123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575 |
- ##| Copyright: (C) 2019-2020 Kevin Larke <contact AT larke DOT org>
- ##| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
- import os,types,json,pickle,types
- from scipy.io import wavfile
- from scipy.signal import stft
- import numpy as np
- from common import parse_yaml_cfg
-
-
- def calc_harm_bins( srate, binHz, midiPitch, harmN ):
-
- semi_tone = 1.0/12
- quarter_tone = 1.0/24
- eigth_tone = 1.0/48
- band_width_st = 3.0/48 # 3/8 tone
-
- fundHz = (13.75 * pow(2.0,(-9.0/12.0))) * pow(2.0,(midiPitch / 12))
- fund_l_binL = [int(round(fundHz * pow(2.0,-band_width_st) * i/binHz)) for i in range(1,harmN+1)]
- fund_m_binL = [int(round(fundHz * i/binHz)) for i in range(1,harmN+1)]
- fund_u_binL = [int(round(fundHz * pow(2.0, band_width_st) * i/binHz)) for i in range(1,harmN+1)]
-
- for i in range(len(fund_m_binL)):
- if fund_l_binL[i] >= fund_m_binL[i] and fund_l_binL[i] > 0:
- fund_l_binL[i] = fund_m_binL[i] - 1
-
- if fund_u_binL[i] <= fund_m_binL[i] and fund_u_binL[i] < len(fund_u_binL)-1:
- fund_u_binL[i] = fund_m_binL[i] + 1
-
- return fund_l_binL, fund_m_binL, fund_u_binL
-
- def rms_to_db( xV, rms_srate, dbLinRef ):
- #dbWndN = int(round(refWndMs * rms_srate / 1000.0))
- #dbRef = ref = np.mean(xV[0:dbWndN])
-
- #print("DB REF:",dbLinRef, min(xV), np.argmin(xV))
- rmsDbV = 20.0 * np.log10( (xV+np.nextafter(0,1)) / dbLinRef )
-
- return rmsDbV
-
- def audio_rms( srate, xV, rmsWndMs, hopMs, dbLinRef ):
-
- wndSmpN = int(round( rmsWndMs * srate / 1000.0))
- hopSmpN = int(round( hopMs * srate / 1000.0))
-
- xN = xV.shape[0]
-
- yN = int(((xN - wndSmpN) / hopSmpN) + 1)
-
- assert( yN > 0)
- yV = np.zeros( (yN, ) )
-
- assert( wndSmpN > 1 )
-
- i = 0
- j = 0
- while i < xN and j < yN:
-
- if i == 0:
- yV[j] = np.sqrt(xV[0]*xV[0])
- elif i < wndSmpN:
- yV[j] = np.sqrt( np.mean( xV[0:i] * xV[0:i] ) )
- else:
- yV[j] = np.sqrt( np.mean( xV[i-wndSmpN:i] * xV[i-wndSmpN:i] ) )
-
- i += hopSmpN
- j += 1
-
- rms_srate = srate / hopSmpN
- return rms_to_db( yV[0:j], rms_srate, dbLinRef ), rms_srate
-
-
- def audio_stft_rms( srate, xV, rmsWndMs, hopMs, dbLinRef, spectrumIdx ):
-
- wndSmpN = int(round( rmsWndMs * srate / 1000.0))
- hopSmpN = int(round( hopMs * srate / 1000.0))
- binHz = srate / wndSmpN
-
- f,t,xM = stft( xV, fs=srate, window="hann", nperseg=wndSmpN, noverlap=wndSmpN-hopSmpN, return_onesided=True )
-
- specHopIdx = int(round( spectrumIdx ))
- specV = np.sqrt(np.abs(xM[:, specHopIdx ]))
-
- mV = np.zeros((xM.shape[1]))
-
- for i in range(xM.shape[1]):
- mV[i] = np.max(np.sqrt(np.abs(xM[:,i])))
-
-
- rms_srate = srate / hopSmpN
- mV = rms_to_db( mV, rms_srate, dbLinRef )
-
- return mV, rms_srate, specV, specHopIdx, binHz
-
-
- def audio_harm_rms( srate, xV, rmsWndMs, hopMs, dbLinRef, midiPitch, harmCandN, harmN ):
-
- wndSmpN = int(round( rmsWndMs * srate / 1000.0))
- hopSmpN = int(round( hopMs * srate / 1000.0))
-
- binHz = srate / wndSmpN
-
- #print( "STFT:", rmsWndMs, hopMs, wndSmpN, hopSmpN, wndSmpN-hopSmpN )
-
- f,t,xM = stft( xV, fs=srate, window="hann", nperseg=wndSmpN, noverlap=wndSmpN-hopSmpN, return_onesided=True )
-
- harmLBinL,harmMBinL,harmUBinL = calc_harm_bins( srate, binHz, midiPitch, harmCandN )
-
- rmsV = np.zeros((xM.shape[1],))
-
-
- for i in range(xM.shape[1]):
- mV = np.sqrt(np.abs(xM[:,i]))
-
- pV = np.zeros((len(harmLBinL,)))
-
- for j,(b0i,b1i) in enumerate(zip( harmLBinL, harmUBinL )):
- pV[j] = np.max(mV[b0i:b1i])
-
- rmsV[i] = np.mean( sorted(pV)[-harmN:] )
-
-
-
- rms_srate = srate / hopSmpN
- rmsV = rms_to_db( rmsV, rms_srate, dbLinRef )
- return rmsV, rms_srate, binHz
-
- def measure_duration_ms( rmsV, rms_srate, peak_idx, end_idx, decay_pct ):
- """
- Calcuate the time it takes for a note to decay from the peak at
- rmsV[peak_idx] dB to 'decay_pct' percent of the peak value.
- """
-
- pkRmsDb = rmsV[ peak_idx ]
-
- # calc the note turn-off (offset) db as a percentage of the peak amplitude
- offsetRmsDb = pkRmsDb * decay_pct / 100.0
-
- # calc the sample index where the note is off
- offset_idx = peak_idx + np.argmin( np.abs(rmsV[peak_idx:end_idx] - offsetRmsDb) )
-
-
- # calc the duration of the note
- dur_ms = int(round((offset_idx - peak_idx) * 1000.0 / rms_srate))
-
- #print(pkRmsDb, offsetRmsDb, peak_idx, offset_idx, end_idx, dur_ms, rms_srate)
-
- return dur_ms
-
-
- def select_first_stable_note_by_dur( durMsL, minDurMs=800 ):
-
- first_stable_idx = None
- for i,durMs in enumerate(durMsL):
- if durMs > minDurMs and first_stable_idx is None:
- first_stable_idx = i
- else:
- if durMs < minDurMs:
- first_stable_idx = None
-
- return first_stable_idx
-
- def select_first_stable_note_by_delta_db_1( pkDbL, pkUsL, maxPulseUs=0.1 ):
-
- wndN = 5
- aL = []
- dV = np.diff(pkDbL) / pkDbL[1:]
-
- for ei in range(wndN,len(pkDbL)):
- xV = dV[ei-wndN:ei]
- avg = np.mean(np.abs(xV))
- aL.append(avg)
-
- k = np.argmin(np.abs(np.array(pkUsL) - maxPulseUs))
-
- print(aL)
- print(k)
-
-
- for i in range(k,0,-1):
- if aL[i] > maxDeltaDb:
- return i + 1
-
- return None
-
-
- def select_first_stable_note_by_delta_db( pkDbL, pkUsL=None, maxPulseUs=0.1 ):
-
- wndN = 5
-
- dV = np.diff(pkDbL) / pkDbL[1:]
-
-
- for ei in range(wndN,len(pkDbL)):
- xV = dV[ei-wndN:ei]
- avg = np.mean(np.abs(xV))
-
- if avg < .1:
- return (ei-wndN)+1
-
-
- return None
-
- def note_stats( r, decay_pct=50.0, extraDurSearchMs=500 ):
-
- statsL = []
-
- srate = r.rms_srate
-
- qmax = 0
-
- for i,(begSmpMs, endSmpMs) in enumerate(r.eventTimeL):
-
- begSmpIdx = int(round(srate * begSmpMs / 1000.0))
- endSmpIdx = int(round(srate * (endSmpMs + extraDurSearchMs) / 1000.0))
- pkSmpIdx = r.pkIdxL[i]
-
- durMs = measure_duration_ms( r.rmsDbV, srate, pkSmpIdx, endSmpIdx, decay_pct )
-
- bi = pkSmpIdx
- ei = pkSmpIdx + int(round(durMs * srate / 1000.0))
-
- qualityCoeff = np.sum(r.rmsDbV[bi:ei]) + np.sum(r.tdRmsDbV[bi:ei])
- if qualityCoeff > qmax:
- qmax = qualityCoeff
-
- if ei-bi == 0:
- tdRmsDb_v = 0.0 if bi >= len(r.tdRmsDbV) else np.mean(r.tdRmsDbV[bi])
- hmRmsDb_v = 0.0 if bi >= len(r.rmsDbV) else np.mean(r.rmsDbV[bi])
- durAvgDb = (hmRmsDb_v + tdRmsDb_v)/2.0
- else:
- tdRmsDb_u = 0.0 if ei >= len(r.tdRmsDbV) else np.mean(r.tdRmsDbV[bi:ei])
- hmRmsDb_u = 0.0 if ei >= len(r.rmsDbV) else np.mean(r.rmsDbV[bi:ei])
- durAvgDb = (hmRmsDb_u + tdRmsDb_u)/2.0
-
- statsL.append( types.SimpleNamespace(**{'begSmpSec':begSmpIdx/srate,'endSmpSec':endSmpIdx/srate,'pkSmpSec':pkSmpIdx/srate,'durMs':durMs, 'pkDb':r.pkDbL[i], 'pulse_us':r.pkUsL[i], 'quality':qualityCoeff, 'durAvgDb':durAvgDb }))
-
- for i,r in enumerate(statsL):
- statsL[i].quality = 0 if qmax <= 0 else statsL[i].quality / qmax
-
-
- return statsL
-
-
-
-
- def locate_peak_indexes( xV, xV_srate, eventMsL ):
-
- pkIdxL = []
- for begMs, endMs in eventMsL:
-
- begSmpIdx = int(begMs * xV_srate / 1000.0)
- endSmpIdx = int(endMs * xV_srate / 1000.0)
-
- pkIdxL.append( begSmpIdx + np.argmax( xV[begSmpIdx:endSmpIdx] ) )
-
- return pkIdxL
-
-
- def key_info_dictionary( keyMapL=None, yamlCfgFn=None):
-
- if yamlCfgFn is not None:
- cfg = parse_yaml_cfg(yamlCfgFn)
-
- keyMapL = cfg.key_mapL
-
- kmD = {}
- for d in keyMapL:
- kmD[ d['midi'] ] = types.SimpleNamespace(**d)
-
- return kmD
-
- def rms_analyze_one_rt_note( sigV, srate, begMs, endMs, midi_pitch, rmsWndMs=300, rmsHopMs=30, dbLinRef=0.001, harmCandN=5, harmN=3, durDecayPct=40 ):
-
- sigV = np.squeeze(sigV)
-
- td_rmsDbV, td_srate = audio_rms( srate, sigV, rmsWndMs, rmsHopMs, dbLinRef )
-
- begSmpIdx = int(round(begMs * td_srate/1000))
- endSmpIdx = int(round(endMs * td_srate/1000))
-
- td_pk_idx = begSmpIdx + np.argmax(td_rmsDbV[begSmpIdx:endSmpIdx])
-
- td_durMs = measure_duration_ms( td_rmsDbV, td_srate, td_pk_idx, len(sigV)-1, durDecayPct )
-
- hm_rmsDbV, hm_srate, binHz = audio_harm_rms( srate, sigV, rmsWndMs, rmsHopMs, dbLinRef, midi_pitch, harmCandN, harmN )
-
- begSmpIdx = int(round(begMs * hm_srate/1000))
- endSmpIdx = int(round(endMs * hm_srate/1000))
- hm_pk_idx = begSmpIdx + np.argmax(hm_rmsDbV[begSmpIdx:endSmpIdx])
-
- hm_durMs = measure_duration_ms( hm_rmsDbV, hm_srate, hm_pk_idx, len(sigV)-1, durDecayPct )
-
- tdD = { "rmsDbV":td_rmsDbV.tolist(), "srate":td_srate, "pk_idx":int(td_pk_idx), "db":float(td_rmsDbV[td_pk_idx]), "durMs":td_durMs }
- hmD = { "rmsDbV":hm_rmsDbV.tolist(), "srate":hm_srate, "pk_idx":int(hm_pk_idx), "db":float(hm_rmsDbV[hm_pk_idx]), "durMs":hm_durMs }
-
- return { "td":tdD, "hm":hmD }
-
- def rms_analyze_one_rt_note_wrap( audioDev, annBegMs, annEndMs, midi_pitch, noteOffDurMs, rmsAnalysisD ):
-
- resD = None
- buf_result = audioDev.linear_buffer()
-
- if buf_result:
-
- sigV = buf_result.value
-
- # get the annotated begin and end of the note as sample indexes into sigV
- bi = int(round(annBegMs * audioDev.srate / 1000))
- ei = int(round(annEndMs * audioDev.srate / 1000))
-
- # calculate half the length of the note-off duration in samples
- noteOffSmp_o_2 = int(round( (noteOffDurMs/2) * audioDev.srate / 1000))
-
- # widen the note analysis space noteOffSmp_o_2 samples pre/post the annotated begin/end of the note
- bi = max(0,bi - noteOffSmp_o_2)
- ei = min(ei+noteOffSmp_o_2,sigV.shape[0]-1)
-
-
- ar = types.SimpleNamespace(**rmsAnalysisD)
-
- # shift the annotatd begin/end of the note to be relative to index bi
- begMs = noteOffSmp_o_2 * 1000 / audioDev.srate
- endMs = begMs + (annEndMs - annBegMs)
-
- #print("MEAS:",begMs,endMs,bi,ei,sigV.shape,audioDev.is_recording_enabled(),ar)
-
-
- # analyze the note
- resD = rms_analyze_one_rt_note( sigV[bi:ei], audioDev.srate, begMs, endMs, midi_pitch, rmsWndMs=ar.rmsWndMs, rmsHopMs=ar.rmsHopMs, dbLinRef=ar.dbLinRef, harmCandN=ar.harmCandN, harmN=ar.harmN, durDecayPct=ar.durDecayPct )
-
- #print( "hm:%4.1f %4i td:%4.1f %4i" % (resD['hm']['db'], resD['hm']['durMs'], resD['td']['db'], resD['td']['durMs']))
-
- return resD
-
- def calibrate_rms( sigV, srate, beg_ms, end_ms ):
-
- bi = int(round(beg_ms * srate / 1000))
- ei = int(round(end_ms * srate / 1000))
- rms = np.sqrt( np.mean( sigV[bi:ei] * sigV[bi:ei] ))
-
- return 20.0*np.log10( rms / 0.002 )
-
-
- def calibrate_recording_analysis( inDir ):
-
- jsonFn = os.path.join(inDir, "meas.json" )
- audioFn = os.path.join(inDir, "audio.wav" )
-
- with open(jsonFn,"r") as f:
- r = json.load(f)
-
- measD = r['measD']
- cfg = types.SimpleNamespace(**r['cfg'])
- annL = r['annoteL']
- anlD = {}
-
- n = 0
- for midi_pitch,measL in measD.items():
- n += len(measL)
- anlD[int(midi_pitch)] = []
-
- srate, signalM = wavfile.read(audioFn)
- sigV = signalM / float(0x7fff)
-
- anlr = types.SimpleNamespace(**cfg.analysisD)
-
- tdRmsDbV, td_srate = audio_rms( srate, sigV, anlr.rmsWndMs, anlr.rmsHopMs, anlr.dbLinRef )
-
- # for each measured pitch
- for midi_pitch,measL in measD.items():
-
- # for each measured note at this pitch
- for mi,d in enumerate(measL):
-
- mr = types.SimpleNamespace(**d)
-
- # locate the associated annotation reocrd
- for annD in annL:
- ar = types.SimpleNamespace(**annD)
-
- if ar.midi_pitch == mr.midi_pitch and ar.beg_ms==mr.beg_ms and ar.end_ms==mr.end_ms:
- assert( ar.pulse_us == mr.pulse_us )
-
- bi = int(round(ar.beg_ms * td_srate / 1000))
- ei = int(round(ar.end_ms * td_srate / 1000))
- db = np.mean(tdRmsDbV[bi:ei])
-
- db = calibrate_rms( sigV, srate, ar.beg_ms, ar.end_ms )
-
- anlD[int(midi_pitch)].append({ 'pulse_us':ar.pulse_us, 'db':db, 'meas_idx':mi })
-
- break
-
-
- return anlD
-
-
-
-
- def rms_analysis_main( inDir, midi_pitch, rmsWndMs=300, rmsHopMs=30, dbLinRef=0.001, harmCandN=5, harmN=3, durDecayPct=40 ):
-
- seqFn = os.path.join( inDir, "seq.json")
- audioFn = os.path.join( inDir, "audio.wav")
-
-
- with open( seqFn, "rb") as f:
- r = json.load(f)
-
-
- srate, signalM = wavfile.read(audioFn)
- sigV = signalM / float(0x7fff)
-
- tdRmsDbV, rms0_srate = audio_rms( srate, sigV, rmsWndMs, rmsHopMs, dbLinRef )
-
- tdPkIdxL = locate_peak_indexes( tdRmsDbV, rms0_srate, r['eventTimeL'])
-
- rmsDbV, rms_srate, binHz = audio_harm_rms( srate, sigV, rmsWndMs, rmsHopMs, dbLinRef, midi_pitch, harmCandN, harmN )
-
- pkIdxL = locate_peak_indexes( rmsDbV, rms_srate, r['eventTimeL'] )
-
- holdDutyPctL = None
- if 'holdDutyPct' in r:
- holdDutyPctL = [ (0, r['holdDutyPct']) ]
- else:
- holdDutyPctL = r['holdDutyPctL']
-
-
- r = types.SimpleNamespace(**{
- "audio_srate":srate,
- "eventTimeMsL":r['eventTimeL'],
- "tdRmsDbV": tdRmsDbV,
- "tdPkIdxL": tdPkIdxL,
- "tdPkDbL": [ tdRmsDbV[i] for i in tdPkIdxL ],
- "binHz": binHz,
- "rmsDbV":rmsDbV,
- "rms_srate":rms_srate,
- "pkIdxL":pkIdxL, # pkIdxL[ len(pulsUsL) ] - indexes into rmsDbV[] of peaks
- "eventTimeL":r['eventTimeL'],
- "holdDutyPctL":holdDutyPctL,
- 'pkDbL': [ rmsDbV[ i ] for i in pkIdxL ],
- 'pkUsL':r['pulseUsL'] })
-
- statsL = note_stats(r,durDecayPct)
-
- setattr(r,"statsL", statsL )
-
- return r
-
-
- def rms_analysis_main_all( inDir, cacheFn, rmsWndMs=300, rmsHopMs=30, dbLinRef=0.001, harmCandN=5, harmN=3, durDecayPct=40 ):
-
- if os.path.isfile(cacheFn):
- print("READING analysis cache file: %s" % (cacheFn))
- with open(cacheFn,"rb") as f:
- rD = pickle.load(f)
- return rD
-
-
- folderL = os.listdir(inDir)
-
- rD = {}
-
- for folder in folderL:
-
- pathL = folder.split(os.sep)
-
- midi_pitch = int(pathL[-1])
-
- print(midi_pitch)
-
- path = os.path.join(inDir,folder,'0')
-
- if os.path.isdir(path) and os.path.isfile(os.path.join(os.path.join(path,"seq.json"))):
- r = rms_analysis_main( path, midi_pitch, rmsWndMs=rmsWndMs, rmsHopMs=rmsHopMs, dbLinRef=dbLinRef, harmCandN=harmCandN, harmN=harmN, durDecayPct=durDecayPct )
-
- rD[ midi_pitch ] = r
-
-
- with open(cacheFn,"wb") as f:
- pickle.dump(rD,f)
-
- return rD
-
-
-
- def samples_to_linear_residual( usL, dbL, pointsPerLine=5 ):
- # Score the quality of each sampled point by measuring the
- # quality of fit to a local line.
-
- scoreD = { us:[] for us in usL }
-
- pointsPerLine = 5
-
- i = pointsPerLine
-
- # for each sampled point
- while i < len(usL):
- # beginning with sample at index 'pointsPerLine'
- if i >= pointsPerLine:
-
- k = i - pointsPerLine
-
- # get the x (us) and y (db) sample values
- xL,yL = zip(*[ ((usL[k+j],1.0), dbL[k+j]) for j in range(pointsPerLine)])
- xV = np.array(xL)
- yV = np.array(yL)
-
- # fit the sampled point to a line
- m,c = np.linalg.lstsq(xV,yV,rcond=None)[0]
-
- # calc the residual of the fit at each point
- resV = (m*xV+c)[:,0] - yV
-
- # assign the residual to the associated point in scoreD[x]
- for j in range(pointsPerLine):
- scoreD[usL[k+j]].append(resV[j])
-
- i += 1
-
-
- scoreL = []
-
- # calc the mean of the residuals for each point
- # (most points were used in 'pointsPerLine' line estimations
- # and so they will have 'pointsPerLine' residual values)
- for us in usL:
-
- resL = scoreD[us]
-
- if len(resL) == 0:
- scoreL.append(0.0)
- elif len(resL) == 1:
- scoreL.append(resL[0])
- else:
- scoreL.append(np.mean(resL))
-
- # their should be one mean resid. value for each sampled point
- assert( len(scoreL) == len(usL) )
- return np.array(scoreL)
-
- def write_audacity_label_files( inDir, analysisArgsD, reverseFl=True ):
-
- pitchDirL = os.listdir(inDir)
-
- for pitchDir in pitchDirL:
-
- folderL = pitchDir.split(os.sep)
-
- midi_pitch = int(folderL[-1])
-
- pitchDir = os.path.join(inDir,pitchDir)
-
- takeDirL = os.listdir(pitchDir)
-
- for takeFolder in takeDirL:
-
- takeDir = os.path.join(pitchDir,takeFolder)
-
- r = rms_analysis_main( takeDir, midi_pitch, **analysisArgsD )
-
- labelFn = os.path.join(takeDir,"audacity.txt")
-
- print("Writing:",labelFn)
-
- with open(labelFn,"w") as f:
-
- for i,s in enumerate(r.statsL):
-
- noteIndex = len(r.statsL)-(i+1) if reverseFl else i
-
- label = "%i %4.1f %6.1f" % (noteIndex, s.pkDb, s.durMs )
-
- f.write("%f\t%f\t%s\n" % ( s.begSmpSec, s.endSmpSec, label ))
-
-
|