piccal/calibrate_plot.py
2020-02-29 00:01:58 -05:00

46 lines
1.2 KiB
Python

import os,sys,json
import common
import matplotlib.pyplot as plt
import plot_seq_1
def plot_calibrate( cfg, pitch, dataD ):
dataL = [ (d['pulse_us'], d['hm']['db'], d['targetDb'], d['matchFl'],d['skipMeasFl'],d['annIdx']) for d in dataD['measD'][pitch] ]
udmL = [(t[0],t[1],t[3]) for t in dataL]
udmL = sorted( udmL, key=lambda x: x[0] )
usL,dbL,matchL = zip(*udmL)
fig,ax = plt.subplots()
musL = [us for us,db,m in udmL if m]
mdbL = [db for us,db,m in udmL if m]
ax.plot(musL,mdbL,marker='o',color='red',linestyle='None')
ax.plot(usL,dbL,marker='.')
initDataDir = os.path.expanduser(dataD['cfg']['inDir'])
usL,dbL,_,_,_ = plot_seq_1.get_merged_pulse_db_measurements( initDataDir, int(pitch), cfg['analysisD'] )
ax.plot(usL,dbL,marker='.')
plt.show()
if __name__ == "__main__":
inDir = sys.argv[1]
cfgFn = sys.argv[2]
pitch = sys.argv[3]
cfg = common.parse_yaml_cfg(cfgFn)
cfg = cfg.calibrateArgs
dataFn = os.path.join(inDir,"meas.json")
with open(dataFn,"r") as f:
dataD = json.load(f)
print("pitchL:",dataD['cfg']['pitchL'],"targetDbL:",dataD['cfg']['targetDbL'])
plot_calibrate( cfg, pitch, dataD )