorted( pkL, key= lambda x: x[1] )
-
- # merge sample points that separated by less than 'minSampleDistUs' milliseconds
- #pkL = merge_close_sample_points( pkL, analysisArgsD['minSampleDistUs'] )
-
- # split pkL
- pkDbL,pkUsL,durMsL,takeIdL = tuple(zip(*pkL))
-
- return pkUsL,pkDbL,durMsL,takeIdL,r.holdDutyPctL
-
-
-
-
-
-
-
-
- def select_resample_reference_indexes( noiseIdxL ):
-
- resampleIdxS = set()
-
- # for each noisy sample index store that index and the index
- # before and after it
- for i in noiseIdxL:
- resampleIdxS.add( i )
- if i+1 < len(noiseIdxL):
- resampleIdxS.add( i+1 )
- if i-1 >= 0:
- resampleIdxS.add( i-1 )
-
- resampleIdxL = list(resampleIdxS)
-
- # if a single sample point is left out of a region of
- # contiguous sample points then include this as a resample point also
- for i in resampleIdxL:
- if i + 1 not in resampleIdxL and i + 2 in resampleIdxL: # BUG BUG BUG: Hardcoded constant
- if i+1 < len(noiseIdxL):
- resampleIdxL.append(i+1)
-
- return resampleIdxL
-
- def locate_resample_regions( usL, dbL, resampleIdxL ):
-
- # locate regions of points to resample
- regionL = [] # (bi,ei)
- inRegionFl = False
- bi = None
- for i in range(len(usL)):
- if inRegionFl:
- if i not in resampleIdxL:
- regionL.append((bi,i-1))
- inRegionFl = False
- bi = None
- else:
- if i in resampleIdxL:
- inRegionFl = True
- bi = i
-
- if bi is not None:
- regionL.append((bi,len(usL)-1))
-
- # select points around and within the resample regions
- # to resample
- reUsL = []
- reDbL = []
- for bi,ei in regionL:
-
- for i in range(bi,ei+2):
- if i == 0:
- us = usL[i]
- db = dbL[i]
- elif i >= len(usL):
- us = usL[i-1]
- db = dbL[i-1]
- else:
- us = usL[i-1] + (usL[i]-usL[i-1])/2
- db = dbL[i-1] + (dbL[i]-dbL[i-1])/2
-
- reUsL.append(us)
- reDbL.append(db)
-
-
- return reUsL,reDbL
-
- def get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreL, minDurMs, minDb, noiseLimitPct ):
-
- firstAudibleIdx = None
- firstNonSkipIdx = None
-
- # get the indexes of samples which do not meet the duration, db level, or noise criteria
- skipIdxL = [ i for i,(ms,db,score) in enumerate(zip(durMsL,dbL,scoreL)) if ms < minDurMs or db < minDb or score > noiseLimitPct ]
-
- # if a single sample point is left out of a region of
- # contiguous skipped points then skip this point also
- for i in range(len(durMsL)):
- if i not in skipIdxL and i-1 in skipIdxL and i+1 in skipIdxL:
- skipIdxL.append(i)
-
- # find the first set of 3 contiguous samples that
- # are greater than minDurMs - all samples prior
- # to these will be skipped
- xL = []
- for i in range(len(durMsL)):
- if i in skipIdxL:
- xL = []
- else:
- xL.append(i)
-
- if len(xL) == 3: # BUG BUG BUG: Hardcoded constant
- firstAudibleIdx = xL[0]
- break
-
-
- # decrease by one decibel to locate the first non-skip
-
- # TODO: what if no note exists that is one decibel less
- # The recordings of very quiet notes do not give reliabel decibel measures
- # so this may not be the best backup criteria
-
- if firstAudibleIdx is not None:
- i = firstAudibleIdx-1
- while abs(dbL[i] - dbL[firstAudibleIdx]) < 1.0: # BUG BUG BUG: Hardcoded constant
- i -= 1
-
- firstNonSkipIdx = i
-
- return skipIdxL, firstAudibleIdx, firstNonSkipIdx
-
- def get_resample_points( usL, dbL, durMsL, takeIdL, minDurMs, minDb, noiseLimitPct ):
-
- scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL )
-
- skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreV.tolist(), minDurMs, minDb, noiseLimitPct )
-
- skipL = [ (usL[i],dbL[i]) for i in skipIdxL ]
- noiseIdxL = [ i for i in range(scoreV.shape[0]) if scoreV[i] > noiseLimitPct ]
- noiseL = [ (usL[i],dbL[i]) for i in noiseIdxL ]
- resampleIdxL = select_resample_reference_indexes( noiseIdxL )
-
- if firstNonSkipIdx is not None:
- resampleIdxL = [ i for i in resampleIdxL if i >= firstNonSkipIdx ]
-
- resampleL = [ (usL[i],dbL[i]) for i in resampleIdxL ]
- reUsL,reDbL = locate_resample_regions( usL, dbL, resampleIdxL )
-
- return reUsL, reDbL, noiseL, resampleL, skipL, firstAudibleIdx, firstNonSkipIdx
-
- def get_resample_points_wrap( inDir, midi_pitch, analysisArgsD ):
-
- usL, dbL, durMsL,_,_ = get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD['rmsAnalysisArgs'] )
-
- reUsL,_,_,_,_,_,_ = get_resample_points( usL, dbL, durMsL, analysisArgsD['resampleMinDurMs'], analysisArgsD['resampleMinDb'], analysisArgsD['resampleNoiseLimitPct'] )
-
- return reUsL
-
-
-
- def plot_us_db_curves( ax, inDir, keyMapD, midi_pitch, analysisArgsD, plotResamplePointsFl=False, plotTakesFl=True, usMax=None ):
-
- usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD['rmsAnalysisArgs'] )
-
- reUsL, reDbL, noiseL, resampleL, skipL, firstAudibleIdx, firstNonSkipIdx = get_resample_points( usL, dbL, durMsL, takeIdL, analysisArgsD['resampleMinDurMs'], analysisArgsD['resampleMinDb'], analysisArgsD['resampleNoiseLimitPct'] )
-
- # plot first audible and non-skip position
- if False:
-
- if firstNonSkipIdx is not None:
- ax.plot( usL[firstNonSkipIdx], dbL[firstNonSkipIdx], markersize=15, marker='+', linestyle='None', color='red')
-
- if firstAudibleIdx is not None:
- ax.plot( usL[firstAudibleIdx], dbL[firstAudibleIdx], markersize=15, marker='*', linestyle='None', color='red')
-
- # plot the resample points
- if plotResamplePointsFl:
- ax.plot( reUsL, reDbL, markersize=13, marker='x', linestyle='None', color='green')
-
- # plot the noisy sample positions
- if noiseL:
- nUsL,nDbL = zip(*noiseL)
- ax.plot( nUsL, nDbL, marker='o', markersize=9, linestyle='None', color='black')
-
- # plot the noisy sample positions and the neighbors included in the noisy region
- if resampleL:
- nUsL,nDbL = zip(*resampleL)
- ax.plot( nUsL, nDbL, marker='+', markersize=8, linestyle='None', color='red')
-
-
-
- # plot actual sample points
-
- elbow_us = None
- elbow_db = None
- elbow_len = None
-
- usL,dbL,takeIdL = zip(*[(us,dbL[i],takeIdL[i]) for i,us in enumerate(usL) if usMax is None or us <= usMax])
-
- if plotTakesFl:
- for takeId in list(set(takeIdL)):
-
- # get the us,db points included in this take
- xL,yL = zip(*[(usL[i],dbL[i]) for i in range(len(usL)) if takeIdL[i]==takeId ])
-
- ax.plot(xL,yL, marker='.',label=takeId)
-
- for i,(x,y) in enumerate(zip(xL,yL)):
- ax.text(x,y,str(i))
-
-
- #if elbow_len is None or len(xL) > elbow_len:
- if takeId+1 == len(set(takeIdL)):
- elbow_us,elbow_db = elbow.find_elbow(xL,yL)
- elbow_len = len(xL)
-
-
-
- else:
- ax.plot(usL, dbL, marker='.')
-
- ax.plot([elbow_us],[elbow_db],marker='*',markersize=12,color='red',linestyle='None')
-
- # plot the skip points in yellow
- if False:
- if skipL:
- nUsL,nDbL = zip(*skipL)
- ax.plot( nUsL, nDbL, marker='.', linestyle='None', color='yellow')
-
- # plot the locations where the hold duty cycle changes with vertical black lines
- for us_duty in holdDutyPctL:
- us,duty = tuple(us_duty)
- if us > 0:
- ax.axvline(us,color='black')
-
- # plot the 'minDb' reference line
- ax.axhline(analysisArgsD['resampleMinDb'] ,color='black')
-
- if os.path.isfile("minInterpDb.json"):
- with open("minInterpDb.json","r") as f:
- r = json.load(f)
- if midi_pitch in r['pitchL']:
- ax.axhline( r['minDbL'][ r['pitchL'].index(midi_pitch) ], color='blue' )
- ax.axhline( r['maxDbL'][ r['pitchL'].index(midi_pitch) ], color='blue' )
-
- ax.set_ylabel( "%i %s %s" % (midi_pitch, keyMapD[midi_pitch]['type'],keyMapD[midi_pitch]['class']))
-
- def plot_us_db_curves_main( inDir, cfg, pitchL, plotTakesFl=True, usMax=None, printDir="" ):
-
- analysisArgsD = cfg.analysisArgs
- keyMapD = { d['midi']:d for d in cfg.key_mapL }
- axN = len(pitchL)
- fig,axL = plt.subplots(axN,1,sharex=True)
- if axN == 1:
- axL = [axL]
-
- fig.set_size_inches(18.5, 10.5*axN)
-
- for ax,midi_pitch in zip(axL,pitchL):
- plot_us_db_curves( ax,inDir, keyMapD, midi_pitch, analysisArgsD, plotTakesFl=plotTakesFl, usMax=usMax )
-
- if plotTakesFl:
- plt.legend()
-
- if printDir:
- plt.savefig(os.path.join(printDir,"us_db.png"),format="png")
-
- plt.show()
-
- def plot_all_noise_curves( inDir, cfg, pitchL=None ):
-
- pitchFolderL = os.listdir(inDir)
-
- if pitchL is None:
- pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ]
-
- fig,ax = plt.subplots()
-
- for midi_pitch in pitchL:
-
- usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
-
- scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL )
-
- minDurMs = cfg.analysisArgs['resampleMinDurMs']
- minDb = cfg.analysisArgs['resampleMinDb']
- noiseLimitPct = cfg.analysisArgs['resampleNoiseLimitPct']
-
-
-
- skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, scoreV.tolist(), takeIdL, minDurMs, minDb, noiseLimitPct )
-
-
- if False:
- ax.plot( usL[firstAudibleIdx], scoreV[firstAudibleIdx], markersize=10, marker='*', linestyle='None', color='red')
- ax.plot( usL, scoreV, label="%i"%(midi_pitch) )
- ax.set_xlabel('us')
-
- else:
- xL = [ (score,db,i) for i,(score,db) in enumerate(zip(scoreV,dbL)) ]
- xL = sorted(xL, key=lambda x: x[1] )
-
- scoreV,dbL,idxL = zip(*xL)
- ax.plot( dbL[idxL[firstAudibleIdx]], scoreV[idxL[firstAudibleIdx]], markersize=10, marker='*', linestyle='None', color='red')
- ax.plot( dbL, scoreV, label="%i"%(midi_pitch) )
- ax.set_xlabel('db')
-
- ax.set_ylabel("noise db %")
-
- plt.legend()
- plt.show()
-
- def plot_min_max_2_db( inDir, cfg, pitchL=None, takeId=2, printDir=None ):
-
- pitchFolderL = os.listdir(inDir)
-
- print(pitchL)
-
- if pitchL is None:
- pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ]
-
- print(pitchL)
-
- okL = []
- outPitchL = []
- minDbL = []
- maxDbL = []
-
- for midi_pitch in pitchL:
-
- print(midi_pitch)
-
- usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
-
- okL.append(False)
-
- db_maxL = sorted(dbL)
- maxDbL.append( np.mean(db_maxL[-5:]) )
-
- usL,dbL = zip(*[(usL[i],dbL[i]) for i in range(len(usL)) if takeIdL[i]==takeId ])
-
- if len(set(takeIdL)) == 3:
- okL[-1] = True
-
- elbow_us,elbow_db = elbow.find_elbow(usL,dbL)
- minDbL.append(elbow_db)
- outPitchL.append(midi_pitch)
-
-
-
- p_dL = sorted( zip(outPitchL,minDbL,maxDbL,okL), key=lambda x: x[0] )
- outPitchL,minDbL,maxDbL,okL = zip(*p_dL)
-
- fig,ax = plt.subplots()
- ax.plot(outPitchL,minDbL)
- ax.plot(outPitchL,maxDbL)
-
- keyMapD = { d['midi']:d for d in cfg.key_mapL }
- for pitch,min_db,max_db,okFl in zip(outPitchL,minDbL,maxDbL,okL):
- c = 'black' if okFl else 'red'
- ax.text( pitch, min_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c)
- ax.text( pitch, max_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c)
-
-
- if printDir:
- plt.savefig(os.path.join(printDir,"min_max_db_2.png"),format="png")
-
-
- plt.show()
-
- def plot_min_db_manual( inDir, cfg, printDir=None ):
-
- pitchL = list(cfg.manualMinD.keys())
-
- outPitchL = []
- maxDbL = []
- minDbL = []
- okL = []
- anchorMinDbL = []
- anchorMaxDbL = []
-
- for midi_pitch in pitchL:
-
- manual_take_id = cfg.manualMinD[midi_pitch][0]
- manual_sample_idx = cfg.manualMinD[midi_pitch][1]
-
- usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
-
- okL.append(False)
-
- takeId = len(set(takeIdL))-1
-
- # maxDb is computed on all takes (not just the specified take)
- db_maxL = sorted(dbL)
- max_db = np.mean(db_maxL[-4:])
- maxDbL.append( max_db )
-
- # get the us,db values for the specified take
- usL,dbL = zip(*[(usL[i],dbL[i]) for i in range(len(usL)) if takeIdL[i]==manual_take_id ])
-
- # most pitches have 3 sample takes that do not
- if len(set(takeIdL)) == 3 and manual_take_id == takeId:
- okL[-1] = True
-
- # min db from the sample index manually specified in cfg
- manualMinDb = dbL[ manual_sample_idx ]
-
- minDbL.append( manualMinDb )
- outPitchL.append(midi_pitch)
-
-
- if midi_pitch in cfg.manualAnchorPitchMinDbL:
- anchorMinDbL.append( manualMinDb )
-
- if midi_pitch in cfg.manualAnchorPitchMaxDbL:
- anchorMaxDbL.append( max_db )
-
-
-
-
-
- # Form the complete set of min/max db levels for each pitch by interpolating the
- # db values between the manually selected anchor points.
- interpMinDbL = np.interp( pitchL, cfg.manualAnchorPitchMinDbL, anchorMinDbL )
- interpMaxDbL = np.interp( pitchL, cfg.manualAnchorPitchMaxDbL, anchorMaxDbL )
-
- fig,ax = plt.subplots()
-
-
- ax.plot(outPitchL,minDbL) # plot the manually selected minDb values
- ax.plot(outPitchL,maxDbL) # plot the max db values
-
- # plot the interpolated minDb/maxDb values
- ax.plot(pitchL,interpMinDbL)
- ax.plot(pitchL,interpMaxDbL)
-
-
- keyMapD = { d['midi']:d for d in cfg.key_mapL }
- for pitch,min_db,max_db,okFl in zip(outPitchL,minDbL,maxDbL,okL):
- c = 'black' if okFl else 'red'
- ax.text( pitch, min_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c)
- ax.text( pitch, max_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c)
-
- with open("minInterpDb.json",'w') as f:
- json.dump( { "pitchL":pitchL, "minDbL":list(interpMinDbL), "maxDbL":list(interpMaxDbL) }, f )
-
-
-
- if printDir:
- plt.savefig(os.path.join(printDir,"manual_db.png"),format="png")
-
- plt.show()
-
- def plot_min_max_db( inDir, cfg, pitchL=None, printDir=None ):
-
- pitchFolderL = os.listdir(inDir)
-
- if pitchL is None:
- pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ]
-
-
- maxDbL = []
- minDbL = []
- for midi_pitch in pitchL:
-
- print(midi_pitch)
-
- usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
-
- scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL )
-
- minDurMs = cfg.analysisArgs['resampleMinDurMs']
- minDb = cfg.analysisArgs['resampleMinDb']
- noiseLimitPct = cfg.analysisArgs['resampleNoiseLimitPct']
-
- skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreV.tolist(), minDurMs, minDb, noiseLimitPct )
-
- minDbL.append( dbL[firstAudibleIdx] )
-
- dbL = sorted(dbL)
-
- x = np.mean(dbL[-3:])
- x = np.max(dbL)
- maxDbL.append( x )
-
-
- fig,ax = plt.subplots()
-
- fig.set_size_inches(18.5, 10.5)
-
- p_dL = sorted( zip(pitchL,maxDbL), key=lambda x: x[0] )
- pitchL,maxDbL = zip(*p_dL)
-
- ax.plot(pitchL,maxDbL)
- ax.plot(pitchL,minDbL)
-
- for pitch,db in zip(pitchL,maxDbL):
-
- keyMapD = { d['midi']:d for d in cfg.key_mapL }
-
- ax.text( pitch, db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']))
-
- if printDir:
- plt.savefig(os.path.join(printDir,"min_max_db.png"),format="png")
-
-
- plt.show()
-
- def estimate_us_to_db_map( inDir, cfg, minMapDb=16.0, maxMapDb=26.0, incrMapDb=0.5, pitchL=None ):
-
- pitchFolderL = os.listdir(inDir)
-
- if pitchL is None:
- pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ]
-
- mapD = {} # pitch:{ loDb: { hiDb, us_avg, us_cls, us_std, us_min, us_max, db_avg, db_std, cnt }}
- # where: cnt=count of valid sample points in this db range
- # us_cls=us of closest point to center of db range
-
- dbS = set() # { (loDb,hiDb) } track the set of db ranges
-
- for pitch in pitchL:
-
- print(pitch)
-
- # get the sample measurements for pitch
- usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
-
- # calc the fit to local straight line curve fit at each point
- scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL )
-
- minDurMs = cfg.analysisArgs['resampleMinDurMs']
- minDb = cfg.analysisArgs['resampleMinDb']
- noiseLimitPct = cfg.analysisArgs['resampleNoiseLimitPct']
-
- # get the set of samples that are not valid (too short, too quiet, too noisy)
- skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreV.tolist(), minDurMs, minDb, noiseLimitPct )
-
- mapD[ pitch ] = {}
-
- # get the count of db ranges
- N = int(round((maxMapDb - minMapDb) / incrMapDb)) + 1
-
- # for each db range
- for i in range(N):
-
- loDb = minMapDb + (i*incrMapDb)
- hiDb = loDb + incrMapDb
-
- dbS.add((loDb,hiDb))
-
- # get the valid (pulse,db) pairs for this range
- u_dL = [(us,db) for i,(us,db) in enumerate(zip(usL,dbL)) if i not in skipIdxL and loDb<=db and db<hiDb ]
-
- us_avg = 0
- us_cls = 0
- us_std = 0
- us_min = 0
- us_max = 0
- db_avg = 0
- db_std = 0
-
- if len(u_dL) == 0:
- print("No valid samples for pitch:",pitch," db range:",loDb,hiDb)
- else:
- us0L,db0L = zip(*u_dL)
-
- if len(us0L) == 1:
- us_avg = us0L[0]
- us_cls = us_avg
- us_min = us_avg
- us_max = us_avg
- db_avg = db0L[0]
-
- elif len(us0L) > 1:
- us_avg = np.mean(us0L)
- us_cls = us0L[ np.argmin(np.abs(np.array(db0L)-(loDb - (hiDb-loDb)/2.0 ))) ]
- us_min = np.min(us0L)
- us_max = np.max(us0L)
- us_std = np.std(us0L)
- db_avg = np.mean(db0L)
- db_std = np.std(db0L)
-
- us_avg = int(round(us_avg))
-
-
- mapD[pitch][loDb] = { 'hiDb':hiDb, 'us_avg':us_avg, 'us_cls':us_cls, 'us_std':us_std,'us_min':us_min,'us_max':us_max, 'db_avg':db_avg, 'db_std':db_std, 'cnt':len(u_dL) }
-
- return mapD, list(dbS)
-
- def plot_us_to_db_map( inDir, cfg, minMapDb=16.0, maxMapDb=26.0, incrMapDb=1.0, pitchL=None, printDir=None ):
-
- fig,ax = plt.subplots()
-
- mapD, dbRefL = estimate_us_to_db_map( inDir, cfg, minMapDb, maxMapDb, incrMapDb, pitchL )
-
- # for each pitch
- for pitch, dbD in mapD.items():
-
- u_dL = [ (d['us_avg'],d['us_cls'],d['db_avg'],d['us_std'],d['us_min'],d['us_max'],d['db_std']) for loDb, d in dbD.items() if d['us_avg'] != 0 ]
-
- if u_dL:
-
- # get the us/db lists for this pitch
- usL,uscL,dbL,ussL,usnL,usxL,dbsL = zip(*u_dL)
-
- # plot central curve and std dev's
- p = ax.plot(usL,dbL, marker='.', label=str(pitch))
- ax.plot(uscL,dbL, marker='x', label=str(pitch), color=p[0].get_color(), linestyle='None')
- ax.plot(usL,np.array(dbL)+dbsL, color=p[0].get_color(), alpha=0.3)
- ax.plot(usL,np.array(dbL)-dbsL, color=p[0].get_color(), alpha=0.3)
-
- # plot us error bars
- for db,us,uss,us_min,us_max in zip(dbL,usL,ussL,usnL,usxL):
- ax.plot([us_min,us_max],[db,db], color=p[0].get_color(), alpha=0.3 )
- ax.plot([us-uss,us+uss],[db,db], color=p[0].get_color(), alpha=0.3, marker='.', linestyle='None' )
-
-
- plt.legend()
-
- if printDir:
- plt.savefig(os.path.join(printDir,"us_db_map.png"),format="png")
-
- plt.show()
-
- def report_take_ids( inDir ):
-
- pitchDirL = os.listdir(inDir)
-
- for pitch in pitchDirL:
-
- pitchDir = os.path.join(inDir,pitch)
-
- takeDirL = os.listdir(pitchDir)
-
- if len(takeDirL) == 0:
- print(pitch," directory empty")
- else:
- with open( os.path.join(pitchDir,'0','seq.json'), "rb") as f:
- r = json.load(f)
-
- if len(r['eventTimeL']) != 81:
- print(pitch," ",len(r['eventTimeL']))
-
- if len(takeDirL) != 3:
- print("***",pitch,len(takeDirL))
-
- def cache_us_db( inDir, cfg, outFn ):
-
- pitch_usDbD = {}
- pitchDirL = os.listdir(inDir)
-
- for pitch in pitchDirL:
-
- pitch = int(pitch)
-
- print(pitch)
-
- usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, pitch, cfg.analysisArgs['rmsAnalysisArgs'] )
-
- pitch_usDbD[pitch] = { 'usL':usL, 'dbL':dbL, 'durMsL':durMsL, 'takeIdL':takeIdL, 'holdDutyPctL': holdDutyPctL }
-
-
- with open(outFn,"w") as f:
- json.dump(pitch_usDbD,f)
-
-
-
- def gen_vel_map( inDir, cfg, minMaxDbFn, dynLevelN, cacheFn ):
-
- velMapD = {} # { pitch:[ us ] }
-
- pitchDirL = os.listdir(inDir)
-
- with open(cacheFn,"r") as f:
- pitchUsDbD = json.load(f)
-
-
- with open("minInterpDb.json","r") as f:
- r = json.load(f)
- minMaxDbD = { pitch:(minDb,maxDb) for pitch,minDb,maxDb in zip(r['pitchL'],r['minDbL'],r['maxDbL']) }
-
-
- pitchL = sorted( [ int(pitch) for pitch in pitchUsDbD.keys()] )
-
- for pitch in pitchL:
- d = pitchUsDbD[str(pitch)]
-
- usL = d['usL']
- dbL = np.array(d['dbL'])
-
- velMapD[pitch] = []
-
- for i in range(dynLevelN+1):
-
- db = minMaxDbD[pitch][0] + (i * (minMaxDbD[pitch][1] - minMaxDbD[pitch][0])/ dynLevelN)
-
- usIdx = np.argmin( np.abs(dbL - db) )
-
- velMapD[pitch].append( (usL[ usIdx ],db) )
-
-
-
- with open("velMapD.json","w") as f:
- json.dump(velMapD,f)
-
- mtx = np.zeros((len(velMapD),dynLevelN+1))
- print(mtx.shape)
-
- for i,(pitch,usDbL) in enumerate(velMapD.items()):
- for j in range(len(usDbL)):
- mtx[i,j] = usDbL[j][1]
-
- fig,ax = plt.subplots()
- ax.plot(pitchL,mtx)
- plt.show()
-
-
-
-
-
- if __name__ == "__main__":
-
- printDir =os.path.expanduser( "~/src/picadae_ac_3/doc")
- cfgFn = sys.argv[1]
- inDir = sys.argv[2]
- mode = sys.argv[3]
-
- if len(sys.argv) <= 4:
- pitchL = None
- else:
- pitchL = [ int(sys.argv[i]) for i in range(4,len(sys.argv)) ]
-
- cfg = parse_yaml_cfg( cfgFn )
-
- if mode == 'us_db':
- plot_us_db_curves_main( inDir, cfg, pitchL, plotTakesFl=True,usMax=None, printDir=printDir )
- elif mode == 'noise':
- plot_all_noise_curves( inDir, cfg, pitchL )
- elif mode == 'min_max':
- plot_min_max_db( inDir, cfg, pitchL, printDir=printDir )
- elif mode == 'min_max_2':
- takeId = pitchL[-1]
- del pitchL[-1]
- plot_min_max_2_db( inDir, cfg, pitchL, takeId=takeId, printDir=printDir )
- elif mode == 'us_db_map':
- plot_us_to_db_map( inDir, cfg, pitchL=pitchL, printDir=printDir )
- elif mode == 'audacity':
- rms_analysis.write_audacity_label_files( inDir, cfg.analysisArgs['rmsAnalysisArgs'] )
- elif mode == 'rpt_take_ids':
- report_take_ids( inDir )
- elif mode == 'manual_db':
- plot_min_db_manual( inDir, cfg, printDir=printDir )
- elif mode == 'gen_vel_map':
- gen_vel_map( inDir, cfg, "minInterpDb.json", 9, "cache_us_db.json" )
- elif mode == 'cache_us_db':
- cache_us_db( inDir, cfg, "cache_us_db.json")
- else:
- print("Unknown mode:",mode)
-
-
|