piccal/calibrate.py
2020-02-29 00:01:58 -05:00

525 lines
18 KiB
Python

import os,types,wave,json,array
import numpy as np
from rms_analysis import rms_analyze_one_rt_note
from plot_seq_1 import get_merged_pulse_db_measurements
class Calibrate:
def __init__( self, cfg, audio, midi, api ):
self.cfg = types.SimpleNamespace(**cfg)
self.audio = audio
self.midi = midi
self.api = api
self.state = "stopped" # stopped | started | note_on | note_off | analyzing
self.playOnlyFl = False
self.startMs = None
self.nextStateChangeMs = None
self.curHoldDutyCyclePctD = None # { pitch:dutyPct}
self.noteAnnotationL = [] # (noteOnMs,noteOffMs,pitch,pulseUs)
self.measD = None # { midi_pitch: [ {pulseUs, db, durMs, targetDb } ] }
self.initPulseDbListD = self._get_init_pulseDbD()
self.curNoteStartMs = None
self.curPitchIdx = None
self.curTargetDbIdx = None
self.successN = None
self.failN = None
self.curTargetDb = None
self.curPulseUs = None
self.curMatchN = None
self.curAttemptN = None
self.lastAudiblePulseUs = None
self.maxTooShortPulseUs = None
self.pulseDbL = None
self.deltaUpMult = None
self.deltaDnMult = None
self.skipMeasFl = None
def start(self,ms):
self.stop(ms)
self.state = 'started'
self.playOnlyFl = False
self.nextStateChangeMs = ms + 500
self.startMs = ms
self.curPitchIdx = 0
self.curPulseUs = self.cfg.initPulseUs
self.lastAudiblePulseUs = None
self.maxTooShortPulseUs = None
self.pulseDbL = []
self.pulseDbL = self.initPulseDbListD[ self.cfg.pitchL[ self.curPitchIdx ] ]
self.deltaUpMult = 1
self.deltaDnMult = 1
self.curTargetDbIdx = -1
self._start_new_db_target()
self.curDutyPctD = {}
self.skipMeasFl = False
self.measD = {}
self.successN = 0
self.failN = 0
self.audio.record_enable(True)
def stop(self,ms):
if self.midi is not None:
self.midi.send_all_notes_off()
self.audio.record_enable(False)
if not self.playOnlyFl:
self._save_results()
def play(self,ms):
if self.measD is None or len(self.measD) == 0:
print("Nothing to play.")
else:
self.startMs = ms
self.state = 'started'
self.playOnlyFl = True
self.nextStateChangeMs = ms + 500
self.curPitchIdx = -1
self.curTargetDbIdx = 0
self.audio.record_enable(True)
self._do_play_only_update()
def tick(self,ms):
if self.nextStateChangeMs is not None and ms > self.nextStateChangeMs:
if self.state == 'stopped':
pass
elif self.state == 'started':
self._do_note_on(ms)
self.nextStateChangeMs += self.cfg.noteOnDurMs
self.state = 'note_on'
elif self.state == 'note_on':
self._do_note_off(ms)
self.nextStateChangeMs += self.cfg.noteOffDurMs
self.state = 'note_off'
elif self.state == 'note_off':
if self.playOnlyFl:
if not self._do_play_only_update():
self.stop(ms)
self.state = 'stopped'
else:
if self._do_analysis(ms):
if not self._start_new_db_target():
self.stop(ms)
self.state = 'stopped'
print("DONE!")
# if the state was not changed to 'stopped'
if self.state == 'note_off':
self.state = 'started'
def _calc_play_only_pulse_us( self, pitch, targetDb ):
pulseDbL = []
for d in self.measD[ pitch ]:
if d['targetDb'] == targetDb and d['matchFl']==True:
pulseDbL.append( ( d['pulse_us'], d[self.cfg.dbSrcLabel]['db']) )
if len(pulseDbL) == 0:
return -1
pulseL,dbL = zip(*pulseDbL)
# TODO: make a weighted average based on db error
return np.mean(pulseL)
def _do_play_only_update( self ):
if self.curPitchIdx >= 0:
self._meas_note( self.cfg.pitchL[self.curPitchIdx], self.curPulseUs )
self.curPitchIdx +=1
if self.curPitchIdx >= len(self.cfg.pitchL):
self.curPitchIdx = 0
self.curTargetDbIdx += 1
if self.curTargetDbIdx >= len(self.cfg.targetDbL):
return False
pitch = self.cfg.pitchL[ self.curPitchIdx ]
targetDb = self.cfg.targetDbL[ self.curTargetDbIdx ]
self.curPulseUs = self._calc_play_only_pulse_us( pitch, targetDb )
self.curTargetDb = targetDb
if self.curPulseUs == -1:
print("Pitch:%i TargetDb:%f not found." % (pitch,targetDb))
return False
print("Target db: %4.1f" % (targetDb))
return True
def _get_init_pulseDbD( self ):
initPulseDbListD = {}
print("Calculating initial calibration search us/db lists ...")
if self.cfg.inDir is not None:
for pitch in self.cfg.pitchL:
print(pitch)
inDir = os.path.expanduser( self.cfg.inDir )
usL,dbL,_,_,_ = get_merged_pulse_db_measurements( inDir, pitch, self.cfg.analysisD )
initPulseDbListD[pitch] = [ (us,db) for us,db in zip(usL,dbL) ]
return initPulseDbListD
def _get_duty_cycle( self, pitch, pulseUsec ):
dutyPct = 50
if pitch in self.cfg.holdDutyPctD:
dutyPct = self.cfg.holdDutyPctD[pitch][0][1]
for refUsec,refDuty in self.cfg.holdDutyPctD[pitch]:
if pulseUsec < refUsec:
break
dutyPct = refDuty
return dutyPct
def _set_duty_cycle( self, pitch, pulseUsec ):
dutyPct = self._get_duty_cycle( pitch, pulseUsec )
if pitch not in self.curDutyPctD or self.curDutyPctD[pitch] != dutyPct:
self.curDutyPctD[pitch] = dutyPct
self.api.set_pwm_duty( pitch, dutyPct )
print("Hold Duty Set:",dutyPct)
self.skipMeasFl = True
return dutyPct
def _do_note_on(self,ms):
self.curNoteStartMs = ms
pitch = self.cfg.pitchL[ self.curPitchIdx]
if self.midi is not None:
self.midi.send_note_on( pitch, 60 )
else:
self._set_duty_cycle( pitch, self.curPulseUs )
self.api.note_on_us( pitch, self.curPulseUs )
print("note-on: ",pitch," ",self.curPulseUs," us")
def _do_note_off(self,ms):
self.noteAnnotationL.append( { 'beg_ms':self.curNoteStartMs-self.startMs, 'end_ms':ms-self.startMs, 'midi_pitch':self.cfg.pitchL[ self.curPitchIdx], 'pulse_us':self.curPulseUs } )
if self.midi is not None:
self.midi.send_note_off( self.cfg.pitchL[ self.curPitchIdx] )
else:
for pitch in self.cfg.pitchL:
self.api.note_off( pitch )
#print("note-off: ",self.cfg.pitchL[ self.curPitchIdx])
def _proportional_step( self, targetDb, dbL, pulseL ):
curPulse,curDb = self.pulseDbL[-1]
# get the point closest to the target db
i = np.argmin( np.array(dbL) - targetDb )
# find the percentage difference to the target - based on the closest point
pd = abs(curDb-targetDb) / abs(curDb - dbL[i])
#
delta_pulse = pd * abs(curPulse - pulseL[i])
print("prop:",pd,"delta_pulse:",delta_pulse)
return int(round(curPulse + np.sign(targetDb - curDb) * delta_pulse))
def _step( self, targetDb ):
# get the last two pulse/db samples
pulse0,db0 = self.pulseDbL[-2]
pulse1,db1 = self.pulseDbL[-1]
# microseconds per decibel for the last two points
us_per_db = abs(pulse0-pulse1) / abs(db0-db1)
if us_per_db == 0:
us_per_db = 10 # ************************************** CONSTANT ***********************
# calcuate the decibels we need to move from the last point
error_db = targetDb - db1
print("us_per_db:",us_per_db," error db:", error_db )
return pulse1 + us_per_db * error_db
def _calc_next_pulse_us( self, targetDb ):
# sort pulseDb ascending on db
pulseDbL = sorted( self.pulseDbL, key=lambda x: x[1] )
# get the set of us/db values tried so far
pulseL,dbL = zip(*pulseDbL)
max_i = np.argmax(dbL)
min_i = np.argmin(dbL)
# if the targetDb is greater than the max. db value achieved so far
if targetDb > dbL[max_i]:
pu = pulseL[max_i] + self.deltaUpMult * 500
self.deltaUpMult += 1
# if the targetDb is less than the min. db value achieved so far
elif targetDb < dbL[min_i]:
pu = pulseL[min_i] - self.deltaDnMult * 500
self.deltaDnMult += 1
if self.maxTooShortPulseUs is not None and pu < self.maxTooShortPulseUs:
# BUG: this is a problem is self.pulseL[min_i] is <= than self.maxTooShortPulseUs
# the abs() covers the problem to prevent decreasing from maxTooShortPulseus
pu = self.maxTooShortPulseUs + (abs(pulseL[min_i] - self.maxTooShortPulseUs))/2
self.deltaDnMult = 1
else:
# the targetDb value is inside the min/max range of the db values acheived so far
self.deltaUpMult = 1
self.deltaDnMult = 1
# interpolate the new pulse value based on the values seen so far
# TODO: use only closest 5 values rather than all values
pu = np.interp([targetDb],dbL,pulseL)
# the selected pulse has already been sampled
if int(pu) in pulseL:
pu = self._step(targetDb )
return max(min(pu,self.cfg.maxPulseUs),self.cfg.minPulseUs)
def _do_analysis(self,ms):
analysisDoneFl = False
midi_pitch = self.cfg.pitchL[self.curPitchIdx]
pulse_us = self.curPulseUs
measD = self._meas_note(midi_pitch,pulse_us)
# if the the 'skip' flag is set then don't analyze this note
if self.skipMeasFl:
self.skipMeasFl = False
print("SKIP")
else:
db = measD[self.cfg.dbSrcLabel]['db']
durMs = measD['hm']['durMs']
# if this note is shorter than the minimum allowable duration
if durMs < self.cfg.minMeasDurMs:
print("SHORT!")
if self.maxTooShortPulseUs is None or self.curPulseUs > self.maxTooShortPulseUs:
self.maxTooShortPulseUs = self.curPulseUs
if self.lastAudiblePulseUs is not None and self.curPulseUs < self.lastAudiblePulseUs:
self.curPulseUs = self.lastAudiblePulseUs
else:
self.curPulseUs = self.cfg.initPulseUs
else:
# this is a valid measurement, store it to the pulse-db table
self.pulseDbL.append( (self.curPulseUs,db) )
# track the most recent audible note (to return to if a successive note is too short)
self.lastAudiblePulseUs = self.curPulseUs
# calc the upper and lower bounds db range
lwr_db = self.curTargetDb * ((100.0 - self.cfg.tolDbPct)/100.0)
upr_db = self.curTargetDb * ((100.0 + self.cfg.tolDbPct)/100.0)
# if this note was inside the db range then set the 'match' flag
if lwr_db <= db and db <= upr_db:
self.curMatchN += 1
measD['matchFl'] = True
print("MATCH!")
# calculate the next pulse length
self.curPulseUs = int(self._calc_next_pulse_us(self.curTargetDb))
# if at least minMatchN matches have been made on this pitch/targetDb
if self.curMatchN >= self.cfg.minMatchN:
analysisDoneFl = True
self.successN += 1
print("Anysis Done: Success")
# if at least maxAttemptN match attempts have been made without success
self.curAttemptN += 1
if self.curAttemptN >= self.cfg.maxAttemptN:
analysisDoneFl = True
self.failN += 1
print("Analysis Done: Fail")
if midi_pitch not in self.measD:
self.measD[ midi_pitch ] = []
self.measD[ midi_pitch ].append( measD )
return analysisDoneFl
def _meas_note(self,midi_pitch,pulse_us):
# get the annotation information for the last note
annD = self.noteAnnotationL[-1]
buf_result = self.audio.linear_buffer()
if buf_result:
sigV = buf_result.value
# get the annotated begin and end of the note as sample indexes into sigV
bi = int(round(annD['beg_ms'] * self.audio.srate / 1000))
ei = int(round(annD['end_ms'] * self.audio.srate / 1000))
# calculate half the length of the note-off duration in samples
noteOffSmp_o_2 = int(round( (self.cfg.noteOffDurMs/2) * self.audio.srate / 1000))
# widen the note analysis space noteOffSmp_o_2 samples pre/post the annotated begin/end of the note
bi = max(0,bi - noteOffSmp_o_2)
ei = min(ei+noteOffSmp_o_2,sigV.shape[0]-1)
ar = types.SimpleNamespace(**self.cfg.analysisD)
# shift the annotatd begin/end of the note to be relative to index bi
begMs = noteOffSmp_o_2 * 1000 / self.audio.srate
endMs = begMs + (annD['end_ms'] - annD['beg_ms'])
#print("MEAS:",begMs,endMs,bi,ei,sigV.shape,self.audio.is_recording_enabled(),ar)
# analyze the note
resD = rms_analyze_one_rt_note( sigV[bi:ei], self.audio.srate, begMs, endMs, midi_pitch, rmsWndMs=ar.rmsWndMs, rmsHopMs=ar.rmsHopMs, dbLinRef=ar.dbLinRef, harmCandN=ar.harmCandN, harmN=ar.harmN, durDecayPct=ar.durDecayPct )
resD["pulse_us"] = pulse_us
resD["midi_pitch"] = midi_pitch
resD["beg_ms"] = annD['beg_ms']
resD['end_ms'] = annD['end_ms']
resD['skipMeasFl'] = self.skipMeasFl
resD['matchFl'] = False
resD['targetDb'] = self.curTargetDb
resD['annIdx'] = len(self.noteAnnotationL)-1
print( "%4.1f hm:%4.1f (%4.1f) %4i td:%4.1f (%4.1f) %4i" % (self.curTargetDb,resD['hm']['db'], resD['hm']['db']-self.curTargetDb, resD['hm']['durMs'], resD['td']['db'], resD['td']['db']-self.curTargetDb, resD['td']['durMs']))
return resD
def _start_new_db_target(self):
self.curTargetDbIdx += 1
# if all db targets have been queried then advance to the next pitch
if self.curTargetDbIdx >= len(self.cfg.targetDbL):
self.curTargetDbIdx = 0
self.curPitchIdx += 1
# if all pitches have been queried then we are done
if self.curPitchIdx >= len(self.cfg.pitchL):
return False
# reset the variables prior to begining the next target search
self.curTargetDb = self.cfg.targetDbL[ self.curTargetDbIdx ]
self.curMatchN = 0
self.curAttemptN = 0
self.lastAudiblePulseUs = None
self.maxTooShortPulseUs = None
self.pulseDbL = []
self.pulseDbL = self.initPulseDbListD[ self.cfg.pitchL[ self.curPitchIdx ] ]
self.deltaUpMult = 1
self.deltaDnMult = 1
return True
def _write_16_bit_wav_file( self, fn ):
srate = int(self.audio.srate)
buf_result = self.audio.linear_buffer()
sigV = buf_result.value
smpN = sigV.shape[0]
chN = 1
sigV = np.squeeze(sigV.reshape( smpN * chN, )) * 0x7fff
sigL = [ int(round(sigV[i])) for i in range(smpN) ]
sigA = array.array('h',sigL)
with wave.open( fn, "wb") as f:
bits = 16
bits_per_byte = 8
f.setparams((chN, bits//bits_per_byte, srate, 0, 'NONE', 'not compressed'))
f.writeframes(sigA)
def _save_results( self ):
if self.measD is None or len(self.measD) == 0:
return
outDir = os.path.expanduser( self.cfg.outDir )
if not os.path.isdir(outDir):
os.mkdir(outDir)
outDir = os.path.join( outDir, self.cfg.outLabel )
if not os.path.isdir(outDir):
os.mkdir(outDir)
i = 0
while( os.path.isdir( os.path.join(outDir,"%i" % i )) ):
i += 1
outDir = os.path.join( outDir, "%i" % i )
os.mkdir(outDir)
self._write_16_bit_wav_file( os.path.join(outDir,"audio.wav"))
d = {'cfg':self.cfg.__dict__, 'measD': self.measD, 'annoteL':self.noteAnnotationL }
with open( os.path.join(outDir,"meas.json"), "w") as f:
json.dump(d,f)