From 4d3044af67f7c80a2f868ad10e1744edfa8eb4a3 Mon Sep 17 00:00:00 2001 From: kpl Date: Sat, 29 Feb 2020 00:01:58 -0500 Subject: [PATCH] Many changes and additions. --- MidiFilePlayer.py | 147 +++++++++ calibrate.py | 138 +++++---- calibrate_plot.py | 45 +++ elbow.py | 85 ++++++ p_ac.py | 132 ++++++-- p_ac.yml | 151 ++++++++-- plot_calibrate.py | 2 +- plot_seq_1.py | 650 ++++++++++++++++++++++++++++++++++++---- plot_us_db_range.ipynb | 37 ++- rms_analysis.py | 66 +++- velMapD.h | 162 ++++++++++ velMapD.json | 1 + velTableToDataStruct.py | 53 ++++ 13 files changed, 1484 insertions(+), 185 deletions(-) create mode 100644 MidiFilePlayer.py create mode 100644 calibrate_plot.py create mode 100644 elbow.py create mode 100644 velMapD.h create mode 100644 velMapD.json create mode 100644 velTableToDataStruct.py diff --git a/MidiFilePlayer.py b/MidiFilePlayer.py new file mode 100644 index 0000000..7639431 --- /dev/null +++ b/MidiFilePlayer.py @@ -0,0 +1,147 @@ + +import json + +class MidiFilePlayer: + def __init__( self, cfg, api, midiDev, midiFn, velMapFn="velMapD.json" ): + self.cfg = cfg + self.api = api + self.midiDev = midiDev + self.midiL = [] # [ (us,status,d0,d1) ] + + self._parse_midi_file(midiFn) + self.nextIdx = None + self.startMs = 0 + self.curDutyPctD = {} # { pitch:duty } track the current hold duty cycle of each note + self.velMapD = {} + self.holdDutyPctD = cfg.calibrateArgs['holdDutyPctD'] + + with open(velMapFn,'r') as f: + velMapD = json.load(f) + + for pitch,usDbL in velMapD.items(): + self.velMapD[ int(pitch) ] = usDbL + + def start(self, ms): + self.nextIdx = 0 + self.startMs = ms + + def stop( self, ms): + self.nextIdx = None + for pitch in self.velMapD.keys(): + self.api.note_off( int(pitch) ) + + def tick( self, ms): + + if self.nextIdx is None: + return + + curOffsMs = ms - self.startMs + + while self.nextIdx < len(self.midiL): + + if curOffsMs < self.midiL[ self.nextIdx ][0]: + break + + cmd = self.midiL[ self.nextIdx ][1] + + if cmd == 'non': + self._note_on(self.midiL[ self.nextIdx ][2],self.midiL[ self.nextIdx ][3]) + elif cmd == 'nof': + self._note_off(self.midiL[ self.nextIdx ][2]) + elif cmd == 'ctl' and self.midiL[ self.nextIdx ][2] == 64: + self.midiDev.send_controller(64,self.midiL[ self.nextIdx ][3]) + + self.nextIdx += 1 + + + if self.nextIdx >= len(self.midiL): + self.nextIdx = None + + def _get_duty_cycle( self, pitch, pulseUsec ): + + dutyPct = 50 + + if pitch in self.holdDutyPctD: + + dutyPct = self.holdDutyPctD[pitch][0][1] + for refUsec,refDuty in self.holdDutyPctD[pitch]: + print(pitch,refUsec,refDuty) + if pulseUsec < refUsec: + break + dutyPct = refDuty + + return dutyPct + + def _set_duty_cycle( self, pitch, pulseUsec ): + + dutyPct = self._get_duty_cycle( pitch, pulseUsec ) + + if pitch not in self.curDutyPctD or self.curDutyPctD[pitch] != dutyPct: + self.curDutyPctD[pitch] = dutyPct + self.api.set_pwm_duty( pitch, dutyPct ) + print("Hold Duty Set:",dutyPct) + + return dutyPct + + def _get_pulse_us( self, pitch, vel ): + + usDbL = self.velMapD[pitch] + idx = round(vel * len(usDbL) / 127) + + if idx > len(usDbL): + idx = len(usDbL)-1 + + us = usDbL[ idx ][0] + + print('non',pitch,vel,idx,us) + + return us + + def _note_on( self, pitch, vel ): + + if pitch not in self.velMapD: + print("Missing pitch:",pitch) + else: + pulseUs = self._get_pulse_us(pitch,vel) + self._set_duty_cycle( pitch, pulseUs ) + self.api.note_on_us( pitch, pulseUs ) + + + def _note_off( self, pitch ): + self.api.note_off( pitch ) + + + def _parse_midi_file( self,fn ): + + with open(fn,"r") as f: + + for lineNumb,line in enumerate(f): + if lineNumb >= 3: + tokenL = line.split() + + if len(tokenL) > 5: + usec = int(tokenL[3]) + status = None + d0 = None + d1 = None + if tokenL[5] == 'non' or tokenL[5]=='nof' or tokenL[5]=='ctl': + status = tokenL[5] + d0 = int(tokenL[7]) + d1 = int(tokenL[8]) + self.midiL.append( (usec/1000,status,d0,d1)) + + self.midiL = sorted( self.midiL, key=lambda x: x[0] ) + + + +if __name__ == "__main__": + + midiFn = "/home/kevin/media/audio/midi/txt/988-v25.txt" + + mfp = MidiFilePlayer(None,None,midiFn) + + print(mfp.midiL[0:10]) + + + + diff --git a/calibrate.py b/calibrate.py index 72132c0..7ab93bb 100644 --- a/calibrate.py +++ b/calibrate.py @@ -1,38 +1,41 @@ import os,types,wave,json,array import numpy as np from rms_analysis import rms_analyze_one_rt_note +from plot_seq_1 import get_merged_pulse_db_measurements class Calibrate: def __init__( self, cfg, audio, midi, api ): - self.cfg = types.SimpleNamespace(**cfg) - self.audio = audio - self.midi = midi - self.api = api - self.state = "stopped" # stopped | started | note_on | note_off | analyzing + self.cfg = types.SimpleNamespace(**cfg) + self.audio = audio + self.midi = midi + self.api = api + self.state = "stopped" # stopped | started | note_on | note_off | analyzing self.playOnlyFl = False - self.startMs = None - self.nextStateChangeMs = None + self.startMs = None + self.nextStateChangeMs = None self.curHoldDutyCyclePctD = None # { pitch:dutyPct} - self.noteAnnotationL = [] # (noteOnMs,noteOffMs,pitch,pulseUs) + self.noteAnnotationL = [] # (noteOnMs,noteOffMs,pitch,pulseUs) self.measD = None # { midi_pitch: [ {pulseUs, db, durMs, targetDb } ] } - self.curNoteStartMs = None - self.curPitchIdx = None - self.curTargetDbIdx = None - self.successN = None - self.failN = None + self.initPulseDbListD = self._get_init_pulseDbD() - self.curTargetDb = None - self.curPulseUs = None - self.curMatchN = None - self.curAttemptN = None + self.curNoteStartMs = None + self.curPitchIdx = None + self.curTargetDbIdx = None + self.successN = None + self.failN = None + + self.curTargetDb = None + self.curPulseUs = None + self.curMatchN = None + self.curAttemptN = None self.lastAudiblePulseUs = None self.maxTooShortPulseUs = None - self.pulseDbL = None - self.deltaUpMult = None - self.deltaDnMult = None - self.skipMeasFl = None + self.pulseDbL = None + self.deltaUpMult = None + self.deltaDnMult = None + self.skipMeasFl = None def start(self,ms): self.stop(ms) @@ -42,22 +45,23 @@ class Calibrate: self.startMs = ms - self.curPitchIdx = 0 - self.curPulseUs = self.cfg.initPulseUs + self.curPitchIdx = 0 + self.curPulseUs = self.cfg.initPulseUs self.lastAudiblePulseUs = None self.maxTooShortPulseUs = None - self.pulseDbL = [] - self.deltaUpMult = 1 - self.deltaDnMult = 1 - self.curTargetDbIdx = -1 + self.pulseDbL = [] + self.pulseDbL = self.initPulseDbListD[ self.cfg.pitchL[ self.curPitchIdx ] ] + self.deltaUpMult = 1 + self.deltaDnMult = 1 + self.curTargetDbIdx = -1 self._start_new_db_target() self.curDutyPctD = {} - self.skipMeasFl = False - self.measD = {} + self.skipMeasFl = False + self.measD = {} self.successN = 0 - self.failN = 0 + self.failN = 0 self.audio.record_enable(True) def stop(self,ms): @@ -84,7 +88,7 @@ class Calibrate: self.audio.record_enable(True) - self._do_play_update() + self._do_play_only_update() def tick(self,ms): @@ -105,7 +109,7 @@ class Calibrate: elif self.state == 'note_off': if self.playOnlyFl: - if not self._do_play_update(): + if not self._do_play_only_update(): self.stop(ms) self.state = 'stopped' else: @@ -120,7 +124,7 @@ class Calibrate: self.state = 'started' - def _calc_play_pulse_us( self, pitch, targetDb ): + def _calc_play_only_pulse_us( self, pitch, targetDb ): pulseDbL = [] for d in self.measD[ pitch ]: @@ -136,7 +140,7 @@ class Calibrate: return np.mean(pulseL) - def _do_play_update( self ): + def _do_play_only_update( self ): if self.curPitchIdx >= 0: self._meas_note( self.cfg.pitchL[self.curPitchIdx], self.curPulseUs ) @@ -150,7 +154,7 @@ class Calibrate: pitch = self.cfg.pitchL[ self.curPitchIdx ] targetDb = self.cfg.targetDbL[ self.curTargetDbIdx ] - self.curPulseUs = self._calc_play_pulse_us( pitch, targetDb ) + self.curPulseUs = self._calc_play_only_pulse_us( pitch, targetDb ) self.curTargetDb = targetDb if self.curPulseUs == -1: @@ -161,7 +165,24 @@ class Calibrate: return True - + def _get_init_pulseDbD( self ): + + initPulseDbListD = {} + + print("Calculating initial calibration search us/db lists ...") + if self.cfg.inDir is not None: + + for pitch in self.cfg.pitchL: + + print(pitch) + + inDir = os.path.expanduser( self.cfg.inDir ) + + usL,dbL,_,_,_ = get_merged_pulse_db_measurements( inDir, pitch, self.cfg.analysisD ) + + initPulseDbListD[pitch] = [ (us,db) for us,db in zip(usL,dbL) ] + + return initPulseDbListD def _get_duty_cycle( self, pitch, pulseUsec ): @@ -232,8 +253,9 @@ class Calibrate: return int(round(curPulse + np.sign(targetDb - curDb) * delta_pulse)) - def _step( self, targetDb, dbL, pulseL ): + def _step( self, targetDb ): + # get the last two pulse/db samples pulse0,db0 = self.pulseDbL[-2] pulse1,db1 = self.pulseDbL[-1] @@ -255,19 +277,22 @@ class Calibrate: def _calc_next_pulse_us( self, targetDb ): - # sort pulseDb ascending on db - #self.pulseDbL = sorted( self.pulseDbL, key=lambda x: x[1] ) - - pulseL,dbL = zip(*self.pulseDbL) + # sort pulseDb ascending on db + pulseDbL = sorted( self.pulseDbL, key=lambda x: x[1] ) + + # get the set of us/db values tried so far + pulseL,dbL = zip(*pulseDbL) max_i = np.argmax(dbL) min_i = np.argmin(dbL) + # if the targetDb is greater than the max. db value achieved so far if targetDb > dbL[max_i]: pu = pulseL[max_i] + self.deltaUpMult * 500 self.deltaUpMult += 1 + # if the targetDb is less than the min. db value achieved so far elif targetDb < dbL[min_i]: pu = pulseL[min_i] - self.deltaDnMult * 500 self.deltaDnMult += 1 @@ -277,12 +302,18 @@ class Calibrate: pu = self.maxTooShortPulseUs + (abs(pulseL[min_i] - self.maxTooShortPulseUs))/2 self.deltaDnMult = 1 else: + # the targetDb value is inside the min/max range of the db values acheived so far self.deltaUpMult = 1 self.deltaDnMult = 1 + + # interpolate the new pulse value based on the values seen so far + + # TODO: use only closest 5 values rather than all values pu = np.interp([targetDb],dbL,pulseL) + # the selected pulse has already been sampled if int(pu) in pulseL: - pu = self._step(targetDb, dbL, pulseL ) + pu = self._step(targetDb ) return max(min(pu,self.cfg.maxPulseUs),self.cfg.minPulseUs) @@ -319,23 +350,23 @@ class Calibrate: else: - # this is a valid measurement store it to the pulse-db table + # this is a valid measurement, store it to the pulse-db table self.pulseDbL.append( (self.curPulseUs,db) ) - # track the most recent audible note - to return to if a successive note is too short + # track the most recent audible note (to return to if a successive note is too short) self.lastAudiblePulseUs = self.curPulseUs # calc the upper and lower bounds db range lwr_db = self.curTargetDb * ((100.0 - self.cfg.tolDbPct)/100.0) upr_db = self.curTargetDb * ((100.0 + self.cfg.tolDbPct)/100.0) - # was this note is inside the db range then set the 'match' flag + # if this note was inside the db range then set the 'match' flag if lwr_db <= db and db <= upr_db: self.curMatchN += 1 measD['matchFl'] = True print("MATCH!") - # + # calculate the next pulse length self.curPulseUs = int(self._calc_next_pulse_us(self.curTargetDb)) # if at least minMatchN matches have been made on this pitch/targetDb @@ -371,8 +402,6 @@ class Calibrate: sigV = buf_result.value - - # get the annotated begin and end of the note as sample indexes into sigV bi = int(round(annD['beg_ms'] * self.audio.srate / 1000)) ei = int(round(annD['end_ms'] * self.audio.srate / 1000)) @@ -384,7 +413,6 @@ class Calibrate: bi = max(0,bi - noteOffSmp_o_2) ei = min(ei+noteOffSmp_o_2,sigV.shape[0]-1) - ar = types.SimpleNamespace(**self.cfg.analysisD) # shift the annotatd begin/end of the note to be relative to index bi @@ -393,9 +421,10 @@ class Calibrate: #print("MEAS:",begMs,endMs,bi,ei,sigV.shape,self.audio.is_recording_enabled(),ar) + # analyze the note - resD = rms_analyze_one_rt_note( sigV[bi:ei], self.audio.srate, begMs, endMs, midi_pitch, rmsWndMs=ar.rmsWndMs, rmsHopMs=ar.rmsHopMs, dbRefWndMs=ar.dbRefWndMs, harmCandN=ar.harmCandN, harmN=ar.harmN, durDecayPct=ar.durDecayPct ) + resD = rms_analyze_one_rt_note( sigV[bi:ei], self.audio.srate, begMs, endMs, midi_pitch, rmsWndMs=ar.rmsWndMs, rmsHopMs=ar.rmsHopMs, dbLinRef=ar.dbLinRef, harmCandN=ar.harmCandN, harmN=ar.harmN, durDecayPct=ar.durDecayPct ) resD["pulse_us"] = pulse_us resD["midi_pitch"] = midi_pitch @@ -405,9 +434,8 @@ class Calibrate: resD['matchFl'] = False resD['targetDb'] = self.curTargetDb resD['annIdx'] = len(self.noteAnnotationL)-1 - - print( "%4.1f hm:%4.1f (%4.1f) %4i td:%4.1f (%4.1f) %4i" % (self.curTargetDb,resD['hm']['db'], resD['hm']['db']-self.curTargetDb, resD['hm']['durMs'], resD['td']['db'], resD['td']['db']-self.curTargetDb, resD['td']['durMs'])) + print( "%4.1f hm:%4.1f (%4.1f) %4i td:%4.1f (%4.1f) %4i" % (self.curTargetDb,resD['hm']['db'], resD['hm']['db']-self.curTargetDb, resD['hm']['durMs'], resD['td']['db'], resD['td']['db']-self.curTargetDb, resD['td']['durMs'])) return resD @@ -427,13 +455,15 @@ class Calibrate: if self.curPitchIdx >= len(self.cfg.pitchL): return False - + + # reset the variables prior to begining the next target search self.curTargetDb = self.cfg.targetDbL[ self.curTargetDbIdx ] self.curMatchN = 0 self.curAttemptN = 0 self.lastAudiblePulseUs = None self.maxTooShortPulseUs = None - self.pulseDbL = [] + self.pulseDbL = [] + self.pulseDbL = self.initPulseDbListD[ self.cfg.pitchL[ self.curPitchIdx ] ] self.deltaUpMult = 1 self.deltaDnMult = 1 return True diff --git a/calibrate_plot.py b/calibrate_plot.py new file mode 100644 index 0000000..fa7cdcc --- /dev/null +++ b/calibrate_plot.py @@ -0,0 +1,45 @@ +import os,sys,json +import common +import matplotlib.pyplot as plt +import plot_seq_1 + +def plot_calibrate( cfg, pitch, dataD ): + + dataL = [ (d['pulse_us'], d['hm']['db'], d['targetDb'], d['matchFl'],d['skipMeasFl'],d['annIdx']) for d in dataD['measD'][pitch] ] + + udmL = [(t[0],t[1],t[3]) for t in dataL] + udmL = sorted( udmL, key=lambda x: x[0] ) + usL,dbL,matchL = zip(*udmL) + + fig,ax = plt.subplots() + + musL = [us for us,db,m in udmL if m] + mdbL = [db for us,db,m in udmL if m] + + ax.plot(musL,mdbL,marker='o',color='red',linestyle='None') + + ax.plot(usL,dbL,marker='.') + + initDataDir = os.path.expanduser(dataD['cfg']['inDir']) + usL,dbL,_,_,_ = plot_seq_1.get_merged_pulse_db_measurements( initDataDir, int(pitch), cfg['analysisD'] ) + + + ax.plot(usL,dbL,marker='.') + + plt.show() + +if __name__ == "__main__": + + inDir = sys.argv[1] + cfgFn = sys.argv[2] + pitch = sys.argv[3] + + cfg = common.parse_yaml_cfg(cfgFn) + cfg = cfg.calibrateArgs + + dataFn = os.path.join(inDir,"meas.json") + with open(dataFn,"r") as f: + dataD = json.load(f) + + print("pitchL:",dataD['cfg']['pitchL'],"targetDbL:",dataD['cfg']['targetDbL']) + plot_calibrate( cfg, pitch, dataD ) diff --git a/elbow.py b/elbow.py new file mode 100644 index 0000000..9004386 --- /dev/null +++ b/elbow.py @@ -0,0 +1,85 @@ + +import sys,os +import numpy as np +import common +import rms_analysis + + + +def fit_points_to_reference( usL, dbL, usRefL, dbRefL ): + + dbV = None + + yyL = [ (db,dbRefL[ usRefL.index(us)]) for i,(us,db) in enumerate(zip(usL,dbL)) if us in usRefL ] + + if len(yyL) < 10: + print("NO FIT") + else: + + y0L,yrL = zip(*yyL) + yN = len(y0L) + + A = np.vstack([np.ones(yN),y0L]).T + c,m = np.linalg.lstsq(A,yrL,rcond=None)[0] + + dbV = (np.array(dbL) * m) + c + + + return dbV + +def find_elbow( usL, dbL, pointsPerLine=10 ): + + ppl_2 = int(pointsPerLine/2) + dL = [] + + + i = pointsPerLine + + # for each consecutive set of 'pointsPerLine' points in usL and dbL + while i < len(usL): + + # find the x,y coordinates of the first 'ppl_2' coordinates + x0L = np.array([ (us,1.0) for us in usL[i-pointsPerLine:i-ppl_2] ]) + y0L = np.array(usL[i-pointsPerLine:i-ppl_2]) + + # find the x,y coordinates of the second 'ppl_2' coordinates + x1L = np.array([ (us,1.0) for us in usL[i-ppl_2:i]]) + y1L = np.array(dbL[i-ppl_2:i]) + + + m0,c0 = np.linalg.lstsq(x0L,y0L,rcond=None)[0] # fit a line through the first set of points + m1,c1 = np.linalg.lstsq(x1L,y1L,rcond=None)[0] # fit a line through the second set of points + + # store the angle between the two lines + dL.append(m1-m0) + + i += 1 + + # find the max angle + i = np.argmax( dL ) + + # return the x,y coordinate of the first data point of the second line + return (usL[i+ppl_2],dbL[i+ppl_2]) + +def find_elbow_main( cfg, inDir, midi_pitch, takeId ): + + inDir = os.path.join(inDir,str(pitch),str(takeId)) + analysisArgsD = cfg.analysisArgs['rmsAnalysArgs'] + + r = rms_analysis_main( inDir, int(midi_pitch), **analysisD ) + + usL = r.pkUsL + dbL = r.pkDbL + + return find_elbow(r.pkUsL,r.pkDbL) + + +if __name__ == "__main__": + + inDir = sys.argv[1] + cfgFn = sys.argv[2] + pitch = sys.argv[3] + + cfg = common.parse_yaml_cfg(cfgFn) + + find_elbow( cfg, inDir, pitch, 0 ) diff --git a/p_ac.py b/p_ac.py index e331498..3ecac3a 100644 --- a/p_ac.py +++ b/p_ac.py @@ -10,11 +10,13 @@ from MidiDevice import MidiDevice from result import Result from common import parse_yaml_cfg from plot_seq import form_resample_pulse_time_list -from plot_seq import get_resample_points_wrap +from plot_seq_1 import get_resample_points_wrap from plot_seq import form_final_pulse_list from rt_note_analysis import RT_Analyzer from keyboard import Keyboard from calibrate import Calibrate +from rms_analysis import rms_analyze_one_rt_note_wrap +from MidiFilePlayer import MidiFilePlayer class AttackPulseSeq: """ Sequence a fixed pitch over a list of attack pulse lengths.""" @@ -29,7 +31,8 @@ class AttackPulseSeq: self.noteDurMs = noteDurMs # duration of each chord in milliseconds self.pauseDurMs = pauseDurMs # duration between end of previous note and start of next self.holdDutyPctL= None # hold voltage duty cycle table [ (minPulseSeqUsec,dutyCyclePct) ] - + self.holdDutyPctD= None # { us:dutyPct } for each us in self.pulseUsL + self.silentNoteN = None self.pulse_idx = 0 # Index of next pulse self.state = None # 'note_on','note_off' self.prevHoldDutyPct = None @@ -39,11 +42,13 @@ class AttackPulseSeq: self.playOnlyFl = False self.rtAnalyzer = RT_Analyzer() - def start( self, ms, outDir, pitch, pulseUsL, holdDutyPctL, playOnlyFl=False ): + def start( self, ms, outDir, pitch, pulseUsL, holdDutyPctL, holdDutyPctD, playOnlyFl=False ): self.outDir = outDir # directory to write audio file and results self.pitch = pitch # note to play self.pulseUsL = pulseUsL # one onset pulse length in microseconds per sequence element self.holdDutyPctL = holdDutyPctL + self.holdDutyPctD = holdDutyPctD + self.silentNoteN = 0 self.pulse_idx = 0 self.state = 'note_on' self.prevHoldDutyPct = None @@ -83,18 +88,40 @@ class AttackPulseSeq: # if waiting to turn a note off elif self.state == 'note_off': - self._note_off(ms) + self._note_off(ms) + self._count_silent_notes() + + self.pulse_idx += 1 # if all notes have been played - if self.pulse_idx >= len(self.pulseUsL): + if self.pulse_idx >= len(self.pulseUsL): # or self.silentNoteN >= self.cfg.maxSilentNoteCount: self.stop(ms) else: assert(0) + def _count_silent_notes( self ): + annBegMs = self.eventTimeL[ self.pulse_idx ][0] + annEndMs = self.eventTimeL[ self.pulse_idx ][1] + minDurMs = self.cfg.silentNoteMinDurMs + maxPulseUs = self.cfg.silentNoteMaxPulseUs + + resD = rms_analyze_one_rt_note_wrap( self.audio, annBegMs, annEndMs, self.pitch, self.pauseDurMs, self.cfg.analysisArgs['rmsAnalysisArgs'] ) + print( " %4.1f db %4i ms %i" % (resD['hm']['db'], resD['hm']['durMs'], self.pulse_idx)) + + if resD is not None and resD['hm']['durMs'] < minDurMs and self.pulseUsL[ self.pulse_idx ] < maxPulseUs: + self.silentNoteN += 1 + print("SILENT", self.silentNoteN) + else: + self.silentNoteN = 0 + + return self.silentNoteN + def _get_duty_cycle( self, pulseUsec ): + return self.holdDutyPctD[ pulseUsec ] + dutyPct = self.holdDutyPctL[0][1] for refUsec,refDuty in self.holdDutyPctL: if pulseUsec < refUsec: @@ -232,7 +259,7 @@ class CalibrateKeys: print(outDir_id,outDir) # if this is not the first time this note has been sampled then get the resample locations - if outDir_id == 0: + if (outDir_id == 0) or self.cfg.useFullPulseListFl: self.pulseUsL = self.cfg.full_pulseL else: #self.pulseUsL,_,_ = form_resample_pulse_time_list( outDir, self.cfg.analysisArgs ) @@ -252,8 +279,23 @@ class CalibrateKeys: if not os.path.isdir(outDir): os.mkdir(outDir) + #------------------------ + j = 0 + holdDutyPctD = {} + for us in self.pulseUsL: + + if j+1= holdDutyPctL[j+1][0]: + j += 1 + + + holdDutyPctD[ us ] = holdDutyPctL[j][1] + #------------------------ + + if self.cfg.reversePulseListFl: + self.pulseUsL = [ us for us in reversed(self.pulseUsL) ] + # start the sequencer - self.seq.start( ms, outDir, pitch, self.pulseUsL, holdDutyPctL, playOnlyFl ) + self.seq.start( ms, outDir, pitch, self.pulseUsL, holdDutyPctL, holdDutyPctD, playOnlyFl ) def _calc_next_out_dir_id( self, outDir ): @@ -268,12 +310,13 @@ class CalibrateKeys: # This is the main application API it is running in a child process. class App: def __init__(self ): - self.cfg = None - self.audioDev = None - self.api = None - self.cal_keys = None - self.keyboard = None - self.calibrate = None + self.cfg = None + self.audioDev = None + self.api = None + self.cal_keys = None + self.keyboard = None + self.calibrate = None + self.midiFilePlayer = None def setup( self, cfg ): self.cfg = cfg @@ -281,17 +324,22 @@ class App: self.audioDev = AudioDevice() self.midiDev = MidiDevice() + res = None + # # TODO: unify the result error handling # (the API and the audio device return two diferent 'Result' types # - - res = self.audioDev.setup(**cfg.audio) + if hasattr(cfg,'audio'): + res = self.audioDev.setup(**cfg.audio) - if not res: - self.audio_dev_list(0) + if not res: + self.audio_dev_list(0) + else: + self.audioDev = None + if True: if hasattr(cfg,'midi'): res = self.midiDev.setup(**cfg.midi) @@ -300,28 +348,31 @@ class App: else: self.midiDev = None - self.api = Picadae( key_mapL=cfg.key_mapL) + self.api = Picadae( key_mapL=cfg.key_mapL) - # wait for the letter 'a' to come back from the serial port - api_res = self.api.wait_for_serial_sync(timeoutMs=cfg.serial_sync_timeout_ms) + # wait for the letter 'a' to come back from the serial port + api_res = self.api.wait_for_serial_sync(timeoutMs=cfg.serial_sync_timeout_ms) - # did the serial port sync fail? - if not api_res: - res.set_error("Serial port sync failed.") - else: - print("Serial port sync'ed") + # did the serial port sync fail? + if not api_res: + res.set_error("Serial port sync failed.") + else: + print("Serial port sync'ed") - self.cal_keys = CalibrateKeys( cfg, self.audioDev, self.api ) + self.cal_keys = CalibrateKeys( cfg, self.audioDev, self.api ) - self.keyboard = Keyboard( cfg, self.audioDev, self.api ) + self.keyboard = Keyboard( cfg, self.audioDev, self.api ) - self.calibrate = Calibrate( cfg.calibrateArgs, self.audioDev, self.midiDev, self.api ) + self.calibrate = None #Calibrate( cfg.calibrateArgs, self.audioDev, self.midiDev, self.api ) + + self.midiFilePlayer = MidiFilePlayer( cfg, self.api, self.midiDev, cfg.midiFileFn ) return res def tick( self, ms ): - - self.audioDev.tick(ms) + + if self.audioDev is not None: + self.audioDev.tick(ms) if self.cal_keys: self.cal_keys.tick(ms) @@ -332,6 +383,9 @@ class App: if self.calibrate: self.calibrate.tick(ms) + if self.midiFilePlayer: + self.midiFilePlayer.tick(ms) + def audio_dev_list( self, ms ): portL = self.audioDev.get_port_list( True ) @@ -382,6 +436,20 @@ class App: self.cal_keys.stop(ms) self.keyboard.stop(ms) self.calibrate.stop(ms) + + def midi_file_player_start( self, ms ): + self.midiFilePlayer.start(ms) + + def midi_file_player_stop( self, ms ): + self.midiFilePlayer.stop(ms) + + def pedal_down( self, ms ): + print("pedal_down") + self.midiDev.send_controller(64, 100 ) + + def pedal_up( self, ms ): + print("pedal_up"); + self.midiDev.send_controller(64, 0 ) def quit( self, ms ): if self.api: @@ -513,6 +581,10 @@ class Shell: 'r':{ "func":"keyboard_repeat_pulse_idx", "minN":1, "maxN":1, "help":"Repeat pulse index across keyboard with new pulse_idx"}, 'K':{ "func":"keyboard_start_target_db", "minN":3, "maxN":3, "help":"Play db across keyboard"}, 'R':{ "func":"keyboard_repeat_target_db", "minN":1, "maxN":1, "help":"Repeat db across keyboard with new pulse_idx"}, + 'F':{ "func":"midi_file_player_start", "minN":0, "maxN":0, "help":"Play the MIDI file."}, + 'f':{ "func":"midi_file_player_stop", "minN":0, "maxN":0, "help":"Stop the MIDI file."}, + 'P':{ "func":"pedal_down", "minN":0, "maxN":0, "help":"Pedal down."}, + 'U':{ "func":"pedal_up", "minN":0, "maxN":0, "help":"Pedal up."}, } def _help( self, _=None ): diff --git a/p_ac.yml b/p_ac.yml index ec5f197..784e0af 100644 --- a/p_ac.yml +++ b/p_ac.yml @@ -3,19 +3,19 @@ # Audio device setup - audio: { + audio_off: { inPortLabel: "5 USB Audio CODEC:", #"HDA Intel PCH: CS4208", # "5 USB Audio CODEC:", #"5 USB Sound Device", outPortLabel: , }, - midi_off: { + midi: { inMonitorFl: False, outMonitorFl: False, throughFl: False, - inPortLabel: "Fastlane:Fastlane MIDI A", - outPortLabel: "Fastlane:Fastlane MIDI A" - #inPortLabel: "picadae:picadae MIDI 1", - #outPortLabel: "picadae:picadae MIDI 1" + #inPortLabel: "Fastlane:Fastlane MIDI A", + #outPortLabel: "Fastlane:Fastlane MIDI A" + inPortLabel: "picadae:picadae MIDI 1", + outPortLabel: "picadae:picadae MIDI 1" }, # Picadae API args @@ -27,10 +27,19 @@ # MeasureSeq args - outDir: "~/temp/p_ac_3e", - noteDurMs: 1000, - pauseDurMs: 1000, - #holdDutyPctL: [ [0,50], [22000,55] ], + outDir: "~/temp/p_ac_3g", + noteDurMs: 500, + pauseDurMs: 500, + reversePulseListFl: True, + useFullPulseListFl: True, + maxSilentNoteCount: 4, + silentNoteMaxPulseUs: 15000, + silentNoteMinDurMs: 250, + + # Midi file player + midiFileFn: "/home/kevin/media/audio/midi/txt/round4.txt", + + full_pulse0L: [ 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 8000, 9000, 10000, 12000, 14000, 18000, 22000, 26000, 30000, 34000, 40000], full_pulse1L: [ 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 20000, 22000, 24000, 26000, 30000, 32000, 34000, 36000, 40000], @@ -44,11 +53,18 @@ full_pulse6L: [ 12000, 12125, 12250, 12375, 12500, 12625, 12750, 12875, 13000, 13125, 13250, 13375, 13500, 13625, 13750, 13875, 14000, 14125, 14250, 14375, 14500, 14625, 14750, 14875, 15000, 15250, 15375, 15500, 15750, 16000, 16250, 16500, 16750, 17000, 17250, 17500, 17750, 18000, 18250, 18500, 18750, 19000, 19500, 20000, 20500, 21000, 21500, 22000, 22500, 23000, 23500, 24000, 24500, 25000, 25500, 26000, 26500, 27000, 27500, 28000, 28500, 29000, 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000 ], - full_pulseL: [ 11000, 11125, 11250, 11375, 11500, 11625, 11750, 11875, 12000, 12125, 12250, 12375, 12500, 12625, 12750, 12875, 13000, 13125, 13250, 13375, 13500, 13625, 13750, 13875, 14000, 14125, 14250, 14375, 14500, 14625, 14750, 14875, 15000, 15250, 15375, 15500, 15750, 16000, 16250, 16500, 16750, 17000, 17250, 17500, 17750, 18000, 18250, 18500, 18750, 19000, 19500, 20000, 20500, 21000, 21500, 22000, 22500, 23000, 23500, 24000, 24500, 25000, 25500, 26000, 26500, 27000, 27500, 28000, 28500, 29000, 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000 ], + full_pulseMainL: [ 11000, 11125, 11250, 11375, 11500, 11625, 11750, 11875, 12000, 12125, 12250, 12375, 12500, 12625, 12750, 12875, 13000, 13125, 13250, 13375, 13500, 13625, 13750, 13875, 14000, 14125, 14250, 14375, 14500, 14625, 14750, 14875, 15000, 15250, 15375, 15500, 15750, 16000, 16250, 16500, 16750, 17000, 17250, 17500, 17750, 18000, 18250, 18500, 18750, 19000, 19500, 20000, 20500, 21000, 21500, 22000, 22500, 23000, 23500, 24000, 24500, 25000, 25500, 26000, 26500, 27000, 27500, 28000, 28500, 29000, 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000 ], - full_pulse7L: [ 10000, 10050, 10100, 10150, 10200, 10250, 10300, 10350, 10400, 10450, 10500, 10550, 10600, 10650, 10700, 10750, 10800, 10850, 10900, 10950, 11000, 11125, 11250, 11375, 11500, 11625, 11750, 11875, 12000, 12125, 12250, 12375, 12500, 12625, 12750, 12875, 13000, 13125, 13250, 13375, 13500, 13625, 13750, 13875, 14000, 14125, 14250, 14375, 14500, 14625, 14750, 14875, 15000, 15250, 15375, 15500, 15750, 16000, 16250, 16500, 16750, 17000, 17250, 17500, 17750, 18000, 18250, 18500, 18750, 19000, 19500, 20000, 20500, 21000, 21500, 22000, 22500, 23000, 23500, 24000, 24500, 25000, 25500, 26000, 26500, 27000, 27500, 28000, 28500, 29000, 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000 ], + full_pulse8L: [ 10000, 10050, 10100, 10150, 10200, 10250, 10300, 10350, 10400, 10450, 10500, 10550, 10600, 10650, 10700, 10750, 10800, 10850, 10900, 10950, 11000, 11125, 11250, 11375, 11500, 11625, 11750, 11875, 12000, 12125, 12250, 12375, 12500, 12625, 12750, 12875, 13000, 13125, 13250, 13375, 13500, 13625, 13750, 13875, 14000, 14125, 14250, 14375, 14500, 14625, 14750, 14875, 15000, 15250, 15375, 15500, 15750, 16000, 16250, 16500, 16750, 17000, 17250, 17500, 17750, 18000, 18250, 18500, 18750, 19000, 19500, 20000, 20500, 21000, 21500, 22000, 22500, 23000, 23500, 24000, 24500, 25000, 25500, 26000, 26500, 27000, 27500, 28000, 28500, 29000, 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000 ], + - full_pulse9L: [ 8750, 8800, 8850, 8900, 8950, 9000, 9050, 9100, 9150, 9200, 9250, 9300, 9350, 9400, 9450,9500, 9550, 9600, 9650, 9700, 9750, 9800, 9850, 9900, 9950, 10000, 10050, 10100, 10150, 10200, 10250, 10300, 10350, 10400, 10450, 10500, 10550, 10600, 10650, 10700, 10750, 10800, 10850, 10900, 10950, 11000, 11125, 11250, 11375, 11500, 11625, 11750, 11875, 12000, 12125, 12250, 12375, 12500, 12625, 12750, 12875, 13000, 13125, 13250, 13375, 13500, 13625, 13750, 13875, 14000, 14125, 14250, 14375, 14500, 14625, 14750, 14875, 15000, 15250, 15375, 15500, 15750, 16000, 16250, 16500, 16750, 17000, 17250, 17500, 17750, 18000, 18250, 18500, 18750, 19000, 19500, 20000, 20500, 21000, 21500, 22000, 22500, 23000, 23500, 24000, 24500, 25000, 25500, 26000, 26500, 27000, 27500, 28000, 28500, 29000, 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000 ], + full_pulseL: [11000, 11075, 11150, 11225, 11300, 11375, 11450, 11525, 11600,11675, 11750, 11825, 11900, 11975, 12050, 12125, 12200, 12275,12350, 12425, 12500, 12575, 12650, 12725, 12800, 12875, 12950, 13025, 13100, 13175, 13250, 13325, 13400, 13475, 13550, 13625, 13700, 13775, 13850, 13925, 14000, 14075, 14150, 14225, 14300, 14375, 14450, 14525, 14600, 14675, 14750, 14825, 14900, 14975], + + full_pulse10L: [ 8750, 8800, 8850, 8900, 8950, 9000, 9050, 9100, 9150, 9200, 9250, 9300, 9350, 9400, 9450,9500, 9550, 9600, 9650, 9700, 9750, 9800, 9850, 9900, 9950, 10000, 10050, 10100, 10150, 10200, 10250, 10300, 10350, 10400, 10450, 10500, 10550, 10600, 10650, 10700, 10750, 10800, 10850, 10900, 10950, 11000, 11125, 11250, 11375, 11500, 11625, 11750, 11875, 12000, 12125, 12250, 12375, 12500, 12625, 12750, 12875, 13000, 13125, 13250, 13375, 13500, 13625, 13750, 13875, 14000, 14125, 14250, 14375, 14500, 14625, 14750, 14875, 15000, 15250, 15375, 15500, 15750, 16000, 16250, 16500, 16750, 17000, 17250, 17500, 17750, 18000, 18250, 18500, 18750, 19000, 19500, 20000, 20500, 21000, 21500, 22000, 22500, 23000, 23500, 24000, 24500, 25000, 25500, 26000, 26500, 27000, 27500, 28000, 28500, 29000, 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000 ], + + full_pulse11L: [ 9000, 9050, 9100, 9150, 9200, 9250, 9300, 9350, 9400, 9450,9500, 9550, 9600, 9650, 9700, 9750, 9800, 9850, 9900, 9950, 10000, 10050, 10100, 10150, 10200, 10250, 10300, 10350, 10400, 10450, 10500, 10550, 10600, 10650, 10700, 10750, 10800, 10850, 10900, 10950, 11000, 11125, 11250, 11375, 11500, 11625, 11750, 11875, 12000, 12125, 12250, 12375, 12500, 12625, 12750, 12875, 13000, 13125, 13250, 13375, 13500, 13625, 13750, 13875, 14000, 14125, 14250, 14375, 14500, 14625, 14750, 14875, 15000 ], + + full_pulse12L: [ 8750, 8800, 8850, 8900, 8950, 9000, 9050, 9100, 9150, 9200, 9250, 9300, 9350, 9400, 9450,9500, 9550, 9600, 9650, 9700, 9750, 9800, 9850, 9900, 9950, 10000, 10050, 10100, 10150, 10200, 10250, 10300, 10350, 10400, 10450, 10500, 10550, 10600, 10650, 10700, 10750, 10800, 10850, 10900, 10950, 11000, 11125, 11250, 11375, 11500, 11625, 11750, 11875, 12000, 12125, 12250, 12375, 12500, 12625, 12750, 12875, 13000, 13125, 13250, 13375, 13500, 13625, 13750, 13875, 14000, 14125, 14250, 14375, 14500, 14625, 14750, 14875, 15000 ], # RMS analysis args analysisArgs: { @@ -61,8 +77,8 @@ durDecayPct: 40, # percent drop in RMS to indicate the end of a note }, - resampleMinDb: 10.0, # note's less than this will be skipped - resampleNoiseLimitPct: 1.0, # + resampleMinDb: 7.0, # note's less than this will be skipped + resampleNoiseLimitPct: 5.0, # resampleMinDurMs: 800, # notes's whose duration is less than this will be skipped minAttkDb: 7.0, # threshold of silence level @@ -76,11 +92,98 @@ rmsAnalysisCacheFn: "/home/kevin/temp/rms_analysis_cache.pickle" }, + manualMinD: { + 23: [2, 24], + 24: [2, 18], + 25: [2, 41], + 26: [2, 26], # + 27: [2, 35], # (36 is an outlier) + 28: [2, 35], # /36 (resample?) + 29: [2, 22], # /23 (resample?) + 30: [2, 28], # /29 + 31: [2, 39], # + 32: [2, 27], # + 33: [2, 10], # + 34: [2, 27], # (29 outlier) + 35: [2, 15], # + 36: [2, 16], # ngz: (0 32 36) (1 31 36) + 37: [2, 18], # + 38: [2, 33], # + 39: [2, 18], # + 40: [2, 6], # ngz: (0 25 41) + 41: [2, 22], # ngz: (2 9 22) + 42: [2, 11], # + 43: [2, 7], #(8 outlier)], # + 44: [2, 19], + 45: [4, 7], # 5 sample traes + 46: [2, 4], + 47: [2, 11], # /12 + 48: [2, 27], # /28 + 49: [2, 12], + 50: [2, 6], + 51: [2, 14], + 52: [2, 26], + 53: [3, 24 ], # ngz at onset + 54: [2, 21], # /22 + 55: [2, 10], # /11 + 56: [2, 5], + 57: [2, 6], + 58: [2, 11], + 59: [2, 5], + 60: [2, 13], + 61: [4, 5], + 62: [2, 7], + 63: [2, 12], + 64: [3, 33], + 65: [2, 23], + 66: [2, 36], + 67: [2, 16], + 68: [2, 1], # needs decreased start us + 69: [1, 7], + 70: [2, 34], + 71: [2, 23], + 72: [2, 14], + 73: [2, 30], + 74: [2, 26], + 75: [2, 31], + 76: [2, 20], + 77: [2, 28], + 78: [2, 28], + 79: [2, 44], + 80: [2, 25], + 81: [2, 36], + 82: [2, 51], # incorrect hold voltages (resample) + 83: [2, 43], + 84: [2, 38], + 85: [2, 27], + 86: [2, 43], + 87: [2, 33], + 88: [2, 42], + 89: [3, 21], # ngz (3 15 19) + 91: [2, 4], # bad samples (resample) + 92: [2, 10], + 93: [2, 42], + 94: [2, 39], + 95: [2, 19], + 96: [2, 1], # needs decreaed start us ngz: (0 22 38) + 97: [2, 51], + 98: [2, 30], + 99: [2, 41], + 100: [2, 24], + 101: [2, 39], + + + }, + + manualAnchorPitchMinDbL: [ 23, 27, 31, 34, 44, 51, 61, 70, 74, 81, 87, 93, 96, 101 ], + manualAnchorPitchMaxDbL: [ 23, 32, 49, 57, 67, 76, 83, 93, 99, 101 ], calibrateArgs: { - outDir: "~/temp/calib0", - outLabel: "test_1", + outDir: "~/temp/calib2", + outLabel: "test_3", + + inDir: "~/temp/p_ac_3f", analysisD: { rmsWndMs: 300, # length of the RMS measurment window @@ -91,21 +194,23 @@ durDecayPct: 40 # percent drop in RMS to indicate the end of a note }, - noteOnDurMs: 1000, - noteOffDurMs: 1000, + noteOnDurMs: 500, + noteOffDurMs: 500, - pitchL: [ 44, 45, 46, 47, 48, 49, 50, 51 ], # list of pitches - targetDbL: [ 16, 17, 18, 19, 20, 21, 22, 23, 24 ], # list of target db + #pitchL: [ 31, 33, 34, 35 ], # list of pitches + #pitchL: [ 80,81,82 ], # 8 + pitchL: [ 40,41,42 ], # 12 + targetDbL: [ 13 ], # list of target db - minMeasDurMs: 800, # minimum candidate note duration + minMeasDurMs: 140, # minimum candidate note duration tolDbPct: 2.0, # tolerance as a percent of targetDb above/below used to form match db window maxPulseUs: 45000, # max. allowable pulse us minPulseUs: 8000, # min. allowable pulse us initPulseUs: 15000, # pulseUs for first note minMatchN: 3, # at least 3 candidate notes must be within tolDbPct to move on to a new targetDb maxAttemptN: 30, # give up if more than 20 candidate notes fail for a given targetDb - dbSrcLabel: 'td', # source of the db measurement 'td' (time-domain) or 'hm' (harmonic) + dbSrcLabel: 'hm', # source of the db measurement 'td' (time-domain) or 'hm' (harmonic) holdDutyPctD: { 23: [[0, 70]], diff --git a/plot_calibrate.py b/plot_calibrate.py index 0f3c122..37314ea 100644 --- a/plot_calibrate.py +++ b/plot_calibrate.py @@ -143,7 +143,7 @@ if __name__ == "__main__": inDir = sys.argv[1] yamlFn = sys.argv[2] if len(sys.argv) > 3: - pitch = int(sys.argv[2]) + pitch = int(sys.argv[3]) keyInfoD = key_info_dictionary( yamlCfgFn=yamlFn) #plot_all_notes( inDir ) diff --git a/plot_seq_1.py b/plot_seq_1.py index 202ce73..46c9433 100644 --- a/plot_seq_1.py +++ b/plot_seq_1.py @@ -1,31 +1,62 @@ -import os, sys +import os, sys,json import matplotlib.pyplot as plt import numpy as np from common import parse_yaml_cfg import rms_analysis +import elbow + +def fit_to_reference( pkL, refTakeId ): + + us_outL = [] + db_outL = [] + dur_outL = [] + tid_outL = [] + + dbL,usL,durMsL,takeIdL = tuple(zip(*pkL)) + + us_refL,db_refL,dur_refL = zip(*[(usL[i],dbL[i],durMsL[i]) for i in range(len(usL)) if takeIdL[i]==refTakeId]) + + + for takeId in set(takeIdL): + us0L,db0L,dur0L = zip(*[(usL[i],dbL[i],durMsL[i]) for i in range(len(usL)) if takeIdL[i]==takeId ]) + + + if takeId == refTakeId: + db_outL += db0L + else: + db1V = elbow.fit_points_to_reference(us0L,db0L,us_refL,db_refL) + db_outL += db1V.tolist() + + us_outL += us0L + dur_outL+= dur0L + tid_outL+= [takeId] * len(us0L) + + return zip(db_outL,us_outL,dur_outL,tid_outL) + def get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD ): inDir = os.path.join(inDir,"%i" % (midi_pitch)) - dirL = os.listdir(inDir) + takeDirL = os.listdir(inDir) pkL = [] - # for each take in this directory - for idir in dirL: + usRefL = None + dbRefL = None - take_number = int(idir) + # for each take in this directory + for take_number in range(len(takeDirL)): # analyze this takes audio and locate the note peaks - r = rms_analysis.rms_analysis_main( os.path.join(inDir,idir), midi_pitch, **analysisArgsD ) + r = rms_analysis.rms_analysis_main( os.path.join(inDir,str(take_number)), midi_pitch, **analysisArgsD ) # store the peaks in pkL[ (db,us) ] for db,us,stats in zip(r.pkDbL,r.pkUsL,r.statsL): pkL.append( (db,us,stats.durMs,take_number) ) - - + pkL = fit_to_reference( pkL, 0 ) + # sort the peaks on increasing attack pulse microseconds pkL = sorted( pkL, key= lambda x: x[1] ) @@ -37,22 +68,34 @@ def get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD ): return pkUsL,pkDbL,durMsL,takeIdL,r.holdDutyPctL + + + + + + + def select_resample_reference_indexes( noiseIdxL ): resampleIdxS = set() + # for each noisy sample index store that index and the index + # before and after it for i in noiseIdxL: resampleIdxS.add( i ) - resampleIdxS.add( i+1 ) - resampleIdxS.add( i-1 ) + if i+1 < len(noiseIdxL): + resampleIdxS.add( i+1 ) + if i-1 >= 0: + resampleIdxS.add( i-1 ) resampleIdxL = list(resampleIdxS) # if a single sample point is left out of a region of - # contiguous sample points then include this as a resample point + # contiguous sample points then include this as a resample point also for i in resampleIdxL: if i + 1 not in resampleIdxL and i + 2 in resampleIdxL: # BUG BUG BUG: Hardcoded constant - resampleIdxL.append(i+1) + if i+1 < len(noiseIdxL): + resampleIdxL.append(i+1) return resampleIdxL @@ -99,11 +142,13 @@ def locate_resample_regions( usL, dbL, resampleIdxL ): return reUsL,reDbL -def get_dur_skip_indexes( durMsL, dbL, takeIdL, minDurMs, minDb ): +def get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreL, minDurMs, minDb, noiseLimitPct ): firstAudibleIdx = None firstNonSkipIdx = None - skipIdxL = [ i for i,(ms,db) in enumerate(zip(durMsL,dbL)) if ms < minDurMs or db < minDb ] + + # get the indexes of samples which do not meet the duration, db level, or noise criteria + skipIdxL = [ i for i,(ms,db,score) in enumerate(zip(durMsL,dbL,scoreL)) if ms < minDurMs or db < minDb or score > noiseLimitPct ] # if a single sample point is left out of a region of # contiguous skipped points then skip this point also @@ -143,18 +188,22 @@ def get_dur_skip_indexes( durMsL, dbL, takeIdL, minDurMs, minDb ): def get_resample_points( usL, dbL, durMsL, takeIdL, minDurMs, minDb, noiseLimitPct ): - skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, takeIdL, minDurMs, minDb ) - - durL = [ (usL[i],dbL[i]) for i in skipIdxL ] scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL ) + + skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreV.tolist(), minDurMs, minDb, noiseLimitPct ) + + skipL = [ (usL[i],dbL[i]) for i in skipIdxL ] noiseIdxL = [ i for i in range(scoreV.shape[0]) if scoreV[i] > noiseLimitPct ] noiseL = [ (usL[i],dbL[i]) for i in noiseIdxL ] resampleIdxL = select_resample_reference_indexes( noiseIdxL ) - resampleIdxL = [ i for i in resampleIdxL if i >= firstNonSkipIdx ] + + if firstNonSkipIdx is not None: + resampleIdxL = [ i for i in resampleIdxL if i >= firstNonSkipIdx ] + resampleL = [ (usL[i],dbL[i]) for i in resampleIdxL ] reUsL,reDbL = locate_resample_regions( usL, dbL, resampleIdxL ) - return reUsL, reDbL, noiseL, resampleL, durL, firstAudibleIdx, firstNonSkipIdx + return reUsL, reDbL, noiseL, resampleL, skipL, firstAudibleIdx, firstNonSkipIdx def get_resample_points_wrap( inDir, midi_pitch, analysisArgsD ): @@ -164,46 +213,75 @@ def get_resample_points_wrap( inDir, midi_pitch, analysisArgsD ): return reUsL -def plot_noise_region( ax, inDir, keyMapD, midi_pitch, analysisArgsD ): - plotResampleFl = False - plotTakesFl = True + +def plot_us_db_curves( ax, inDir, keyMapD, midi_pitch, analysisArgsD, plotResamplePointsFl=False, plotTakesFl=True, usMax=None ): + usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, analysisArgsD['rmsAnalysisArgs'] ) - - reUsL, reDbL, noiseL, resampleL, durL, firstAudibleIdx, firstNonSkipIdx = get_resample_points( usL, dbL, durMsL, takeIdL, analysisArgsD['resampleMinDurMs'], analysisArgsD['resampleMinDb'], analysisArgsD['resampleNoiseLimitPct'] ) + reUsL, reDbL, noiseL, resampleL, skipL, firstAudibleIdx, firstNonSkipIdx = get_resample_points( usL, dbL, durMsL, takeIdL, analysisArgsD['resampleMinDurMs'], analysisArgsD['resampleMinDb'], analysisArgsD['resampleNoiseLimitPct'] ) # plot first audible and non-skip position - ax.plot( usL[firstNonSkipIdx], dbL[firstNonSkipIdx], markersize=15, marker='+', linestyle='None', color='red') - ax.plot( usL[firstNonSkipIdx], dbL[firstAudibleIdx], markersize=15, marker='*', linestyle='None', color='red') + if False: - # plot the resample points - if plotResampleFl: - ax.plot( reUsL, reDbL, markersize=10, marker='x', linestyle='None', color='green') + if firstNonSkipIdx is not None: + ax.plot( usL[firstNonSkipIdx], dbL[firstNonSkipIdx], markersize=15, marker='+', linestyle='None', color='red') - # plot the noisy sample positions - if noiseL: - nUsL,nDbL = zip(*noiseL) - ax.plot( nUsL, nDbL, marker='o', linestyle='None', color='black') - - # plot the noisy sample positions and the neighbors included in the noisy region - if resampleL: - nUsL,nDbL = zip(*resampleL) - ax.plot( nUsL, nDbL, marker='*', linestyle='None', color='red') + if firstAudibleIdx is not None: + ax.plot( usL[firstAudibleIdx], dbL[firstAudibleIdx], markersize=15, marker='*', linestyle='None', color='red') + # plot the resample points + if plotResamplePointsFl: + ax.plot( reUsL, reDbL, markersize=13, marker='x', linestyle='None', color='green') + + # plot the noisy sample positions + if noiseL: + nUsL,nDbL = zip(*noiseL) + ax.plot( nUsL, nDbL, marker='o', markersize=9, linestyle='None', color='black') + + # plot the noisy sample positions and the neighbors included in the noisy region + if resampleL: + nUsL,nDbL = zip(*resampleL) + ax.plot( nUsL, nDbL, marker='+', markersize=8, linestyle='None', color='red') + + + # plot actual sample points + + elbow_us = None + elbow_db = None + elbow_len = None + + usL,dbL,takeIdL = zip(*[(us,dbL[i],takeIdL[i]) for i,us in enumerate(usL) if usMax is None or us <= usMax]) + if plotTakesFl: for takeId in list(set(takeIdL)): + + # get the us,db points included in this take xL,yL = zip(*[(usL[i],dbL[i]) for i in range(len(usL)) if takeIdL[i]==takeId ]) - ax.plot(xL,yL, marker='.') + + ax.plot(xL,yL, marker='.',label=takeId) + for i,(x,y) in enumerate(zip(xL,yL)): ax.text(x,y,str(i)) + + + #if elbow_len is None or len(xL) > elbow_len: + if takeId+1 == len(set(takeIdL)): + elbow_us,elbow_db = elbow.find_elbow(xL,yL) + elbow_len = len(xL) + + + else: ax.plot(usL, dbL, marker='.') - # plot the duration skip points - if durL: - nUsL,nDbL = zip(*durL) - ax.plot( nUsL, nDbL, marker='.', linestyle='None', color='yellow') + ax.plot([elbow_us],[elbow_db],marker='*',markersize=12,color='red',linestyle='None') + + # plot the skip points in yellow + if False: + if skipL: + nUsL,nDbL = zip(*skipL) + ax.plot( nUsL, nDbL, marker='.', linestyle='None', color='yellow') # plot the locations where the hold duty cycle changes with vertical black lines for us_duty in holdDutyPctL: @@ -213,36 +291,504 @@ def plot_noise_region( ax, inDir, keyMapD, midi_pitch, analysisArgsD ): # plot the 'minDb' reference line ax.axhline(analysisArgsD['resampleMinDb'] ,color='black') - + + if os.path.isfile("minInterpDb.json"): + with open("minInterpDb.json","r") as f: + r = json.load(f) + if midi_pitch in r['pitchL']: + ax.axhline( r['minDbL'][ r['pitchL'].index(midi_pitch) ], color='blue' ) + ax.axhline( r['maxDbL'][ r['pitchL'].index(midi_pitch) ], color='blue' ) ax.set_ylabel( "%i %s %s" % (midi_pitch, keyMapD[midi_pitch]['type'],keyMapD[midi_pitch]['class'])) -def plot_noise_regions_main( inDir, cfg, pitchL ): +def plot_us_db_curves_main( inDir, cfg, pitchL, plotTakesFl=True, usMax=None ): analysisArgsD = cfg.analysisArgs keyMapD = { d['midi']:d for d in cfg.key_mapL } axN = len(pitchL) - fig,axL = plt.subplots(axN,1) + fig,axL = plt.subplots(axN,1,sharex=True) if axN == 1: axL = [axL] fig.set_size_inches(18.5, 10.5*axN) for ax,midi_pitch in zip(axL,pitchL): - plot_noise_region( ax,inDir, cfg.key_mapL, midi_pitch, analysisArgsD ) + plot_us_db_curves( ax,inDir, keyMapD, midi_pitch, analysisArgsD, plotTakesFl=plotTakesFl, usMax=usMax ) + + if plotTakesFl: + plt.legend() + + plt.show() + +def plot_all_noise_curves( inDir, cfg, pitchL=None ): + + pitchFolderL = os.listdir(inDir) + + if pitchL is None: + pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ] + + fig,ax = plt.subplots() + + for midi_pitch in pitchL: + + print(midi_pitch) + + usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] ) + + scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL ) + + minDurMs = cfg.analysisArgs['resampleMinDurMs'] + minDb = cfg.analysisArgs['resampleMinDb'], + noiseLimitPct = cfg.analysisArgs['resampleNoiseLimitPct'] + + skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, scoreV.tolist(), takeIdL, minDurMs, minDb, noiseLimitPct ) + + + if False: + ax.plot( usL[firstAudibleIdx], scoreV[firstAudibleIdx], markersize=10, marker='*', linestyle='None', color='red') + ax.plot( usL, scoreV, label="%i"%(midi_pitch) ) + ax.set_xlabel('us') + + else: + xL = [ (score,db,i) for i,(score,db) in enumerate(zip(scoreV,dbL)) ] + xL = sorted(xL, key=lambda x: x[1] ) + + scoreV,dbL,idxL = zip(*xL) + ax.plot( dbL[idxL[firstAudibleIdx]], scoreV[idxL[firstAudibleIdx]], markersize=10, marker='*', linestyle='None', color='red') + ax.plot( dbL, scoreV, label="%i"%(midi_pitch) ) + ax.set_xlabel('db') + + ax.set_ylabel("noise db %") + + plt.legend() + plt.show() + +def plot_min_max_2_db( inDir, cfg, pitchL=None, takeId=2 ): + + pitchFolderL = os.listdir(inDir) + + if pitchL is None: + pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ] + + + okL = [] + outPitchL = [] + minDbL = [] + maxDbL = [] + for midi_pitch in pitchL: + + print(midi_pitch) + + usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] ) + + okL.append(False) + + takeId = len(set(takeIdL))-1 + + db_maxL = sorted(dbL) + maxDbL.append( np.mean(db_maxL[-5:]) ) + + + usL,dbL = zip(*[(usL[i],dbL[i]) for i in range(len(usL)) if takeIdL[i]==takeId ]) + + if len(set(takeIdL)) == 3: + okL[-1] = True + + elbow_us,elbow_db = elbow.find_elbow(usL,dbL) + minDbL.append(elbow_db) + outPitchL.append(midi_pitch) + + + + p_dL = sorted( zip(outPitchL,minDbL,maxDbL,okL), key=lambda x: x[0] ) + outPitchL,minDbL,maxDbL,okL = zip(*p_dL) + + fig,ax = plt.subplots() + ax.plot(outPitchL,minDbL) + ax.plot(outPitchL,maxDbL) + + keyMapD = { d['midi']:d for d in cfg.key_mapL } + for pitch,min_db,max_db,okFl in zip(outPitchL,minDbL,maxDbL,okL): + c = 'black' if okFl else 'red' + ax.text( pitch, min_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c) + ax.text( pitch, max_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c) + plt.show() +def plot_min_db_manual( inDir, cfg ): + + pitchL = list(cfg.manualMinD.keys()) + + outPitchL = [] + maxDbL = [] + minDbL = [] + okL = [] + anchorMinDbL = [] + anchorMaxDbL = [] + for midi_pitch in pitchL: + + manual_take_id = cfg.manualMinD[midi_pitch][0] + manual_sample_idx = cfg.manualMinD[midi_pitch][1] + + usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] ) + + okL.append(False) + + takeId = len(set(takeIdL))-1 + + # maxDb is computed on all takes (not just the specified take) + db_maxL = sorted(dbL) + max_db = np.mean(db_maxL[-4:]) + maxDbL.append( max_db ) + + # get the us,db values for the specified take + usL,dbL = zip(*[(usL[i],dbL[i]) for i in range(len(usL)) if takeIdL[i]==manual_take_id ]) + + # most pitches have 3 sample takes that do not + if len(set(takeIdL)) == 3 and manual_take_id == takeId: + okL[-1] = True + + # min db from the sample index manually specified in cfg + manualMinDb = dbL[ manual_sample_idx ] + + minDbL.append( manualMinDb ) + outPitchL.append(midi_pitch) + + + if midi_pitch in cfg.manualAnchorPitchMinDbL: + anchorMinDbL.append( manualMinDb ) + + if midi_pitch in cfg.manualAnchorPitchMaxDbL: + anchorMaxDbL.append( max_db ) + + + + # Form the complete set of min/max db levels for each pitch by interpolating the + # db values between the manually selected anchor points. + interpMinDbL = np.interp( pitchL, cfg.manualAnchorPitchMinDbL, anchorMinDbL ) + interpMaxDbL = np.interp( pitchL, cfg.manualAnchorPitchMaxDbL, anchorMaxDbL ) + + fig,ax = plt.subplots() + + + ax.plot(outPitchL,minDbL) # plot the manually selected minDb values + ax.plot(outPitchL,maxDbL) # plot the max db values + + # plot the interpolated minDb/maxDb values + ax.plot(pitchL,interpMinDbL) + ax.plot(pitchL,interpMaxDbL) + + + keyMapD = { d['midi']:d for d in cfg.key_mapL } + for pitch,min_db,max_db,okFl in zip(outPitchL,minDbL,maxDbL,okL): + c = 'black' if okFl else 'red' + ax.text( pitch, min_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c) + ax.text( pitch, max_db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class']), color=c) + + with open("minInterpDb.json",'w') as f: + json.dump( { "pitchL":pitchL, "minDbL":list(interpMinDbL), "maxDbL":list(interpMaxDbL) }, f ) + + + + + + + + plt.show() + +def plot_min_max_db( inDir, cfg, pitchL=None ): + + pitchFolderL = os.listdir(inDir) + + if pitchL is None: + pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ] + + + maxDbL = [] + minDbL = [] + for midi_pitch in pitchL: + + print(midi_pitch) + + usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, midi_pitch, cfg.analysisArgs['rmsAnalysisArgs'] ) + + scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL ) + + minDurMs = cfg.analysisArgs['resampleMinDurMs'] + minDb = cfg.analysisArgs['resampleMinDb'], + noiseLimitPct = cfg.analysisArgs['resampleNoiseLimitPct'] + + skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreV.tolist(), minDurMs, minDb, noiseLimitPct ) + + minDbL.append( dbL[firstAudibleIdx] ) + + dbL = sorted(dbL) + + x = np.mean(dbL[-3:]) + x = np.max(dbL) + maxDbL.append( x ) + + + fig,ax = plt.subplots() + + fig.set_size_inches(18.5, 10.5) + + p_dL = sorted( zip(pitchL,maxDbL), key=lambda x: x[0] ) + pitchL,maxDbL = zip(*p_dL) + + ax.plot(pitchL,maxDbL) + ax.plot(pitchL,minDbL) + + for pitch,db in zip(pitchL,maxDbL): + + keyMapD = { d['midi']:d for d in cfg.key_mapL } + + ax.text( pitch, db, "%i %s %s" % (pitch, keyMapD[pitch]['type'],keyMapD[pitch]['class'])) + + + plt.show() + +def estimate_us_to_db_map( inDir, cfg, minMapDb=16.0, maxMapDb=26.0, incrMapDb=0.5, pitchL=None ): + + pitchFolderL = os.listdir(inDir) + + if pitchL is None: + pitchL = [ int( int(pitchFolder) ) for pitchFolder in pitchFolderL ] + + mapD = {} # pitch:{ loDb: { hiDb, us_avg, us_cls, us_std, us_min, us_max, db_avg, db_std, cnt }} + # where: cnt=count of valid sample points in this db range + # us_cls=us of closest point to center of db range + + dbS = set() # { (loDb,hiDb) } track the set of db ranges + + for pitch in pitchL: + + print(pitch) + + # get the sample measurements for pitch + usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, pitch, cfg.analysisArgs['rmsAnalysisArgs'] ) + + # calc the fit to local straight line curve fit at each point + scoreV = np.abs( rms_analysis.samples_to_linear_residual( usL, dbL) * 100.0 / dbL ) + + minDurMs = cfg.analysisArgs['resampleMinDurMs'] + minDb = cfg.analysisArgs['resampleMinDb'], + noiseLimitPct = cfg.analysisArgs['resampleNoiseLimitPct'] + + # get the set of samples that are not valid (too short, too quiet, too noisy) + skipIdxL, firstAudibleIdx, firstNonSkipIdx = get_dur_skip_indexes( durMsL, dbL, takeIdL, scoreV.tolist(), minDurMs, minDb, noiseLimitPct ) + + mapD[ pitch ] = {} + + # get the count of db ranges + N = int(round((maxMapDb - minMapDb) / incrMapDb)) + 1 + + # for each db range + for i in range(N): + + loDb = minMapDb + (i*incrMapDb) + hiDb = loDb + incrMapDb + + dbS.add((loDb,hiDb)) + + # get the valid (pulse,db) pairs for this range + u_dL = [(us,db) for i,(us,db) in enumerate(zip(usL,dbL)) if i not in skipIdxL and loDb<=db and db 1: + us_avg = np.mean(us0L) + us_cls = us0L[ np.argmin(np.abs(np.array(db0L)-(loDb - (hiDb-loDb)/2.0 ))) ] + us_min = np.min(us0L) + us_max = np.max(us0L) + us_std = np.std(us0L) + db_avg = np.mean(db0L) + db_std = np.std(db0L) + + us_avg = int(round(us_avg)) + + + mapD[pitch][loDb] = { 'hiDb':hiDb, 'us_avg':us_avg, 'us_cls':us_cls, 'us_std':us_std,'us_min':us_min,'us_max':us_max, 'db_avg':db_avg, 'db_std':db_std, 'cnt':len(u_dL) } + + return mapD, list(dbS) + +def plot_us_to_db_map( inDir, cfg, minMapDb=16.0, maxMapDb=26.0, incrMapDb=1.0, pitchL=None ): + + fig,ax = plt.subplots() + + mapD, dbRefL = estimate_us_to_db_map( inDir, cfg, minMapDb, maxMapDb, incrMapDb, pitchL ) + + # for each pitch + for pitch, dbD in mapD.items(): + + u_dL = [ (d['us_avg'],d['us_cls'],d['db_avg'],d['us_std'],d['us_min'],d['us_max'],d['db_std']) for loDb, d in dbD.items() if d['us_avg'] != 0 ] + + # get the us/db lists for this pitch + usL,uscL,dbL,ussL,usnL,usxL,dbsL = zip(*u_dL) + + # plot central curve and std dev's + p = ax.plot(usL,dbL, marker='.', label=str(pitch)) + ax.plot(uscL,dbL, marker='x', label=str(pitch), color=p[0].get_color(), linestyle='None') + ax.plot(usL,np.array(dbL)+dbsL, color=p[0].get_color(), alpha=0.3) + ax.plot(usL,np.array(dbL)-dbsL, color=p[0].get_color(), alpha=0.3) + + # plot us error bars + for db,us,uss,us_min,us_max in zip(dbL,usL,ussL,usnL,usxL): + ax.plot([us_min,us_max],[db,db], color=p[0].get_color(), alpha=0.3 ) + ax.plot([us-uss,us+uss],[db,db], color=p[0].get_color(), alpha=0.3, marker='.', linestyle='None' ) + + + plt.legend() + plt.show() + +def report_take_ids( inDir ): + + pitchDirL = os.listdir(inDir) + + for pitch in pitchDirL: + + pitchDir = os.path.join(inDir,pitch) + + takeDirL = os.listdir(pitchDir) + + if len(takeDirL) == 0: + print(pitch," directory empty") + else: + with open( os.path.join(pitchDir,'0','seq.json'), "rb") as f: + r = json.load(f) + + if len(r['eventTimeL']) != 81: + print(pitch," ",len(r['eventTimeL'])) + + if len(takeDirL) != 3: + print("***",pitch,len(takeDirL)) + +def cache_us_db( inDir, cfg, outFn ): + + pitch_usDbD = {} + pitchDirL = os.listdir(inDir) + + for pitch in pitchDirL: + + pitch = int(pitch) + + print(pitch) + + usL, dbL, durMsL, takeIdL, holdDutyPctL = get_merged_pulse_db_measurements( inDir, pitch, cfg.analysisArgs['rmsAnalysisArgs'] ) + + pitch_usDbD[pitch] = { 'usL':usL, 'dbL':dbL, 'durMsL':durMsL, 'takeIdL':takeIdL, 'holdDutyPctL': holdDutyPctL } + + + with open(outFn,"w") as f: + json.dump(pitch_usDbD,f) + + + +def gen_vel_map( inDir, cfg, minMaxDbFn, dynLevelN, cacheFn ): + + velMapD = {} # { pitch:[ us ] } + + pitchDirL = os.listdir(inDir) + + with open(cacheFn,"r") as f: + pitchUsDbD = json.load(f) + + + with open("minInterpDb.json","r") as f: + r = json.load(f) + minMaxDbD = { pitch:(minDb,maxDb) for pitch,minDb,maxDb in zip(r['pitchL'],r['minDbL'],r['maxDbL']) } + + + pitchL = sorted( [ int(pitch) for pitch in pitchUsDbD.keys()] ) + + for pitch in pitchL: + d = pitchUsDbD[str(pitch)] + + usL = d['usL'] + dbL = np.array(d['dbL']) + + velMapD[pitch] = [] + + for i in range(dynLevelN+1): + + db = minMaxDbD[pitch][0] + (i * (minMaxDbD[pitch][1] - minMaxDbD[pitch][0])/ dynLevelN) + + usIdx = np.argmin( np.abs(dbL - db) ) + + velMapD[pitch].append( (usL[ usIdx ],db) ) + + + + with open("velMapD.json","w") as f: + json.dump(velMapD,f) + + mtx = np.zeros((len(velMapD),dynLevelN+1)) + print(mtx.shape) + + for i,(pitch,usDbL) in enumerate(velMapD.items()): + for j in range(len(usDbL)): + mtx[i,j] = usDbL[j][1] + + fig,ax = plt.subplots() + ax.plot(pitchL,mtx) + plt.show() + + + + + if __name__ == "__main__": inDir = sys.argv[1] cfgFn = sys.argv[2] - pitch = int(sys.argv[3]) + mode = sys.argv[3] + if len(sys.argv) <= 4: + pitchL = None + else: + pitchL = [ int(sys.argv[i]) for i in range(4,len(sys.argv)) ] cfg = parse_yaml_cfg( cfgFn ) - pitchL = [pitch] - - plot_noise_regions_main( inDir, cfg, pitchL ) + if mode == 'us_db': + plot_us_db_curves_main( inDir, cfg, pitchL, plotTakesFl=True,usMax=None ) + elif mode == 'noise': + plot_all_noise_curves( inDir, cfg, pitchL ) + elif mode == 'min_max': + plot_min_max_db( inDir, cfg, pitchL ) + elif mode == 'min_max_2': + plot_min_max_2_db( inDir, cfg, pitchL ) + elif mode == 'us_db_map': + plot_us_to_db_map( inDir, cfg, pitchL=pitchL ) + elif mode == 'audacity': + rms_analysis.write_audacity_label_files( inDir, cfg.analysisArgs['rmsAnalysisArgs'] ) + elif mode == 'rpt_take_ids': + report_take_ids( inDir ) + elif mode == 'manual_db': + plot_min_db_manual( inDir, cfg ) + elif mode == 'gen_vel_map': + gen_vel_map( inDir, cfg, "minInterpDb.json", 9, "cache_us_db.json" ) + elif mode == 'cache_us_db': + cache_us_db( inDir, cfg, "cache_us_db.json") + else: + print("Unknown mode:",mode) + - #rms_analysis.write_audacity_label_files( inDir, cfg.analysisArgs['rmsAnalysisArgs'] ) diff --git a/plot_us_db_range.ipynb b/plot_us_db_range.ipynb index 16857f7..25099a7 100644 --- a/plot_us_db_range.ipynb +++ b/plot_us_db_range.ipynb @@ -2,48 +2,55 @@ "cells": [ { "cell_type": "code", - "execution_count": 25, + "execution_count": 2, "metadata": { "scrolled": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDsAACYKCAYAAAAWt1mfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Wd4XOWd9/HvmV7Uu2R1V7l3SYBlimkhEDZAQjCQBsnmSWOTbM2T7GZJstk82SS7m+xmE7IhCSaBAIFAqKbYxpZc5F5k2VaxZPUuzUijKed5MUK2sAEDki3Lv8916ZrRmVPuM34hz2/+9/82TNNERERERERERGSqsJzvAYiIiIiIiIiIjCeFHSIiIiIiIiIypSjsEBEREREREZEpRWGHiIiIiIiIiEwpCjtEREREREREZEpR2CEiIiIiIiIiU4rCDhERERERERGZUhR2iIiIiIiIiMiUorBDRERERERERKYUhR0iIiIiIiIiMqXYzvcAzkZKSoqZn59/vochIiIiIiIiIudRZWVlh2maqe+03wURduTn57Njx47zPQwREREREREROY8Mw6g/m/00jUVEREREREREphSFHSIiIiIiIiIypSjsEBEREREREZEpRWGHiIiIiIiIiEwpCjtEREREREREZEpR2CEiIiIiIiIiU4rCDhERERERERGZUhR2iIiIiIiIiMiUorBDRERERERERKYUhR0iIiIiIiIiMqUo7BARERERERGRKUVhh4iIiIiIiIhMKQo7RERERERERGRKUdghIiIiIiIiIlOKwg4RERERERERmVIUdoiIiIiIiIjIlKKwQ0RERERERESmFIUdIiIiIiIictGorO/mp68epbK++3wPRSaQ7XwPQERERERERGSiBUJh/rS7iX/44z7CERO71cLD9xSzLD/pfA9NJoDCDhEREREREZkyTNOktS/AoZY+DjX3UdXcT1VLH8fafYQj5uh+gVCE239RweyMWApTYihI8VKY6o0+T/US49TH5QuZ/vVERERERETOkcr6bipqOikpTGZZXuL5Hs4FbygYprq1n6rmfg619I0+9viDo/tMS3BTlBnLNXMzcNos/OTVowTDESyGwdVz0xkIhNnV0M3Te5swT2YhpMc5RwKQGApPCUKyE93YrOoIMdkp7BAREREREZkgwXCE+k4/R9sG2HiknUe2NxCJmNisBv922yKuX5CJXR+c35FpmjT1DlHV3EdVSz8Hm/uoau6jtsPHG8UabruV2RmxXD8/k6LMWOZkxDE7I5Z4t33MuS6ZkXLGwGkoGKa+009txwDH2n3UdvioaR/g2X3NY8ITu9UgN8lDQUoM01OjIUhBSgyFqV6SvQ4Mwzgn74m8PcM8NbqapJYvX27u2LHjfA9DRERERETkjAaHwxxrH+BY+wBH207+1HX6CIbf+jOX3WqQn+xlRloMM9NimJ4Ww8y0WApTvbjs1nN4B5OHfzhEdevAyBSUPg619FPV3EffUGh0n5wkN0UZcczJjKMoI5aizDhykzxYLBMTNHT7hqnpGKCm3UfNSAhS2+GjrsPPcDgyul+sy3ayEmSkKqQgxUtBihe3I/rvqeqe98cwjErTNJe/434KO0RERERERM5Oj394TJhxdCTcONEzODoFwmJAfrKX6WkxzEiLYUZq9LE/EOKeX28nGIpgtVr4bFkhoYjJkdZoSFLfebJKwWJATpJnTAAyY+R8F3IviVM/6C/NTaCxezAaarRE+2ocau6nrtM3+l56HVbmZMYxJyOWOZlxzM2MZVZ6LLEu+9tf6BwJR0yaegY51h4NQmo7fNR0DFDb7qOpd2jMvlnxLlJinBxo7hut7vmnG+dRNiuV9DgXDpsqfM6Gwg4REREREZH34I0Gl9FAo3800Dja5qNjIDC6n9NmoTB1bKAxIy2G/BQPTtuZqzLe7lv9oWCYuk4fR1rHVofUdAyMqQ7JjHeNXuuNEGRmWgyJXsfEvCHvUjAcoW8wSO+bfvaf6OVXm+sIRUwMA1w2K4PBMACGAXlJHuZkxFGUGceczFiKMuLITnRPWLXGRPMPh6jteGM6TPSx/FgHLX2BM+6fEuMkI95JRpybzHgXGfEuMuJcZMa7SI+PPnocF27QNV4UdoiIiIiIiJzizUFDOGLS0OXnyJsqNWraBugPnJwyEeuyjQk0ZqbHMCM1lmmJbqzn4IN4KBzh+JvHOfLzRlgAkOx1nBKCxDAjLZaZ6TGkxTpH+0ic7RSK4VBkNKToGxp5fCO48J8eZJz6um84/JbnPdWS3ARuW5bDnMxYZqfH4r2AK1bOVmV9N2sfqCAYimCzWvib62YT47TR3DtEa98Qzb1DtPQO0dI3NKZPyBviXLZoCBLvJjPuZAhyajAS77ZP6b4hCjtEREREROSiFwiFaekd4rXD7Xz7zwcJhaNVBTmJHpr7hhgOney3kBbrHA0LTg03Uk8JCyaTSMSkqXeQI20DHGsbiFaEtA9wpLV/TH+LWKeNGekxJLrtbDzSQThiYrUYXDcvA6fdOjbIGPk5NUQ5E7fdSrzbPvoTd8rz6I+NeM/YbXWdfr6wbifBcAS7zcK6e0ouyp4VZxs4DQ6Hael7I/wYjAYivSOByMj29oEAb/5I77RZxgQgGfHRSpH0kTCkvT9AVUsfpdNTLsj3X2GHiIiIiIhMaeGISXt/gKbeQZp7hmjqGTz5vHeQpp6hMdNOTlWY6mVNUTozUmNGe2u8edWOC5VpRt+Xo20Do9UgR9r62dvYi/+Uqgu71SA1xkncGcMK+9uGGe+1v4Sac46vYDhCW38gGoj0DtHcO3hahUhr39AZm+Q6bRYevvfCC5zONuyY+nVCIiIiIiJywTFNkx5/cDS0aB55bOoZHH3e2jdEKDL2Q5zHYSUrIfpN9tzMODLj3WQmuPANhfje81WERqoK/t+tiy64D3lnyzAM0uJcpMW5uGRGyuj2yvpu7vhFxeh7cD4qK5blJU7Z9/18sFstTEtwMy3B/Zb7RCImXf5hWnqH+OXrtTy56wQm0elRFTWdU/bfQ2GHiIiIiMhFYNORdl480Mr8aXHMy4rHajGwWYyRRwtW66m/n7J95PfxaBJ56rf6RZmxp4UX0edDo9UZb55KYbcaZMS7yIx3s7Igicx4F5kJbqYlRLdlxbuJc9vecsrJwpyEi7qqYFleIg/fW3JRvwcXI4vFICXGSUqMkztL8nhufzPBUDTwKilMPt/DmzCaxiIiIiIiMsUEwxEOt/Szu6GH3Q09VNR00tg9+L7OaRhEQw/jlDDEanlTOPKmkMR6crsvEKKqpZ/IW3z8MAxIjXGSleAmayS8yIx3MS3BTWaCe3TZzgt1ZQ6RyeJCn0qkaSwiIiIiIhcB0zQ53uVnd0MPexp62dPYw/4TvQRGGm8mex3Ee+wYgAlYDPjQ4mlcOy+dUMQkHDEJhUceIybhSOTk9lNfN095LWy+aZ83HRM+fXvfUGg06DCAVTNT+PDSbDLjXWQluEmPc73nPhAicvYulqlECjtERERERC4gXb5h9oxUbOxp7GFPQw/dI0tUuuwWFkyL566SPBblJLA4J4HsRDc7j/eMLndpt1m4syTvnH/YOXXJTbvNwpfXzLooPnCJyPmhaSwiIiIiIpPUUDDMgaZedh3vYU9jL3saejje5QeiFRqz0mNZlJ3AopwEFuXEMzs9Fpv1zNURk6F0fTKMQUQubFp6VkRERETkAhKOmBxrH2D38R52j1RsVLX0Ex6Z+5EV72JxbsJouLFgWjxepwq1ReTiop4dIiIiIjJpTIZv9M/3GE69/tLcBFr6htjT0MOuhmiwsa+xF99wdPWRWJeNRdkJfG719GjVRnY8aXGucz5mEZELlcIOEREREZlQlfXdrP1FBcPhCDaLwdeunU1BSgzhiEnENMc8nnwOYdMkEnnT66PbTnn9lP3eeB4xxx7f1j/EpiMdREywGgZls1JIi3VhsYBhGFgMsBjGKT/R5RqN0e3R44wzvG4d2XbqvhbL2HM1dPn5+aYaQmETw4B4t320z4bdajA3M45blmWzOCdatVGQ7NWqIyIi74PCDhERERGZMDXtA/zLs4cYGlkZZDhs8t1nq8bt/BYDrCPBgtVyMlywWowx232BkyuBhE2THXXdeJ02ImY0GDHNk4GKaTK6PWJGfw+PvD4eM8BNEzLj3Xz5qpkszk2kKDMWp836/k8sIiKjFHaIiIiIyLgKhSO8UtXGbyvq2XSkA6sRDSUAbFYL//yheczLjMdiGQklDAPLyKPVcvK5xcJp28YGG9GqjLPx5pVAHvzUyvc0lcU0Tw9DxgQjkejjqeFIxDTZ29jLl363i1A4ev37b56vBp0iIhNIDUpFRERELgLnol9Fe3+AR3c0sK6inqbeITLjXdyxMpePrsyhoWtQPTsmQd8SEZELnVZjEREREREA1h9s5XPrKgmFTexWC/9z9zKumJ02Luc2TZPK+m5+U17Pc/ubCYZNLp2RzF0l+awpSnvLZVBFRETeC63GIiIiInIRO9Y+wIsHWnnxYAu7jveMbh8OR/jkr7aTHuekKDOOuZlxFI38FKR4sZ5lU0xfIMSTu0/w2/J6qlr6iXXaWFucx50lecxIi5mo2xIRETkrCjtEREREpoBIxGRPYw8vHmzlxQMtHGv3AbAwO547Vubw+M4ThMIRrBYLt6/MoX8oxKHmPl4/0kFopHOny25hdnosc7NOBiBzMmKJddlHp2DkJLrZebyHxysb6Q+EmJMRy3f/YgE3L8nC49B/LUVEZHLQXyQRERGRC9RwKEJ5TScvHmjhpYOttPUHsFoMSgqTuLs0n6vnppOV4AbglmU5Z+wXEQiFOdI6wKHmPg4193OouY/n9rfwu20No/ukxzppHwiMrmZitcAHF2Zxd2keS3MTz7pJqIiIyLmisENERETkAvBGZcXC7Hh6B4O8eKCVV6va6A+EcNutXD47lWvmpXPl7HTiPfbTjl+Wl3jGpphOm5X50+KZPy1+dJtpmrT0DXGwqY9DzX08vaeZ1v4AAAbwl6un89fXzpmwexUREXm/FHaIiIiITHJbjnbw8V9tIxg+2Vg+2evgAwsyuWZeOpfOSMFlt47b9QzDIDPeTWa8m6uK0imdnjJm2dYr56SP27VEREQmgsIOERERkUmqpn2AhyqO89DW+tGgwwBuX5nLt2+ef9bNRN+vZXmJrLunRMumiojIBUNhh4iIiMgkEgpHeLmqjd+W1/P60Q7sVoPigmS21XYRjkQrK25dln3Ogo43vNU0GBERkclIYYeIiIjIJNDeH+D3247z8LbjNPcOkRXv4mvXzOIjK3JIi3WN9uxQZYWIiMg7U9ghIiIicp6Ypsn2um5+W1HP8/ubCYZNVs1M4Vs3zePKOWnYrJbRfVVZISIicvYUdoiIiIi8g/GuqhgIhHhy1wkeqqinqqWfWJeNu0ryubMkl8LUmHEYsYiIyMVNYYeIiIjIWzBNk2f3NXPfI7sJhk2sFoNbl2YzKyOWGKeVGKedGJdt9LnXaSV25PHUqgyIBiZ/3ttEc+8Qm450MBAIMS8rjn+9ZQE3LsrC49B/y0RERMbLhP1VNQwjB/gNkA6YwM9N0/x3wzD+CbgXaB/Z9R9M03x2osYhIiIicrZM0+RYu4+ttZ1sreliW20XLX1Do6+HIyaP7Gg4q3O57BZinDZinDYsBtR2+Hlj4djVs1L48ppZLMlJwDDObaNRERGRi8FEfoUQAr5qmuZOwzBigUrDMF4aee1Hpmn+YAKvLSIiIlPIRDXnjERMjrQNjIYbW2u76BgIAJAa66S4IInMBDe/2VJHKBxdCeU3n1rJ7PQ4+gNBfIEwA4EgA4EwA0MhfIEQ/YFQ9PlwiP6RbfubekeDDqsBKwuSWZqr/hsiIiITZcLCDtM0m4Hmkef9hmEcAqZN1PVERERkaqqs7+Zjv6ggGIpgtRh8tqyQedPiiXVFqyZiXTYSO3cT21KBfXoZRm7xGc9RUdNJcUESbod1JNjoZHtdN12+YQAy411cNiOZ4sJkiguSKEjxjlZdXDcv47SwJd5jf1f3sPaB6D3YbRZKCpPH4Z0RERGRt2KYpvnOe73fixhGPrARmA98BfgE0AfsIFr90f12xy9fvtzcsWPHxA5SREREJqW/+v0u/ri76S1fX2pU87DjO9gJMYyde41vUuOcS6wr2k8jHDHZ29hD5E3/5clOdFNckExxYRIlBcnkJLkndEqJlo4VERF5/wzDqDRNc/k77TfhnbAMw4gBHgfuM02zzzCM/wbuJ9rH437g34BPneG4zwCfAcjNzZ3oYYqIiMgk9OSuEzy1pwnDAAtgs1r499sXk5/iZWAoOk0kv+IpnHVBDMBJiE9kNfJ8Yln09UCQY20Do0GHAVy/IIOv3zCXaQnuc3ovWjpWRETk3JnQsMMwDDvRoGOdaZpPAJim2XrK678AnjnTsaZp/hz4OUQrOyZynCIiIjL5PFRRzzee2k9JQTKfv3IGexp6Tq+KqHoWGv4IGGBYsFgdrLn+FtbkLBrd5c1TSD59WeE5DzpERETk3JrI1VgM4JfAIdM0f3jK9syRfh4AfwHsn6gxiIiIyIXFv2sX/m3bedGexf+tNrhqTho/XbsUl93KZTNSxu6843/hz1+FzMVw+d9B637IXwU5K8fstiwvkXX3lGgKiYiIyEVkIis7LgXuAvYZhrF7ZNs/AB8zDGMx0WksdcBnJ3AMIiIiMg7Gu9/E7rbd7GjdwfL05SxOWwyAf+dO6u+6GzMcZq7VxgfvuoJPXPdJXHbr2INNE179Lmz8Psy8Bm57EBxemHXt6C47W3fyUv1LXJt/LYvTFmsKiYiIyEXmnDQofb/UoFREROT8GAqGefFAC1/7w15CkQgOm4V195S8r+BgR+sO7n3xXkKREBbDwsqMlcRZvdz0L5tJaxwAot+IPLrK4JnVHh645oHRQIRwEJ6+D3Y/BEvuxJ/9Sfw7duJZuQLPkiUAPF79ON8q/xYmJk6rc+zxIiIickGbNA1KRUREZPKKREzaBwIc7/JzvNNPQ7ef411+Grqij619gTH7B4IRNh/teM9hx5YTW/i7TX9HKBKKXt+McKTtEJ97KkBa4wAhC1gi0Waky46YPLNyiB/v/DH/ceV/EGda4A+fgKMvweq/xe9dQ/0nPgWhEIbTSfzPfsR/hV/myaNPjl4vFAmxo3WHwg4REZGLjMIOERGRKc40TZ7e08QrVW0keOyYJtFwo8tPY/cggVBkdF/DgMw4F9lJHlbNTCU3yUM4YvLfrx1lOGxiAg9vrWdWegzXzss466VaG/oa+P6O7/Naw2ukedKwW+xEzAgLGgz+9jUH1oZOfj7/RhZfu4ql/ZX86eAT3LQ5yHd+HWbr7G18ce8ark42uGl3LYHYWwlvNul98vMQDAIQCQzxwG/+imdK4YbCG1hfv55QJITdYmd5+jt++SMiIiJTjKaxiIiITFGDw2Ge2n2C/9l4jNoO/+h2j91KQaqXnEQPuckecpI85CZ5yEl0My3RjdNmPe1c0Z4dHThsVh7d3sCRtgFW5ifx9RuKWJST8JZj8Af9PLDvAR488CA2i43PLvwsd829i4OdBzn250co+v5TGKZJ0LBS9Xff5yMf/wAQ7enR/LOfkvfw6xhEp7V0eyBhEAwzuoSsPzMRV3sfRiiMAWy9JpfV9/+MgviCM/YEERERkQufprGIiIhcpGraB3io4jiPVTbQNxQiNcYxGhhYDfj8ldP5/BUz39U5T23w+clL8nlkRwM/fLGaD/10MzcvzuLrCwdI7dw2uhrK7rbdPHToIbY1baN7uJsbC2/kvmX3keZJA2DW8RCun7xEZORLF5thcuVQ4+j1FqctJjt9Be3GZjBNDEzi7V4Mvx8DCBvw5KxeDqwxKD4Rw3WNyRS/3EjqrQ1QVsDitMUKOURERC5iCjtERESmgFA4wstVbTxUUc+mIx3YrQbXzc/k7tI8LMDaX24lGIpgt1koKUx5x/O9HZvVwtriPG5alMW65zdhqfw3kg79mbARocrl4dElN/HHlnJMTAwMvlnyTW6bfRsA/p276PjZz/C9/jrd7ni8lgB2IlgcDjwrV4y5jifTxLBEMCMGhsPJtK/8Da3/8j3Cw0OELHAg1+BotoWrb/gU82fcTf3dd9HwhS+ScOstxN9442jDUhEREbn4KOwQERG5gLX3B3hk+3Ee3nqcpt4hMuNdfPXqWXx0ZQ5psa7R/dbdUzI+S8cGB6FuMxxdT+yxl7mr8wgVsS6+5Ulgk9tNh80KzZujzT8ACwa9g90M7ttHz+NP0PPII2CaRAyDHy/9CF/64ELmtBwds5oKADt/i2fX35N762z8ybfhWXUFniVLcM6axbFXn+J7w09Rk2XitNgpzSrFGuMl9YtfpPH/fJ6eh39H7+NPkPvgrxR4iIiIXKQUdoiIiFxgTNNkR303vy2v57n9zQTDJpfNSOEfb5rHVXPSsFktpx1z6jSUd3kx6KiGo+vh6MtQv5kGQmyMiWVDYjo74vIImhFiIxEuHRziku5hjgXy2eDsYk69ycL6EMt++CPqAj8ae1oM/r4QlnzoSuDKsdfb8H147bsw/So8H/k1Hmfs6MueJUtYsGQJf9d282k9OQLVR6Ihi2lihkL4t21X2CEiInKRUtghIiIyyUWbg3ayOCeBuk4fvy2vp6qln1iXjTtL8rizJI/pqTHjd8GhXqjZEA04jr1CsLeB3S4nG5KnsTG/kNrwAACF8RmszS6jLLuM+SfaCKx/Gl9DiBk7D3NDV3SFF3+sk5iZduJiT2C1hTixJYlIxMBqs1B4+Zt6aoRD8OxXofJBWPQxuOk/wWo/4xDP1JPDs3IFhsOBGQxi2O2nTYsRERGRi4dWYxEREZnEKuu7ueMXFWOWhy3KjOPu0jw+tDgLj2McvreIRGDPw7DvMfB1QNtBugyT1+MS2ZicxRaG6I8EsFvsrMhYQVl2GavilpBw8AT+8nJ85RUM19YCYE1IwFNSgrO4mBccOXx/bz/9gTBxxiClxj4+2L2F5b11xCV140kJQfZymHkNxKRD+U+iVSSrvgpXfmN0Ksy74d+1K1rR8eZpMSIiIjIlnO1qLAo7REREJqmW3iH+8qFKdjf0jG5bW5zLt2+ej/EegoAxhv1QuwEOPweHnsYc7KLaYWeD282G1Bz2hQcwMUlxp1CWXUZZagmLm5yEd+zCV17B0MGDEIlguN14VizHW1KKt7QE5+zZGJaT02i6fcPc85vtVNZH78FiwFevnsnn5/ig+kU48gKcqDw5LosdPvks5Kx8f/cnIiIiU5KWnhUREblAdQwE+Nlrx/htRT2hcASrxcA0TRw2Cx9emv3eg46+Zqh+PvpT8xqD4QBbYxPZmJzARsNFqy3634L5Nif/Z+5aVvVnkXawBf+ftzK460nahofBZsO9aBEpn/sc3tIS3AsXYjgcb3nJRK+Df/jAXO74RQWh8MhqMNNTIWsWZC2By/8WXv5n2PRDwAQzAnWbFHaIiIjI+6KwQ0REZJLo9Qf5+aZj/GpzHUPBMB9ems2XrpxJ+0Dgva2kYprQvBuqX4hWcDTvpslmZWPyNDZMn8f2UA+BSBCP1cqlfWGuqvGx4LiBYZ2P/wcPEhkYoANwzplD4h134L2kFM+yZVi83nd1X8vyEnn43rdZDWbWdVD+XxAeBqsD8le9q/OLiIiIvJmmsYiIiJxn/UNBfrW5jl9sqqF/KMSNi7K4b83M99Z0NDgYbS5a/RxUv0Cov5m9TicbMgrZ6LRzNBidTpIbm8u1rqVc2hxL2sFWBss3E+7qBcCek4O3NDotxVNcjC0paTxv98watkUrOvJXqapDRERE3pKmsYiIiExyg8NhflNex882HKPbH+Tquel85epZFGXGvbsT9bdEp6Ycjk5P6Y0EeD02gY3pObyeHktfeAibEeAy52w+5ctids0wlp37CdY/Fh1HcjLe0sui4UZJKY7saeN/s+8kZ6VCDhERERk3CjtERETOsUAozO+2Hucnrx6jYyDA6lmpfOXqWSzKSTi7E5gmNO8Z7b9hNu3iqN3OxqRMNhbMYneohwgmGSbc4VvE8gYnyQdOEDy8HUwT0+vFuWIFSXfcgaekFOesme+/4amIiIjIJKKwQ0RE5BwJhiM8VtnIf758hKbeIYoLkvjvO5eyIv8spokEB6F2Y7T3RvULBAaa2OZysyE1j00zi2gK+bCGTa7qjOW7bQXkH+nDcvAoBDdj2O3YFy8m/otfwFtainv+fAy7feJvWEREROQ8UdghIiIywbbVdvLrLXVU1nfT0hdgcU4C3791EZfOSH77ior+lmhz0ern4dirtJjDbIpNYGNaJhWpLgKRIDM7Q9zWlc3Ceog92AD+GjBqcc2di/fjH8dTUopn2VIsbve5u2ERERGR80xhh4iIyDgLhMLsa+xla20XLx1sZXdDtCmoAfz99XP4TFnhmUMO04SWvdHeG9XPEW7axX6ngw2JGWwqKKQq1E9at8mqA/Dd5nSyDndh6ekHqnHk5+P50IfwlpTiLV6JNeEsp8SIiIiITEEKO0RERN6nweEwu453s7W2i621new63kMgFAEgJcYxup/FgFDEHBt0BIei01NGVk/pG2hii9vNppRsNk2fSbh/iIW1cEurjdk1XlxtvUAXtlQrnrLLo+FGaQn2zMxzfNciIiIik5fCDhERkXepfyhIZX0322q72Frbxd7GHoJhE4sBc7PiWFucR3FhEivyk6jt8LH2gQqCoQh2m4WSwmTob4UjL8Dh5zFrXqWWYTbFxLMhNY1DMTZmNoRZfiDE9xocJJ4IA2CJHcKzcuXokrCOwreoDhERERERDNM0z/cY3tHy5cvNHTt2nO9hiIjIRWpjdTt/3HWCUDhCfZef/Sd6iZhgsxgszI5nZUEyxQVJLMtPJM51euPPyrouju4r57LIDqa1vsZw0052uFxsTExls8ONu3GQBXURVjS6yGkMYAlHMBwO3MuWjlZuuObOxbDpOwoRERG5uBmGUWma5vJ32k//axIRkUnvT3tOcLR1gNWz01iWl3hOrlnX4WP9oVae3HWC/U19o9vnZsbyhStmUFyYzJLcBDyOt/huCe+QAAAgAElEQVRTGhyCuk1w+DmWVb9Arq+JTW4PG5MyOOHJZ2ZtiEUb4QONfuzDEbBYcM2fiffaErylJbiXLMHicp2TexURERGZahR2iIjIpLW1ppN/fuYAB5r6AfjPV45y/YIMblqUxYr8JJJjnON2rXDEZOfxbtYfauXlQ20cbRsAoj03DMAErAbcsDCLz18x48wnGWgbXT0lcuxVDhpBNsbEsc+SiLsjiwV1JnceH8I7GO3nYS8sIOa2S/BeUopnxQqscXHjdj8iIiIiFzOFHSIiMunsqOviR+ur2Xy0E6/DOho2mMCLB1p5dl8LADPTYlhZkERxYXQaSXrcu6uE6B8KsulIB+sPtfJqVRvd/iB2q0FxQTJri3NZU5ROW3/g9J4bbzBNaN0/snrK8/iadlLudrLVmkxPbyoFtUEW1Jtc0eeL7p+WTPx1q/CWluIpLsGenjYu75eIiIiIjKWeHSIiMmlU1nfz4/XVbDrSQUqMk89dPp25mbF88sHto2HDrz+5EpvVMtIctJMddd0MBEIA5Cd7KC5IHglAkshO9Iyet6Kmk5LCZNJinbx8qJWXq9qoqOkkGDZJ8Ni5YnYaa4rSKZuVQuyb+m6cevyyLDfUvT66espxXzOv29wc70vGWR9iXn2EnI7oceFYD57ilSReWoanpARHfr6aioqIiIi8D2fbs0Nhh4iInHe7G3r40UvVbKhuJ9nr4C9XT+fOkjzcDivwprDhTT07QuEIh5r72VrbydbaLrbVdtE7GARgWoKbGWlethzrJBSO/r1746/e9FQva4rSuaoonaW5Cdislrce4ED7yOopzxE89io7zRAHBuLxt7nIqQsxoxksJoQdVsxFc0kvW0Ns6aW4iuZgWK3j/n6JiIiIXKwUdoiIyKS3r7GXH62v5pWqNhI9dj67ejp3l+a9ddPPsxCJmBxu7R+t/HjtcDv+4fDo61fMTuWbN86jIMX71icxTWg9EK3eOPw8HSd2sWPQS2tnLDGNBjMaIzhCELGAf2Y2SZetJmP1NbgXL8bicLznsYuIiIjI29NqLCIiMmntP9HLj9dXs/5QGwkeO3997Ww+fkk+Mc73/2fJYjEoyoyjKDOOj1+ST2VdF3c8sJVQODoN5gtXzjxz0BEKjKye8jyRw89xuKWDo11eQq1ushvSyRuCPEx6suMYvnEp0666icSSy7DGxLzvMYuIiIjI+FLYISIi58zBpj5+vL6aFw+2Eu+287VrZvHxS/JP65ExnpblJ/HwvSVnngbzxvSU6ufp2/caB1ot9LS5SThhIWEgiRlAT5KN/tKZxKy+hhlX/QX21NQJG6uIiIiIjA+FHSIiMqEq67t5ek8Th5r72FrbRazLxl+tmcUnL8snbgJDjlMty0uMhhxvTE85/Bzhvc9yfG8VDR1urM0OkrpjSQCsHoO2onSGSkuZe+3tFM1ceE7GKCIiIiLjR2GHiIhMmKf3nODLv99NZKQ91EeWZ/P1G+YS7z43IQcwMj3ldSL7/0z/pheoq/cx2Oogtt2KhXhi7VBb6KH5+nnkXXEji0tuwmF3nrvxiYiIiMi4U9ghIiLjrrHbz3+8fIQ/VDbyRh9sqwF5yd5zE3T4OjAPPcfga4/TWbmX9hYLjlYb1oiBxeKmaZpB9/XZJF12OUsu/whLkmdM/JhERERE5JxR2CEiIuOmrX+In75ylN9tawADbpifyUuHWkebg5YUJk/MhU0Ts/UggdcexrfhZdqOtBFqc2AbNgAnLelwtMSNbeVSZl1+M9cUXk6MQ41FRURERKYqhR0iIvK+9fiH+dmGGh7cUkswbPKR5Tl88coZZCW4qazvPnNz0PcrFCC4/U/4nn+cvsq99J8IYxm0ANCS4GTfXIPuBTlkrrqaS+Zex3XJc7EYlvG7voiIiIhMWgo7RETkPRsIhPjlploe2FTDwHCIDy3K4r41s8g/ZWnX0eag4yDUeBT/Mw/i27SBvuo2Iv3R8KLHC/sKrBwudOAqXsmyxddx+7TLSPOkjct1RUREROTCorBDRETetaFgmN+W1/Nfrx2l2x/k2nnpfOXq2czOiB3X60QGBvC/8hS+9U/h211FoC0Yvb4D9uda2Vds0D43ndnLrqYsezWfyFiOw+oY1zGIiIiIyIVHYYeIiJy14VCER3Y08JNXjtDaF2DVzBS+ds1sFuUkjMv5zWCQwV2V+F54DF95OYN1XRCBsMXkaLaFXWUWDhRYiF+4nFV5q/nLnDIK4gowDGNcri8iIiIiU4PCDhEReVuV9d2UH+tgKBThyV0naOweZEV+Iv9x+xKK32fDUTMSIVBdjW/Dy/hefR7/wRrM4QgmJq1psHWlhb35Bq2FCRQXrKYsp4yvZl1CnCNunO5ORERERKYihR0iIvKWXjjQwufX7SQUia4fW5ji4cFPrmD1rNT3XE0x3NCAb8sWfK+9hH97JeGBIQD6EyLsmWelosDCgVyD7MxZlOVczt9kl7EgZQFWi3Xc7ktEREREpjaFHSIiMsax9gGe39/CCwda2NvYO7rdYsAty7K5fPa7a/oZ6ujAV7EV35bN+DdvJNjaCUDQE6Em12TDdDs78w38CR6KM0u4Nmc138kuI8ObMa73JSIiIiIXD4UdIiIXOdM0OdDUxwsHWnh+fwtH2gYAWJyTwF0leTy6o4FQOILdZqGkMOUdzxce8OHfvg1/RQW+zZsJHD0WvY7DpD0rzPYrrbw0w0ZTkpVMTzpluVdwf3YZKzNW4rK5JvReRUREROTioLBDROQiFI6Y7DzezfP7owHHiZ5BLAYUFyRzZ0ke18xLJzPeDcDNS6ZRUdNJSWHyGZeQjQwPM7h7dzTc2FLO4L69EI5g2AwG04Y5VArPz3SyO9PAsDhYnLqQ23IuZ3X2amYkzFBzUREREREZdwo7RESmuMr6bipqOlmel8hQKMLz+1t46WALHQPDOKwWVs1M4ctrZrKmKJ0k7+nLti7LSxwTcpjhMEOHqvBXlOMrr8BfWYk5NAQGGGkGTQuGeH26jT8XOBi0u4mzebk0u4x/yVnNpVmXkuAan5VbRERERETeisIOEZEpbFttJ2sf2EowbI5u8zisXDEnjevmZXD57FRiXfa3PYdpmgzX1UUrN8or8G/dSrg32svDkepiaPoAe3LDPD3dyeFYK+BlRmweH8u7irLsMhalLsJm0Z8bERERETl39L9PEZEpqKqlj8d2NPLwtuNjgo4PL5nGdz+8AJf97Vc2Cba1jYYbvvJyQi0tANiSYrDnmjSk+Hml0MbLKVZ8FhcOw8aKjOXcknslZdllTIuZNqH3JyIiIiLydhR2iIhMEV2+YZ7afYLHdzay/0QfdqvB0twEdh7vIRIxsdssrC3JO2PQEe7rw799O74t5fgqKhg+Fm0qao314imMp2+OjW0ZvbyYEWaf2wnEkeZM4PrcqyjLXk1xZjEeu+cc37GIiIiIyJkp7BARuYAFwxFerWrj8Z2NvFLVRjBsMn9aHP9041xuWjyNJK9jtGfHqQ1GI4EAgzt3Ris3KioY2r8fIhEMlwvP7Gw812RzJKaGVzKH2Ojx026zYhDPgsQ5fCFvDatzVjM7cbaai4qIiIjIpKSwQ0TkAnSwqY/HKht5avcJOn3DpMQ4+HhpPrcsy6YoM27MvsvyElmaHcfQgQN0/M8f8FWUM1i5E3N4GKxW3HNnknLDEnyxx9nirmVDTD/b3S6ChocYq5NLsi5ldd5VXDbtMpJcSefpjkVEREREzp7CDhGRSe6NyoyizFhqO/w8VtnIoeboNJU1Rencuiybslmp2K2W0WNM02S4pmakcqMc/9ZtRPr7AXDOmkniDatwpvg4YtnJs5adbPS4qXHYgQTyPRnckX8NZdmrWZK+BLvl7RuYioiIiIhMNgo7REQmscr6bj728wqGw5HRbQuz4/nnD83jxoVZJJ6yVGywuflkuFGxlVBbGwD27Gzi1lyOJ9dF0FVNed92Ntr2s9njpt9iwUYCK1IXcVv+NZRll5Ebl3vO71NEREREZDwp7BARmaSaewf5+yf2jgYdBvCJS/L5x5vmARDu6aHvhdei4UZ5BcN1dQBYk5LwlhTjmT8dT1I3dd0beKb392ywuNhrODATPKTYY1mTvZrVeWsoySrBa/eep7sUERERERl/CjtERCaZUDjCg1vq+NFL1QyHI9gsBqZp4iXETaEG2n7wHL7yCoYOHgTTxOLx4F6xnISP3IY330NkaCfb619ig+8JNppuWm02SIxnXmw+nyu4nrKc1RQlF2ExLO88GBERERGRC5DCDhGRSWTX8W7+4Y/7OdTcxxUzk/jmDIO+LVvwbSknoe4wxh+DdNrteBYtIuULn8e7dD5uVwstR55mfct32XAYtrlcBDwGHksSpenL+XzB9Vw27TJSPann+/ZERERERM4JhR0iIpNArz/I958/xOaXt7Gqt5Zvm03EvLSPIZ8Ph2EQWzQH71134S0twVOQhFn/MnuP/JEN2/4fGz1OjjgcEO8mx5nEbXlrWJV3FcvTl+OwOt754iIiIiIiU4zCDhGR9+mN1VJKCpNZlpf4ro4NNDay5dHnqXnxNW5orubOQHTFFHteLt4PfhBvaSmeFcuw9VfRW/UnNu7/Ehv39vK620Wv1YotIY6lCbP52vQPUJZzOflx+RiGMRG3KSIiIiJywVDYISLyDs4UZgTDEToHhtlU3c7Xn9xPKBLBYbOw7p6Stw08Ql1d+LduxVdeQc/mLXCikQzA44kn5rJLyLyyDG9pCfZED+aRlzhW9Ws2PvwFNjhgj9NJ2GOQaE1mdeYllE3/AJdkXUKsI/YcvRMiIiIiIhcGhR0iIm/jpQOt/OW6SsIRE4sBmQlufIEQPf7gafsGghFerWobE3ZEfD78lZX4tpTjq6ggUFUFQNDlYWdiAQeXrmDlLddy882rsPXUEqh6hq0v/pQN/bVscjs5YbdBnIs5nkw+nX8tZflrmJ88H6vFes7eAxERERGRC43CDhGRMxgKhvnl67X8eH014YgJQMQEj93KlbPTSIlxkhLroHcwyI9fqmY4bGIC//taNd7D+7huuBFj1w4G9+yBUAjDbse9dCkDd97DT3sT2WikcPOSTL6xeIDhuj/xxwfuY2O4j61uF4MWC674OEqSF/Dp6R9kVc5qMrwZ5/cNERERERG5gCjsEBE5hWmarD/Uxv3PHOR4l5/igkR2N/QSCkew2yx875aFYyo3zEiEkkgnjS9vJOvYfhwH92AfDuDHoGtaARkfXcvA/KWst6azu3WQvccauDXpIJ/I/DP7uvbxmU0GVU4HuCDLls6Hsssom34DKzJW4LK5zuM7ISIiIiJy4VLYISLvmX/XLvzbtuNZuQLPkiXRjQ3boG4T5K+CnJXnd4Dv0tG2fr719EE2HelgZloMD326mMtmpozp2bE0N4Hh48fxlVfgqyjHX7EVd3c3MwFHYSHeW29hcMESfjuYwkMHuwn6IuRta2SV7QmKvZXkZnfxisfJY4YVS4yTxTF53Ff4AVbnX8P0hOlqLioiIiIiMg4UdojIe+LftYv6u+6GcBjD6ST3V/+LJyUIv/oAREJgc8HH/zTpA4/K+m42VLdR0+7j+f0tuB1WvvnBudxVmofdagFgkTfMjIEqfD8v51h5BcGmJgBs6enElJXhKS3BW1qKPT09etJwiG80bOVW73O8VPsKe10BnnE5CRkGXjOO1RlLWT3zL7g0exXxzvjzdesiIiIiIlOWwg4ReU/827ZDKASAGQxGKzzm9EJkpHFneDha4XGew443qjIW5SSQHuukqXeI5p5BmnoG2Xeilw3V7Yy05ODqojS+d8tCEgji37CBzopy/OUVBI4cAcASF4e3eCVJ93wab0kpjoJTlnkd6mV476PsqHqMTR172OAwaLDbIdEgPpCMrWsuQ4PL+Y87bmNlQer5eTNERERERC4SCjtE5D3xrFwx+tyw26O/h3aO3Sl/1Tke1ViV9d187OcVDIcjp71mGOB12IiYYA+HmNtdx1/s3k7/cz+kbd++0YoVz7KlxN10I96SUlxzizCsp6yC0lVLx8En2HTsGTb4Gyh3OfFbLDi8TorjZ3D39BspK7iW5k73aUvXioiIiIjIxFHYISJv69R+Fad+UPcsWQJWK4bdHp3CsmQJvPgEGFbIXARNu8AZex5HDuXHOkaDDgO4YWEmH78kn4wYOwlNddS88BoHX1vPnI5aXOEgpsUKC+aTfO89eEtKcS9ZjMXpPHnCSJhI3WYOHfg9G09sZgMDHBh5PT0miRvSV7B6zq2szCrBbXOPHpYVg0IOEREREZFzSGGHiJxRIBTmBy9W88DGGgCcdgvr7ikZ/dAeCQQgHMYMh3HPnx89qPp5KFgFt/4K/n0RvHw/fOzh83ULhEbmp1gwyR/q5N6uZpL/7UF827Yx0NuLA1iYV8CJsutIW30ZC264AmvsmwKaoT581c9ScegxNnTtZ5PDQofNiuGEha5cvpR/NWUzb2ZW4iw1FxURERERmSQUdojIGIFQmEd3NPJfrx6luXdodHswFOHg+s3khZrwrFyBIzt79LVQVxd22wB0VMPyT4MnCS79Erzy7ejqLOehb4e/qYUTjz7BN5sOs6TjKK6eDgAGszKJveoqvKWleEuKsaWmMu/NB3fX0bDvETbUPsfGwSa2uxyEDINYj4tLE4som3Uzl+ZfTZIr6Zzfl4iIiIiIvDOFHSKT1Lp16/jx3/4tPzhxgq9lZ3Pf977H2rVrJ+x6gVCYP4yEHHG1VdweaiJz9SV8vdogGDaZ23OcZT/8Ke2RCIbTSeZ3vjN6bKijA3vfa9FfZl8XfSz+HGz9Oaz/J/jEn6NNMsbZqUvfOqdPx79tG76XnsK3bQfDzT18CojExhN/aSnekhK8pSXYc3NPr8CIhAkeL2fX/ofZ2FzOBgapc9gBKIhJ5s6sUsrmfITFGcuwW+zjfh8iIiIiIjK+FHaITELr1q3jM5/5DPcl5LKv5DauOb6Pz3zmMwDjHnhU1HTwy9fr2FXfTYdvmA/ZO/ns5v/GiEQwdj7Lb+7/IXduGeTDRgtGOAyMrL6yY/voOcIdHVD7HKQWQWJ+dKMzBlb/DTz7NTi6HmZePa7j9u/axfFPfBJzePjkRtPEsJp40gLELg6yoeB6bvnC57EkZIM7CSyWaKVJ3SbIWkpXfxOvH36cDT2H2OKwMGCxYLfDCm8BtxdcR9msD5MTlzOu4xYRERERkYmnsENkErrlrruYkzmbtbd/hyGbHVcoyMbff515d90F4xR2tPQO8cOXDvPojkYgWnjxzQ8WcdOBl2g/JdSY2XSEy2cv4ZW9OZSMHGvY7bQn23mjxiHU3ADHy+GSL469yNKPQ/lPYP23YPpV0bDh/WrYBkdexP9KLWYgMLrZkz5M6rw+3MnDGCMLptzGo/CLR6O/WOyY7iQOh3rY4Hay8aCbfU4HpmGQ4nZzTdJ8yubcSmneGjx2z/sfp4iIiIiInDcKO0QmoULT5IO5CwhY7WBYGLba+FnuAp5pqqL53Z6suRluvx0eeYRIWjobj7Tz8NbjvFzVRnikgSeABRgMRvAsXTq6zbDZ8KxcwfWRVP7mUAsA1uQkBu//Mv+z/ru8EW007HuRBHsIZl0/9to2B1zxf+GJe+DAE7Dg1nf9XoxRXw4P3gBmGE+PHUgZGaeF1DuuxTMrB/P1HxEKBdntdrN70YdYkDATv6+Njd0H2Oirp81IB2B+IMDn3AWUXfEdilLnYzHGIYgREREREZFJQWGHyCTkyMsj7fg+bGaYIBYspkna8X048/Le9bkqv/ufvEw+vf/6OBszi2joGiTZ6+AzZYUsyIrnK3/YTTAUwRFzlHbrMarjF/PGYqtpf/3XeJYs4Wp/kLjIyHQRi4XtqX04BoOj12hrqIL5yZC9/PQBzL8FNv87vHI/FN0UDUDei2E/PP0lMKNVJ44YEzDwXnopKV/4fHTpW+DXbYUcPPIk67OqCLa9Dm2vA+Cxebg0bSmrDr/KKp+PFGxw/TcgbeF7G4+IiIiIiExaCjtEJqHvfOc7xNx9N3v3rmfvkuuZVr+HlS3VzP3Nb87+JG43O5Ly+ejafyVcYgHDYN6Bffznrj9xzc4Xcdqicz3S41388eBmnmp7gMdrYfsuKz8YOUWoox2AeI+dVdnRqR2Rnl6Wpy2jZmQGSU+MQXpHD8y8FizW08dhscCaf4R1t8LOX8PKe8e8XFnfTUVNJyWFyaPL2p7G1wm/+2h0tReLHcwIvnYvAKl/9Ve450fXU2nqGeS7++KYV1REMLQfAAODm2fczDdKvoHdaocFIz078ledl1ViRERERERk4insEJmE1q5dyzpg7+O7AahPSGXgN795d81Ja2p49v51hEcCCEskzAc8Pm58cR3YToYSy/ISKe+qg7bo73b/SMWGYeJ7bT3cdx8Aa3Kj4YIZDJLnyMAzZBIxIJQWR2x/28lVWM5kxhrIuxQ2fB8W3wGO6Ll++XoN337mECZgsxg8fG8xKwuSxx7bXQcP3QI9DfDRhyAmHeo24Xv0ENaEA7jmFo3u+uP11WDC4jwXR49Fgw6n1cmHZ344GnRANOBQyCEiIiIiMqVpkrrIJLV27VpuuOVjALjTC/jYx+54dyfIzCR55PO9JRLGEQ5RYhuAjIzTds21x0afmCaekYoNd2qQocM1hPv7AShNd47u39p0FE8A/E5ocfoJBaww/cq3HothwJp/Al8bVPw3R9v6+cSvtnH/SNABEIqY/OVDO3n1cNvJ45p2wwNXg68D7n4Kim6EnJWYl32Fgd2H8V5yCcZI09Mjrf08VtnIrcVxvHD8SYqSivjiki/yi2t+weK0xe/uvRMRERERkQuawg6RSax9IJo8DAbDNPcNvbuDm5sJHTwEpsmXFyawbriSZSeqxu4z7IfX/pWEF74BwEccmVzbHb3ms3OtYJoc+vpX8O/ahSd0cuWT9pYaPAH+P3t3Hh9Vfff9//U9Z/bMZN8hCYRVFiWyiAvW3dpFbbV31RS3anrfd3vV3m2v9upm26ty1Wp/va6u2uKFLW20rUvrWte6I7KYKIggEEgCZJusk8x+zvf3x5lMiKCCl4Di59mHD8icM+ecmQJ/vB+fBR0M0B5Ik0x6wBt6++epWkRy6nkknrqZR37xL6R3vsTlJ9bgcxuYCtymwmMqrrp9LZevWMOudQ86w0hdXvj8Y1BzYvZSg/c/gNUTxl01MfvaTx/bQsDjYihwFwkrwc0fuZlrj71Wgg4hhBBCCCE+hKSNRYj3sfBwguKgh/Bwku3dw0zI9x/wex//1XU8UWdR6XuD6z73VfjcqWMHtYaN98Dj34ehXXROPxlS7TRc8Cc8kT/Q+ejtvJzn5jRs1GPPs/OZNZQ0NGTf3rJzOzlxCOUWMpSzG+I2diKB4fXu8xzrW/t5YVsPvcNJ4tumcqP+B190/Y0vGg+iClNc9sm5rAu7mD19KrNrKnnk0fvxrvse5a1r6PBPpuW039O80WRxbT/zawqINjXR8Z3vAND3+z8QPO00NhdN4vGWNRw3ZxPP7H6G646/jprcgx/mKoQQQgghhDg6SNghxPtYOJJgybQSHtrQwbbuYU6dXjJulez+WlLw+3lumouvfrUGUBj2Npqnfpd5uzXEYtD0J3j6xzC4C8qPhU//js6+9ZgbV1DsL2bA5axzrQo7DSYGYKdSxDe9nr1FW2srs5MKv9+mxJ0CXKTCPXgnTBz3KOtb+7n0d6tJWjYAPyoaghGFQoOdgid/yExgJsAawPRwvpUCNCO9Hv7WcQz3tzzHlsJJuEzF18+ZwckvPYuZTgOg02m2PvoM/9fzMjnVt7EtmkKhpJpDCCGEEEKIDzkJO4R4n0qkLYbiaWaUh3h+W5jtPcPOgR9/GfRL8B//Ar+4a9x7ok1NRH90Axtb7wHlzNqwlc2WsxcwceoFBB5YTmD9152TDTecdxPUnEjXrocpCZRgGibWcARtKDbUKi5+wQk8lNuNu6wse5/hcDe5SRPTO8DsYBCIs2HLcyyYcOm453l8U2c26DAU+Kedhtr4V7CSYLrh4z9zBo6OdMNID2x5GNpWEw27aXuyiNP0yyxRzdw/+WQi3gB/69nBAxbcBGgghcG3Wtz0TXsdj0qhcIaSNnc3s6BsP2twhRBCCCGEEB8KEnYI8T7VO5wEoDjoZUpJDtvvfhi+VgefC8BpHrAehSoXhN0QixFdu5bWK64EYInSPF5u8MYExfTdNnOf7qHn6f9GuRTVH3ETKE6BtqFtlRN2jHRRHnCqROyhCGYol8knLGLrPx9n2qDJ5OW/Z+S555xBo1rjjQ6SE1eYvl7mTf8EHTzJutefZMEZY2GH1prVLX2AE3R4XAaT606H+fe/9erX6hPhD+cT2eMGDQowtc2nW55DA0u3PcXg0gbUC9BxwhncV3UCr6eL8JgbUApA4TE9EnQIIYQQQgjxIScDSoV4nwpnhpMWBz1MLQ2ybcY8uGCGkxwYyvnbe+F82LEDgKEnngTbBtvGsDSz2zTpyCzmb9coDWiNTtmEN4SI9vrA9DiBA9AZ7aQsx6ncsCJDmKEQx088kc4ChctOEihOY0WGMYJBVCBAKBnDG09jeCxy5n0CgB07XiaeHhui+ue17TS3D3DNksl87ZwZNF6zmPk1BU7AseRr+1//WrUIrrifhHkMoMAwwDTRzk8Y6RSVr74Ibjen33IzV1z7SfyhNjyFL2LHarho8jWyfUUIIYQQQgghYYcQR0pjYyMLJ07kGaVYWFVFY2PjuOPZsCPkZUpJkHA0TdyV7xzUGmxAVWfndvhmzsy+1/a4eK1akey4hJLZC523ZI6NdPloe7qE6MKfOWtctaZzpHNcZYeRG6IqVEXED1bSgCd+gD0cwQgFMfPzyUsk8cVtjIAfc/ZpAPgHE1y/6nqau5vZ1R/lhgc3cdKUIr593jF88fSpTtBxADivoV4AACAASURBVGJDOYxs3EXoE5+g5LrrqLj+exg+X/Z4uqubwPHHYwQC1JRaFNf+hTx3Kbec9Rt+cOqXJegQQgghhBBCSBuLEEdCY2MjDQ0NfCW/mg2LP8M5bRtoyGw7qa+vByCcaWMpCTphB0BfXFOZAygDRk6HXVb2mp5JY9tHXr72ZFpy11PTU8CnP9JAz21r2FXhZmJHEoVC2xDdOUwAGEwMUt0aY96O7URdTVjDThtLVaiKx/0KlVbYLc9jd4Ywc4KkTSgaslFAsmQKhs+HDvio2x7nD889zDVtTzEh/hWgiJsuPhbDUAf8vWit6f7xjZgFBVR8/3rMkLPO1jt9Ov1/amTooYdItbeTc/LJrOtax3ee+w7RdIQ7Pn4HMwqr3/3/IUIIIYQQQoijilR2CHEEXLR0Kc/mV3P3pf/BT0+9nHsuWcaz+dVctHRp9pyxNhYvU0udsCN53BQn6EDD5+vh3nuz5+v4WAuJFe4FK8S00iC+uFPT8dBxFqCwAe0yCSxaSPTlJjo+38ANf7SpvONp2q66mnRXN0YoSGVOJSN+J6iw/JOwdr2GEcwhFfRR3u/cZ5tvCtGmJojFmbYHrr/Toro1xuv9TXz3E7OYWBA4qO8l8vjjRNeto+TLX84GHQCBujrC5y3MVqf03v1XfnzblewZ2YNGE0vHDuo+QgghhBBCiKObhB1CHAG1WvPb6rkkDRcoRdJ0cWv1XCZrnT0nHEmS4zHxe0wmFvjxmAZqcBdMmA+BInjj0XHXtEfDDtOk9JV2kokcppeFsCNDAGypUvTnQGuZYsP3LgKgdelSWL/B2WKiQadSWAMDmKFc3KYbV4HTemId14A9EsXQw8QCJoWZxTCPRicSXbMmO0zUZcGsNs3couO4ZGHVQX0ndjJJ980/xTttGvkXXzTu2Pqu9fzt7huyYQeWzaw25ydb26zrWndQ9xJCCCGEEEIc3aSNRYgjwFNTQ2nbBgw0Fs7GkdK2DXhrxlpRwj0DFA+FobMTV3k5k4tz8I90QM3JUDgFtj5G9OX1RNeuJ7BoITrhVILknHAC1S+t4uKQj7lFbVi2s4I25tEM5UB/nsHsU89n5O5VYDltMKMDQJXbjU6nMXOdqopAURkQxipegK39eCLbiZQeS07mGTfHvISnzsHwerETCZSG0kHNrJx2lNq3fSXa1ER0zVoCixYSqKsbd6z/j38k1d5O1X/fhnI5/zT1xnq5Z+s93L7xdiqqNBe6nEBFuwy2TfZiKhu34ZbtK0IIIYQQQohxJOwQ4ghYtmwZwcsv55FwK+HSWma89hSLOt9g1sqV2XNadz6DEdpM888eYd5Nf2JqiZ+CwR7Imwjlc4n+8x7arrgKbVkoj4fCq64EwDtrFq5Vq/js2i6MV/+VxEWfBuB4O07c52NeYDqzS+cxNNNZC6sV2BpcoRDVt95Ca/3nMIJO2JFbMgF4DWtwEIscDN3BQGIn5ZlnHPH4+Iddwhd+fztNP7qZwk1NnNmsSW/8Iz2TT6Vk0SmAE3L0/amRyCOPgG2jvF6qb1+RDTzSvb2Ef3MLwdNOI3jyyWzo2cCdm+/kkZ2PkLJTzCmaw5bqLSy7LM2cdsWFn/kO35wznXVd61hQtkCGkgohhBBCCCHGkbBDiCOgvr6eRiC81gRgYyiP4ZUrneGkfj/NExQt354BKs21KZvlUwMcO+V83CemSYUm4J56JpFdAXQqBTjtJ4k33gDASjjzKwyAdJrE1m1gKOpsi2GPxhNLA2SrSHbOn0Bfoo8F2y28U6YAZCs7isomARDr7caOpzBKJhLWPYz+0zF1UjkPb+jg/KXzeUhV8DmaMADTgmcfuIWLFp1CtKmJ1s8tzVaRAOhk0qnwyIQdPb/4JXYiwcZLF/CNBy9lY+9GAq4AF0+/mEtmXkJtXi3N3c3ZcOO4TLghIYcQQgghhBBif2RmhxBHyMcu/Az4nFBh4ekfpb6+nmhTE+Ef3cCWsxeAkQYDki7FuktO5pgvOnMsulQJ+AvwVGVmYiiFcrtxV1YCkF50LJrMZlq3GyM/D9MDtYXTiHohOTgAgDXozPJYtyBEf20xOholtWcPAEYoF4DyiqkA9O3ZgY7FMKrn0hUY+2fj/MlRtnYPc/Etq9hcPg1lOiGIdpn82beBm9bexPZH7x4XdIw+c2CRsxJ3d/Mq+v/6V55c4OYbO/+LkfQI3z7h2zz5mSf59gnfpjavFnCCjWvmXiMBhxBCCCGEEOIdSdghxBHSEnamfBYHPbT3xYg2NdF25VX0rFjB3GfCTNvlzLwwbc2CoTwmFTiraHeknKGhrplOWBBcciLVt6/AVVQMQGRONSNe2FNRTvXtKzAMG8OVorbmNKJesIed+1pDgwB0qCHM0lIAElu3OvfMVHZMLJ5C0oSR9hbndSPJ7pyxfzamsAWA/miKDfnVJL7wLwDEr/4Umydq/rjpjzy49X7nZMMAjwdPpnrkNTr4f//8Ci/82zWMeDVtFy1m+TnLue+C+7h05qUEPcH37ssWQgghhBBCfKhI2CHEEbK9ewSAU6eV0BWJM/T4E86QUdtG2ZoZm2uYtkvz73+IMP2hJsoJA/DaiFN1YecdA0BgoodAXR12Ig6GQUe8j4EgWMUlBOrqsLpaMd025TPPJxlwY0TjaK2xh5zKjnb68WaqQkbDjtGZHVW51Qz7Ib3LqfhIT5hBZ47TeqMMzSvesSoL29a8OP0kME36e9pROGFN7W6LgVyTvqXnsv675/PolxeRUjZrfvx1ks+tYu5OTfGXvsRNn/wNiysW73ewqRBCCCGEEEIcDJnZIcQRsj08jMc0WDyliHubdvPa1rVUjO5F0TDkCfGDOyxcVoA2U1N9/fWklnh53Zkrip1Z/2q3bQRAx+Ion48t4Q4q/DAh7bSO2H1dGH43RtkcfHmFGHYnOhrNtrH0eZKEJk4CIP6myo6gJ0g0YJLf2QvAUMkEIk5Gg5GXz+S60/GtX00qbeN2GSw6ZgK+mTOZsCOCd5aXY1+PM2en5tnj4DeVj0MMiIF5Qi6nrxrizB0as7KSSVc0HNovWwghhBBCCPGhIpUdQhwh27tHqCkKMOmzF2D4W/nXE14nHFL05MJrhR5yEzFcFigUWimieeX0u0rZ/kITdHbS9thfAejs3wXpBHYijuH1sq2vg0hAEYrHwbawh4YwC0tBKYKFZQBYw8PZNpaoFworp4BhjFV25OZmnzMd8hPocxKOfleCYb/zuplXwPyaAhqvWcxXz5lB4zWLmV9TgP/44zFfb+G2sq/y1b/bGMCSTTBtl3aujUHRktNRWqMjw1g9PcQ2bjwcX7kQQgghhBDiQ0LCDiGOkJbwMFNKglT942+4Ai2kTNAGDATh7rlBNlbmogGNRmlNoDxFdI+H49pe4Zlz5/BgXgcAT3l9NJ9ZjF6+HOXzsWuomyGfC1dkCPY0YSU0RokzzLSgaAIAI33d2END2H4vlqkoz5uAq7iY9B7nmmZwr3kZeSEM2/lt2IgS9QGGkQ1E5tcU8MXTpzK/xpklEji+Dh2PU/zYyxiW80bD0hy3y8RUJh7Tw4w+L2TaVbRtE12z9lB+1UIIIYQQQogPGWljEeIISFk2bb1RPjq7nCfWPI+OVGMUKVwWuC04doeXkfIe+kLgiWnm7NgFKR/WKg+X6ifQRjEVfU6lhDulWPfRyZzXdgrGzp30RMOM+L1YAwPorU9gpRTmhOkAlBQ762Z3d75BweAQ6YAXiFKeU06kopx0dzcAxl5hh7ugAHBCkC6GQBmogHP9aFNTdn3sKH/m56GHHnZeMAwMj4cLP/MtJpQMsaBsAVN2a9pW3odOpVBud3YzixBCCCGEEEK8FyTsEOIIaOuLkrY13dte5YffbODij3+NuRtz8aR6KQ+nudDqgHbn3LgbzGSU/s5C0AoTjW0rypwNsviTmnnWILZSKJ+PwWQfiZwcSA9jvfY4Om1gFJYAUFE+lRTQ2d1CbiRCIuDCZbgo9BUSLysnzqsYOTko19g/Db6Ckuzv9zDIwp5c9EgfqeFh2q66murbV4wLPFIdTjCCbYNpkn/xxeRdeAGBujqOGz2pFKpvX0F0zVoCixbuE5gIIYQQQgghxP/EIWtjUUpVKaWeUkptUkq9ppS6LvN6oVLqcaXU1syvBYfqGYQ4kpq7m7ltw200dzfT2NjIwokTeUYpFlZVcfvdDwFw2X98jx7b5huv3sV5m3rJSYDHcvaYGIACXJbirDwDd9AZOGqhsAwnBAFYMORhXnoAPdQHHg9JPYjOywMg9cYGAMzMdpWKMmfta7inDXtwkBG/oixQhqEMXOXOPI+953UAhEoqs79vt3s5fo9nrAUlldqnBSW6Zm32OIC7snK/YUagro7iLzRI0CGEEEIIIYR4zx3Kyo408DWt9ctKqRCwXin1OHAl8KTW+kal1L8B/wZ88xA+hxCHXXN3M59/9PMk7SQuXLTe3MovemPMKC7hunCYr9zxdxYccwol1hBtuXkonGDDmdGRCRIy1zI0TJpWjsvnhB3NFTN5ab7NqRveADShymOAndiDXcSDE1CuCN6iKcAbJCNOnmlktqt4cp1ssb93N9aQRcRjUxZwQg53eQXwpnkdQEFpNSOANhS7Ut3UzKlB/bP/LVtQAosWorxeaVERQgghhBBCHDGHLOzQWneQafTXWkeUUq8DE4ALgNMyp/0BeBoJO8T71PrWfla39LK4tig7gPNArOtaR8pOAWBbKW4p83JsqoR+FAsKCvixTrDo+VsYzs8D7cQao+GGZcCQGSDtieOzbXJjii/VfxJ71f0ADFVNpWlWH+eu2+Kcn7SgeAY60kckZyLKTFBQVg5AMpYDgJmp1jBDTpAx0t+NNeSmvzJFWc5o2LH/yo780ipGgJTPTWe0C3PuR6i+/ctv2YISqKuTFhUhhBBCCCHEEXVYZnYopSYBdcBLQFkmCAHoBMoOxzMIcbDWt/Zz6fLVpNI2btPgD1cvxOMyDyj8WFC2AKUUWmssS+Nu02AoUAoNlCQHcdlWtt3DAnpCPioicbQCbRgM+RXeqHO9hbXl9D3tVGmUqwRDqX4CCedYYiQC08/Bjv6FQTsJQEVVNQApKoDe7MBR5fdjG4rk0ADWoIdwdZLygBOMuMqdX81QaNxncRU4nzPmhbgVpzynnMCsurcNMQJ1b39cCCGEEEIIIQ6lQ756VikVBO4BvqK1Htr7mNbaqdrf//salFLrlFLrenp6DvVjCrGP1S29JNM2GkhaNvW3vcRnbl3FTx/dQv1tq1nf2v+W751XOo9JuZMAiD+cIL5rMHtMac3TE+qy7SpKa7SGiN/JHk3lwmNbeA0DM7Py1e5px8YJIYrsOGmGyEk6f33T0WGYdi46DelUHwCFAedayajPuWamWkMphQ76CUZtdCxGxKvHKjvKnF9TnZ1Em5qyz2vm5wMw6HYqVSpyKg72qxRCCCGEEEKIw+qQhh1KKTdO0NGotb4383KXUqoic7wC6N7fe7XWv9NaL9BaLygpKdnfKUIcUrXFTguIAtymYnpZCFs76VwqbbO6pfdt3z+QGGDaLs2PyxZQ6fNnqzheHRji/nm1vDrJGSJaOnMmHkPhS6UBMG2N205jWjYuZ0wH8d42LB0AIDcVQ7ki+J0iDux4DKoXY9sGSjsBTOFwGyhNsjfmXHOvag0jGKIks8ll2AflOU5FR2qPU3CV2LyZtquuzgYeZmbYadTj5JKj5wshhBBCCCHE+9Wh3MaigP8GXtda/2yvQ/cDV2R+fwVw36F6BiH+J1rCIwBce2otf244kWWfmovLcAILt2mwuLbIObGjAz65AB7+IbSvASC68zmKtvXyg0aL2c+8SknFWDXE32ZXEaj+HbtKnWqPXZ+/EI0mmHbSC8PW+KzUuLBjeKALy/YC4I9FcDOCO+WUfahYEkw32nbhcTnXLNr9MqbPwOp1Kj2MvcIOb14+JYNOcDHiI9vGEn355f1uWRkNO0IjMG2XlrBDCCGEEEII8b53KCs7TgaWAmcopZoz/30MuBE4Wym1FTgr87MQ7zv3N+9hfk0B3/7YMcyvKWB+TQH/9zRndetP/9dx2Zkd0W9cTdi7h+hDv0Sv+Ci7/vN09txxEXXbbVy206Zi2DbK57SUnHTm8aCsbGXG9luvBw3+lDXu/qalcWXaWEaG+rBTJgBqeJBA0gkr4j4TVzKN1ho7DSm3c42i1jW48jJbVZTKzuwAcIXyKM00lI34yLaxjG5RwTTHbVGJbdiABir74fo7Lfyvt71H37AQQgghhBBCHBqHchvL85AZSrCvMw/VfYV4L2zpjLClK8IPz5897vWFkwsBKA35wO9nJGTQVlgN5KJe11Sf1kup/Qov+t3EvOP/Avi8XmLxOL6RAsDAn3CCiSm5hUCSzEiMLE967PextI2RdK5mDw7iHx1Omh/A1xnBHomCbTPsUeRqhTsdwywug84IRjCIMsZyTSMUGmuPCbgo9Dmf6a22qETXrM1+DpcFLU/fz9zjj383X6sQQgghhBBCHBaHfECpEB9E97+yG0PBx+aOH8ZZEnJaSayW5+DnpzK0MNPKgkLbisHuANenrqTN7aG2U5MGdGYGb7zfmadhvbgDb2oGvkxlx4SoUyHissZng769wo+YZWDHMunHcJRg3PmtLnKGh46EnXkb3S4vJakEmB7MsioAjNBYVQeAuVeVh6+gGEON/TMQqKuj+AsN4zapBBYtRHs9WArSJvxH8n6au5vf9vsTQgghhBBCiCPpsKyeFeL9an1r/z6rZLXWPPBKBydPLc6GG6NKgl6OV29wwvM/Am1huJwtJ2gNCn5vnkvRy/3kxUuZ2hkd916dmYcxUlZBwNOJP9OKYvWl2Z+9KzsSloEVjYPLBel0duaGWVICtLN792YAer1eiqwk5E7AHMicE8odd10jd+znYNE7z98I1NWx4XsXsfHxv/BataKl0mZd1zrmlc57x/cKIYQQQgghxJEgYYc4qrw5vNhfmLH3uZcuX03asvG4DBqvWcz8mgKa2wdo64vyL2dM3ef6BQEPZ5ivoLTTB2JlWks8lRUU5uZyfvPz2ZaP0V81gNbOilnTJDUSHbdNxTrzDPjrXW/7uZJpA3skhqemhmRrK5nZptj5TljR3bGNUmDYC0WWBf07MVsHAP+4TSwA5l6VHmEzSnN38zsGFzNOPZ+b4/eTttO4DTcLyha87flCCCGEEEIIcSRJ2CGOGutb+7ls+WqSaRvDUEwvDbK5MwKA1z0WZoxatT1MMu1MAE2kbFa3hJlfU8D9r+zB4zI4d86+VQ+GoajwDKNsQBlEu53KDxUZJv3pT2NseWPc+RqNrRRFZ51F3kA/rc2v4kvGSTGUnbthh3e/42ez424A3NXVJFtbKR8yAZt4TgV5QM+enZQCI+4UVZYNaEy3UxpivCnsMILOzwkXbI5s59rHrmX5OcvfNvCYVzqP2865jXVd61hQtkCqOoQQQgghhBDvaxJ2iKPG6pYwiUx4Ydma1t5oZloGJNM2q1t6x4Udo+eCU33xSvsgibTFg692cPqMEnJ97n1vkk5yml7PG63lBF8eJhU3QUEiEmH458twuwqy9wSwFTx6URVfu+GXAKTOOAd/Os5IejA7s8Pq7XrHz6biHsDGUzWREWDCkAtI0e3Opwzo7dgFwLDHplgrUCYuvzOLw8x9U9iRqewY8TlhTMpOHVBbyrzSeRJyCCGEEEIIIT4QZECpOGpMzA8ATvuIz23w3U/MwusyMq8pFtcWZc+1bc0jGzupKQzw9XOmc+G8CTy2qYtzfvYsPZEEcyrz9n+TTX/H2zFM+kWDwUQuZOZwaAVPL3C2mjTVKl6aBp2nVPHgxWmemzf21yzm9hGwomjssTaWgb53/GzuqLN21j3RGTpampnZscN21tkm+noASLqg6MR/gTO+Q3P5xwHo+P3vWVhVRWNjI0C2rSXqNzCVKW0pQgghhBBCiKOOVHaIo0bviJMeXHtqLefOLmd+TQEzykP8+OHXebmtn8IcT/bcxzZ1sa17mJ9fMo8L5k0AoCzXy2+fbQHg109t46SpxePnfGgNL/6aLXtKCOxdv5EZTtrpLEbhrlMMtk9Q3FxXT+zZHxBJDmZPHTY9hPQghq3xZgaQ2pHhd/xsnmHnfp5qJ+zI60tiGSZb404IYgw590i6FMUTFtH4dCs/v+UG/lBWTpHHy3XhHhoaGgC4YNIkACorpvGluk9IW4oQQgghhBDiqCOVHeKo8fy2MJOKAnz7Y8dkQ4r5NQXc8rn5eF0mv3hyK+BsW7nl6W1UFwb4+F6rZXP9bozMVNGU5bS9jNP2Is19m3g+Z/yKWHdFBQpFzOe8PpTjvB7xBAhhEEnHsucO4CakE9l5HQBWNPmOny0QcQaiuidMwAbcKZu0L8C2iJOYBGLONZIuKPIVcdHSpTyRdo7FAgEWVFXTY9tctHRptrIjt6iSa+ZeI0GHEEIIIYQQ4qgjYYc4KozO5DhlWvE+x0pCXi4/qYb7mnezrTvCqu29vLJrkC98pBaXOfZXYHFtER6XganA7TLGtb0AsPo3rAvmMyFsj3u5YOnnAKjsy4QdTjcNN679CcP+AmLaImWnAOi1XfjTiey8DgDrnbMOPAmnssMO5TDiy7yYk8OgdoqzQpktt0k3FPuLqdWaNR5PpupEoZViVSDAZK2zA0rN3Nw330YIIYQQQgghjgrSxiKOCk1t/USTFqdMLdnv8S+cOoU/vdjKz5/cRt9IgpKQl4uOnzjuHNPfyqVnb6Oj36Yk38L0VwCZNpZN98HrD7IwdCru9q3Z9yQCLnZ7Y7iB8j6bhKlIup3QI22nCPsKIJ1gOBFB20EGlRtfMpmd1wE4U0wP0JA7TcQPoTi4QkESptOakxtzwpCUS1HgK8BTU0NXVxcTtUYDSms6o1G8NTXZ1bOJtlaiTU0E6uoO+P5CCCGEEEII8UEgYYc4Kjy/LYyh4MQpRfs9Xpjj4cqTJ/Hrp7YDsHRxDT63mT3e3N3M1Y9ena3AYAD+0X4Ht51zG/MSSbj7akATfHEDSXzZ940YaVZs+2++DlT0aSK+AG5TkbCSGIaLY/JreSbcS6RvO12pKcRcXjzxJHlpD2CRNsA1vlDkrRkGfWaMYT/QD778POKmszFmtLLDH8zHZbhYtmwZwcsvZ217G1sDAaZFo+QmkyxbtozEjh0AxJtfoe2qq6m+fYUEHkIIIYQQQoijirSxiKPCs1vDHFeVT55/P+tiMxZNKsz+/q517axv7c/+vK5r3VjQkZGynJWszZvu4rZQgGavh91+59hoPpEyITTovK+iD6L+In579nJSPedwbuH3mV2+EIBI16u09AwTdfkwLZtKy2klGcx558+WcjtVG2YoRG+8j+HMbBBPbojcoI+UYRLMjAUJhZzPWF9fz/DKlXyvrIwb+vv5XlkZwytXUl9fT6yp2dkiozU6lSK6Zu07P4QQQgghhBBCfIBI2CE+8AajKTbsGmDJ1H3ndext454hRhtG3jyAdFr+tH3foCDPk8dVnY/x84I8ri0vZSceLGDVhFoASgbhqsec4aEGkAzmsaC8jmLrYyRGqgmVzgYgEt7E9p4Rkh6nKqQy7qQmAwcQdliZcEPlhgjHwk5lB2AGg0wpCRI3Pbgz6UtuaOw7qK+vZ+fOndi2zc6dO6mvrwcgsGghyusF00S53QQWLXznhxBCCCGEEEKIDxBpYxEfeKu2h7E1LJm+/3kdoxbXFuF1G6TS9j4DSAcz62EvnXkp0/Kncd/2+9gY3khzTzNpbFCKhFIU7XYTyzWJuUvQtGAA5l5tKMVDYaJNTVQV+mnvixIKlgMQ6dtOS2KYynxnKGjpiNNCM5ijYO81tvuhfQZEbAgF6Y33ZsMOIxRkaokztyOUipE2oDBY+o7fV6CujurbVxBds5bAooXSwiKEEEIIIYQ46kjYIT7wntsWJuh1Ma8q/23PO6ZvJ3/xvcar5TOZddbi7HpagBd2v0Chr5Dr3B9l6I77mZss4ZZYCuOFvzOtGrZONJi6y2byHhuwOG14HbbpwtAWltIYFiggr6+Ttiuu5Pgrvss9iQJyPU64ERlsY3tkhGOKnWcsHHGqNQ6kjQW/B4hj5/jojfVi53iAhFPZUZpD3OUMKR1dO3sgAnV1EnIIIYQQQgghjloSdogPvOe3hllcW4jbfOuurGhTE21XXIknmWShx0Ox8RXCyRSBRQvxzTuOF/e8yP9eX0jb951WDw18AWc2R9oFD3zxGKY+/1q2DcbQmqY5Szh5yRQee2EFZzdrFE7goVMpZnZtpcs4DpdyyjCGoj109g1QWOKEH3lDTuvLgbSxqKAfiGNlwo78UBBIYOQ4W1Xi5ljY8XLHZpq7m5lXOu+gvkMhhBBCCCGEOJrIzA7xgdbWG6WtL8ope83riDY1Ef7t74g2NY29tmYtOuUMEtXJJD0/uYmen/+ctquu5tEHf0nlll7mPbAle/5ocGECLgvqmuMcu8MJQTSgDcWzkxcx9NmzeG6uQdocO6bcbtzzFwDQP6wwUESUYopuJ6/EC0BgIAGmkR02+nZcIScgSeV4CMfDjBjOe1q+9W/8109+RiKzkSXpgg39a7j2sWtp7m5+V9+nEEIIIYQQQhwNpLJDfKA1vtQKOKtlwQk6dl55JSST4PEw6fe/540Jii1Fncw1DVTaym4iwbaxk0lWP3Qbiwc1e8cOmkyVBqAV5O4ezCaDNtBUN5m1ORNY17WOrRMNfngZnLrBZkruLM78P98hUlADTS+yuz9O0J3DsDHEMUYbgaKJAHj7hjE8iqR733kdtgJjr5fdBUVoWkn4XbR0bmFo1x7AQ4U/wLWv/pN4zVQAkm7nyVO2s0VGqjuEEEIIIYQQH1YSdogPrJdaeln+XAsA37jnVSYUBPA8dR9GIokBWMkkLz28gluN55ixM010Gix+HVROAD08Akphuww2qvoV9gAAIABJREFUVGlmZJKM0ZBjNPhQgKkVxdvDaJwgIm1C70nnMtCW4rji4/GaXrZNTPJGpYf/PPVfCUypo2owDkB7f4yQN49Bs4djVBveghMBMAeHMUOg3C7GFtk6Uh6FNzGWdngKy0gAMZ9BariLTw6kAA/DoRDnaZtU5zZwQcptYCoTt+FmQdmCQ/OlCyGEEEIIIcQHgIQd4gPlxe1h/rK2nf5oktUtfdiZTCCVdlbJFlRp5hpg2GAbsDHVyrfuTuBOgx4NNIZHAAgsXEjP0nPYuudGKvoNwML67McpCZTSf/vtGB4LO2mitHMTDSjDwPjK1ZQfez60bWCC/xiWn7Ocn7/wCM+8msupNU7IUBry4nEZ7OqLkuvJpccV5GJ3O53eRPazGEYK0xsA0mMf0O1Cu8BOpLOVJP6yGhJAZN1zDH3KRXoIpzJFKTSQSMdxuXzUlEzjS3WfYEHZAqnqEEIIIYQQQnyoycwOcdg0NjaycOJEnlGKhVVVNDY2HtT71+7s47LlL/H35j0880aY2ZW5uE2FqciukvUedyxPz3XqMh5f4GKOqxpP2vmDbowvoMBTU0N8Vg0AJ+bMAWDW//su3sySFjtpsPdaWAUYKCqtECVBZ/ZGTyTBvNJ5VPBx8o1peF3OSlnDUEzM99PeHyXoCRJWXmbQRlgPZ69nuG3cgeC4Z1IuN7bHRdw79pqvpAoAMzzMtF2aPXbCCWC0RmlNNJUEIBQq5Jq510jQIYQQQgghhPjQk7BDHBaNjY00NDRwjg6xYfFnOMcO0tDQcFCBx93r2rPRg6lgdm0/1019gRuST3LnSTnMrykgYSVIOOM7OH3SWdSecQH7TsVwpPv6WL1nNW7DzRn5C8EwMGK7sJ5fyVhDy3jKNAksWkhJaCzsAOgeilOW6xt37sTCAO19MULuEL3KIKQjhGO7STl5CIZb4wkWjL++2w1uNzHP2GvWtdcCUB12cf2dFqcPW0xob+POcA9r29twpZ3NLso7/v5CCCGEEEII8WElbSzisLho6VJmVMzgkstuxFYKj5Xm2T9/h9lLl0J9/QFdo2/EqWAwFXiC7Wx5+RYubkzitoAnnqR/6Nvwyr1U9jrxhrdlD/333sNokcSbowurr49dq7fzr815xNoewHDZqN+eQqAoF2UG0KM9MqNpiVLkfepTBOrqKBmIAdAz7IQdnUNxynK9465fVeDn1V0DzDRyGFHORcIDO0h4DdxRG8PrwpNbBIBtKAxbo1wuDJ3GZY1dx557LLqzAwOFywKjYCJnFPeyfvduqqurWXHWWfD8Cyjf+PsLIYQQQgghxIeVhB3isKjVmlOP+Qhp0/kjl0BxS/Vc1uzZzC+V4usTJ/KVG2+k/i2Cj2TaZs3OfpZMK2ZxbRHbrLUE73JCAQXYiSQdP/x35tk2OpNqqLWv4tnv1RyxjRtoaHLmZSQziUa010vgyyuo/mg30af/gVkzl65b70SnUii3m7wLLwCgKOhcebSyo2soweyKvHHXryoMMBBNEUu4SRvOfXpHOkj5XBBNYuQW4A8670n5XHijKdAab3gI717lKMGKcjp6OjBtZzjqhNpprH1ubLVs+Le/o+f5FzB8/nf4f0EIIYQQQgghPhwk7BCHhaemBiOemVehNdow2DRlEWd3t7ChtJZz2jbQ0NAAsN/A47mtPQzGUlx50iTOmFnKZx/cRLpaOcGGdtbDYttOX1YmKNi3CeVNUum9znEuFO1yE+h8hcC5XyNw7mUAeE84m+iatQQWLSRQV+e85jLJD7jpiSRIWzbh4QRleePbSKoKAgB0DygwEyRCE+mND2D5PUASM78Yf6aNJek18EZBWxbovZ5dQSCR4K4L81DhYV6rVtzRlBp3H8Pv3FcqO4QQQgghhBDCITM7xGGxbNkyfB4vRjqN97k/8vmX7qG7fCr3XPwDfrbkc9xzyTKeza/moqVL9/v+B17ZQ57fzZJpJSx/dTmv973O9CWfoGeiM+Dz+VmMVXTs9T691//2pj125jjjjgQqNExaMu7cQF0dxV9oyAYdo0qCXnoiCcLDSbRm3zaWQqfSorXHuUO8fBa9VgztcwNgFFUQCOY7xzzOU6cH+0i6wMp8CK1t+Mc/iJy5mL+fZNAxOYTv7r+Pu4/yO/cxZGaHEEIIIYQQQgASdojDpL6+nvYzPokd6WTr6rv4zdO3s7D5HwDYhknSdHFr9Vwm633HicaSFo9t6uK8OeVs6nuVXzX/CoAn2p6gMOkEB52FBr2hfe/bH1RsPt6PXeAMwYhm+lrCPueP/rAXYs4lyJlTReDrf4OqRQf0mUpCXnqGE3QOxQEoC+2/sqM34txroLiWfqUxMsGGUVxNMOTM7IiZFraCmBdu+KzBX051zrE8CopTBP/qBBzF/uJ9nsPwO/eRyg4hhBBCCCGEcEjYIQ6biBHiU2ecgG3beGtqmPL6s3gsZ04FQEnbBrw1Nfu878nNXUSTFucfV8kTrU9kqzTsdAp3zwAAs5PFFEXG3jN6TigG0bNOYKCmGoCeXOd40ZDzazABPmecBt75Zxxw0AGZsCOSoCsTdpS/qY0lP+Am6HWB5VRetIWK0Eph4gw3NconE8wMKI2rNJbLwO8J0loJD5xokDbAVBounE/uZ68AoNBXuM9zjLaxGD6p7BBCCCGEEEIIkLBDHCaD0RSdQ3GmlznlF8uWLWNh5xtcfOe3cbWswzZMEhXTWLZs2T7vfeCVPZSEvJxQW4TLcMbMzNgFlz2tUZmNKbO2JjDHFYVkqidsmNwVIH/iDAAGggqbsT/4irG2FzM//6A+02gby2jYUfqmNhalFBML/GjbCSF2up0SErc16DxbbiG5gQIsBSlTY7sMAmlY/o8UXwoPYCqNW2lQ1YQKyoG3quxwwhQlYYcQQgghhBBCABJ2iMNkS5dTdjGz3Ak76uvrGV65kjvcMVru+XfYvYG/n92Ae/oSfv3UNta39gMwFE/x1JYePj63AtNQdEW7mNfl54d/1nxsdWZQp2Fg9DkBgp25n20qLOVsL8k/8RRKK6YC4Jsxg5QLLDLzOgyFymyIiW3YSLSp6YA/U0nISyxl0dIzgmkoinL2bSMJ+VzoTGXHzrTzHXhNp6XGyMnh+SdfIOGBlKmIWynCJcXMs+dwTftJmG434INdFkG3M5ukyF+0zz1UZgtLdO3ag3p+IYQQQgghhDhaSdghDostnU7fyIzyscEa9fX17Ny5E9u2abr1qxQEvHzzng38f49tof621axv7ed3z7aQTNvMKA+htWZt51rO7qvESFljg0hte5/7DZ93En851eDfLzWpPulszEKn/eP0M69C/eKHtF92CumvX0PpdV+hIDMUdfipp2i76uoDDgxKQk64sXH3IKUhL6Yxfv/L+tZ+Xm4byFZ2vNq9DQC/y3nef764iu9/4/ukFZQMalyWxrNlC7OefprGRReg/CFUWQXcey+vvfwaAJFl/8XCqioaGxuz90m2tTrP/8+De34hhBBCCCGEOFpJ2CEOi82dEUI+FxV5+2+1KMjxcO6ccjRga4inbP7fn5v59T+dgOCHD7zGU/f9jROf6KC8YhqofRfLajQqM6sj77G1vFat2D0ph+0D27GGnMqPVHcPx53xvzjv+uUce83XKP5CA67ckHM9rdGpFNE1aw/oM42GHZs6hijN3fdzrW7pxbY12nKOtUV2AuB1ul446aabaYukCcWhsg8CliLgdvNSLEZDQwOxdBrlctPY2MiKW1YAEK3xcZ63l4aGhmzgkWrflfkCDu75hRBCCCGEEOJoJWGHOCy2dEaYURZC7SekGPXp4yfidRkowFDQO5LIroWd0tVCyXe/zyXP2FSteAyzqMgJKJRidHns3vM3dDrN7DZNNB3lJyuuJnzbbQCEf/GLfSofAosXo7xeME2U201g0cID+kyjYUc0aVEW2reFZXFtEV63gamdsCNq9TOn3WJ4W2ZLS3kZI4Fc9F7PnXa52V1VTY9tE+jrRblcXLR0Kb/wO9UgTx2fyz++MZkXKnR2TW/OKSc78zoO8vmFEEIIIYQQ4mjlOtIPII5+Wmu2dEU4/7jKtz1vfk0Bd1y7mNUtvSyudWZTXLZ8NWnL5ri+Fox0GgPQqTR2JELwrDPRrc2MvNHjXEApMEzAmdmxqdoJQabvTILlhAXasoiuWUugri5730BdHdW3r3BeX7Rw3LG3UxIcCzjevIll9PM0XuN8nj/sChCzoxzfao9mM9hKsRVNgalxWcoJPJRTm7IqEMDWMM3lolZrLswxULZGG4qUC5bPzOHe7TE6/gfPL4QQQgghhBBHKwk7xCHXMRgnEk9nh5O+nfk1BcyvKcj+PBp+VM/vQX/vYdCQVjbuRILAzBr8/JXojmK0rVBuN2Xf+jesgUF2T8unbc/NmHaKNyYZ8KIFaestKx8CdXUHHRIUBDyYhsKyNWX7aWPZ+/Pcd3cesZEoPRU2ylRoy9nWkhge5j8vzaWu081ZzRqlnf86o1EKc/OIrFuHMgxKNo3g+YQm7QJXWlO0eWTcmt538/xCCCGEEEIIcbSSsEMccls6nS0kM8pzD/q9o2HBr5oeITcEpUOwtQJm7QK95VECFS6qf/tLohu2jatqKAaWd09nXdc6Fnx0AZPO1e955YNhKIqDHrqGEpTup41lbyFPiI6RDhJFRVRfNZvoM9sIpHy8/N3v8uIb/876OpOhtl5SW9JMi0YJxOOUAn7T5CceD/7tMeybdnDfzBzO2zzC/B0JZqzcd02vEEIIIYQQQggJO8RhMLp2dkbZO1d2vJXyqIsi5zIck5nHGX6incD/PoPASc5/bzavdB7zSuc5P5Tynlc+NDY20rtjEIpquOH/fJ7kV66gvr5+v+eGPM5nL1p0HoETryfwdef1emD1P1fzdPvT/KEoREt/CyNao30+Wj0e0sCCqmqq29v42PYYy1riDFVXM3Plsre8lxBCCCGEEEJ82MmAUnHIbemMUJ7rIy/gftfXyP/tXzEzsy6yQ0g1RFc9C+1r/ucPeZAaGxtpaGigNDYCwJJoctyGlDcLuTNhh79on2N5njwAbv3Vrdi2zRScmR2AM8NDKVYFAtQCtm2zc+dOCTqEEEIIIYQQ4m1I2CEOuc2dEWYcwLyO/fL7ifr9VKzd4/ysR/ezaJShCZTEYedz78lzHoyLli7l2fxquipnAPD4R7/Ms/nV2Q0pbzZa2VHsK97nWK7Xae/xuZy5H56aGrqiUZTWsNcMj71ndAghhBBCCCGEeGsSdohDKm3ZbO8ePqDhpPvV0kL0xJNQ+k2vKyirGyJQpmDSkv/xcx6sWq35bfVc7EydSdowubV6LpP1mx/UqQJ5+E93AfCT6741rvqjsbGRO3/+OwCuu+RzNDY2smzZMoLJJGvb27gz3MPa9jZCySTLlsmMDiGEEEIIIYQ4EBJ2iENqZ+8ISctm+rud11FRQaC8DFuBZq8gQYOVPxeuuB+qFr03D3sQPDU1lLZtwGulMK00bttyfn5T9cVou8vUdBSAExMD2XaX0WOzU8MAnKQGaWhoAGB45Uq+V1bGDf39fK+sjOGVK6V1RQghhBBCCCEOkAwoFYfU5uwmlnc/nFSno2ysUczucOFOWmitUaYm8LHLjkjQATjVF5dfjv3n73BP9Vw+3baBRZ1vMGvlynHnXbR0KbNrfVx1Uj4Aq+sreGHXDmZm2l1m1/q4+mxnjseqpZW8sMc55rNtCTeEEEIIIYQQ4l2Syg5xSG3pjGAomFoafNfX2PGbGwCFXTuR6jsaKbnkDKpP7yWw6JT37kEPUn19PcMrV3KHO8bWl+7mDndsv9UXtVpz28wcbJVpdzEVy2fmMFnr7DHLcI5Zex0TQgghhBBCCPHuSWWHOGQaGxv57UM7KMspZkntJL5y440HVa3Q3N3Muq51xFIxpsQ0vomlBOrqCIxMgydSECo7hE//zurr69/x83hqaija3I07rUkDrrSmaPNItt3l7Y4JIYQQQgghhHh3JOwQh8ToPIrJV/yaUHyEhXYwO4/iQAKP5u5mrn70aizbQinFr6KQU1zhHBzuAncOeN99a8zhkm13uWkH983M4bzNI8zfkWDGSmfY6NsdE0IIIYQQQgjx7kgbizgkLlq6lMeLpzAcKmZrSTX3XLLsbVezvtnGp+/h488nmLLLwrLT5Eah3285ByMdECo/hE//3hltd/ljupSND/fyx3Rptt3l7Y4JIYQQQgghhHj3pLJDHBK1WjP9lHpQCo0ilVnN+uCezXS8w3ujTU3U/ejv1KVsUi648TMGbgv+3PUYVnc98yJdH5iwA96+3eVAWmGEEEIIIYQQQhwcqewQh4RnyafZWTUH07bedjXr/gz+/T5UKo0BuNNw+is2AAN+m3Vd62C4E4JHdl6HEEIIIYQQQoj3L6nsEO+ZxsZG/uub3+TLSQ9c/lNq219j0bMr+dvEWW+5mvXNok1NDNx7LwAaUMBJmzPHclwsKFsAkU6YXnFoP4wQQgghhBBCiA8sqewQ74nRgaQfcZdx86X/gT8RY9VDP+W2WOfbrmZ9s+iatZBOozI/K8B0Cjv40vwvMS+3FlLRI76JRQghhBBCCCHE+5dUdoj3xEVLlzK9ciaf/cwPsJXCY6V4IaeI2R1b8Nn2AV0j2tREas8ewKnqGDUafFTeejecfKrzQ/CDM7NDCCGEEP8/e3ceH9dV3///dWZG20jyIu+b5DgrixMnsQMxCeHLGqAsjVkCwuyIli60X2ihDbRA0RdaoHzbb/trCC0Qw7CUpWyBAqVNQrOQhRiSQOLEsuN9k2Vb0miZ5fz+uFosW5KdNJIt+fV8PPSYmTvn3ntupH/8zud8jiRJk8vKDj0pVsRI60VXU06lIARKIcX1jSs5K8YTn0wSdGx781s49PWvE2NkxxzIV/TCUecfaNtCfs3FyQcrOyRJkiRJYzDs0JOisqmJQ7WzIcbH3ZAUkuUrsa8PymUCcCQLcz72fyCEEYFH/oKnJG/q7dkhSZIkSRrdCZexhBDuijFeNvD+1THGr0/8tDTV/OVftfLx+yo5+5Gfs2P3wyfdkHRQqjY74vP5O2H+4vPpP+889jz8MMRIiJHsospkgLuxSJIkSZLGMGZlRwjh9hDCZ4D5IYQLQghp4M8mb2qaShasei59lVk27/j542pICskSlr1//TcjjoUIbTd/l9mZNE1rVjPvda+j8bI1ZGuOQKYaqmdO1KNIkiRJkqa48So7ngWsBF4C/ClwLrAihPBx4JYY4w8nYX6aIr7/q13Mravi53f+iHQqnPiEo+TvuhsKBSBpTBqBYhr+uv+7vO/6z7Fq/iqG6j6+8TbYeU+yvEWSJEmSpFGM17Pjc8ClwJEY41tjjFcCjwE/HDguAdDVV+Snv9nHS1cufNxBB0D2sjWQSv4US+nAT1YFPvK6NL9ZXOaevfccc7O97sQiSZIkSRrXeJUdHwOuBBaGEG4D+oAFQAPwmUmYm6aIn/5mL33FMi+7aPETOn/TkkDfWfOp6yzw1dct5LvZh0mHNBWpClYvWD1ycOceWPDUJ2HWkiRJkqTpasywI8a4CdgUQvj9GOOzQghZ4D7gbODNwCsmZ4o63X3vl7tYNLOaSxpnP+5zN/7mp7zt9j/ir7pKbJ6Z4qbaLq5uuprzG85n9YLVrJq/auQJXXvh7Oc+STOXJEmSJE1HJ9yNBfgDgBhjPoTwUIzxk8AnJ3ZamioO5wvcsmk/b167nNQTWMKy8YaP8pJ8idmdka3zy5RiiSuWXMErzhklS+vvhr4jUO8yFkmSJEnS2Mbr2QFAjPG/j3pvNYeG5HI5rri6mUIp8vU/byGXy538yTU15GtqWPPD3Vx7S2RmHjKlCDHy0Ts/ysZ9G48/p3NP8mrYIUmSJEkax3hbz/7vEMLbRjn+thDCH03stHS6y+VytLS0UNf0DGb2HOElB9ppaXkcgUdbG/nL1xJI/ggDUN8TIAQK5cLxjUkhWcICULfgSXoKSZIkSdJ0NF5lRzOwYZTjXwTeOjHT0VSxbv16vr/gKexefD5Hquv41rWt3DqrkXXr15/cBRYtIrtwZGixbX4YuzEpQOfu5LV+0f9w9pIkSZKk6Wy8nh2ZGGPh2IMxxv4QwuNvzqBpZUWMXPr050EIRAKFVJrrG1fy/V0Psfskr1HZ3k5g+E/pxYfnMufi9aM3JgXoHKjscBmLJEmSJGkc44UdqRDCghjj3qMPhhBcQyAqm5royVRCjKTLJSrKJeZvu5+qpqaTvsbuqpGFRef8xae5cOUlY5/QtQfSlVDz+Hd9kSRJkiSdOcYLOz4B3BRCeA/wi4Fjlw4cdzeWM1xrayv/95Zulux4kANt93LNtvu5bM8mnrphtJVPx6ipIQ90NjURCEQigUD6qqugs3Ps8zr3Qt1CsLBIkiRJkjSOMXt2xBg3AB8EPgJsBbYAHwb+IsZ446TMTqet579sHfsblrDzwMM88vNv8OWKHro2bKC5ufnEJw80Jx0UYvLa/6UvjX9e526ot7BIkiRJkjS+8So7iDH+EPjhJM1FU8idbe0AfP9zn+bpSz73+E5etIiaeXNh107KxKHEbedffojGxkayF188+nlde2HOOU980pIkSZKkM8J4u7FIY7qz7SD11RmesmjGEzq/Z/duAoH9cyuIA8tSYqFA/q67xz6pc4/NSSVJkiRJJ2TYoSfk51vauWx5A+nU4++fkb/vPva1txOB2R1FimmIqRShooLsZWtGP6nQA72HDDskSZIkSSdk2KHHbd+RXtr2d/PMFXOe0Pn5u+6GUpkApMtw84UpHrt2LY2f/9zwEpbtd8HPPpW8QrKEBZIGpZIkSZIkjWPMnh0hhP893okxxr998qejqeDOLQcBeMaKhid0fvayNcQARCim4Y6Lqnj2W3+P7PxVyYC2W+CLr4QYIVMNb/pu8h6s7JAkSZIkndB4DUrrJ20WmlJ+3tZOfVWGpz7Ofh0b923knr33cOmSS8nXpSjW17DnXS/nfc9+OasGgw6AWz8JsZy8L/XD1p8NNyY17JAkSZIkncCYYUeM8cOTORFNHXe2tbPmrAYy6ZNfBXXHrjt450/eCeVIRaaCf+4tk3/exbz2VX8xcmDHVth2B4RUEniEAMuvhF33Jd+7jEWSJEmSdAJj/ms1hFAdQnhTCOHlIfGnIYTvhxD+LoQwdzInqdPH/s4+Nu/v5hlnPb4lLD/a+iPO2VHmFXeWOW9zH9UFWNq08viBP/4ApCvgNV+CxZcmy1eqZyU7saQykH1ifUIkSZIkSWeO8ZaxbAAKQC3wHuAB4B+AK4AvAL810ZPT6efnW9oBHl9z0poaljy/gd9um0GmlPTpADj89x+D3/3D4XFtN8NvvgfP/SA85aWw7DL4f5ckAUjtXKhbACl76kqSJEmSxjfevxyfGmNsBl4FnB9j/L0Y47/HGD8ALJuc6el0kcvlWLN0Kd9670cJhR5+ectNJ3fi7t1w0UXMqllIRSn5g0sPtOP49LUL2LhvY/KhVIAfvh9mL4fLfz85VjcPnv1eeORHHLzjyxz5zTbWLFtGLpd7sh9PkiRJkjSNjBd29APEGIvArmO+K03YjHTayeVytLS08MJYzy/PX8uivVv53Xe2nFTokH/veznw6KNsr+khDB4ceNNeW+aevfckH378F7D/N3DJm6Gieuj8r7TNpO1QpKEmUl8B72c3LS0nd29JkiRJ0pkpxMEtPY/9IoR9wFdJ/mn62oH3DHx+TYxxwaTMEFi9enW85557Jut2OkZvKsWDi87n9de20ldRRaZU5Gtffj9P2/0w1eXy6CfV1JAHHmtsAqC/IlCOZapLKfrSUFWCT762ij941+dZ9cD34GefSs7L1CRbzS67bOje1Wsr4PnVSf+OIrAhT+/O8tj3liRJkiRNSyGEe2OMq080bryeHX9y1PtjkwaThzPIihj5rcaV9KcrACiHwPWNK/n+rofYPdZJbW3km98AO3dCCKRLkCIJ1qoG6oLe86+9LH/k+XBecfi8wa1mB8KOFTHygwAXlSMhFYipyMblaV6yozT2vSVJkiRJZ7Txtp69cTInotNXZVMT87fdT4pIKUYqS0Xmb7ufqqamsU9atIjswgVJ2AGUUpApjVw1FSLki9VkL/wt+PV3kqAjXZlsNXvUvdu27uCiEsQYoQxtW0vj31uSJEmSdEYbr7JDAqC1tZXaN76Rb+UP09tzhGv+/R+4bM8mnrphw7jn1fT0QEgadPzrlYE33ByTpSgDPTtCCrILijDvvGTpytafJUHHQFXH4L3Tb3wj39yQZ+fyNEu2lqjYFWnd0DphzytJkiRJmtoMO3RCzc3N/F1fivymGRy8/St8uaKHp23YQHNz87jnFa+/Hq56DgCzi1VAL7OXLSHOK8KRzcxc3kN2QWY44Dgq5Dj63jnguuuuY9tt22hsbKR1Q+sJ7y1JkiRJOnMZduikzH7K5bDpQe7/yddpmlN7UucUdg1v4vOsXyfNRKt/7/eZlc/B3v2w5o+Oq+QYTXNzs+GGJEmSJOmkjRl2hBAywNuA3wYWDxzeCXwH+JcYY2Hip6fTxc8eOcCyhpqTDjry991Hxw2fBSACMw/2A1Dcvxf23warXg9XvmeipitJkiRJOoONV9nxReAQ8CFgx8CxpcCbgC+RbEerM0ChVObOze28bNXiEw8mCTq2venNxP7+oWMDbTrY/atbmTu3G1Y850mfpyRJkiRJMH7YcWmM8bxjju0A7gwhbJrAOek088vth+jsK3LlOXNPanz+6hcTZ80aak56tM1zO1gZUrD8iid7mpIkSZIkAZAa57uDIYRXhxCGxoQQUiGE1wIdEz81nS5+9sgBUgHWnn1yYUc296URQUc86rvlDV2w+GKomfUkz1KSJEmSpMR4Yce1wKuAvSGETQPVHHuBawa+0xnivx89wMqls5iZrTip8dnnP590RQZipAR+iwu5AAAgAElEQVSUUsNxx3mbHoazrpqgmUqSJEmSNE7YEWPcGmN8bYxxHnA5cHmMcd7AsS2TN0WdSkd6C2zcfuikl7AMKUfiotl87aoUHRcP9/rY9l+zyPc1PsmzlCRJkiRp2HiVHUNijO0xxvYQwoaJnpBOL3dsbqdUjlxx7smHHbFcphQj2y8/j++sTbNi7cuP+i6Q35afiKlKkiRJkgSME3aEEL57zM/3gGsGP0/iHHUK5HI51ixdyr/+8Yeh0MvDt/37CcfeEgJrli3ja5/7HJTLPFB4jHnZeRx8ymJCVRUECOkU2WeuncQnkSRJkiSdacar7FgKHAH+FvjUwE/nUe81TeVyOVpaWnhhrOfeC65k8d423vU7LeRyuTHHvj/s4corKnk/u/nL97wHgDb2sz+/j7fv+gR9H/8D5q08QuOfvJzsxRdP9iNJkiRJks4g44Udq4F7geuAwzHGm4GeGOMtMcZbJmNyOjXWrV/PrbMa+ca1rRzKzmTfovO4dVYj69avH3Vs9+I+1r0lS+q5Vax7S5aNv5X8WXXWJDuxFEr93J35FXOf2kX2+a+Z5KeRJEmSJJ1pxmtQWo4xfhp4C3BdCOEfgMykzUynzIoY+UzjSvrTye4r5RC4vnElZ8U46ti2lRWQChACMUBvRfJn0lUTSMVIRQisPnIQqmfBoosm9VkkSZIkSWeeEzYojTHuiDG+Gvgh8KWTvXAI4XMhhH0hhAeOOvahEMLOEMLGgZ+XPLFpayJVNjUxf9v9pGMJgIpSkfnb7qeqqWnUsfm+JASJpQhFeOgXyXn56si7Og7z2X0drHr4v6B+Iey8d/IeRJIkSZJ0Rjqp3VgAYow3xRj//HFc+wvA1aMc/3SMcdXAzw8ex/U0SVpbW1mzZxMXPPhfEMtc87UPcNmeTbS2to46tr4iRU93mb+/uY9vbsjTvzMAUDujnnc+71Osql0K/Z2w/2G48eWw/a7JfiRJkiRJ0hnkpMOOxyvGeCtwcKKur4nT3NxM14YNPFBTTamni69k8nRt2EBzc/OoY7PPPJ9fdlbyx7cVeG96KaXfvoZygHnLLoILXwNP+20IKSBCqR+2/mzyH0qSJEmSdMaYsLBjHL8fQvjVwDKX2WMNCiG0hBDuCSHcs3///smcn0hCjJde81rObVrE1q1bRw06Bs1LHeaZL30D5XKZrVu3cm5NNYU0XLi/Ohlw1rMhXQUhDelKWH7lJD2FJEmSJOlMNNlhxz8BZwOrgN2Ms4VtjPGGGOPqGOPqefPmTdb8dJSD3f00ZCvHH5Q/CPl2mHNO8vG+++j66X9SWYRn/81/kr/vPlh2Gbzpu/Dc65LXZZdNwuwlSZIkSWeqSd1dJca4d/B9COGzwPcn8/56fDry/SxryI4/qH1z8jrnXADyd91NLJcJQKpYJn/X3WQvvjgJOAw5JEmSJEmTYFIrO0IIi476+NvAA2ON1al3UpUd7Y8krwOVHZWzZhKAMhAqMmQvWzOhc5QkSZIk6VgTVtkRQvgK8BxgbghhB/CXwHNCCKuACGwF3jlR99f/TIyRjnw/s2tPFHY8CqkMzE62pe393OcBuPOCwLoP3JBUdUiSJEmSNIkmLOyIMb5ulMP/MlH305Orq69IoRRpqK0Yf+CBR2D2cqibQR5ob2wiBlj9SKTyyuckY3p6Jni2kiRJkiQNOxW7seg0lsvlWLN0Kf++cBkAD//qF+Of0L456dfR1kb+8rUABALpEuTXroUtWyZ6ypIkSZIkjWDYoSG5XI6WlhbeH/ZwxVUpLgmb+Nw//T25XG70E8plOLgZ5pwNixaRXbggOQzEFGQXLoSFCyfvASRJkiRJwrBDR1m3fj3dDX2se1OWhau6+XJlK3dW7mTd+vWjn3BkBxR7YW6yE0t1Pg8hcP9ZgW+8Yhabqg9O4uwlSZIkSUoYdmjIihjZuDxNTEEIUEGRA3OPcFaMo59wYOROLIVPfQqAm1cG/u2CPO/4XwfYuG/jZExdkiRJkqQhhh0aUtnURNvWUrJXDlAixbbNvVQ1NY1+Qvvm5HVOUtlR2LkTgP0zA5FIoVzgnr33TPS0JUmSJEkawbBDQ1pbW0nvivzq7n4Avl18FjWP9dDa2jr6Ce2PQGU91M0HoPDrXwOwfyakSFGRqmD1gtWTMndJkiRJkgYZdmhIc3MzXRs28KOKmQCEcoHuDRtobm4e/YQDj8Dcc5I1L0D+K1+lTGTe4cgbn/ZGPvvCz7Jq/qrJmr4kSZIkSQBkTvUEdHppbm6GxY/BLX/NudluVo0VdECyjKXxGVBTQx440thECPDBr5RZ8sm/YF7vB6CnZ9LmLkmSJEkSWNmh0RT7AFjE/rHHFHrg8PakX0dbG/nL1wIQCGRKwCXPhC1bJmGykiRJkiSNZNih45WSnh1zSvuhXB59zME2IMKcs2HRIrILFwAQiRTTULtwISxcOEkTliRJkiRpmGGHjjdQ2ZGhCF17Rx8zuO3s3GQnlmxvLxXZLIfn1/JP62rIunxFkiRJknSKGHboOHEg7ACgbePog9ofTV4bzk5ev/UtmD+PfY31dKw+J/ksSZIkSdIpYNghcrkca5Yu5ZYQWLNsGZsfeZiNVZX888wZbPz6J0c/qf1RqF8MVXVDh2JPL/lMiRmVMyZp5pIkSZIkHc/dWM5wuVyOlpYW3rMo8vBL53L9Q+3s3/oAv7d6AYUAVTP28M/nZFm1M47cWaX90aRfx1HKPT10p9LMqDLskCRJkiSdOlZ2nOHWrV/PbYsiN73vLP7fqxbwzvedxU1LaymGACFQSAXuufZZQzurJFUgSyg8chff+OGd5HK5oWuVe3vpThepr6w/VY8jSZIkSZKVHWe6FTFyzQW19FcMhBtpKIRAACKQBlYfmQkLFw5VgXx1UR8VNbWce7iLtS0tALz+Na+BQoEjqeAyFkmSJEnSKWVlxxmusqmJ2Zu6hz6ny5HndxS4sDvNuTsif/6THs676T4gqQLpbujjZddmAbhodSXdDX2sW7+ecm8vAN0ZKzskSZIkSaeWYccZrrW1lYZMGkIA4MKb9rOyL7Jod+Qvv1LiKb+oYFs6Q76mhhgjG5eniQN/NTEF9y1Pc1aMlPNJP4++CqzskCRJkiSdUoYdZ7BcLsf/fd/72HxJPbEYAbitZib9s+pZuKtMRRFSBGII5Neu5dlLl9K2tQRAjBFK0La1RFVTE7F3IOzIYGWHJEmSJOmUMuw4Qw3237i6+iD3rp3Fos15yv1lnn31s6mqTHH/8mRcJBKIZBcu5I8+/nHSuyKdR8q07S/zzQ15Mrsira2tlAd2aumrtLJDkiRJknRqGXacoQZ3YfnB+8+iqzZN+9k1zO8uMee2H1Pu7+GBJZEIFNKBxssbyfb00NzcTN/nP8OMWWm+8GCR96aX0rVhA83NzcNhRwa3npUkSZIknVLuxnKGGtyFpZBOenWs2AWXbYp0VFXQW+qlor+aFFBZgsz6l8Lz/giA11xxLrTBX/3LTfzVOc8bul4cquwILmORJEmSJJ1Shh1nqMqmJuY8tI8Q4ZwdZT785TIhBkqhkp7VZWbMGh7bvvlBFg3mGjvvTV4XXzzieoO7sfRlXMYiSZIkSTq1XMZyhmptbeWSLX3M3tPH2l8XSUUIBNIxwD3VPHVbHBrbfst/wp49yYe22yFfCY9sh6uuSo7v3k35/X8G2LNDkiRJknTqWdlxhmpubuZLMTJ/UytPeawPqAIgADHC+TuGw47Cdsi/5z1kczk27vg596QqmPnXzRyesY/Vf/teiqHMrupdnHukjlBVRWW68tQ8lCRJkiRJGHacuWpqeM6MDBfOWUqmPBxORKCcgYP1w5+r9lWwbc899D1tNm9/72L6QoALAOYDGwF4SVc95/40Qj4PNTUw0MNDkiRJkqTJ5jKWM1VbG/vWXESmnCxfgWSb2b4K+NY1JfJVYWhoIBBDoH1eAy+5M/LcjZFX3lHm3J2DAwIVpWR8MVsJW7ZM9tNIkiRJkjTEyo4z1aJFPNZYzQWPkqxbCQFqq6nu7uOORRletDUFqUgslwEIRBbureA1eyIpBralzZT42KsDv25KUd0fKQMzqYKFC0/lk0mSJEmSznBWdpzBHqnvTt6kkj+DquqBvh3daeb0pKkoFNmxKE13FmbVlAgxkCbp65ECKoqRD3ytk2c9UqS2lKZQAQu7wqj3kiRJkiRpshh2nMEOnLMkeROTZqQzf/f3AZh/KLJwf4FYLhMyafrTMHPVkuPOT5cjZ1/8bK5a/5ek+0v0VgZmrH3upM1fkiRJkqTRGHacoWKMdOzbNuJY9mlPB+Dld5RZsqdEMZNhyY5+sj2BTalfHX+RBfPJ9vRw4bwLqSxAXyZSX0xPxvQlSZIkSRqTYccZ6uBjvyF9uHvEsdKRTiJw/lGNR4mByiL88aWLj7vGpb/4Bbl16zhv9nnMOxypLMDS79w+8ZOXJEmSJGkchh1nqB9/4c+oP2Z32L4HHwSSP4pAIBIpp5LPcw4dc4EY2V8u8/o3vIFC7Qwu2B6ZmYdLfrSLfE0NxcpKJEmSJEk6FQw7zjQ1NWw8J8vfLHuUGfk4dDiUy2Qvfyal1PA2tOXZWW66LPkTWdIeR14nBG7PZlkF7LzgAgJJ49IQ4d6lMzkvkyGXy03OM0mSJEmSdBTDjjNNWxv3XPssSqlAfX74cGruXLJr1/LdNXUMxhqZ9m5eetsBAC7ZVwSgP81QQ9P9vb0cbmpi4UMPAQxsRxv4/5ob+NZiWLd+/SQ9lCRJkiRJwww7zjSLFrG6bz6pCDOOWsaSnjmTjb/4Pn3V3USSZSzlVGDO4kYAqg8nfyqfuCZwZ3cnADOKRVpbW/lZby/5dJnH5sFHXpfmN40pPntBLWfFeOzdJUmSJEmacIYdZ6BVm3tYmZ9BQ0+aGJJAIjWjnnuKW3igMVDIQClAOUDNguScWR2BUiry6KLI144kYUfvxz9Oc3Mz72pqIlWMbFkAbYsgU4zMeaibqqamU/WIkiRJkqQzmGHHNJXL5VizdCm3hMCaZctG9s/41rfoX76MBQfLVPQVADh8++38f7/7MTYvTtP6uhTfvCpD6YqnUFvOArD4IBzOBs5f/BS+cdMPAHjxc54DQGtrK5XlwKJfHaH8rb28+G+2cOmWPlpbWyf1mSVJkiRJAsOOaSmXy9HS0sILYz33P/PVvLBcR0tLy3DgUVND/c9+yczOEsWKCoiRuopK/u033aze/gxelD3CK977N1z02X8j9dlvA5ApJ6euOjyfVG0tAOWuZOva17/+9aTSaX5RruGBH7TzxeJ8ujZsoLm5edKfXZIkSZIkw45paN369dw6q5FvXNvKp65czzeubeXWWY1c84Y3cEsIvKhhNks60sngkOy+UqiooHvuLJ66q8DbDx9h1fxVAKTr6oauO7sLXvCp2+jfsR2APx243hWNjQTg3e97H+Vyma1btxp0SJIkSZJOmcypnoCefCti5LcaV9KfqSCGFH2hkpaX/jEXPPzfrCpHVu65hwcbkyakgzurEAIRWLL/ACwEMlXJ4YqKoesGIBRL3Pdv32Yh8LLubp7a0MAfdHRAbR33PvhrXjTZDytJkiRJ0jEMO6ahyqYm5m+7nxAjkUi6XKJcVcdtl7+W22KkOr2WmfP+EYDunjx11TWUCRTSFRyal1Ry3Lcrz8XnNIy4bgkopiL1//1tSC9g+Zw5HABWxUgELvnC5+H/fnpyH1aSJEmSpGO4jGUaam1tZc2eTczs2E2qYydv+vL7edU93yaUyxACxaoeqvuTsZ2dndy9fRtfqlnA+5/VQtecpB/HnY8lO67k77tv6LoxBRtekOba845aAhMCcWApzO+VypP3kJIkSZIkjcGwYxpqbm6ma8MGOupmcfixX/GRvY/Qs+1+KksFiJF0upOagbCj53d+lw8uWMDfHtjLQw1NVIYC5Ri47Oxkz9n8XXcPhRkhwszeNOXD9SPuFwaWwpTmzZ28h5QkSZIkaQyGHdPUy9e9BqrqaP3z/82NN97Imj2bWPfV6widB6jp3z5U2XHli17I1q1bObD5flKpFMtnZiBTyaXLkyUs2cvWkKqqIqZSUJHhla++jqsvvHrEvR7avw+A9e94x6Q+oyRJkiRJozHsmKZ2dPQAsHR2zVClx5crejj8m1vomZmhtj/51acHtpG9e8tByhFWL60lVVE9dJ3sxRfT+PnPMf/d72bFjRt4YHeBG2+8ccS9bhhYvnL1K185GY8mSZIkSdK4DDumqeGwIwskS1u2bt3KN6//a0JFN3PjTABCNvn+9s0HqEynmJ8F0lUjrpW9+GLmvrOF7MUXs279evaXR/bm+JeaJBxJDVxLkiRJkqRTybBjmtrRkQdg2eyaEcdXN80mlemiui8JNAYrO+5oa+fixllkyoWhbWdHsyJGbs9mh7esBXZUJ/cw7JAkSZIknQ4MO6apHR091FSkaaitHHG8vrqC6uo8qa5kR5WQzXIo38+Du46w9uy5UOqDdOVolwSSbW335vNJU9LBxqQkr4YdkiRJkqTTgWHHNLWjI8/S2TWEgZ1UjpbKdBI7h3t23Nl2kBhh7TlzoNg3bmVHa2srdf393L19Gzd1dABQk84AEGpqxjxPkiRJkqTJYtgxTW0/2MPS2ceHD4VSgb7YSVVfmhgCoaaGO9vaqalIc9HSWVDqHzfsGGx2+sEFC/hYx0EAMjU1hJoaQso/J0mSJEnSqee/TqepHR15ljUcv6ykvbcdgJr+NKXKKkIqxe2bD7B6+WwqM6mksiM9dtgBw81OD/T2QgikSiWXsEiSJEmSThuGHdPQ4Z4CR3qLx1V25HI5XvrcZwBQ3dVDV6qC/Z19bNrblfTrgIFlLGP37Djal7/6VY6USgD0797NUxsayOVyT96DSJIkSZL0BBh2TEM7j9l2FpKgo6WlhUsaugGYm++gK1XF//nCdwFYe/acZGDpxJUdg9d7y1veQmWpCEBFKsWf9/Tw1re+1cBDkiRJknRKGXZMQ9sHtp09urJj3fr13LYocs+rFgAQ6rvprQzcd/9B6qsyPG3xjGRgcfyeHUdf71A6TXWmAoByOs3qZY10pFKsW7/+SX4iSZIkSZJOnmHHNLRjoLJj2VGVHSti5J8vqKWUSnZnqS5EeqtKbG1YSt/me/naV7+SDDzB1rNHX++uo/t0hEAMgbuyWc4a2JJWkiRJkqRTIXOqJ6An346OPLWVaWZlK4aOVTY1MeehfaTLUExBTR90xqSCY+XuLbS0tALQXOyHTPUJ71HZ1MTOvXtZcFSwEWJkRz5PVVPTk/xEkiRJkiSdPCs7pqEdHT0snZ0lhDB0rLW1lUu29HH27R0ALN4Pdb2RCw5u5f6LX8KtsxqT5Selk2tQ2traSravj8z2bRw41MGBQ4dIb99GXV8fra2tE/ZskiRJkiSdiGHHNLT9YP64nViam5v50TvfyTOPlHjKY2UqI5zVuYeP/fdnOLdjO7c3rkyWnxR7T6pBaXNzM/kvfpHLa2t59r59PHvfXi6vraX7i1+kubl5oh5NkiRJkqQTMuyYZmKM7OzoYVlD9rjv/vb662FWiqfviAQiAagoF7nowGY6tt2fLD8p9p/01rPNzc0cOHCAGCMxRg4cOGDQIUmSJEk65Qw7ppkjPUU6+4rHVXZA0lR096wUjywbPBJJhciVv/gxF+3ZlCw/OcmtZyVJkiRJOl0Zdkwzo207O6iyqYmObti6BAhQM7efivx2enc8RNeGDTRf+1qI5ZPaelaSJEmSpNOVYcc0s2Mo7Dh+GUtrayvlXqCQ7KCyp72bX+/oIf+lLyXLT0p9yUDDDkmSJEnSFGbYMc3s6OgBYNkoYUdzczN9z7mSchmIgbsztUlFx2CfjeJA2OEyFkmSJEnSFJY51RPQk2tHRw/1VRlm1Iz+q21c3sjhtk1Ante97tXMPbqh6GDYcZINSiVJkiRJOh1Z2THN7OjIs2R2DSGEUb8vlotUlpJlLMTiyC9LVnZIkiRJkqY+w45pZvvBnlH7dQwq9XRTmU+WuoRjw45if/Jqzw5JkiRJ0hRm2DGNxBjZ0ZFnWcPxO7EMmnPLr3jO3eWBEwojv7RBqSRJkiRpGjDsmEYO5Qt095dGr+yoqSFfU8M13znIVXclS1wKX/83qDkqGBms7HAZiyRJkiRpCjPsmCZyuRz/6/LnAPB3f/IH5HK5kQPa2shfvpYQIcVA2DFzDmzZMjym2Ju82qBUkiRJkjSFGXZMA7lcjpaWFlbWLgPgWZ15WlpaRgYeixaRXbgAgEjSoLSyPg0LFw6PsUGpJEmSJGkaMOyYBtatX8+tsxq544rXA/CfL/p9bp3VyLr160eMq+npIRA42JB8rqzqH3mhoQalVnZIkiRJkqYuw45pYEWMfKZxJcVU8ussptJc37iS5TGyZulSbgmBNcuW8eVrrgGgsz6p7AhPPX/khazskCRJkiRNA4Yd00BlUxPzt91PKkaIkYpyifnb7mdfCLz9Wfup+GItLc/cx7t+53cAqCgl54XYN/JCQ5Ud1ZM4e0mSJEmSnlyGHdNAa2sra/ZsYv7eRwlH9nPNV6/jI7se4qF1FbwpV+Cy13ez/isF7n5JknKkB8KOoUoOjvnsMhZJkiRJ0hRm2DENNDc307VhA3uqs3Tv38KXK3pYCjz0WxkyqUgmBZlU5OGXpgHIDFZ2lI/t2TGwG4vLWCRJkiRJU5hhxzTR3NzMouXn8qbXrmPr1q1UNTWx9/tFCuVAsQzFcmD/TUnKkSkOnHRsZYcNSiVJkiRJ00DmVE9AT44YIwe7+2moTYKK1tZW6t74Rj74d/NY+pxA5d8eZtm3i3D28DKWUO4deREblEqSJEmSpgHDjmki31+ir1hm9kDY0dzcTA743s8/QuUDlRz6wUFyMdmFZbhnxzFhx1Blh2GHJEmSJGnqchnLNHGwOwkqGrLDS1Cam5u5ePXFAPxFZRXnzZ4NQLoUAAjHhh2lPkhlIJWehBlLkiRJkjQxrOyYJjryA2FH7ch+G4t+fjv9i2dwxawldAwcSw/2JS33Qbk0HG4U+1zCIkmSJEma8qzsmCYGKztmHxN2/CATeNq2MoSQ/ACpcvJdCBEK+eHBxT6bk0qSJEmSpjzDjmlirMqOVH2WXzcmIQcDPTtScWAZSwD6u4cHl6zskCRJkiRNfYYd00R71/E9OwBWnLeCzYuScGN7f//Ik44NO4r9VnZIkiRJkqY8w45poiPfTzoVqK8e2YalYW4DqaSggy2lwojvQioeX9mRqZ7oqUqSJEmSNKEMO6aJg90FZmcrSKXCiOOFcmGoR8cLn/u8kSeNVtnhMhZJkiRJ0hRn2DFNdHT3H9evA6C/3E8YqOwoF0YuYwnhmMqOYq/LWCRJkiRJU55hxzRxMN/P7OzxQUWhVBhaxlLu7xv5ZQD6u4Y/l6zskCRJkiRNfYYd08RYlR1HL2OJ/cf07DhuGYtbz0qSJEmSpj7DjmniYHc/s0dbxlLqH6rsiIVjd2OxQakkSZIkafox7JgGyuVIR77/uG1nIenZMRx2jFbZcdQylmI/pK3skCRJkiRNbYYd08CR3gLlyOjLWEqFoQalx4Ud6TBKZYc9OyRJkiRJU5thxzRwsDtZnjLWbiyDPTsoFEd+WVl7fM8OG5RKkiRJkqY4w45poCOfhB3H9uwoxzLFcnHsZSxV2WOWsdigVJIkSZI09U1Y2BFC+FwIYV8I4YGjjjWEEH4SQnhk4HX2RN3/TNLeNVDZcUzPjmI5qeQYruwYGXZQlT1mGYtbz0qSJEmSpr6JrOz4AnD1McfeD/w0xngu8NOBz/ofGq7sqBhxvL+UHB+s7Dh2GUs4Nuwo2rNDkiRJkjT1TVjYEWO8FTh4zOFXADcOvL8ReOVE3f9McrA7qdg4tmdHf3lk2BGKpZEnVtUNhx0x2qBUkiRJkjQthBjjiUc90YuHsBz4fozx6QOfD8UYZw28D0DH4Ofx1NfXx0svvXTC5jnVbTuYZ8/hXi47q2HE8f5SP7/c/0uqC3D27uN/z9nGWigXYPGqJOx47DaY3QQzl03W1CVJkiRJOmm33HLLvTHG1Scad8oalMYkZRkzaQkhtIQQ7gkh3FM4tteERiiUylSkw3HH49j/eROpNMSBao840Ngj2LNWkiRJkjS1ZSb5fntDCItijLtDCIuAfWMNjDHeANwAsHr16njzzTdP0hSnnrd+4W72Hunlpj+8csTxtkNtvOI7r+CsPZG//nzpuPMu+OhzCFtuhvfcDN0H4BNnw4v/BJ7RMjkTlyRJkiTpcUgWiZzYZP9v/O8Cbxp4/ybgO5N8/2npYHf/cf06YLhnRxirwKO6frhnR7EvebVnhyRJkiRpipvIrWe/AtwBnB9C2BFCeBvwceAFIYRHgOcPfNb/UEe+n9nZ48OOQilZ/jO09ezRUilCVR30dw03JwXDDkmSJEnSlDdhy1hijK8b46vnTdQ9z1QnquxIjVLZEdJpqKxNenYU+6CYjCV9/HUkSZIkSZpK7EY5xRVKZTp7i6OGHf/+438HRg87SKehsm7gInko9ibvreyQJEmSJE1xhh1TXEd3UpEx+5iwI5fL8en/92nO3RF59v3Hr2MJqVRS2QHJUpbSYGWHYYckSZIkaWqb7N1Y9CQ7mE9CioZjenasW7+eZRc2MDtXGr1nRyYDFdnkfX/3UQ1KXcYiSZIkSZrarOyY4g4OVXZUjDi+IkZ2xioy5dF/yUllx8Aylv7uoxqUVk/gbCVJkiRJmniGHVNcR3ey48qxPTsqm5rYVlkEIDJK045MZuQyFhuUSpIkSZKmCcOOKW5oGcsxYUdrayt92RIAh0Yp1hjZs6PbrWclSZIkSdOGYccUd7BrYBnLMT07mpub6X3dawHorBitsiM9chnLYM8OKzskSZIkSVOcYccU15Hvp746Q0X6+F/l05/6FABmVmWP+y6k0scsY1F82ZEAACAASURBVLGyQ5IkSZI0PRh2THEHu/uPW8IyqFRIAoxM8fjvQjp9zDKWgZ4dNiiVJEmSJE1xbj07xXXk+49bwjKo2J+EHeniKHvPHht2EAaOu4xFkiRJkjS1WdkxxR3s7mfOGJUdQ2FH6fieHSGdhlQaMjXJMhYblEqSJEmSpgnDjinuYHc/s0+wjCU1VmUHJNUd/d1uPStJkiRJmjYMO6awGOO4PTvK/YNhR+m470Jq4Fc/FHb0JkFHCBM2X0mSJEmSJoNhxxTWUyjRVyyP2bOjVCwAEEbZeZbMQLuWyrrhBqVpl7BIkiRJkqY+w44p7GB3svSkobZi1O/Lhf4xzx1Z2TGw9az9OiRJkiRJ04BhxxTW0Z1UbjTUjh5SjBd2kDmmZ0fJsEOSJEmSND0Ydkxh7d1JT46xKjtK41Z2jNKg1OakkiRJkqRpwLBjCuvIJ2HGWD07YqE45rlhqLKjbmAZS6+VHZIkSZKkacGwY4rK5XJ84E+uA+DVz7yUXC533Jhxl7EcW9lRsrJDkiRJkjQ9GHZMQblcjpaWFs6qnE0ol3lRb4qWlpbjAo9YHKeyI3102JEfaFBaPZHTliRJkiRpUhh2TEHr1q/n1lmN/ObpzyWGwLeubeXWWY2sW79+5MCBrWdHlT5qGUuxBwo9LmORJEmSJE0Lhh1T0IoY+UzjSkohBSFQSKW5vnElZ8U4Ylx5vJ4d6aO2ngXo6XAZiyRJkiRpWjDsmIIqm5qYv+1+QowQIxXlEvO33U9VU9OIcXGUyo5SOiRv0pmBiw2GHQet7JAkSZIkTQuZUz0BPX6tra3UvfGNfKO3i/7De7jmP27gsj2beOqGDSMHFkvHnVvKpEiXSoTUYGVHXfKaP2hlhyRJkiRpWjDsmIKam5vZEKH3/joOb/wFX67o4WkbNtDc3Dxy4CgNSsuZFPSVIHNUg1KAWLKyQ5IkSZI0LbiMZYp6wcuugZDiHz7xUbZu3Toi6MjlcqxZupTyoSPHnVceCDnC0Naz2eEvDTskSZIkSdOAlR1T1N4jfQAsqB+5XezgtrTfWlNk8ZX91PRm6dlYM/R9uWIg5MgctRvLoLRhhyRJkiRp6rOy43TzoQ+d1LA9h3sBWDhzOOzI5XKse8MbaF9T5AU/LPD0N+2n8fPbqFnVMzQmHlfZUTt8USs7JEmSJEnTgGHH6ebDHz6pYfs6k7Bj/owkoBis6PhJdTU9V1cTKiIhA6Eikr0sP3ReTznp47HrM59hzbJlfPsHPxm+qA1KJUmSJEnTgGHHFLXncC/pVGBubRJ2rFu/nv3lMmc3NXFo4yxiIRCLEAuB/F3DfTkOd3VSjpGG6irefeAAf/CePxu+qJUdkiRJkqRpwJ4dU9TeI33Mr68ilQrJgRjZvHQWGQK9G7Nse0sj2cvy5O8a2bNjUTGSAnqra1i9rJGHd20bvqhhhyRJkiRpGrCy4zQxuIPKLcCaZcvI5XLjjt97pJdMf1dyTghcHgL3LU5+nWWgZ2MN7TfMGRF0AJTLA+FICMQQuL0qS6EUk2M2KJUkSZIkTQOGHaeBwX4bL4z13P/MV/PCch0tLS3jBh6btu/l0Qfu5eqag/zyt+fzshXVLNrZDcDuhrHv1ZeKhBghJq978nnyxYE/g4w9OyRJkiRJU5/LWE4D69av54JF53Pt6z9GMaSpKhW49avX8bT166G5edRzeg73sC7zKN/9sxWUU1B99VzWfWIXAJ01o54CQDEVuXv7Nh7JZjk3n2dGfz+Z2vlQPGRlhyRJkiRpWrCy41T40IcghKGfFTHymcaVFFIZYipFIZXm+saVnBXjiHGEAB/6EPn+Ip3VdWyZvYcYgBDozwR+vDRpRJrtG/vW5QXz+eCCBXy0o4MPLlhA14YN1M6an3xpzw5JkiRJ0jRgZcep8KEPJT8DKpcvZ+6OB5MPMVJRLjF/2/1UNTXB1q3Hnb73QLJcpeHRIrsujRRTgUwpUn8g2VZ2vLCjfuZMtm69feTBGz6bvLr1rCRJkiRpGrCy4zTQ2trK8t7OoeqN5/3w77hszyZaW1tHHb/3SC8AKx/p5PIv7Qbg0m/sZUFf0nx0vLAjpNLHH6ysS14z1U/8ISRJkiRJOk0YdpwGmpub2frhTw59vqlhNl0bNtA8Rr+OwbCj4gN/yg8PzATgv2bMpud5VwKQ7R/nZulRfuWVtcmrDUolSZIkSdOAYcdpYslTLhl6/54Pf2LMoAOGw463N7+Kzb/aTFW6it953++wsGHGCe8TUuOEHTYolSRJkiRNA4Ydp4lH93WxcEY1Sw7v49H9XeOO3XO4j2xlmrqqDKmQYkndEnZ07qCv89AJ7xPSoy1jGazsMOyQJEmSJE19hh2niUf3dXHO/DrObt/Oo/vGDzv2dvaycEY1ISQ9OpbWL2VH1w4KnUdOeJ9xe3bYoFSSJEmSNA0YdpwGyuXI5v1J2HFO+3ba9ndTLscxx+893Mv8GcNVGEvrlrKjcwel7u4xzymmk+uF9MgNeHK5HP/yT/8MwKtecDW5XO5/8iiSJEmSJJ1yhh2ngd1Hesn3lzh7fh3nXL6KnkKJXYd7xhw/WNkxaGn9UroKXZQ6O8c8pzTwmz56GUsul6OlpYXLisl5byvto6WlxcBDkiRJkjSlGXacBgaXrZwzr46z33rtiGPHijGy90gfC44OO+qWAlDRVxzzHsWBjOPosGPd+vV0N/Sx8pJk+cqLr8nS3dDHuvXrn/jDSJIkSZJ0ihl2nAaGwo75dZwzv27EsWMdyhfoL5ZHhB1L6pcAkO0b+x7lgYxjz759Q8dWxMjG5Wli0vqDmIL7lqc5K469hEaSJEmSpNOdYcdp4NF9XcysqWBuXSVz6qqYna1g8xg7suwZ2HZ2tMqO6v6x7zEYdjzw4K+HlqlUNjXRtrUEJYilCGVo21qiqqnpSXgqSZIkSZJODcOOCfSNe7fzke8/yL2PdYw7brA56eDuKufMr2PzvtGbje4dCDsWzhxuUJqtyFJbriE7WtgxUKUx2LPj6kxpaJlKa2sr6V2Rb27I8/c39/HNDXkyuyKtra2P5zElSZIkSTqtGHZMkHsf6+C9X/8Vn/vvrTT/853jBh6b93Vxzry6oc/nzK/j0TEqOwbDjvn1w5UduVyOqp0dVI+yjKU8sAtLHKjsOJINQ8tUmpub6dqwgfeml/LHtxV4b3opXRs20Nzc/LieVZIkSZKk00nmxEP0RNzZ1j70vlAsc2dbO5c2zT5uXEd3P+3d/UO9OgDOnlfHwe7tHOzup6G2csT4vUeSRGNo69maGp62JLD49ctJEYlAOGp8V1WKGT1QTiXfdHeVRyxTaW5uNtyQJEmSJE0rVnZMkGeumEN6YFlKRSbFM1fMGXXcYAXHiLBjnCale4700lBbSVVmoFSjrY0vXFDLhY8lH8Mx4/sqkteecvKayrtMRZIkSZI0vRl2TJBLm2bz6tVJ49DPv3nNqFUdMHInlkGDS1pGCzv2Hekd0ZyURYtYtC2yZ/bAcpWBwz0DIUdxoHbnUHGgd8ezrrCSQ5IkSZI0rRl2TKDLz06qOebWVY055tF9XVRXpFgyq2bo2JJZNdRUpEfdkWXPkV4WVAJXXcU3//EfWbN0KW+/v5033rQHgCPlZJlLpr8AwIKeEgDFkIQdtbfeypply4Z2ZJEkSZIkabox7JhAjQ1ZAB5rz4855tF9XayYW0cqNbwAJZUKrJhXO2plx94jfbysdAPx9bcx9z/ezbvb2ym/ZDYr3lqmZlUP/9qRnFPbn6xbSfUkv+LGYnL+vHQV7z5wgJaWFgMPSZIkSdK0ZNgxgQbDjm0Hxw87hpawtLfD1VdDeztnz6s7Luwo1NbxvIbvck3LlwhvL/Hsr5V43ntmMucbh5j1J0do/Pw2rluTpBrdFQGOalda0xeIQKmimtXLGtlfLg9tQStJkiRJ0nRi2DGBGmorqavKjBl25PuL7DzUMxx2fOEL8KMfwY03cs78OnYe6iHfXxwaf+C+B3nxijshTfKTgvoXdREqIiEDoSLSdUUyvrauTEhFGNhmtsxAP48QiCFwezY7tAWtJEmSJEnTiWHHBAohsKwhO2bY0ba/GxhoThojfPrTyRef/jTnzKsdMQZgT/UMfth2eZJclCAWA50/ricWArEIsRDYfVuGmlU9zP29DuZfvZP/OHwIgK6aSCEDkUiIkT35/IgtaCVJkiRJmi4yp3oC011TQ5ZH9nUedzyXy3HdDd+Gy9/Mu5qvofUVz6f58OHky0OHOGfHJgA2/+H7ePo/fggWLmTvkT5ufuxSwo1ZCsszHPhGLV3/VUP+ocXUX95P7x2VrKpsp/LzhwiVkVCCd2wpseU3s3lsUQX/cFmKi7aUeeXNu3hdby/BLWglSZIkSdOQlR0TrHFOlu0dPZTLw0tGcrkcLS0tXHBpit+96ms0nrWXlo99jFzXQI+O7m6a/uUfuHTZr+l59RYeyv0pAHt37OX81A7YkeG976/h0C0z6Gvs5T/uCLTfMIf2XctJN9cny1oGlrocekHSqLSUgkeWBr61NsUNF1SwBNyCVpIkSZI0LVnZMcEaG7L0F8vs7exl0cxke9nr3vEOLn3+fP7t49+mIl3kD5+X4UWvWsp133uMZoAY2VK4hy+943tUpIsUShnufM0vONh4IW9+waOwvcjV2wrQEFg8r0z1jhREaGhaTNz+ALGQNCcNZdh+cxV1A9dMlyKZYmTOQ91Uu4RFkiRJ/z979x0eV3Xg//9zpql3ybItq9qyjQEXbINpphPwJpQAScABUohTyDfkSdkUdjfJL/Fukm8Km/JNFkg2YWNCCsmGGgKEEEoMWMa9yrIkW5bVe5t2fn/MaCzbcgNrRrp6v57nPnPvmXtnzsWHK+vjUwDAoQg7xlhsRZa2/ljYUT84qA9emyGve5887rCkoK64NkNfe/zQdR3XZmjWiPerP1Oij53zqJLcfoVDRnOfLdDgBqvmDZm6ekq/Opskd9cOhWo9OvDBEmVc2KaavwflXV8geaVp23oVDg7q2h19Wrx3SHMeYggLAAAAAMCZGMYyxkrzImFH3YhJSktKSvTCcwEFQh4FQy4FQh49/3SPSkZcl/N0z2HvTxnoktcdlMstGZdV6nn9kZVVwkbu+UHlrWpT0pwmrXrWr4ENKer5do52PiG9v7VVklQdTtaWp9r0P8Ep6n3oIYawAAAAAAAci54dY2x6dorcLqN9I8KO1atX65P//l9a+eBdWpTyqJ79Y6OqHq/T/SOum/t4nXbcUqqOTyxQzpZslWzZosCFHrnlVyjsUv9rqZK1SlnYr4LvHJTckdVZflSbrgPbpIHUVC0pLtErjY06IOmW971X93zjG3G/fwAAAAAA4o2wY4x53S5Nz05WXduhsGPlypX6y8FkvVjr1Z/ue1PFQb/ul3RkX4u5f+uQ/uVfpM8uld79bu35cZlmnv2kav6YLfNYk36dmqqPXNIreRSZkFRWgxclSVttpNeHpPUpyZoqybjccbtnAAAAAAASiWEscVCam6b6ET07JGkoY7rml+QqdN/3VJucHAk6jJFSUyOvkhQISOvWRfb/8AfNvOYD0stJ2nPO/9FVhYX6RkeHfrwuUwoa2aBkAybS40OSrJWxVs39A5FjN3/UAAAAAIDJgd+A46A4N/WwsCMYCmvT/i6dU5IjvfSSNDAgJSdLJSXSmjVScXHkeGAg8v6w5u2SpGtv/7Rqa2sVDof1zZ+3aOjNr6jlR1NU96ES9b+ZrO0HD+rXrS16Y1+90v1+SZIx/FEDAAAAACYHfgOOg9K8VLX3+dUzGJAk7WzqUb8/pEUl2dJrr0lut3T99dLWrdINN0jbtknXXRcpf+21Qx/UvE3KKZN8aYd9fvKyryj9kj8r49Iva/eHP6TP5GTrGx0d+tfCQvX+8AeRk9wMYwEAAAAATA6EHXEQW3422rtjfX2nJEV6dpxxhnT//dIjj0hp0RAjLU36zW8i5XPnHvqg5u3SlHmjfkfqokXK/+gq3fCFL8R6fdTW1uqm97xHkmRc/FEDAAAAACYHfgOOg1jYEZ2k9M26DuWnJ2lGTor05JPShz4UO3fNmjVaOmOGXjRGS7/yFa257bbIG8Ehqa1amnLGKX23Ge7RQc8OAAAAAMAkwWoscVCSd2TPjg6dU5ItMzwRadSaNWu0atUqPZQ7pIsv8umLtY26Y9UqSdLKKxdK4eAxe3Ycy3DYYVzmBGcCAAAAAOAM9OyIg8xkr3JSvapr71d7n1+1bf06pzTnqPNuuv129eUO6aY7U+W6LEk33ZEaOb799tjkpKfas+OR3/1OklT/rW9paXGx1qxZ87bvBwAAAACA8YywI05KclO1r71fb9Z3SJIWFWcfdU6FtdpQ5pZ1S3IZWbf0Zplb5dZGJid1eaS8ypP+zjVr1uhjd9+tlIUDmvnZgL4+s1mrVq0i8AAAAAAAOBphR5yU5KWprq1f6+s75HEZzZ9xdNjhKy1Va1f4sOEtNbUhJZWWRnp25M2SPL6T/s6bbr9dzUuDKvnvemV/rktXPx1Q29JgpKcIAAAAAAAORdgRJyW5KWroHNAbezt0xrRMpfiOnjB09erVmpYVKV9fF5RxGU1Lcmn16tVS09ZTHsJSYa32X+GW8VoZj2S8keNya0/LPQEAAAAAMB4RdsRJaW6aQmGrN+radU7J0b06JGnlypXKf+eZ2trm1gW/GlB9j0tnfGiWVt70Tqmz7pQnJ/WVlmrP8yHZgJENSjZgVP18tKcIAAAAAAAORdgRJ8Mrslgr3Tj9SWnPVVLTzw4/aaBThYN7deb192gwEFbJB3+mHH+DHr1zpiTp8/d+75Tm21i9erUGXwrqmWu9eu4/UvTMtV4NvRSM9BQBAAAAAMChWHo2TkpyI2HH+0qf0YKFP5TckkLPSU2SCj8cOanmBcmGpMqrJUlrNvRr1gGrm64akMpCumlXn64YXop25coTfufKlSu1RtK9996r+q/Uq6SkRKsfWn1S1wIAAAAAMFEZOwHmb1iyZIldt25doqvxtoTDVrP/5Wn94rKv6sIr3pBxSQpJqr9WKn8qctL/3i3teFz6fI3k9mjQ5VLyHS7pgVCkD05I0i0uDT5ulRwOJ+5mAAAAAABIAGNMlbV2yYnOYxhLnLy5r1OhsNUT1edLoUgHDoUlpd4UOSEclqqflWZeIbkjHW4qrNWB8yXrkuSWrFs6sMIwwSgAAAAAAMdB2BEna2vaZIz0SN3VuvfBT6nn1TLpl+mS9/LICQc3Sb1NUuVVsWt8paXa9ZQ9FI6EpJ1PWSYYBQAAAADgOAg74mRZRZ58HpfcRvrDgWtUm/+01JgivXJf5ITdz0ZeZ10Zu2b16tXqekJ64RaXXn3QrRducan7CTHBKAAAAAAAx8EEpXGyuDRHa+5aprU1bVpWkaf5pTnSObdLVb+Uln8+MoRl+iIpfUrsmuEJRu+5917VP84EowAAAAAAnAwmKE2kznqF71ugx/Z49K7yIf1oU4ryb/keYQYAAAAAAKM42QlK6dmRQGuefEmBTUF9YIVfKgupr75fXz6FpWUBAAAAAMDR6NmRQGVlZVp5/j5946FwbGnZVbe49OzGYtXW1ia6egAAAAAAjCssPTsB1NfX6+JLjeSSjFuSW7pphVF9fX2iqwYAAAAAwIRF2JFAJSUlevSIpWUffcqqpKQk0VUDAAAAAGDCYs6OBFq9erVWrVol3TKom1YYPfqU1cPPJev++1laFgAAAACAt4qwI4GGJyG999579bPo0rL338/SsgAAAAAAvB1MUAoAAAAAACYEJigFAAAAAACTEmEHAAAAAABwFMIOAAAAAADgKIQdAAAAAADAUQg7AAAAAACAoxB2AAAAAAAAR/Ek4kuNMbWSeiSFJAVPZtkYAAAAAACAk5GQsCPqMmttawK/HwAAAAAAOBDDWAAAAAAAgKMkKuywkv5ijKkyxqwa7QRjzCpjzDpjzLqWlpY4Vw8AAAAAAExUiQo7LrLWniPpWkl3G2OWH3mCtfZ+a+0Sa+2SgoKC+NcQAAAAAABMSAkJO6y1DdHXZkl/lHRuIuoBAAAAAACcJ+5hhzEmzRiTMbwv6WpJW+JdDwAAAAAA4EyJWI2lUNIfjTHD3/+wtfbPCagHAAAAAABwoLiHHdbaGkkL4v29AAAAAABgcmDpWQAAAAAA4CiEHQAAAAAAwFGMtTbRdTghY0yLpLq3eHm+pNbTWB3gVNEGMR7QDjEe0A4xHtAOMR7QDpFoE7kNllprC0500oQIO94OY8w6a+2SRNcDkxdtEOMB7RDjAe0Q4wHtEOMB7RCJNhnaIMNYAAAAAACAoxB2AAAAAAAAR5kMYcf9ia4AJj3aIMYD2iHGA9ohxgPaIcYD2iESzfFt0PFzdgAAAAAAgMllMvTsAAAAAAAAk8iECDuMMT83xjQbY7aMKMs1xjxrjNkdfc2JlhtjzA+MMdXGmE3GmHNGXHNn9Pzdxpg7R5QvNsZsjl7zA2OMie8dYiI4Rjv8qjGmwRizIbqtGPHel6Jtaqcx5h0jyq+JllUbY744orzcGPNatPw3xhhf/O4OE4ExptgY84IxZpsxZqsx5p5oOc9DxM1x2iHPQ8SNMSbZGPO6MWZjtB1+LVo+atsxxiRFj6uj75eN+KxTap/AsOO0w18YY/aOeB4ujJbzcxljwhjjNsa8aYx5InrMs1CSrLXjfpO0XNI5kraMKPu2pC9G978o6VvR/RWSnpZkJC2T9Fq0PFdSTfQ1J7qfE33v9ei5JnrttYm+Z7bxtx2jHX5V0udGOXeepI2SkiSVS9ojyR3d9kiqkOSLnjMves1vJb0vuv9TSR9P9D2zja9N0jRJ50T3MyTtirY1nodscduO0w55HrLFbYs+o9Kj+15Jr0WfXaO2HUmfkPTT6P77JP0mun/K7ZONbXg7Tjv8haSbRzmfn8tsY7JJ+oykhyU9ET3mWWjtxOjZYa39u6T2I4qvl/TL6P4vJd0wovwhG7FWUrYxZpqkd0h61lrbbq3tkPSspGui72Vaa9fayJ/0QyM+C4g5Rjs8luslPWKtHbLW7pVULenc6FZtra2x1volPSLp+mhKf7mk30evH9mmAUmStbbRWrs+ut8jabukIvE8RBwdpx0eC89DnHbR51pv9NAb3ayO3XZGPid/L+mKaFs7pfY5xreFCeY47fBY+LmM084YM0PSP0l6MHp8vJ+jk+pZOCHCjmMotNY2RvcPSiqM7hdJ2jfivP3RsuOV7x+lHDhZn4x2Rfy5iQ4f0Km3wzxJndba4BHlwKii3Q4XKfKvSDwPkRBHtEOJ5yHiKNpte4OkZkV+OdyjY7edWHuLvt+lSFs71fYJHObIdmitHX4ero4+D79vjEmKlvFzGWPhPkn/LCkcPT7ez9FJ9SycyGFHTDTpZFkZJMJPJM2UtFBSo6TvJrY6mAyMMemSHpX0aWtt98j3eB4iXkZphzwPEVfW2pC1dqGkGYr86+PcBFcJk9CR7dAYc5akLynSHpcqMjTlCwmsIhzMGPNOSc3W2qpE12U8mshhR1O0a5eir83R8gZJxSPOmxEtO175jFHKgROy1jZFf8iFJT2gyF+2pFNvh22KdGX0HFEOHMYY41XkF8w11to/RIt5HiKuRmuHPA+RKNbaTkkvSDpfx247sfYWfT9LkbZ2qu0TGNWIdnhNdLiftdYOSfpvvfXnIT+XcSIXSrrOGFOryBCTyyX9p3gWSprYYcdjkoZnKr5T0p9GlN8Rne14maSuaPfuZyRdbYzJiXatvVrSM9H3uo0xy6Ljle4Y8VnAcQ3/ghl1o6ThlVoek/S+6IzH5ZIqFZlg6g1JldEZkn2KTAz0WPRf41+QdHP0+pFtGpAUG4P5M0nbrbXfG/EWz0PEzbHaIc9DxJMxpsAYkx3dT5F0lSLzxxyr7Yx8Tt4s6a/RtnZK7XPs7wwTyTHa4Y4R/wBhFJkrYeTzkJ/LOG2stV+y1s6w1pYp8pz6q7V2pXgWRpxoBtPxsEn6tSJdYgOKjBP6sCJji56XtFvSc5Jyo+caST9WZNzmZklLRnzOhxSZbKVa0gdHlC9R5CG0R9KPJJlE3zPb+NuO0Q7/J9rONinyP/60EeffG21TOzVi5mxFZuLeFX3v3hHlFYo8VKol/U5SUqLvmW18bZIuUmSIyiZJG6LbCp6HbPHcjtMOeR6yxW2TNF/Sm9H2tkXSv0XLR207kpKjx9XR9ytGfNYptU82tuHtOO3wr9Hn4RZJv9KhFVv4ucw2ZpukS3VoNRaehdZG/mcBAAAAAABwiok8jAUAAAAAAOAohB0AAAAAAMBRCDsAAAAAAICjEHYAAAAAAABHIewAAAAAAACOQtgBAAAAAAAchbADAAAAAAA4CmEHAAAAAABwFMIOAAAAAADgKIQdAAAAAADAUQg7AAAAAACAoxB2AAAAAAAARyHsAAAAAAAAjkLYAQAAAAAAHIWwAwAAAAAAOAphBwAAAAAAcBTCDgAAAAAA4CiEHQAAAAAAwFEIOwAAAAAAgKMQdgAAAAAAAEch7AAAAAAAAI5C2AEAAAAAAByFsAMAAAAAADgKYQcAAAAAAHAUwg4AAAAAAOAohB0AAAAAAMBRCDsAAAAAAICjEHYAAAAAAABHIewAAAAAAACOQtgBAAAAAAAchbADAAAAAAA4CmEHAAAAAABwFMIOAAAAAADgKIQdAAAAAADAUQg7AAAAAACAoxB2AAAAAAAARyHsAAAAAAAAjkLYAQAAAAAAHIWwAwAAAAAAOAphBwAAAAAAcBTCDgAAAAAA4CiEHQAAAAAAwFEIOwAAAAAAgKMQdgAAAAAAAEch7AAAAAAAAI5C2AEAAAAAAByFsAMAAAAAADgKYQcAAAAAAHAUwg4AAAAAAOAohB0AAAAAAMBRCDsAAAAAAICjEHYAAAAAAABHIewAAAAAAACOQtgBAAAAAAAchbADA3QyNQAAIABJREFUAAAAAAA4CmEHAAAAAABwFMIOAAAAAADgKIQdAAAAAADAUQg7AAAAAACAoxB2AAAAAAAARyHsAAAAAAAAjkLYAQAAAAAAHIWwAwAAAAAAOAphBwAAAAAAcBTCDgAAAAAA4CiEHQAAAAAAwFEIOwAAAAAAgKMQdgAAAAAAAEch7AAAAAAAAI5C2AEAAAAAAByFsAMAAAAAADgKYQcAAAAAAHAUwg4AAAAAAOAohB0AAAAAAMBRCDsAAAAAAICjEHYAAAAAAABHIewAAAAAAACOQtgBAAAAAAAchbADAAAAAAA4CmEHAAAAAABwFE+iK3Ay8vPzbVlZWaKrAQAAAAAAEqiqqqrVWltwovMmRNhRVlamdevWJboaAAAAAAAggYwxdSdzHsNYAAAAAACAoxB2AAAAAAAARyHsAAAAAAAAjkLYAQAAAAAAHIWwAwAAAAAAOAphBwAAAAAAcBTCDgAAAAAA4CiEHQAAAAAAwFEIOwAAAAAAgKMQdgAAAAAAAEch7AAAAAAAAI5C2AEAAAAAAByFsAMAAAAAADgKYQcAAAAAAHAUwg4AAAAAAOAohB0AAAAAAMBRCDsAAAAAAICjEHYAAAAAAABHIewAAAAAAMRFVV2HfvxCtarqOhJdlYThv0F8eBJdAQAAAABAfFTVdWhtTZuWVeRpcWnOSV8XClv1DgXV7w+qbyio3qFQ9DVy3OePHB+7LKT23iE19QzFPjMn1atUn0c+j0sel5HX7ZLX45L3hPtGHpdLPo9LXne0zH1o3+N2yXeMfa/bqKalT9sOdOuMaRmaNSVD1lpZSWFrFbaRV2utwmHFyu2I98JWkWvs4dfIjvIZ0XOHy/a192vNa/UKha3cLqMPXFim8vw0eVyRe/K4jdwuI4/LyB09juxH3ne7jLzuw489LhM979Cx223kHXHscpm33QYmGsIOAAAAAIiT0/mLZjhsFQiHFQhZBYJh+UNh+YNhBULRslBYQ7HjsLY3duv/PrNTwVDkF+1bzy1RdqpXfcPBRTTIGA4nDgUbQQ0GwidVJ2OkdJ9HqUlupSV5lJ7kUZrPo6Jsn4xsLOwwkopzU1U5JUOBUFjBcFj+oI3VNRiyGhgIxPYDocj9jbYfDNu39d8xUYJhqwdf2huX7zJG8riMjIz8ocifZZLHpYc/ssyxgQdhBwAAAACcZv3+oNp6/Wrv86utb0htvX5t2t+lh18/9K/6l8zOV2ayV4GQlT90KJTwB8PyRwOMo8pGnBcIvfVf8oNhq/9ZWydjpDSfR2nRcGJ4vyg7OXIcDSxSfe5IcBErc0fPHd4i76d43TLGjPqdVXUdWvngWgWCYXk9Ln3lXWeell+0h0Of0YKQkcFPIBTW79bt12/X7VPYSi4j3bKkWO9eVCRjjFxGsVeXMTJHvLpi5wyfd/i5o16rQ9cal7Rpf5fu+sUbCoTC8rhd+un7z9GZ07MUCFuFQlbBcFihsFUwbBU84jgUjtzHyOPIeeHDjkPR41hZyCoUDisQtlpX2651tR2ykoKhsNbWtBF2AAAAAMBkNeAPqa1vKBJe9PrV1udXW2/0eMR+azTgGAiEjvt5obDVG3s7lJvuiw3DGB5u4fO4lOqLlnmiZdGhHD734UM3fCPLPJGyJI/rsKEdw9fWtPTqX/+0VcFQWF63Sz//wFKdX5F32BCHsbS4NEdr7lp22odQuFxGSS63kk7qt1uj/93QEAtc3rOkOK6/7F80K19rPnL6/xucrCMDp2UVeXH9/ngy1o7/Lj9Lliyx69atS3Q1AAAAAExgI4eQnDk9U219frX3+tXaN6T23mgPjGhZ2xEhRr9/9PDC53EpP82n3HSf8tKSlJfmU166T7lpScpL9ykvzafcNJ/y05NU396vD//yjdgvmmvuiv8QgskyX8PxTPb/BhP9/o0xVdbaJSc8j7ADAAAAgFP4g2E19wzqYNegDnZHX7sGta2xW/+oadOJfv3xuV3KjQUWkZAiNxZYHB5i5KUnKc137GEbo5nov2gCiXayYQfDWAAAAABMCH1DQTV2Daqpe3DE64AOdg3pYHfktbV36Kjrkr0upXjdsaDDSLqoMl8rzp4W64mRl5ak3HSfMpI8pxRenKrFpTmEHEAcEHYAAAAAiItj9Wqw1qqjP6DGroFYkDHcI2Nk74yeoeBRn5mV4tW0rGQVZibrrOlZKsxMjhxnRV6nZaYoM8Wj9fWdh81V8OkrZxM6AA5G2AEAAABgzFhr1TUQ0LPbmvTlP25WMGTlchmdX5EnfzAcCTO6B+UPHr60qctIBRlJmpqZrIqCNF0wM09Ts1I0NStJUzNTNDUrWVMzk5Xic59UPcZqckwA4xNhBwAAAIC3bDjM2N8xoP0d/dHXw/d7j+iREQpbbW7o0pypGVpYnB3rmTGyR0ZBepI8btdprStDSIDJg7ADAAAAwDFZa9U9ENS+WHhx5OvRYUZ6kkczclI0IydVyyryNCMnRf5gWPc9v1uhUGQYyc8/sJTgAcCYIewAAAAAJoHjzZcxepgR2W/oGDhqrow0n1vFuamakZMSCzOGw40ZOSnKSvGOOsnneRV5DCMBEBeEHQAAAIDDVdW267YHX5M/GJbbZfSOMwvlD1ntaz92mDEcXJxXnhsLNk4UZpwIw0gAxAthBwAAAOAgobBVTUuvthzo0taGbm050KX19Z2xCUCDYau/bGtSRX56LMwYDjGGX7NT31qYAQDjBWEHAAAAMEENBUPa3dSrLQ1dkXDjQLe2N3ZrMBAJNnwel86YlqlLZhfobzubFQpbed0uPXzXeVpclpvg2gPA2CHsAAAAACaAvqGgtjd2a+uBbm1piAQbu5p6FAxbSVJGkkdnTM/UbeeW6szpmTqrKEszC9JiK5oca84OAHAiwg4AAABgnOns9x8Wamw50KW9rX2ykVxDeWk+zZueqY/MqdBZ07N05vRMleSmyuU69tAT5ssAMJkQdgAAAAAJYq1Vc8+Qth7o0paG7thrQ+dA7JzpWck6syhL1y2YHgk2ijI1NTOZOTUA4DgIOwAAAIA4qKpt1zNbm5SZ4tFAIBQNN7rV2jsUO6ciP02LSrJ1+/mRoShnTs9SbpovgbUGgImJsAMAAAA4jay1auwa1K6mHu1u6tWuph69ua9T1c29sXPcRqoszNClcwpi82ucMS1T6Un89RwATgeepgAAAMBbYK1VU/eQdjX1HAo2mntU3dSrnqFg7Lz8dJ9SvYf+2u0y0qeuqNQ9V85ORLUBYFIg7AAAAACOw1qrlp4h7Yr20tjd3KNdTb3a3dSj7sFDoUZumk+VU9J1w6IizS5MV2VhhmYXZig3zaequg6tfHCtAsGwvB6XLqosSOAdAYDzEXYAAAAAioQarb1+7Y721NjV3Bvd71XXQCB2Xk6qV5WFGbpu4XTNLsxQ5ZQMzS5MV1560jE/e3FpjtbctYylXwEgTgg7AAAAMClU1XXEwoayvNRI74zmaLAR7anR0X8o1MhK8Wp2Ybr+af40zZ6SHgk2CjOUn+57SyuhsPQrAMQPYQcAAAAcq6s/oF3NPXp2W5N+9vJehcL2qHMykj2aXZiha86aGu2lEempUZCRxPKuADBBEXYAAABgwuv3B7W7qVc7m3q062CPdkYnDD3YPXjUuUbSpXMK9MELyzW7MEOFmYQaAOA0hB0AAACYMIaCIe1p7outgLKrKRJs7GsfiJ2T5HGpsjBdF8zK05zCDM2emiF/MKx7HnkzNkHoJy+vZEgJADjYmIUdxphiSQ9JKpRkJd1vrf1PY8xXJX1EUkv01C9ba58aq3oAAABg4gmGwqpt64+EGQcjK6DsPNij2rb+2FAUj8toZkG6FszI1nsWF2v21AzNKcxQcW6q3K6je2owQSgATB5j2bMjKOmz1tr1xpgMSVXGmGej733fWvudMfxuAAAATADhsNX+joFYD43hcKOmpU/+UFiSZIxUlpcWmSz07GmqLMzQnKkZKstLk8/jOunvYoJQAJg8xizssNY2SmqM7vcYY7ZLKhqr7wMAAMD4VVXbrue2Nys/wydrpZ0HD62CMhAIxc4ryk7R7MJ0XTKnIDIEpTBDs6akK9nrTmDtAQATTVzm7DDGlElaJOk1SRdK+qQx5g5J6xTp/dERj3oAAABgbPUNBbW3tU97Wnq1t7VPNS192tLQqZrW/sPOK8hI0uzCdL3v3OLYvBqVU9KVkexNUM0BAE4y5mGHMSZd0qOSPm2t7TbG/ETS1xWZx+Prkr4r6UOjXLdK0ipJKikpGetqAgAA4Diq6jpi810smJGlhs4B1bQcHmrUtPaqqXsodo0xkZ4aHvehoSYuI33i0ln63DvmJOI2AACTxJiGHcYYryJBxxpr7R8kyVrbNOL9ByQ9Mdq11tr7Jd0vSUuWLDl6QXQAAACMuc5+v35ftV/ffHqHgmErI8nlkqLTaUiSslK8qihI00WzClRRkKaK/DRVFKSrNC9VyV63quo6tPLBtbGVUC6bOyVh9wMAmBzGcjUWI+lnkrZba783onxadD4PSbpR0paxqgMAAABOnj8Y1o6D3dqwr1Mb6jv15r5O7W3tO+wcK2lxaa5uPmdGJNgoSFdOqleRv/qNbnFpDiuhAADiaix7dlwo6XZJm40xG6JlX5Z0qzFmoSI/K2slfXQM6wAAAIBRWGvV0DmgDfs69WZ9pzbs69SWhi4NBSNdNgoykrSwOFs3L56htCS3vvnUDgVCkZ4ZX7hm7ikHFqyEAgCIp7FcjeVlSaNF/E+N1XcCAABgdC/tbtETmw7I7XKppWdIG/Z1qqUnMr9Gksels4qydPuyUi0sydbC4mwVZacc1lvj7KJsemYAACaMuKzGAgAAgPgYDIS0p6VXu5p6tONgj3Yd7NHmhi619vpj50zPStbFs/K1sCRbi4pzNHdahrwjJhEdDT0zAAATCWEHAADABDByNZTFpTkKha3q2voOhRpNPdp5sEe1bf0KhSNzu3vdRjML0lWQkaS2Xr+sJLeRVi4r1d2XzUrsDQEAMIYIOwAAAMa51/e26f0Pvq5AKCyXMSrNS1FD52Bsfg1jpNLcVM0uzNA/nT1Ns6dmaE5hhsry0+R1u45aDWVZRV6C7wgAgLFF2AEAADAOBUNhra1p15ObG/WnNxvkj671GrJWYSvdcX6pZhdmaM7UDFVOyVCKz33Mz2I1FADAZEPYAQAAME4EQ2H9o6ZNT21u1DNbm9Te51eqz61FJdl6vbZd4bCV1+PSd9+zkNVQAAA4DsIOAACABAqEwvrHnuGA46A6+gNK87l1xRmFWnH2VF06Z4qSve6j5uwAAADHRtgBAAAQZ4FQWK/uadNTmxr1zLaD6owGHFfOK9SKs6fpktkFSvYePiyFnhkAAJw8wg4AAIA4eH1vm367bp/a+/xaX9+pzv6A0pM8uvKMKVpx9jQtHyXgAAAAbw1hBwAAwGnUNxTU3tY+1bT2aW9Ln/a29mpzQ5f2tPTFzlk+O1+3LyvTxZX5BBwAAIwBwg4AAIATOHK+jEAorH3t/drb2qe9rX3aEw019rb2qal7KHadMdL0rBR53SZW5jbSeeV5umpeYSJuBQCASYGwAwAA4Dhe2t2iD/3iDQVDVsZIUzOT1dwzpGDYxs7JSfWqPD9NF1cWqDw/TRX5aaooSFdpXmpsctGVD65VIBiW1+PSsoq8BN4RAADOR9gBAAAwQiAU1oZ9nXp5d6term7V+voO2WiuYa2UnuzRjecUqTw/XRUFaSrPS1NOmu+4n7m4NEdr7lrGaioAAMQJYQcAAJjUrLWqbu7Vy9Wtenl3q9bWtKnPH5LLSGfPyNa7FxXp8Y2NCoUjvTL+493z31JYwWoqAADED2EHAACYdJq7B/XKnla9tLtVr1S3xubZKMtL1Q2LinRxZb7Or8hXVqpXknTbeaX0ygAAYAIh7AAAAI73anWrHl2/X0OBsHY192hXU6+kyFwbF8zK18Wz8nXhrHwV56aOej29MgAAmFgIOwAAgONYa7W7uVcv7mzRYxsbtLmhO/be/KIsfeGaubq4Ml/zpmXK5TLH+SQAADAREXYAAABH6BoI6NXqVr24q0Uv7mpRY9egJCk/3ScjySqy7Os7zpqqj186M6F1BQAAY4uwAwAATEjhsNW2xm69uKtFf9vZrPX1nQqFrTKSPLqoMl/3XFGg5bML1Ng1yLKvAABMMoQdAABg3Kuq69DamjbNm56p7oGAXtzZor/vblFrr1+SdFZRpj5+yUxdMqdAC4uz5XW7YtdOz05h2VcAACYZwg4AADBuWWv1+6r9+tIfNisYtrHynFSvls8u0CWzC3RxZYEKMpKO+zlMMAoAwORC2AEAAMaVoWBIa2va9dy2Jj23vSk294YkGUnvX1aqr153ptxMLAoAAI6BsAMAACRcR59fL+xs1nPbm/Tizhb1+UNK8bq1fHa+3n1OkR58aa+CocicGzcsKiLoAAAAx0XYAQAAEmJva5+e396kv2xr0rradoWtNCUjSdcvKtJVZxTq/Jl5Sva6JUmXzy1kzg0AAHDSCDsAAMCYq6rr0D/2tCo3zaf69gE9t71J1c29kqS5UzP0yctm6cp5hTprepZco/TaYM4NAABwKgg7AADAmOjo82tbY7ee2XpQv1pbp+H5Rd1GOn9mvt5/XomuOKNQxbmpia0oAABwHMIOAADwtlhrdaBrUFsburT1QLe2HujWtgNdOjBiYtFhLiPdffksfeaqOQmoKQAAmCwIOwAAwAlV1XVobU2bzi3PVU6qNxZqbD0QCTg6+wOSJGOkivw0LSnL1ZnTM3Xm9CwFwmF9/FdVCgQjE4xeMntKgu8GAAA4HWEHAAAYVShstaelV3/a0KCfvlij0PA4lCifx6W5UzN07VlTNW96luZNy9QZ0zKU6jv6rxdr7lrGBKMAACBuCDsAAICstdrfMaCN+zu1aX+XNu7r1JaGLvX5Q4edZyRde9ZUferKSs0sSJfX7Tqpz2eCUQAAEE+EHQAATEJtvUPatL9LG/Z1atP+Tm3c36X2Pr8kyed2ad70TN28eIYWFGfL4zL650c3xYahfPjiCs2dmpngOwAAADg2wg4AABwqEAqrsz+gjn6/Xq1u1Qs7WxQIhlXX3q+GzgFJkTk2Kqek64q5UzS/OFsLZ2RrztQM+TyH99goykllGAoAAJgwCDsAABjnquo69PLuFs2dlqkZOSnq7A+ovc+vzn6/OqJhRkdfZL+z36/2fr86+wLqGQoe9VlG0vkVebrzglLNn5Gts4qylJ504r8OMAwFAABMJIQdAAAkmLVWXQMB7e8YUEPngBo6BqL7/drd1KOa1v7jXp+R5FF2mlc5qT5lp/pUnp+m7FSfclJ9yknz6o297Xpyc6PCNrL064WV+Vq1fGac7g4AACD+CDsAABhjVbXten5Hs0ryUpWe5FFDNNTY3zEQ2+89ohdGitetGTkpsjKxMiPp+oXTdeu5JcpJ8yk71avsFN9RQ06OdOb0LD27vSk258ayiryxuE0AAIBxg7ADAOB4VXUdYz7fRPdgQPva+7WvfSDy2tGvfe392tXcq4aOgaPOz0z2qCgnVSV5qTp/Zp5m5KSoKDtFM3JSVZSTopxUr4wxqqrr0MoH18aCitvPLzvle1hcmsPSrwAAYFIh7AAAONo/9rTqzp+/rkDIyuM2+tzVc3TGtEx53S75PC4leVyxfa/byOdxyRc7dsnjMlpf36mXd7eovCBNmcneaJgxMtQYUNdA4LDvzUjyqDg3Valet4wkq8gQkjvOL9Nnrp6tzGTvSdX/dAUVzLkBAAAmE8IOAIDjdPUH9NedTfrL1iY9t71JgZCVJAVCVv/x9I7T8h0+t0szclNUnJOqhcXZKs5JVXFuavQ1RVkpo/fMeNeC6ScddAwjqAAAADg1hB0AAEc40DmgZ7c16S/bDuq1mnYFw1ZTMpJ02Zwp+tvOZgXDVl63S1+//kxVFKTLHwrLHwwrELLR18jxofLI66t7WrW2pl1WkWVab11aok9dUakpGUlyucwJ68UQEgAAgPgj7AAATEjWWu1q6tVfth7UX7Y1aXNDlyRp1pR0rVpeoavPnKr5RVlyuczbmrPjgln5h/XMuGnxDE3NSj6lz6BnBgAAQHwZa22i63BCS5YssevWrUt0NQAACTIcVpxbnitJsYCjri2yJOs5Jdm6+sypumpeoWYWpI/Z99MzAwAAILGMMVXW2iUnOo+eHQCAce2l3S360C/eiM27IUXmy7hgVp4+unymrjxjiqZknlpPi1NFzwwAAICJhbADADCuDAZCWl/foVer2/TKnlZt2NepkZ0Q37Vgmv79xrOVcYqTfAIAAGDyIOwAACRUMBTWlgPdeqW6Va/uadW62g4NBcNyu4zmz8jSuxcV6fGNjQqFI3NmfOCCcoIOAAAAHBdhBwAgrqy12t3cq1eqW/VKdZte29umnsGgJGnu1AytPK9UF87K07nlubFQ47bzSpkzAwAAACeNsAMAMKaqatv1zNYmedzS/o5BvbqnTa29Q5KkktxUvXP+NJ0/M18XzMxTfnrSqJ/BnBkAAAA4FYQdAIDTomcwoL2tfapp6VNNa59qWnq19UCX9rb2x87JSvHqktkFunBWni6Yma/i3NQE1hgAAABORdgBADiukcuuzp+Rpfr2fu1t6VNNa6/2tvZpT0uf9rb2qaVnKHaNMdKMnBR5XK5YmctIq5aX6+7LKhNxGwAAAJhECDsAAIex1qqlZ0g1rX36245mPfDyXoXCVkaRwGLECrDKTfOpPD9Nl84uUHlBmiry01VRkKaS3FQle92qquvQygfXKhCMTC66rCI/YfcFAACAyYOwAwAmqb6hYGTYSXTIyfAQlL2tfeodCh51vpW0tDxXNy8uVkVBmiry05Sd6jvudywuzdGau5YxuSgAAADiirADABzuhR1NemJTozKSPfKHbGwISlP34cNOpmelqKIgTTedU6SKgnSV56ep3x/Up3+zIdYz4/PvmHvKgQWTiwIAACDeCDsAwGGstdrW2K2/bm/W45sOaFdTb+y9NJ9bs6dm6KJZBbHeGeUFaSrLS1Oy1z3q563JSKZnBgAAACYUwg4AcIB+f1CvVrfp+R3NemFHsw52D0qSpmYlyygyBMVtpE9cNkt3XzbrlD6bnhkAAACYaAg7AGCC2tferxd2NuuvO5r16p42+YNhpfncWj67QJfNnaJL5xRoX/vAEROE5iW62gAAAMCYI+wAgHFueOnXpWU5Msbo+e3N+uuOptjwlLK8VL3/vFJdccYULS3Llc9zaLnXKRnJTBAKAACASYewAwDGqXDY6vGNB/S5329UYMR6rx6X0bnluXrPkmJdPneKKgrSj/s5DEMBAADAZEPYAQDjgLVWB7oGtXFfpzbu79TGfZ3a0tB91BKw1y2Yrm/ceJYyk70JqikAAAAw/hF2AEACdPT5tXF/pzbt74oGHF1q7Y0sBet1G82blqkbFxUpK9WrB/5eo2AoMufGnReUEXQAAAAAJ0DYAQBj7NXqVj2xqVE+j1FbX0Ab93Wqvr1fkmSMNLMgXctn52thcbYWzMjW3GkZSvIcWgb2sjlTmHMDAAAAOAWEHQAwBvzBsP62s1m/eKVWr9a0xcrz03xaWp6rW88t0YLiLJ1dlKWME/TUYM4NAAAA4NQQdgDAaRIOW71e264/bTigpzY3qmsgoBTvoR4abiN98KJy3X3ZrATWEgAAAHA+wg4AeJv+uL5Bv36jTjXNfWrt8yvV59bV8wp1/aIipfncuuPnrysQjMy5sawiL9HVBQAAAByPsAMA3qLq5l79y/9u1tqadkmSy0ifvrJSq5ZXKNV36PG65q5lzLkBAAAAxBFhBwCcogOdA/rP53brd1X75HYZGUlWkpHkdbsOCzok5twAAAAA4o2wAwBOUnufX//vhWo9tLZOstIHLijXxZV5+via9QxTAQAAAMYRwg4AOIFXqlv1k7/tUVVdh4aCId10zgzdc2WlZuSkSmKYCgAAADDeEHYAwDHsaenVD57frT9tOCApMifH99+zUNcvKjrsPIapAAAAAOMLYQcAjNDvD+qpzQf1mzfq9UZth4w59J6RtL9zIGF1AwAAAHByCDsATGpVdR1aW9Oq/PQkbdzfpcc2HFDvUFDl+Wn64rVzNWtKuj75MHNyAAAAABMJYQeASeuN2nbd9sBaBUJWkuRzG71zwXS9d0mxzi3PlYl262BODgAAAGBiIewAMOmEwlZPbDqgrz2+NRZ0GEkfu3SmPnPVnKPOZ04OAAAAYGIh7AAwaYTCVk9ubtQPnt+t6uZeFeekqGcwqHDYyutx6ZLZUxJdRQAAAACnAWEHAEerquvQP/a0Kmylxzce0O7mXlVOSdePblukFWdN05v7OhmiAgAAADgMYQcAx3q1ulV3/vfrsaEqRTkp+uGti7Ti7GlyuyLzcTBEBQAAAHAewg4AjrPjYLcefq1ej7y+LxZ0uIx069JivWvB9ATXDgAAAMBYI+wAMKFFlo5t0zkl2WrsGtSa1+pVVdchn8elZTNztXZPu0LhyLKx58/MT3R1AQAAAMQBYQeACauqrkO3PbBW/mBYNlpWnp+me1ecoZsWz1Bumi8WhjAnBwAAADB5EHYAmHC6+gN6bNMB/fiFag0Fw7Hy9y6ZoW/eNF/GmFgZc3IAAAAAkw9hB4BxbbhnxtKyHPX5Q/p91X49u7VJ/lBYpbmp8riMrI0sHfuepSWHBR0AAAAAJifCDgDj1mjDVHJSvbrtvBLdvHiGzpyeqfX1LB0LAAAA4HCEHQDGpVDYHjVM5YaF0/XtmxfI53HFyhimAgAAAOBIhB0Axp0tDV368h83a9P+Lrmio1J8HpduP7/ssKADAAAAAEZD2AFg3Oj3B3Xfc7v1s5f3KifVqx/eukjTs5K1dm87w1QAAAAAnDTCDgAJNTwBaZLHpV+8Wqv9HQO69dygZecAAAAgAElEQVRiffGaM5SV6pUkLS7LTXAtAQAAAEwkhB0AEmZ4AtLheTmKspP124+er3PLCTcAAAAAvHUMfgeQMI9taIgFHUbSe5cWE3QAAAAAeNvo2QEgIZ7d1qRH3tgnSXKZyASkF84qSHCtAAAAADgBYQeAuLLW6v6/1+ibf96h+UVZ+j+XV2pnUw8TkAIAAAA4bQg7AMSNPxjWv/zvZv123X790/xp+u4tC5TsdevKeYWJrhoAAAAAByHsABAXHX1+fexXVXptb7s+dUWlPn1FpVwuk+hqAQAAAHAgwg4AY6qqrkNPbm7UU5sOqL0/oPveu1A3LCpKdLUAAAAAOBhhB4AxU1XXoVvvXyt/KLLiyr/feDZBBwAAAIAxx9KzAMbM33e1xIIOl5E6+v0JrhEAAACAyYCwA8CY2d/RL+nQ0rLLKvISXCMAAAAAkwHDWACMiX3t/Xp8U6OWz87XeeV5LC0LAAAAIG4IOwCMiW/+eYdcRvrWTfM1LSsl0dUBAAAAMIkwjAXAafdGbbue3NSoj10yk6ADAAAAQNwRdgA4rcJhq//v8W2alpWsjy6fmejqAAAAAJiExizsMMYUG2NeMMZsM8ZsNcbcEy3PNcY8a4zZHX1lED/gIH98s0GbG7r0z9fMUYrPnejqAAAAAJiExrJnR1DSZ6218yQtk3S3MWaepC9Ket5aWynp+egxAAfoGwrq28/s0ILibF2/oCjR1QEAAAAwSY1Z2GGtbbTWro/u90jaLqlI0vWSfhk97ZeSbhirOgCIr/96cY+auof0b++cJ5fLJLo6AAAAACapuMzZYYwpk7RI0muSCq21jdG3DkoqjEcdAIyths4B/dffa3TdguksMQsAAAAgocY87DDGpEt6VNKnrbXdI9+z1lpJ9hjXrTLGrDPGrGtpaRnragI4SRuaN+jBzQ9qQ/OGw8q/9fQOSdIXrp2biGoBAAAAQIxnLD/cGONVJOhYY639Q7S4yRgzzVrbaIyZJql5tGuttfdLul+SlixZMmogAiC+NjRv0Af+/AGFbVhJ7iQ9cPUDWjhloarqOvTYxgP61OWzVJTNUrMAAAAAEmssV2Mxkn4mabu19nsj3npM0p3R/Tsl/Wms6gDg9Prtzt8qZEOysgqEA1rXtE7ratv1yYfXKyfVq49ewlKzAAAAABJvLIexXCjpdkmXG2M2RLcVkr4p6SpjzG5JV0aPAYxzTX1NemHfCzIychu3vC6vMuwc3frAWjV2Dap3KKgdB3sSXU0AAAAAGLthLNbalyUdazmGK8bqewGcfqFwSF986YsK2ZC+tfxbauht0JLCJXrqjSQFQpGpeMJhq7U1bUxOCgAAACDhxnTODgDO8MDmB7SuaZ2+fuHXdW35tZKkroGAntz8d0mSy0hej0vLKvISWU0AAAAAkETYAeAE1jet1082/kQrylfo+pnXS5ICobDuXrNezT1D+vr1Z6p7MKhlFXn06gAAAAAwLhB2ADimrqEufeGlL6govUj/uuxfZYyRtVb/9qeterm6Vd+5ZYFuXjwj0dUEAAAAgMOM5QSlACawDc0bdOfTd6qlr0XfXv5tpfvSJUk/e3mvfv16vT5x6UyCDgAAAADjEj07ABxuz3/oQOgpfb/6oPZ0JctjPAqGg5KkZ7c1afVT27Xi7Kn63NVzElxRAAAAABgdYQeAQ7Z9Sar8pqa6pZ9WGH3kL+Xa0pqhdU3r5AmU655H3tT8oix995aFcrmOtdgSAAAAACQWw1gARGz+vdR4n+SWXC7J67JaWtgnr8urivT5uuuX65Sd4tUDdyxRis+d6NoCAAAAwDERdgCTnbXSS9+THv2w1F2pcEgKhqVwyKjcvUKfmvcdfenX3ers9+vBO5dqSmZyomsMAAAAAMdF2AFMZqGg9MSnpee/Jp19i+w7X9fXXr1I/72xSKGWH6ko+zv6yu961dQ9pJC1GgiEEl1jAAAAADghwg5gshrqkX79XqnqF9LFn5VuvF9P7ntOf6jtVEHGj5Qy/RP64V+rFbaR08Nhq7U1bQmtMgAAAACcDCYoBSaj7kbp4Vukpm3SO++TlnxQ/YF+fb/q+5qXN0/XzbxO62rb9ffdLXIZyUjyelxaVpGX6JoDAAAAwAkRdgCTzcZHpKc+rw1uq3XLP6IlJYtUPNCmR3bco3dVbNXZeZ9UR19An3z4Tc3ISdXqG8/Spv1dWvb/s3fn8XXVdR7/X99z7pqbNG3SpDtpU0pbSktoKRQQWWSxIi4URSYWRSXqqOOMOuhvcBwcJ+P8GHXEwd+o4FaMgAtuCILIvtOWlrJ0gSYtbemWpM16l3PO9/fHublNCw1NaRKavJ+PRx7JXXru90Dg8ej78Vmqy1lQNWaoTy8iIiIiIvKGFHaIjCTr74HffZJV8RgfrRyHv/lO2HwnJ1Z0ceMFjUQdixd8ja/f5dPSdQq3f/p0TphUypkzKob65CIiIiIiIodMMztERpJHvg3AH4tT+MYAYDBcUBUj6lgiDkQcy9jSe7n24jmcMKl0KE8rIiIiIiJyWBR2iIwUe7fClhVgXPa6LliLg0PcjTOp+MN4gcELIBcYutMXcvkpU4b6xCIiIiIiIodFbSwiI8VD1wHgX/oTVj7zn5xcMoUzqhdz8riTqamsYcW28TzauIwXt7yNb73vK5h85YeIiIiIiMjRRmGHyEjQ/DKsvBkWfpyny8az2+/mKyfWceHUCwHw/IDr/nQ8q7d8hT9+9m2k4vpfg4iIiIiIHL3UxiIyEjzwTXBjcOaX+EvjXyiKFHHW5LMKL3/33g082djCf7xvLseNKxnCg4qIiIiIiLx5CjtEhrsdz8Oa38CiT5ErKuOvm/7KucecSyKSAODGhzdyw/0v8Y5ZlVy6YPIQH1ZEREREROTNU9ghMtzdVw/xUXD6P/DYtsdoy7axeNpiAP724g7q//wiAI++tJsVm1qH8qQiIiIiIiJHhMIOkeFsy3JY92c443NQVMadjXdSGi/ltAmnYa3lm3etLbw15wc8sbF5CA8rIiIiIiJyZCjsEBnO/vbvUDQWTv003V43979yP+dXnU/UjfKHVdt4aWcHEcfgGohGHBZVlw/1iUVERERERN40rVwQGa42PgCND8I7/wvixTzY9Be6vW4WT13MjrY0//bH55l/zGj+n3fN5qnGFhZVl7OgasxQn1pERERERORNU9ghMhxZC3/7BoyaDAuuBODWF28lFUnhGpd/uX0N6ZzPtz5wItUVxSycWjbEBxYRERERETly1MYiMhytuwu2LoezroZogh+s/gErdq6g0+vkE/d8kvs3Pc3V75xFdUXxUJ9URERERETkiFNlh8hwEwRw3zegbDqZuUv47yf+g9vW3VZ42QuyTJ20nStPnzp0ZxQRERERERlAquwQGW4evA52vsA9009l8e/fw23rbmPx1MXE3ThYB2sjXH3Wu3AcM9QnFRERERERGRCq7BAZTjY9Dg/+F48n4nxx18NgDFEnyt/N/jvG8Q5++NRfuXL+ebxzxqKhPqmIiIiIiMiAUWWHyHCyqgGw3J0qAhNWbgQ24G9Nj/PT+2B+6RK+fM6FQ3tGERERERGRAaawQ2Q4yXUBUGTDhw5hZccja0oJrOW/Lz1R7SsiIiIiIjLsqY1FZDh59VmYtICu8jGkujbz8Xl1vNhYye3PRah7exVTyoqG+oQiIiIiIiIDTpUdIsNFy0Zo3gBzP8iGRILjK+YyK/k+bn88zDSXPd7Eik2tQ3tGERERERGRQaCwQ2S4WH8PAMGM89jQuoEZo2fw2xVbCi/nvIAnNjYP1elEREREREQGjcIOkeFiw91QPoOt0TjdXjfHjTmO7pwPgGsgGnFYVF0+xIcUEREREREZeJrZITIcZDqg6RE4pY71e9YDMGPMDL63vZmTq8ZwzqxKFlWXs6BqzBAfVEREREREZOAp7BAZDhofBD8LMy5gfesLGAyxYAKbml/hY2dM4yOnTx3qE4qIiIiIiAwatbGIDIJVO1dx05qbWLVz1cB8wPq7IVYCx5zGhtYNTCmZwvLGcA3t22aMHZjPFBEREREReYtSZYfIAGrPtvPbDb/luyu+i2994m6cmy64iZrKmiP3IdbChr/C9HMgEguHk46ZwSMbdjNpdJLqsakj91kiIiIiIiJHAYUdIkfQ7u7drNyxkpU7V7JixwrWtazDYguvZ/wMT29/+siGHdvXQPs2OO5Cur1uNrVt4sKqd/LDB3dz0dwJGGOO3GeJiIiIiIgcBRR2iLwJ2zq2sWLHisJXU1sTAMlIknkV8/h0zacZHR/Nt5d/m6yfxWJpy7Qd2UOsvzv8fuz5bNyzEYslEkykPe1x5oyKI/tZIiIiIiIiRwGFHSKHyFpLY1vjfuHG9s7tAJTESphfOZ9LZlzCgnELmF0+m6gTLfzZ2WWzeXr70zzwygP8Yu0vuGDqBcytmHtkDrbhbpg4H0rGsX77YwDs2D0GYzo541itmhURERERkZFHYYfIQfiBz7rWdazcEbakrNy5kpZ0CwDliXIWjFvAlXOuZMG4BcwYMwPHHHzeb01lDTWVNXxw5gf54J8+yOfu+xxLZizhzMlnvrmWls7dsGU5nP0VANa3ricZSbK6McK8yaMZXRQ7/GuLiIiIiIgcpRR2iORl/SzPNz9fqNpYtXMVHbkOACYVT+Jtk97GgnELWDBuAceUHHNYszBK46V8quZTfO3Rr/GjNT/i5y/8/M0NLH3pXsDCjAsA2NC6gamjqlnxfBt/f/b0w7umiIiIiIjIUU5hh4xYXbkuVu9aXQg31uxeQ8bPADC9dDqLpy0uhBvjU+OPzIe+8hTNL/weA1jCgGX5juWHH3asvxtSlTChBmst61vXM6P4VPzAal6HiIiIiIiMWAo7ZMTYm9nLMzufKYQbLza/iGc9HOMwq2wWH5z5QRZULuCkcSdRlig7Ip+5YlMrT2xsZlF1OQucDfDziznZtcTHV5J2DBbL2s1JVoxqZUHVmP5d3Pfg5b/BrIvBcWju3k1rppUuKkjFXE46ZvQRuQcREREREZGjjcIOGbZ2de1ixc4VrNi+ghU7V7ChdQMAUSfK3LFzufKEcN7GiRUnUhwrPqzPeOyl3Ty0YRfnHz/+NWHFU43N1N70JDnf4hj4dumveZ+XpsaDH27fyXeK57OqeDt3NP6BPz0+hl9eddp+11i1cxXLdyzn5HEnv37lxytPQnovHBe2sKxvWQ9A06ulnDa9nKh78BkiIiIiIiIiw5nCDhkWrLVs6dgSDhLNDxTd3L4ZCNfA1lTUcGHNhSwYt4C5FXOJu/HD+pwVm1p5ZMMuohGHRzfs5tGXmwH44YMbWXpaFWccO5YXt7WxN53jN8u3kPMtADPYzLnpv4ZnBU7M5BgbvYRM98skxt1JLvglP1ndyDNtcUpjpazYsYK/NP2FwAbE3Njrz/XYcDc4Uag+BwiHkwJs3z2GT52qFhYRERERERm5FHbIUemZnc9wT9M9REyEHV07WLFzBTu7dgLhENCTKk8K21LGLWBm2cz91sAerhWbWrnsh4/jBWGAEYvsq5ywwLLHN7Hs8U2F56rKi0h7PifYDfw0+v+SLCrBLL4eHvse7q4NXPH+d3P3rb/DWkNk1Goeal3NQ62v/dyMn+HxbY+/NuxYfw9UnQaJUQBs2LOBYreMdj/FmTPGvun7FREREREROVop7JCjzl8a/8LVD12NJQwdRsdGs2jiosIw0emjpxfWwD720m5+8GwTp08f2/+ZGAe44b4NhaDDMbBk/iR+98xWcl5ANOJwwfHj+NPqV7H51z948hTOK9rAtHv+C1s0ltjH/gRjpkKqApa9h/ldj/GhMwN+05j/AAscZMHL468+zlXzriLi5P+T3bMZdr0IJ3248J7VO1fj+VHGVWxn2tjUm7pXERERERGRo5nCDjmqLN++nK8++tVC0OHgcMWcK7hq3lUA3LXmVb59x0q8wLJhRwebWroAuN7ZwE+vXHjYG0puengj96/bhWPCPCIacbh0wRQuXTClMIAU4J4XdpDzAhZGXuKyLb9lbNOfoKwalv4eRk0ILzb1TBg1CZ79Fe89/1+4Y/MyMn6GAFvIOhwcIk6E9x77XpKRJMteWMYXHvgCc8fOZeH4hdQ0PR2+8bgLw38uO5azqX0TWHDG/n+s3rXg8De8iIiIiIiIHOUUdshRYdXOVfzixV9w76Z7qUhW0JJpwQ98XBNh87YJ/MHfym9XbuGhDbsLf2ZCaaKw4tULLB//2XIWzx1PRXGcd54wnpOnlu2/LaVqzGsfN7Xwo789x8oNr/DRmSVcOncUL21+lRPGOhy7527ItLMg0gYb2iHTwaPHNZPetZGJbc9iXg4AA+f/x76gA8BxYO6l8NgN1Lz3+9x4wY0s37GcP6xsZWPzLv7pHTXgdO03mLQ13cqfNv6JB155gLgb50bGUVNWDeXHAvDjZ38cXtuAxXtz62xFRERERESOcgo75C2noaGB7375y3xr61a+NHkyH/jm57gluAXPehgM155+Laloij+sfZhbHopy8/OGm1mF65hCuBE1AYtnJLl/9TYSfiejnDSzxsDuZx+jzXRz1+PdPFvkEaTbKLfdbL+vmyejWRyvg3PppuSBbvaaNCfaLn5oAkgAm8KvE17v0E4E4iWUx0sgyABB+LxxYMezcNz5+79/3ofg0evh+dupOfWT1FTWcMHELs79zgP85v5i6t8/l5rKfW0300qnAWCxZPwMy/c8T81xl4Ex/G7D73hk2yMYHAJriUeinDzu5CP+70VERERERORoobBD3lIaGhqoq6vj1gkZzlwc51u7dvD1B67He1sZGHCAF5+6gU/EJsHLW1iU2UVxtJti082ERA4y7RTTTZHJwHPwNRdw8xdvB2K9PiwHnU6cDpJ02CTdQRF7bIIWRtFhk3iRYnZ5MTpskk6SvH1uNefXHAvxkl5fo8LvkTiYfBPKK0/Bz98DfhbcWNi2cqBxx8P4ubD6Vjj1kwDs6siAhbXb27n8R09wS92iwpyRheMXEnfjZPwMFksbARx3AfduupdrH7+W0yeezqaXF9HtbOT6dy1RVYeIiIiIiIxoCjvkLWXJ0qXUTnagtgiM4Szg2/EsVxgw1hK1ASevu5+ABJXpKHETp5Mke8wopkyajB8tYV2Xy7iKCiZWVuwXTKxthS/9cSN7vASZSBFfuGgBX//z2sKA0a8tnsO/3/H8vsfvnMMNdzxPzg8fv++0RXAoQ06nnAIf+SM0PRwGHVNOef33zfsQ3HMN7N4AY2fwxMZmAhvOIsn6AU9s3F0IO2oqa7jpgpt48tUneXjNMn5Watn5yl3ctfkeppVO4+uL/pvT73uYz55zOjWVM4/Qvw0REREREZGjk8IOeUuptpZ7Z0U4Pl8lYQOL+1gHXAqnjV/Ip+d9innjFvLJhpXct3Yn1158PG1pj0XV5ZTlg4GDjSCdBXy9cv+ZHMdNGL3f45njS/p8fMimnHLwkKPH3Evhr/8Kz94G536VRdXlxCIOmVwQjl+1+7+9prKGmooT+cjd/83SsUX8edNfANjSvoXfP/80gYUzjzu8AawiIiIiIiLDicIOeUuJVVXR2v4qEAYd+LB6XTj/4u1V51Ez8VS+f/9L/PWFHfzru49n6WlT+3X9BVVj9gst+vv4iCoZD9Vnh2HH2f/CgqoxNHxiEY+9vJvbnn6F36zcSt1Z04m6zr4/88zNJLp2cXZbKetGj8Iagxd43Nf0OMXxhdRMGT0wZxURERERETmKOG/8FpHBU19fzxgbVnU0PJLlt8u6CFrC1xJugh8/spH/vnsdZxw7lo+dMXXoDnqkzPsQ7NkMrzwBhOHK586dwbUXz6Fxdye3Pf3K/u9/9HsAnNHdTdxaXAxRJ8qWVyeyqLp8/2BERERERERkhNLfjOQtpba2lq1nHsMPUyWs3+zwJXcybd/9FgDbWj2+cceLAKxoamHl5j1DedQjY9ZFEC0Kqzt6ecfsSk6ZWsZ3791AZ8YLn9z8JDRvACdCTdbnxl17+Wz1+/nGov9l245xvP24sUNwAyIiIiIiIm89fYYdxpiPGGNWGmM681/LjTFXDNbhZIRJJnl6VoovzInx/YrR3HX1NH4f2ckF134VgNWbuwpvzfkBT2xsHqqTHjnxYph9MTz/O8ilC08bY/jKu2axuyND3bIVrGhqgfu+AakK+PDtcO411Fx+O5848+vs2j0BgDNnaF6HiIiIiIgI9BF2GGM+Avwj8EVgIjAJuBr4vDFm6eAcT0aUjRu5p/ZkMAZrDLmIYfmHzqD7jt8BEHGiADgGohGHRdXlQ3naI2feZZDeCxvu3u9pa8N7ffTl3Vx/443Q9DBb536GjklnwJlfLAxA/dOqrYxKRGjpyAzF6UVERERERN5y+hpQ+mng/dbapl7P3WeMWQLcCtw8kAeTEWjCBIrcJJBfM+tZTs6OI1OaAqC5HSaWJqhdVNX/7ShvZdPOguQYuP8/oWRCIcTYV7li+YJ7G1ttOec8MI3sA3czoTTBsZXFlCQiPNXUCkDtj5+k4ROLhs8/FxERERERkcPUVxvLqAOCDgDyz40aqAPJyNbhh3M45kUquPHl+dS81EXGDysWXtzWzTmzKvnMOccOr7/Qb1sJmXbYtRZ+fjG88hRAYRXthe4KapyX2XXSP/K9Dy/iny+cyaLqcvZ05fjrCzsKl8l5w6S1R0RERERE5E3qq7Kj+zBfEzlsa48vh45OZo6bQ82HbwCguyls7+jKOJw+fRgO4Wx6GGy4XhcvDY0PwZRTwlW0Hz+Fql9/lbQ7jZqL/x7c/f+TXd7UQu1NT+L5wfBq7REREREREXkT+go7Zhtjnn2d5w1QPUDnkRHMCzzWd24DIBtNFp7vqeywQZRF1WVDcrYBNfVMcOPgZYAAWjcVXlrQfj90vgRLfvyaoAPg5Kll/PKqRTyxsXl4tfaIiIiIiIi8CX2GHYN2ChGgaW8TaRuuWc06+zqs0l64peTYsaMpL44PydkG1JRT4CN/hMaHYdNj8MzNMPdSqDod7q+HcSfAnEsO+scXVI1RyCEiIiIiItLLQcMOa+2mg70mMhBebHkRgIiFXJArPN+RDVfOnjp1wpCca1BMOSX8ynwSbjwHfvURmFgDLRvh8lvB6XNLtIiIiIiIiPSiv0HJW8balrXELUxzkuT8fWFHY/NeAN42ffxQHW3wxIvDtbLpVth4PxgDyWHYuiMiIiIiIjKAFHbIW8bTrz7JaN8jcKNkg2zh+cbmPVhrOG36uCE83SBq20o4Gofw+6ZHhvI0IiIiIiIiR52+ZnaIDJpVO1fxYus6cF12eu1Eu1sKr21u3YMTiVKajA3hCQfR1DMhkgA/C24sfCwiIiIiIiKH7KCVHcaYGcaYnxljvmOMmWyMucsY02mMWW2MWTiYh5Rh6tVX4ayzYPt2Htv2WPicMVgse7J7AOjKeuzq6CDmDMPBpAfTM7D03GvC71NOGeoTiYiIiIiIHFX6amP5KfAYsA14EvgJUA58Cbhh4I8mw92q//lnbhr1Iqu+8yVOKD8BAGMtDg7xfLjx9MqXsSZHkTuCwg4IA44zv6igQ0RERERE5DD0FXYUW2t/ZK39FtBtrf21tTZtrf0rMML+5ilHVDLJY3OKuWL2Kr53SSVXHfsM2fe9G4B3pHPMHzefqBsF4PZfPYAxWWId3UN5YhERERERETmK9BV2BL1+buvjNZH+2biR3y+twToG6xhyEcPK9y4A4IJIGRVFFWTXv8CKSbP5Y2QiOB7bbQkrJs2GZHKIDy8iIiIiIiJvdX2FHbOMMc8aY9b0+rnn8cxBOp8MRxMmsDca5mUmsEQ9y3FeuF41XjyBmBMjd8xk/vzej2ONAZMjsDGeeM9SaGwcypOLiIiIiIjIUaCvbSyzB+0UMqLkghxrivcCDgv2xvj8q3OwLTthOiRGTSTmxsji81KyHADjZDG+y6JIB4wfP7SHFxERERERkbe8g1Z2WGs3WWs3AecBsZ7HvZ4X6TcvFmPVO8ppT4S/erNopuaXt5Be9zQAidIqok6UtJ/lkchY3uttY1yR5SS/iwVb1w7l0UVEREREROQo0VcbS49jgB8aYzYaY35tjPmcMaZmoA8mw09DQwMzIxF+cfYYHGsp8gO6XUPL26tJf+3zAMRHTyXmxujOZYhEI1xz7RWUlEYYd+KJcPvtQ3wHIiIiIiIicjR4w7DDWvtv1tpzgTnAw8A/AysG+mAy/CxZupTfToT7q0oIgG7H8KrrMuqhjWT8VgAS5dNJ5wy+9bh84RQqSxKkvTSJSGJoDy8iIiIiIiJHjb5mdgBgjPkqcAZQDDwDfIkw9BDpl2pruaimJBw6Clhr2RGNsG6SS7r9VQDiqUpWb+7AmICPv30qABk/Q8JV2CEiIiIiIiKH5lDaWC4ByoF7gduBP1hrXx3QU8mwFKuqomRLGgBjLcaC2xlQfV6C9K5wHkfHlhbWbOkAoKLEBSDtpYlH4kNzaBERERERETnqHEoby3zCIaVPAecDa4wxjwz0wWT4qa+vZ/ouD4CLOjop39yN1+zjxJJkupsB+MPPbsb3wpAj62ex1pL206rsEBERERERkUP2hmGHMeYEoBb4CHAZsBW4b4DPJcNQbW0te6+9BoBzd3ewPRsj6TrE799D2glbW/4+8TMmEwYfKzbvxgs8AhtoZoeIiIiIiIgcskNpY/kvoAT4HjDbWnuOtfZrA3ssOdo1NDSwcPJkHjSGkxyHB41h4ZQpZMkCMHHcVBafv5jMCbNgzjwyGFxrSeIxnR0APNW0k7Qftr3EXbWxiIiIiIiIyKF5wwGl1tp3D8ZBZPhoaGigrq6OL06wrLtoLB9p91hXEmHx2mb+78f/R+WVlaSSZSTcBN3GA+cYutlBwlpyRGgKJgMbmTs5RdoLww61sYiIiIiIiMihesOwQ6S/lixdypzqBB/7yrr8F3AAACAASURBVDRyrgEDxkI8Z/nyvc38FChKlhOPxMMwY0sRmWOOwdDJVZmrmZtex/aJMHN8UaGyQ20sIiIiIiIicqgOpY1FpF+qreX6U0rJRR1wDBiDdQy5iOGByWE7Sio1joSbIONn4PbbySx6O922hMjMs7j4M7UAZIMsGS8DoG0sIiIiIiIicsgUdsgRF6uqIrkjnM1BYAEwgSXiWeJ7w20syeLxJCPJQptKZ7abnOcyb1IpUTcKhNtYCpUdamMRERERERGRQ3RYYYcx5kdH+iAyfNTX1zOlzQfgjPtaADj2hQ4WX9dIpWdJBgFOcQVxN45nPXJBjt2dHdggxtzJo4k5MQByQW7fzA61sYiIiIiIiMghOmjYYYwpO8hXOfCuQTyjHGVqa2tp/Yc6AH7yl90E6YDHt2S42askffappAILqYpCgJHxMrR0d2JthHmTS4m5+bDDz4VtLqiyQ0RERERERA5dX5Udu4DlwIpeX8vzX5UDfzQ5ms2ZPweA5q3NjB8znqs+exVNTU2UV44iZQNIVZCMJAFI+2na0l3EnDjjRiWIOvk2liBbqOzQ6lkRERERERE5VH1tY9kIvMNau/nAF4wxrwzckWQ42JvZi2McUtEUxbFiOnIdAHRl2ykKLBSNJZHbCUC3101nLs2oxFiA/WZ25IIcoDYWEREREREROXR9VXZ8FxhzkNeuG4CzyDDSlm2jJFaCYxyKY8W0Z9sB6Mx1UBQEkBpbqNZo6eok66cZkywCKMzsyAZZtbGIiIiIiIhIvx20ssNa+/0+XvvfgTmODBdt2TZGxUYBUBItYW9mLwBdXjflFkiUFtpYXtjeDE6OylQJwH4zO7q9bkCrZ0VEREREROTQ9WsbizFm2UAdRIaXtmwbpbFSAEpiJfvaWPwMKTcGxhSqNdZubwbjMW5UGHb0zOzIBRpQKiIiIiIiIv130MoOY8wfD3wKOMcYMxrAWvuegTyYHN3aM+2MioeVHfu1sQQ5UvngoqdaY8PuFhwnx+hEvo0lX9mR9bNkvHzYoZkdIiIiIiIicoj6GlA6GXgBuAmwhGHHycC3B+FccpRry7YxsXgiELaxFCo7rE8yUgzsq9ZobG6F0lxhhkfvyo5uv5uoE8Ux/SpCEhERERERkRGsr79Bnky4bvYaYK+19gGg21r7oLX2wcE4nBy9es/sKI4Vk/EzZP0sXVhSsTDs6JnZsbtzL2ALjw+s7FBVh4iIiIiIiPTHQcMOa21grf0f4ErgGmPMDfRdCbIfY8xPjDE7jTHP9XruWmPMVmPMqvzXu97U6eUtyVpLW6ZtXxtLNAw3dnXvwhpI5Z/vqeTA7drvsWtcDKawjUXzOkRERERERKQ/3jC8sNZuAT5gjLkIaOvHtX8G3AAcONT0f6y13+rHdeQo0+V14Vlv3zaWWDh4dMfeJgCK4qOBfXM4TD7sKDw2hpgbK2xjKYQiIiIiIiIiIofgkCs1rLV/Bv7cj/c/ZIyZehhnkqNcWybMxAptLPnKjh2tLwNQlCwD9rWxlNBKFvYLNWJOrLCNRW0sIiIiIiIi0h9DMfXxs8aYZ/NtLmOG4PNlgLVl82FHr20sADv2bgIgVVQB5AeRWoOTLxjqHWpE3ShZP0vaT6uNRURERERERPplsMOO/wOmAzXAq/Sx2cUYU2eMWW6MWb5r167BOp8cAYWwI1/Z0fN9R8c2AIpSFZBM8si0k7A2SmdY4MGWj/0TJMMHUSdKNsiS9tKFFbUiIiIiIiIih2JQww5r7Q5rrW+tDYAbgVP6eO+PrLUnW2tPrqioGLxDypv2mjaWnsqOrp0ApIrHw8aNPPiuD2ODKLjdALy08DxobATCjSzaxiIiIiIiIiKHY1DDDmPMhF4P3w88d7D3ytHrNW0sPTM7Mq0ApIonwoQJTIvkIIhi3E4ATjRZGD8e2DezQ20sIiIiIiIi0l+HPKC0v4wxtwBnA2ONMVuAfwPONsbUABZoAj45UJ8vQ6cn7CiNlQK9wo5cOwBFReUAjG3dibVRItF2LFCz/ZXCNaJulJyfC9tYtI1FRERERERE+mHAwg5r7eWv8/SPB+rz5K1jb2YvrnFJRVMAuI5LUaSI3V64YrYoWgRAy+f+CVbWYY0PQPz6GwrXiDkxskGWjJ8pbG0RERERERERORRDsY1Fhrm2bBslsRKMMYXnimPF+PmfiyL5sKMzi7XRwnt6t6v03saiyg4RERERERHpD4UdcsS1ZdsKw0l7lERLAIhjiDhhQVFLZxaXfWFH760rhZkd2sYiIiIiIiIi/aSwQ4641ws7ejaypMy+zqmWzixRZ181x4GVHRk/Qy7IkXTVxiIiIiIiIiKHTmGHHLKGhgYWTp7Mg8awcMoUGhoaXve59kx7YRNLj57KjqQTKzzX3Jndr0Wl94rZmBOjPRsONFVlh4iIiIiIiPSHwg45JA0NDdTV1bE40cK6i8ayON7MlVdeycc+9rH9nqurq2PL7i2MCqJw1lmwfTsAJW4YcqR6BRqtnVkS+eGjUSeKY/b9OkbdaGGri2Z2iIiIiIiISH8M2DYWGV6WLF3KnOoEn7h6GtmoIZazPHVdI7tGR/jCZ4/BCSDmWR69rpF/aNvJqF0rwa6E//wcfO/XFOd/1VL54aQQtrGUjknQ7O/fwgJh+NGZ6wTQNhYRERERERHpF4UdckiqreWSWSmyUYN1DLkI/GxWitaKGBhD4EIOeHJWirZil1H+Fjg7Bv7dMCVC8bvGw+ljKMqvowVo7swwMZaE7v1bWABibozABoAqO0RERERERKR/1MYihyRWVUX52k4ivgXADSyj1naS3JoBwASWiGfZvrEb3zGMsgE4BusA71tAybsvBqAoXgpAV9YjnQsoiYWVHgcGGrFesz0OrPoQERERERER6YvCDjkk9fX1zG/MMP93OwBY+KvtnLQxzdRdWQDsU3tZfF0jk3eEj1fHYqyKxyCAzVsMxVEXgFRiNADNHeH7SuJhi8rrVXb0OPA1ERERERERkb4o7JBDUltbS8eyZTxgw7DiXjuarptvpvMLnwdg63Od/MvL3VTMDis17ksVcdX4SlZvc5n0+ycp9sJwoygxBoDWrvBxaSJsazmwsiPqRAs/q41FRERERERE+kNhhxyy2tpabvj+DQD86KYfAfDnW34BQFXFGKqBP58YhhfWGHIYHpuZospASbYbgNSvfg/bt9PcGYYdY5Lh+w+s3oi6+8IOVXaIiIiIiIhIfyjskH7xrQ/A/Q/dT11dHXOcsA1llhNnhzFU+x4Ajm+J+JbTbYbzT59ISSbcrPK8s4tV3/kSLfk2lrKesOOAuRya2SEiIiIiIiKHS2GH9EtP2DH/B9/n3vJqnjx9CQCrT34nT0+YyRmp8PXgwRYuuq6RWc1pfjxlL1tXPQrA43OKuerYZ3j+2qsAKE8VA2/QxhJRG4uIiIiIiIgcOoUd0i9+EIYZX3ThW3POwbrhdhbfCfjptNl0V4SDSF9+cA8/z1aycfIFOLPjbBpXBNbm19YaNpxaQdQxhcqOAwON/QaUqrJDRERERERE+kFhh/RLT2VHpHIso3a/AoSPXXKc4j2D74a/UmtWraGpqYnja78JgceZmQ7ivsX1LVHPkkxPY0wqRjIatsEkI8n9PkfbWERERERERORwKeyQfglsAMC73/tuprXvxJgw7Dhu3QOcPno73SYC9AorKo6DKYuoyWS56ZltfLZpFDe+PJ9gzzjKUrFC+0pfbSyq7BAREREREZH+UNgh/dJT2XHiSSfS+bnPgwkHkr4Y9yh/+zS8iulAr/AimYSGBwGoKfP5hP8cNb+8hZa2NOXFMe69614Adn3neyycMoWGhgZg3zYWxzhEnMig3Z+IiIiIiIgc/RR2yEE1NDSwcPJkHjSmEET0zOzIBTkWLjod8pUdl1/2fsZkt5ItPxboFXZs3Ahz5oK14JjwN+59C2g5fh5tu17lq1/5KgB7q5IsjjdTV1dHQ0NDYRtLwk1gjBncGxcREREREZGjmsIOeV0NDQ3U1dWxONHCuovGFoKIp1c8DYAXeGS9AEzY1pJr2wJAdkwV0KsNZcIEMFXgAb6FADDH0JL2mXff3dxRFg44XT47xV1XT+PRCZYlS5cW2mA0r0NERERERET6S2GHvK4lS5fy6ATLnVdP44Yl4wpBxAm3/BIIKzuyno/Jt7FsfP4JvLTlf3/4c2D/AaNsCaDjnTD3k9DxTnJbAtrSHj/v2sttVYn9trTcOCvFNGsLlR0HzvIQEREREREReSMahiCvq9paLpmVIhs1WMeQjcCNs1LcBaTIhx1+UGhjKSuyuJsDFrmdPOQnuO2W26itrQ0vdvvt+y78QWhtS8N//o1IMsLYFzuJZy1eBCKepXxtJ/GqqsLMDlV2iIiIiIiISH+pskNeV6yqivK1nUT8sM0k4odBRKRsDNBT2bEv7PCjBjPWoXpelCIvbEU5mObOLAAfuuRi5jdmWHxdI8HtO1h8XSMLGjPU19fvN7NDREREREREpD8Udsjrqq+vZ35jhnl/3gXAaTdvY0Fjhnec/w4Acn4YdvSsns0ZA44h4xhca5lm7UGv3ZoPO9574TvoWLaMm71KnruzmZu9SjqWLaO2trZQ2aE2FhEREREREekvhR3yumpra+lYtoxHglEA3BmMoWPZMo4/4XggrOzI9GpjyRiDDSwZYzCZgHhV1UGv3VPZUV4co7a2lqamJoIgoKmpqdD60jPgVG0sIiIiIiIi0l8KO+Sgamtrue5b1wHwm9/+htraWgKb375yQBtL1hh+/niWlxoDomlLfX39Qa/bkg87ylKxg76nsI1FbSwiIiIiIiLSTwo7pE++9V/3uxd45HpVduQMfPHRLCujRTjjJu4bTvo6mjuzGAOjk9GDvqewjSWiNhYRERERERHpH4Ud0ic/OCDsyD/uqewwvSo7mtuznHfheVSUVfR5zZbODKXJKBH34L9+quwQERERERGRw6WwQ/p0YMhxsDaWjHHAjZDxM284VLS1M9dnCwvA7b8O19W2/OgnLJwyhYaGhjd1HyIiIiIiIjJyKOyQPr2msiP/PefnyPoBGC987IS/Slk/+4ZhR3NnhvI+wo6GhgY+++nPAtA+JcHieDN1dXUKPEREREREROSQKOyQPh1Y2fGaNhbCSo+sMeF3P1tYG3swLZ3ZPis7lixdyqPjLFjL6mOLuOvqaTw6wbJk6dI3fT8iIiIiIiIy/CnskD4dbEBpLsiR6d3Gkn9/JnjjNpY3CjuqreWmWSmcAKxjyEUMN85KMc3aN3k3IiIiIiIiMhIo7JA+9VRyeDZsV+mZ2eEFXn5mR76NxYC1lqyfLQwXfT1BYGnt6ntmR6yqivK1nUQ9i+tbIp6lfG0n8aqqI3VbIiIiIiIiMoxFhvoA8tbWU8kRBMF+j3NBjsAPMBG/8N5ckAvDDufgQUZbOocfWMpSB6/+qK+vp/iKKwiua+QPs1IsXtvJgsYMM5fVH4lbEhERERERkWFOlR3Sp77aWHpvY4FwXkfvbSwNDQ0snDyZB40pbFRp7swC9DmgtLa2lo5ly7jZq+S5O5u52aukY9kyamtrB+QeRUREREREZHhRZYf0qdDGEuTbWPIVHjk/h3dA2JHxM4U2loaGBurq6vjH0cewZtEHuGDzGurq6viX/3GBkjdcPVtbW6twQ0RERERERA6Lwg7pU8+MjsKsjvzsjlyQI+cHGOMTsRbPmHBoab6yY8nSpcyYOIu/u/ybBMYQ8z0euvUatn37e/D+a94w7BARERERERE5XAo7pE894UZhdkc+9OhpY3Ecn1QQsNd1yfgZckGOmBuj2lrOmnUmnhv+iuWs5QfHzOXO7jaioLBDREREREREBoxmdkhB7xkbx5eVMaesjM3XfxeAJ556Ani9mR0eqSBcCduR7QAg5saIVVVRsntzeGFriQQ+lZvXEJ0YblRR2CEiIiIiIiIDRWGHABRmbCxOtLDuorFcWpbmfclx7Jg4A4BbbruFhoaG/WZ4ZL0A8Enlqz3ac+0AxN049fX1TO1oDi9uDLOfvYdTtq/n9HMuIBVzSUTdQb9HERERERERGRnUxjJCNTQ08N0vf5lvbd3KlyZP5uEtW5gzPcnHvzKNbMQQ9aBz81VQ9iwxnuIzqTFc8uEPc9vPLwbIz+fwiBtbqOzozHYCEHNiXFZ7GV/eE4VXwGvbxapZZ7D3I2dSGalmzKbWIbtvERERERERGf5U2TEC9VRxXGBLwk0pQTHTgJtmpci5BozBcw22eDOY/IyO6TH+Ntnl+ReeB/KVHX4OgKJg/8qOmBu2qJy0cBEA9R8+G1JlVJx4Li1duT7XzoqIiIiIiIi8WarsGIGWLF3KrAkz+bsP1ZN1o8T9HHfceg2s3cSjgcVzDBHfQkcV5YmNtAOTKpp59xVF3B6xPN1zIScLQMqGlR3t2X1tLAAdmXC46XtrJnLTIxv5yaONdOd8Korjg3m7IiIiIiIiMsKosmMEqraWHx4zl6wbxToOWTfCD46Zy/aXuzn+nnDOxmd+vIX3PLqGsWYPAL4B60Jb0hSuY0w+7MhXdnTkwgGlB4YdJYkoHz19Gk83tfLc5mZyv7mFhVOm0NDQMDg3LCIiIiIiIiOKKjtGoFhVFZWb1+DaAA+HqO9RuXkNHykvZwwlJIBrOhOk2cNsSoDdBBgIoCu77zqmp7LjgG0sUTcaPk57FMVcXMfAxscIsnGcWJL06PFcEBRTV1cHQG1t7aDdu4iIiIiIiAx/quwYgerr61m4fT2znr8PgPP//D+csn09119/PV/92lcBuPe+e7nkA5fRSjEQVnaseDyL9fdVdvS0scTDwo7XVHZ0Zj1S8TBPq/3oUt798nIAVkw+nt9+qJ6HRh/DkqVLB/ZmRUREREREZMRR2DEC1dbW0rFsGc9Fw+DijrhPx7Jl1NbWEuTXyHqBx8zjTwCTXzWL4b6iUrzqaYXrGCcDQMSGgcaBMzva0x4l+bCj2lra2naCtVjjkHNcfnDMXKbl532IiIiIiIiIHCkKO0ao2tpaPvrxqwD4/R13FlpJfOsXvmdyAYYwjAgMXP2ZjzO6bPS+i+QrO9wg3K7S08bSs42lM7OvsiNWVcXU9Y+T8LK4vkc08KncvIZ4VdUA36mIiIiIiIiMNJrZMYKlc/5+3yGs6ADwA5+M5xdWz/oAXbvxXK/w3p6ZHS4xwC+0scScfPiR8UjFXSBsnSm+4gqCW6/ht8fM5ZLNazhl+3qOX7ZsIG9RRERERERERiBVdoxgGS/Y7zvsq+zwrJd/Pt/WYgx0NRPYANeEAUZP2BGxCeD1Vs/6FMfDYaU9rTO/jHaz4cnf8Mtod6F1RkRERERERORIUmXHCNZT0ZHpVdnhB37he8YLCpUdAUDnboLUKOJunC6vC/IzO4yTBNtVCDt62lg6MjmK48WFa9fW1ircEBERERERkQGnyo4RrKeiI/16lR2Blw9B8m0s+coOL/BIRMJKjp7KjsAkMUTozHUCvWd2+BQnlKeJiIiIiIjI4FLYMYL1Wdlh96/s8CCs7LABCTcMOzBh2GHdFNgIaT8N9GpjSe8bUCoiIiIiIiIyWBR2jGBvNLMjnfMxhTYWA143vvWIR8Iwo2f1LG4xvTuiYm6MjOeT9YPC6lkRERERERGRwaKwYwQrVHa8TthRmNlRGFCaf93PFSo7Yk53+GQkBUEYarjGJeJE6MyE11Flh4iIiIiIiAw2hR0jWGFmxyG0sfgmTDuCwCu0qUTyYYeJjsLacEPLvnkd4YraYoUdIiIiIiIiMsgUdoxgGe+NKjv2DSgNosnC6z1tLK4Tzugw0RKCfGVHT9jRnlbYISIiIiIiIkNDYccIls71zOzYV9nhBWFIkQtyZHIBGBs+3xN2BD5JN/zZyYcdbqwUmw874k4YhHRm82GHtrGIiIiIiIjIIFPYMYJlCttY9lV2BDbftpJvYzE9q2fz62Z7V3b0rJ6NJEoLbSxRNwpAR76NRTM7REREREREZLAp7BjB0vn2lVt/fjMPGsPCKVN4ufFloFcbS882lkgMnCiBDQozO6yTAyCSHAM2DDl6r50FtI1FREREREREBp3CjhHKWks2H3b8/exnOPMHLtfN38ZTy58CXjug1MNAaiw+trCNxTphoBFPlkG+sqMn7OhUZYeIiIiIiIgMEYUdI0hDQwMLJ08OqzimTQfgQ1X38Lmv3YPzCZ9zfh3w+ePCDSte4JH1Agz5gaXGQFEYdvS0sfgmDDRiqbLCzI6eAaU9bSya2SEiIiIiIiKDTWHHCNHQ0EBdXR2LEy2su2gs5xXtBeDtMx/ARgA3LM6YODsDQNoLW1RMTxuLMQRFY7BQqOzwnDAISSZGEV7ktWFHKqawQ0RERERERAaX/iY6QixZupQ51Qk+8eVp5FxD1LdEmp/kl11dnBMYolicAJrWJ6AIMj1hBwGWsI3FLyqHrqZCoGENRK2lKBF9bdiR9iiKubiOGZL7FRERERERkZFLYccIUW0tl8xKkY0YrGPIAdGS51i9O8FV90xj4bgOKv+a44ndcZgLWT+szMD0tLFAUFQOXRBxIhgiWDyiGJJRF2tfu3pW8zpERERERERkKKiNZYSIVVVRvraTnjqLiA+59hMwGFbvKuLmZ8fSfFeO5xJhZUZP2GGMBcAH/KIyAJzA4uRzsiiGZMwtDCjtqexoT3sUK+wQERERERGRIaCwY4Sor6/nxE0ZTC6cwTH/F1m8Pacyb08JAN/c1cwpuzIcO+NYALJ+2MaybxuLxU+OAcD10hjCcCPSU9kRhKtne8KOzozCDhERERERERkaCjtGiNraWhp/eh1+PAwp7mUCADODVgCOy+bwPvcpxlaOBSDjhZUdlrCyw7OWoKgn7OguVHJEjbtfZUfP6tmOjEcq/1kiIiIiIiIig0lhxzC135rZKVNoaGhgwoIJhde/c8P/UkYbpW4HAJ6B00+ehx+EMzp6KjssYWWHD/iJMOxwst2YnjYW45KMuoUBpfvCDp/ieHTgb1RERERERETkAAo7hqGeNbMX2BLWLPoAFwTF1NXV8funf194T3cuwynOWnL5KR6eMZDpwLNhRUcu8ICAniEfng3wk6MBiOR6VXY47n4DSqNuGHB0ZHIUq7JDREREREREhoCGKgxDS5YuZdaEmVx++X+SdSMkvBwP3XoNX9m9GkqiEDN05bKc6rzINif8FfAwkO0ksGElR873IN/CAvmwI1EKgJPt7BV2RHAcQ8SEIUdPZUdnxqc4oV8vERERERERGXyq7BiGqq3lh8fMJetGwDjkHJe/fqyUi87ay1mEMzqeXPE0i5wXaY6UA5CLJiHbiRfkKzt8rzCcFMC3liBeDICb7cLY8Fcn6uw/mLTQxpLW6lkREREREREZGvrb6DAUq6qicvMaHGsJDJwy434+/7GniDoW70TDJ+5JMPM3tzN7wWb2xk4DtuJHk5DtwLfhzI5c4B8QdgT4+Z/dXAdOvugj0hN2ODHS+e8ZzyfrB5Qo7BAREREREZEhoMqOYai+vp6F29dTuf0lAC4b8yuijiXiQMSxnDyukyfL0wB0xsOho7loIgw7gp6wIwfsCzs86xeCECezL+yI5is5ovnKjpgbozMTvk+VHSIiIiIiIjIUFHYMQ7W1tXQsW8b2RBKATXd45AKDF4AXGJbvSHF8pUe3jZGNlwDguQnIdhYCDS/wMfnKDsdaAhsU5nm4mU7cfA4SjYRhRyKyr42lMxO2whQr7BAREREREZEhoLBjmKqtrWVS9UwAoneX8K83VHLDUxV8/7MpVu8q4sSiVlYGM9izN5zhkYkcGHbkt7EAUQuB9QubWtxMO64NSzt6Kju627sBePmKK3nPWecCCjtERERERERkaCjsGMZaOrMA7P33eu7YOprv31fKV+8KA4tRyW5e8cfyyiuNAOSc+H5tLF6vmR1RC771e1V2tBEJ8mFHJEFDQwNbN70CwM4TSzi1uB2Apx59aJDuVERERERERGQfhR3DVHfWpzsXBhdnnnMeZ19wNgvSAc+XGwA8x/D+6KPMj2YAyLix/So7/MArtLFELAQ26DWzo51oPviIRBIsWbqUkyItAPzl1FKe+riDk9zEhd+4dtDuV0RERERERKSHwo5hqrUrW/i5K+vRkevgme6ADePDf+U5Ay4+mUQYYGSdKGQ6CqtnfesTy3ehRKwhwC9UfbjWkrLh9aORIqqtpTXaCRasY/AciBRt5JJM52DdroiIiIiIiEiBwo5hqqeFBaA759OZ68Q4cbZtDsOMLAaPCB1eWOmRdsLKjp5WFc96xCLha641gC1UdrjAKBtuc4lGk8Sqqki+WgJBBNe3uAF4XdXEKssG6W5FRERERERE9lHYMUztX9kRhh3z58wntjUMM9I4fGr3VfhBGGhknUg4syM/hNQPfGKRcC5HGHZA1g+v6VhLKfmww41RX1/P+B0Jsi8vJbh9B9P/MImgu4p//co/D87NioiIiIiIiPSisGOY6l3Z0ZX16ch1MG/WPNL/+38AtNkoD3hVeBPHAZA2UbB+OJiUcPtKLBr+edeGvyYZP5zvEQFG23D7StSJUltbC4svJJM7lufubGZ5UA3ARz/8dwN+nyIiIiIiIiIHUtgxTLX2DjsyOTpznaSiKS6/7HIAcrEk80+cS6o4AUCGcEBHz1wO3/rE3PDPOzb8IRfk8o8hRfhzxAn/3CnzTwTHJZ31+MSnP0sy6uI6ZoDvUkREREREROS1FHYMUy1d+WDCQFu2i8AGFEeLif7/7N15dFx3ff//1+cuM6PVltcoi2Q7ceKEhGZxQtgJ2UhKC03S7w+qOikF1EL40vJtfwV+Pt9CehCl9FCghwJfA21wqiw05HsKgRCSsCWQzU5CVsfOIiuLLS+yrW00M/fez++Pe2c0kiUvwdJI18/HOcPM3LkzmpFvxtyX3+/3x43LNfLylPXcStvKqFxZySiS+wAAIABJREFUSZHiNpfIhvKTAaVOcpiUwvg1XVn5cYeLfCd+vZwfByL5UqjhYqDGnDftnxEAAAAAgMlwRppSe0eKml/vKwytBgpDkqQGv0Geif/IR42rrO9UVl8ZNY7CqudHGgs73OQwKbexyGuQl4Qi5bCjLgk7RkuhBkcDNWY5tAAAAAAAtUFlR0r1Dxe1oD6juoyroeJY2GGMkW+lUeMp57kKbFytMSpXYVXXSWRD+W5cvuHYOLgot7Eo0yzfxo+VK0Xqk56XkWKo4QJhBwAAAACgdgg7UmrPSFEtDRnVZ1wNlYYlSY1+oyTJl5RXubIjCTuso1BjaYdVqKwT13o4STVIeTWWKNM8dRtLMdRQIVBD1p3eDwgAAAAAwBQIO1Kqf7iklvqM6jKeRoI47GjwGyQpruyQE1d2JG0sBU1sY4mUc5OlZhUHGpWww59XqewoDyity4zN7BgqhGrM+tP7AQEAAAAAmAJhR0rtGS5qQYOv+oyrfBJ2NGaSyg5rNSpn/MwOaxSaqsoOGyrnxOGGazKSxtpYQn+ePCVtLM74Npa4sqOkRio7AAAAAAA1QtiRQtZa9Y8U1VIft7HkwxFJ1ZUdURx2eEZBshpLwRoFyfMd48gqUtbEYYcxSWVHFN8P/Xn7tbHUVa/GUghZjQUAAAAAUDOEHSk0UgxVDCK1NGRU57sqhFUzO6yVZyMVZOR7tvKcUatKZUfWzUomVMYkS82arKSx1VjuvPv+ShvLQw88JGlCG8tooAYGlAIAAAAAaoSwI4X6h+MKjAVJZUchzEtKKjtKeflWKprxYUfRSlEyoDTjZuIBpUllh+PEYccTTz0hSTo5zFfCju+s+466u7srlR378iUVw0hNhB0AAAAAgBoh7EihPSNxSNHSEA8oLdkR+Y6vjJuRSiPyrVXJGHnu2EjSUhQoyMRtLlknKymSn4QdnlsnSWq/56eSpAuW71I5yriprqgr16yphB07B+PqDyo7AAAAAAC1QtiRQpXKjmRAaWDzlWVnVRySL6uSkbyqyo4wChVm4lAj42YkE8lTMqDUzUmSur248sMzUaWy45VFjpZZW2lj2TUUhx2NhB0AAAAAgBoh7EihSmVHfTyzI9BoZTipinFlRyAj1xmr7AhsoDCp7PCdjIyxcithRxyCuPOTwCRytNWNB5P2l1ztMEa33nKzjBmr7CDsAAAAAADUCmFHCvUPx4NFFzRk4ooLZ1T15bCjNCLfSsGEyo4gChT6cajhJSusGMXBhefVS5JO/73TJUnX95ymry5okSTdcOkSPbIip6uujltZKmEHq7EAAAAAAGqEsCOF9gwX5RipORe3sRinoDq3XNkxJN9ahcaOq+wIbVgJO3wnE2+0cXDhJ2HH0mOXSpLuafYVxh0tChyjb61q0HJrVZ9xmdkBAAAAAKg5wo4U6h8pqqU+I8cxlbAj68aBRbmNJTRWTlXYEdlAoR/P5vCSpWZtUtnhJ/M+RoO4rSWzo1myntzQyg+sFm4aVra9XTnf1c5kZgersQAAAAAAaoUz0hTaO1JUS0NcnVGX8WTcUWWdJOwojciXksqOqPKc0IYKvDoplFwTt7FENgk3klkehTAZfNq/QM8+/w45j3Xpsk3DOufFgk5Z36Xr+1wVg/g1qewAAAAAANTKtFV2GGP+3RizwxjzZNW2BcaYu4wxW5Lrlun6+Uez/uGiFtTHYUe970pOQb6JW1RUHJZnrSKNr+wIbaioUtkRP9cmYUfWj4OSctgxesllKg4fqyd/vFs3BEs0tH69Ojo6VJ+syCIRdgAAAAAAamc621iul/SuCds+Jekea+1KSfck93GE7RkuqaUhrs6I21hG5VWFHb61siaS64wNKI1soNCLww4nKfgJk9VY6vy4raUQxi0qy1ecrMWLFiiKIvX09Kijo0OSlPPHwg5WYwEAAAAA1Iqx1h58r9f64sYsk3S7tfb05P6zkt5hrd1mjGmV9Atr7SkHe52mpiZ7zjnnTNv7TJuNW/eopSGjFYsaNDha0qa9j2lhtlUrWo6X9r2knqFXtNPJatm8ZeoZeE5GRjbK6ZRsVs+W9mpeZoH2Ffu1yGS0yxZ1XP1KvTKyRVk3p2JUUIuzSgP5QGe1zR/3czdtH9TekaIcY3Te8gU1+vQAAAAAgLT65S9/udFau/pg+830P78vtdZuS25vl7R0qh2NMZ2SOiUpm83OwFtLjyCy8p1kuRQTz9Aw5SKeKJSRkWSTi2SMIysra5J9bPzcchDmmvH3IyuVX76am2xzJ3sQAAAAAIAZUrNeA2utNcZMWVZirV0naZ0krV692v7iF7+Yqbc2pw2MlvT6z/5Un/79U/Wht67Qhpef0wfu+SP94bGfUNfFfy7d8Ul94fnb9J/183Tdm67TZx/8lOrdBRocatC/nPR7+vgrt+vtCy7XL/t/rEs0Tz/VPn3mrG/pukc/oPmZRcqHgzrHflNbd4/oJ3/9tnE/+3997zHd9sgrWr6oQT//23fU5hcAAAAAAEgtYw7tH9dneunZvqR9Rcn1jhn++am3Zzies9GSDCgNzagkydh4HoeKQzJyJRPKJFUfGScnKVLBied8uFGcQQU2kCQ1ZOLKmiAqyTXxiisZb/9DpzyglHkdAAAAAIBamumw4weSrkluXyPpv2f456defznsSAaUhspLkmxUDjtG5BhfMqFk4jAj42QlE6pg4pDCDeMQpGQDuVbKeXFwUiqHHWGkjLv/oVOXDChtyLr7PQYAAAAAwEyZzqVnb5J0v6RTjDEvG2M+KOkLki42xmyRdFFyH0fQnpHxlR2lKA47ojC+r9KIHHkyxqoUxftmnJxkIhUUByReEnYUbSjHGNVn4u2BLclxnCkrO8phR2PWn6ZPBwAAAADAwU1bv4G19v1TPHThdP1MSP3DJUnSgoY43BgJhiVJYZCEHcVhSb6kQCPBiCQp6+ZkJqnsKNpQnoxyXlIlYsfaWOoz+x86dcm2Rio7AAAAAAA1NNNtLJhmlZkdSdgxvOtVSVIwGAcYcdgRhxLlsCPn1kmKVEi2+2EY76pIrsYqOyTJNa4KU1Z2xNsac8zsAAAAAADUDmFHyvSPFOU5Rk3JkNAt99wiSdq9+b54h9KIrJKqj1ISdng5yYQaVVyR4YXxLI+itUkbS6by+o5x4pkdk4UdmfLMDsIOAAAAAEDtEHakzJ7holoaMjL19XrspHrdsvhVyUqPtf9Qj51ULz33jGwym6Nc2VHn1UkmUt7Gh0OmHHbIyjOO6vyx8MJzPBWDSNnJBpQmbSxNhB0AAAAAgBoi7EiZPSNFLajPSC+8oA3ve7NCR5KRIsdqw/veLC1doKiqssMxjrJeRkaRCsnhkAniVpiCsXLkqM4ba2NxzNQDSh/6zb2SpG1/9zc694QT1N3dPc2fFgAAAACA/RF2pMye4VK87Gxrq1YXlsixkqxkrKPVxaVSkFcYxeFFPsjLd3xlXC9eetYaSVImiIecFo2Raxx57lilRmXp2QlhR3d3t772lX+RJO0+/nW6JGpUZ2cngQcAAAAAYMYRdqRM/0ixshLLmc/nddbwPHm2SUt6/kRnPjcsBaMKbPz4WNjhSyZSMRlMmg3LlR1GnuPKNWOrq5RXY8lMaGO5cs0afT3XIkm68+Q36fvv69Kv5rfpyjVrpv0zAwAAAABQjbAjZfYMF9VSnwwUve02uSevUr3bqqj5POmm9ZKkos1Kimd2jFV2RCqEcUVHXVXY4RhXjnGkpOrDcSZvY1lhre5ubJFsJOs4Kjmuvtl2hpZbOxMfGwAAAACACsKOFIkiG8/saBhbPWWwOKisqVe+FCbLzkrFaGxmh+/4ynkZGROqlAwmzSVhR2BMVVWHk/yvqyCy+4UdmfZ2HdvzmHJBSW4YyI9CLel9Qtn29un8yAAAAAAA7IdlM9Jg926po0MD3/6uIquxyg5JQ6Uh5dwF2l3cP+zIB3n5rq+MFx8G5cqO+mC08nzXqQ47wrjKQ9ov7Ojq6lLj1Vcrunmtvt92hq7ofULnbd+s09avn45PDAAAAADAlKjsSIPrr5fuvFP9N35PksZVdgwVh5TzGpQvhlIpXmo2HyZtLOXKDjceWFoI45CjLipUnu+aOAgxyaFSvp44s6Ojo0ND69frRj+vLQ/eqhv9vIbWr1dHR8eR/rQAAAAAABwQYcdcZ6305S9LkvbcdKskqSUJO6y1GiwNqt5rVDGMFIwOSZLy0djMDs/x4pkdkgpBQa6kuqi6sqMcdrjJdXzIZCdZerajo0M9PT2Kokg9PT0EHQAAAACAmiDsmOvuvVfat0+S1B/EQ0QXJG0so+GogihQg98gSSrkByVJw0H8eCEsyHd8+UllRykqypVRQzhZ2JHM7EhmeExsYwEAAAAAYLbgjHWu+8pXpOFhdUv6hIlDjGsuepu6u7s1VIwrORq9JklSaSS+PxSOtbn4jl8ZQloshx02X3ncdeIgpDyro3zIEHYAAAAAAGYrzljnkve8RzJm/OVHP1K3teqUdNLSEyVJF+Wlzj/9U9100vGSpOZ77pMkFZM2lpGwrvKSnuPJS6o3SlFBrnHUYKtmdkzRxpJxXQEAAAAAMBsRdswln/+81NYm5XJj24pFXSnpV8eu0hNnvkuyVj+46jP61bGr9Ka6OJBofssFkqQgaWPJR/WVp/uuXxV2FOUaR42qamNxy5UdE8IOKjsAAAAAALMUZ6xzyeteJz39tPSHfyjVjwUWKyT9n7YzFDquZIxKjqtvtp2hK5KwY97xccVHmFR2FOxYZYfvjIUdgY3DjoyNKo+7Ttzy4pQPFUvYAQAAAACY3ThjnWsaGqRbbpG+9CUpG6+qkpG0pPcJGWsla+VHoZb0PqFM21JJUktdPLMjLAxLkkYmhB3lmR1hVJJnXFU3qLjJSi3lyg5NsfQsAAAAAACzBWesc9XZZ1fCji5J5766SX4pL3fbZl1x81qdt32zrnj/FZKkBblmSVJUGFbkZhXa8QNKqys7jHHlSHJs/Hh5Zoc7MeygsgMAAAAAMEtxxjpXbdgglUqSpA5jtLNxnorZBu169j7duO1ZDV19tU476zRJ0sK6eZIkWxpW5NVJdqx2w3d9eSYONEIVK6FGJdowzrhra+PlbbOEHQAAAACAWYoz1rnq3nulfD4eVtrWpvO/eb0k6ZbhfvVYq45CQYOlQRkZLaiP21hUHFbk1UtVjSrVlR2RLVXaVcp7lIOQcoVHFFHZAQAAAACY3ThjnasefFBy3Xg52qee0tYz3iBJajtrVbz9wQc1VBxSo9+ohmy8ooopjSjw6iUZuUmIMS7sUElOOdywcR+L6yThR2WuR/zjmdkBAAAAAJitOGOdq049VVq3Trr5ZqmhQb39I5Kktm9/Ld6+apWGSkNqyjSpPhMHFU5pRIEbDyf1TByAeI5XCTSsGQs7vGRFlnL7SjnsCMK4jYXKDgAAAADAbMUZ61z1ox9Jf/7nlbu9/cNa2JBRY9aLt//oRxosDqox0yjfdeS7Rk6QHws7nKrKjiTgsCrJTNHG4jnlsCPeTtgBAAAAAJitOGNNia27R9S2sH7ctqFS3MYiSXW+Ky8YUcnJSYpDjvJ1OfiQCWTKFR8T2lgqK7YQdgAAAAAAZjnOWFOit39EbQsmhB3FuI1Fkuoyrrwwr4ITV3b4rl+5Hgs7IqkSdsSbKquzOPGhUiq3sTCzAwAAAAAwS3HGmgLFINKre/NqnxB2lNtYJKk+48mP8io6+7exlAMNSZJxFVhHrpLKjuQxP9m/FMS7EXYAAAAAAGYrzlhT4NW9eUVWOmFi2FEaHNfGkonyKpisJCkzWRuLJBs5GlFOblLZUR5QWt6nFCqe/+GYaf1MAAAAAAC8VoQdKbA1WYmlfWFDZZu1dlwbS33GVTYa1aiJZ3Zk3IykpLLDGavsiKzRsHLyksqOsQqQeJ9iQFUHAAAAAGB246w1BSrLzlZVduSDvEIbVio7Gn0rT4HyyskYKeOOVXb4yZwOSYoiR8M2t9/MDs+NQ49iieGkAAAAAIDZjbPWFOjdPays52hJU7aybag0JEmVyo75XkmSlDc55Tx3bDUWd3xlRxjFlR3lmR1OMpg0k1R4FANL2AEAAAAAmNU4a02B3v4RnbCgftwcjaHixLCjKEkasVllfaeyGovneONmdoSR0Ygdm9nhmfgxz3UrjxN2AAAAAABmM85aU2Dr7pH9V2IpDUpSpY2l2Y0rO0Zsdnxlx4TVWMLQaFjZysyO8oDSjFsORBz5zOwAAAAAAMxinLXOcdZavZRUdlSbWNnR7MSVHUPlyo4pVmMJQmlYdZXKjnKLSyXssA4DSgEAAAAAsxpnrXPc7uGihouh2hceuLKjyS1IkobCzH6VHePDDqNRMzazo9zG4lfmejjK0sYCAAAAAJjFOGud47buLi87OyHsKCZhRyZZjcXElR39gXfAyo5SKBWcuspqLOU2lvI+1jrM7AAAAAAAzGqctc5xL02y7Ky0fxtLg4krO3YVvLiyw61ajaVqZke+EGlv3sqzcdrx28d+K0lVK7YwoBQAAAAAMLt5B98Fs1m5suP4lv0rOxzjqN6Lt9clYce2vKum+c6UA0qD0GjVCT1acfYe7emX/uvr/6U3OG+QuzLZh5kdAAAAAIBZjrBjjuvtH9ExzTnlfHfc9qHSkBr8BhkTL0dbp1FJUl/e1SLPqbSl+I4vY4w84ymwgd5x7FZdfMUDilzpwmiv7r2vWW9bs0Zfe/CLySvTxgIAAAAAmN04a53jevuH1TZhXocUt7E0+U2V+3U2Djv2hRll/bEBpeXQo9ym8rbjeyVHch3Jd6zqVgdabu1YG4t1lPHGBysAAAAAAMwmhB1zXG//yH7zOqR4NZbyvA5JyiWVHXlllPWq2ljccugRX9/70jIplMJIKkVGTz7kKtveXtXqYmhjAQAAAADMapy1zmGjpVB9AwW1L6iXPvvZcY8NFYcqK7FIUjYa1YjNyspRznfH2lhMEnYkYcbPXz1F//zFK3TTXfP04Z8u17b7XXV1dVUqO1iNBQAAAAAw23HWOsd0d3dr2bJlchxHq855syTFbSzXXTduv6HS+DaWTDSqEWUlST3PbdF/fPlfJUl/9KY3q7u7e9zSsl/f/AZ98uYG/XZnvUof+gt1dHSMVXZYR1nCDgAAAADALMZZ6xzS3d2tzs5OLTt3m/7hP+p08lv2SpKeefje/fYdLA6Oq+zwwxHlbRx23H3nj3WyiVdxeae7R52dnSqOFpM9HV168Tv1kb/4iCTpLW9+i6Sx2R4MKAUAAAAAzHactc4ha9eu1bmXB7rjppI+tWZEP/zXZ/W5K7+ghx78yn77DhYH1eiPhR1elNewcpKkDzbv1Oa3t0jW6mcfa9OvW62adu6Od7RGWc/db3CpY5JDhaVnAQAAAACzHGetc0hvb68uercn37HyHCnjSn+y+j51f/1RbfqDdmn7dkmStVbDpeFxA0q9IK980sby+NIBRcZIxihwjb61qkEvhTbeMWlTKbetTLyWDJUdAAAAAIBZjbPWOaStrU2/eTqjUmQURvE2x0gZr6TgCwPafOs1kqR8kFdow3FtLE6Qr8zsaHjJlx9YuaGVF1gt3DQsVdpUXGV9Z6yyIwk5Km0sDCgFAAAAAMxynLXOIZ/73Of03LzFuuaW43TDPfNVDF2FkeQYq1Wr9qjtL+/S5j/OarBtiSSNa2MxxWEVTNzGsvwVV5d98UVFt/Xpsi++qHNeLOiYJcdIigeU5jx3v5Cj3MZiRRsLAAAAAGB246x1Dml75V5lj8vqka8P6c8v2av3f/V/6+EXWhVayXMkz7Ha925PQ04gSWq6plNK2lXU95KKTp0kKfzgB3RDsERP/ni3bgiWaGj9ei1asCj5KWZcZUc55KhejYXKDgAAAADAbMZZa41ULyG7bNkydXd3H/Q53359Xq0NrXrm3h0qBKEe3bVaj9x1kYLIKIikUmTUNPhmDT76gCSp6fu3S9bGl8acSk5c2fHOt79VPT09iqJIPT096ujoGNemkq2q7NivjYXVWAAAAAAAsxxnrTVQXkK27fXSZ/7tdWp7vdTZ2XnAwOORvkf06I5Hdc3rrpHv+No5WJC1UstDx6n3/1yiu/+7WR/+6XJt6ClpsDgoaXwbi4rDCtx6SVJ2krBiLOxw4wGlzviwY2w1FjPp8wEAAAAAmC04a62BtWvX6pwLF+vOW7dpbefTuvPWbTrnwsVau3btfvuWK0Cu+KcrFA1HKm0sSZK27RuVJB3zyU/o5Gt/okuvGFBj5mL929mj6hnokaSx1VislUrDCry4jSXrufv9nLHVVuLVWHzHj7c7E1djYWYHAAAAAGB246y1Bnp7e3Xh5fPlu4E8N5LvBrrwsib19vaO269cAbLykl36645Rnbh7h679i2vV3d2tvoEk7JgXt6YYSZ8+79PKl/L64q++IEn6f950QVwtEhQkGylMKjty/tSVHdYaZf3xbSzd3d36zMc+Hu9oHf3mvl8d8d8JAAAAAABHCmFHDbS1teneDS0qhZ6C0FEp9HTPHYNqa2sbt9/atWt17uWBfvD1EX3srD7d8undOvfyQGvXrh2r7GjOVfa/74f3adcdu6S6+I/1EvWrs7NT/3XTdyVJkV9uY5mkssMZX9lRvn/XT+9SZ2enzvKGJEkms0Pf+eIX9NGPfvTI/UIAAAAAADiCCDtqoKurS0+8eoY6vt2lf7nrT/XuznO08Z6d6urqGrdfb2+vLnq3J9+x8hzJd6wueren3t5e9Q2MKus5ml/vV/a/cs0aff+3eypDSe/663b9utXqD/4qDiasH7exTFbZ4Zvkdaw7bkDpxf/7M/p1q9Wj74mXs80d8wN9/NQF+tI3vnFIQ1UBAAAAAJhphB010NHRoeNXX6RHHqvX13/xP/T8qydr3bp16ujoGLdfW1ub7r49UKlqtZW7bw/U1tambftGdcy8nIwxlf1XWKsbTqyXsZKMUckz+taqBl1aXkjFb5A0eWVH9Wos9//6V/rHv/uUJGlNaPXgqgYFbvJzTKjvvv31evrYVbpyzZoj+nsBAAAAAOBIIOyogZf6R7S76Orvr75MixqzuurDn9gv6JDiCpCHf+zpsvf7+sIN9brs/b4e/rGnrq4u9e0bHdfCos98Rpn2di3cNKxMycoNrbzAauGmYc1ra5Uk3fer+yVJ7z3/3P2qMqrbWL721S/rj07dqw+evlMfvMRV/6ZhOaEja41kPQXDK/TNtjO03Npp+f0AAAAAAPC78A6+C460+57bJUl668pF+sXmnXpm28Ck+5UDkLVr1+rvv9+rtrY2rVvXpY6ODn3ziz/T2W0tYzt/9rPqWrlSjVdfreiLL+q/VzXosk3DOufFglo+9gZJd+uM9j1a/ubvqX5zSZ2dneN+xlhlh9H33tqnt31urzzHKvimUe/7fS3/dkn/8N5LVRo5Ue7wcVrS+4Sy7e3T8wsCAAAAAOB3QNhRA/dt2aVjmnM6aUmjTm1t0n/ct1ulMJI/yZKuHR0d+1V9WGvVt69QWYmlet9uSTesXaveH/dqoK1Nq9Z36dp/+DPp/83og1f/Sq4bqvROTxdd1apla9ZIyWtvfXFr/NpyNXDhkLxkTohk9cy7PTX92Sa99yXp+21n6IreJ3Te9s06bf36afjtAAAAAADwu6GNZYaFkdV9z+3SW1YukjFGp7U2qxhGen7n0CG/Rv9wUcUwGt/Gkujo6FBPT4+iKFJPT486Ojr0cV/SslBe1VK3T1/WVGlD6e7u1m/u/U38AtbRrt+0KkjmhASR0Y7bA12zcKFu9PPa8uCtutHPa2j9+klbbwAAAAAAqDUqO2bYk6/s0758SW9duUiSdFprsyTp6VcHtOqY5kN6je0D8bKzrfP2Dzsm6u7uVkPGkXpclUJPVqFKoacddwxW2lCuXLNGD/7lqfq5JFlHX/av00l/+Qk1vnWnHr890NLbAn11/VcJNwAAAAAAcwJhxwy7d8tOSdKbT4rDjuWLGpT1HD396oCuOPvQXmP7vjjsWDpJZUe17u5udXZ26tdvMdLLnp75SLN+tnqR6u8Y1LE/ekldSRvKCmv1uvqFkvZIMgpcV7c8dZ5++J3/Uq69XV3ruwg6AAAAAABzBmHHDLt3yy6d1tqsRY1ZSZLnOjrlmCY9s33yIaWTGavsqDvgfleuWaOO4xzpvHpJ0lnHDOusz+9U/uVQt/3nf1YCjEx7uxr27ZbkyAmt3DDQkt4nlGtvV09Pz+F/SAAAAAAAaoiZHTNouBDokd49euvJi8ZtP621WU+/OiB7iEu5bt83KsdIixozB9xvhbV6bJkra+L71pEeXeZqhTSuUqOrq0vHDvRLktzH7tYVN6/Veds3q6ur69A/HAAAAAAAswRhxwx68MXdKoVWbz1p8bjtp7Y2a89ISX0DhUN6ne37RrWkKSdvktVbqmXa2/VCTyiFkg2tFEkv9IT7LRnb0dGh4Pf/QJLU+8Q9DCAFAAAAAMxptLHMoEe2/ljXXvBLzatzJF1W2X7ascmQ0m379ltOdjLbB0a19BD26+rqknv11fr++hG9sszVcT2h/FetutbvX7Fx5uvP1P2/vV8bH96oUxeeeugfCgAAAACAWYbKjhmyaduduvaCv9QnLrpBJy15rzZtu7Py2KpjmiTFK7Iciu37RtV6kOGkUlyxMbR+vf7WPV6f+HVJf+seP2XFhmvc+NpxD+k9AAAAAAAwW1HZMUNe3fcTnbQkkOdGkgLtGblL0qWSpKacr7YF9Xpm2+Ahvdb2faOV1VwOpqOj45DaUTwnPhQ8wyEBAAAAAJjbqOyYIc/vOEel0FMQOiqFnlrqLx73+GmtzXp628ErO4YKgQYLwSG1uxyq7u5ufe1zn5ck/fE7LlB3d/cRe20AAAAAAGYa/4w/Q+565kQ92vslrXljj1rqL9aq1kvHPX5qa7PufHq7hgvHYXhQAAAgAElEQVSBGrJT/7Fs3xcvO3vMIbSxHIru7m51dnbqb/8mq5bTh+WcPajOzk5JYkApAAAAAGBOIuyYAXuGi9rQ069rL7hYbzzxlEn3Oe3YZlkrbdo+qHPaW6Z8rb6BJOw4QpUdV65Zo3Ov9NX293l5jlWwzuhdg77a1qyRCDsAAAAAAHMQbSwz4Gebdiiy0sWnLZ1yn1Nb4yGl3/jl89q4dc+U+207wpUdK6zVpnd78hwrz5E8x+qZd3tabu0ReX0AAAAAAGYaYccMuPuZPi1tzur0Y+dNuU9fEmLc/XSfOr79wJSBx5Gu7Mi0t6vv9kBBZBREUhAZ7bg9ULa9/Yi8PgAAAAAAM402lmk2Wgr1y8079d6zjpPjmCn3e+DF/srtUhDpgRd2T9rOsm1fXvPrfeX8I7NEbFdXlxqvvlrr3+8r/25PdbcHWnpboK71XUfk9QEAAAAAmGlUdkyz+1/YrZFieMAWFkk6f8VCZdz4j8MYo/NXLJx0v+37CkeshUWKh5AOrV+vzz/cqk98IK/PP9yqofXrGU4KAAAAAJizCDum2d1P96k+4+qNU4QXZee0t+imzvN10pJGuY7R8S11k+63fSB/RJedleLAo6enR1EUqaenh6ADAAAAADCnEXZMI2ut7n6mT29bufiQ2k7OaW/Rd65ZLWulf77z2Un32b6voNYjHHYAAAAAAJAmhB3TpLu7W8vPfpv6Bgr6yXf+Sd3d3Yf0vPaFDfrAW5bp1o0v6/GX9457rBhE2jVU0NIj2MYCAAAAAEDaEHZMg+7ubnV2duqUC1r1kbffomULH1dnZ+chBx4fu+AkNXiR/vAz6+U4jpYtW6bu7m7tGIxXYqGyAwAAAACAqRlrba3fw0GtXr3abtiwodZv45AtW7ZMba+X7rx1m3w3UCn0dOlVrep9XOrp6Tno87u7u/Xxr9yspgv/UkNP/1KDG38ob2+v1n75O1r3QpOu/8C5escpS6b/gwAAAAAAMIsYYzZaa1cfbD8qO6ZBb2+vLrysSb4byHMj+W6gCy9rUm9v7yE9f+3atRra9rysjdRw6tt0zJ/8o4L5bfrHr35DkvRn/+M9h1wlAgAAAADA0YawYxq0tbXpnjsGVQo9BaGjUujpnjsG1dbWdkjP7+3tVe6E0yVrZYyRcX0tuPgv9KZLFuuj7/ielp24+7DaYgAAAAAAOJp4tX4DadTV1aXOzk5delWrLrysSffcMaiN9+zUunXrDun5bW1t2tb7hGwYSEmb0fnnlnTjh38o3w30P98Zt8WsXbuWZWIBAAAAAJiAyo5p0NHRoXXr1qn3cem6a59S7+PSunXrDjmY6Orqkre3V303r9Xe+7q1/cZP6ez6//ua22IAAAAAADiaMKB0luru7tbatWvV29srx3H0psuPf80DTwEAAAAASAMGlM5xHR0d6unpURRF+u53v6uN9+zUpVe1qmvdabr0qlZtvGenurq6av02AQAAAACYdZjZMQeU21/Wrl2r625/Sm1tbYfVFgMAAAAAwNGENhYAAAAAADAn0MYCAAAAAACOSoQdAAAAAAAgVQg7AAAAAABAqhB2AAAAAACAVCHsAAAAAAAAqULYAQAAAAAAUoWwAwAAAAAApAphBwAAAAAASBXCDgAAAAAAkCqEHQAAAAAAIFW8WvxQY0yPpEFJoaTAWru6Fu8DAAAAAACkT03CjsQF1tpdNfz5AAAAAAAghWhjAQAAAAAAqVKrsMNK+qkxZqMxprNG7wEAAAAAAKRQrdpY3mKtfcUYs0TSXcaYTdbaX1XvkIQgnZLU1tZWi/cIAAAAAADmoJpUdlhrX0mud0j6v5LOm2Sfddba1dba1YsXL57ptwgAAAAAAOaoGQ87jDENxpim8m1Jl0h6cqbfBwAAAAAASCdjrZ3ZH2jMCsXVHFLcRnOjtbbrIM/ZKWnra/yRiySx6gtqiWMQswHHIWYDjkPMBhyHmA04DlFrc/kYbLfWHrT9Y8bDjplmjNlgrV1d6/eBoxfHIGYDjkPMBhyHmA04DjEbcByi1o6GY5ClZwEAAAAAQKoQdgAAAAAAgFQ5GsKOdbV+AzjqcQxiNuA4xGzAcYjZgOMQswHHIWot9cdg6md2AAAAAACAo8vRUNkBAAAAAACOInMi7DDG/LsxZocx5smqbQuMMXcZY7Yk1y3JdmOM+VdjzHPGmMeNMWdXPeeaZP8txphrqrafY4x5InnOvxpjzMx+QswFUxyHnzXGvGKMeSy5XF712KeTY+pZY8ylVdvflWx7zhjzqarty40xDybbbzHGZGbu02EuMMacYIz5uTHmaWPMU8aYv0q2832IGXOA45DvQ8wYY0zOGPOQMea3yXF4XbJ90mPHGJNN7j+XPL6s6rUO6/gEyg5wHF5vjHmx6vvwzGQ7fy9jWhhjXGPMo8aY25P7fBdKkrV21l8kvU3S2ZKerNr2RUmfSm5/StI/Jbcvl3SHJCPpfEkPJtsXSHohuW5Jbrckjz2U7GuS515W68/MZfZdpjgOPyvpbyfZ9zRJv5WUlbRc0vOS3OTyvKQVkjLJPqclz/mepPclt78p6SO1/sxcZtdFUquks5PbTZI2J8ca34dcZuxygOOQ70MuM3ZJvqMak9u+pAeT765Jjx1JH5X0zeT2+yTdktw+7OOTC5fy5QDH4fWSrppkf/5e5jItF0n/S9KNkm5P7vNdaO3cqOyw1v5KUv+Eze+R9N3k9nclvbdq+3obe0DSfGNMq6RLJd1lre231u6RdJekdyWPNVtrH7Dxn/T6qtcCKqY4DqfyHkk3W2sL1toXJT0n6bzk8py19gVrbVHSzZLek6T075R0a/L86mMakCRZa7dZax9Jbg9KekbSceL7EDPoAMfhVPg+xBGXfK8NJXf95GI19bFT/T15q6QLk2PtsI7Paf5YmGMOcBxOhb+XccQZY46X9PuSvp3cP9Dfo0fVd+GcCDumsNRauy25vV3S0uT2cZJeqtrv5WTbgba/PMl24FB9LClF/HeTtA/o8I/DhZL2WmuDCduBSSVlh2cp/lckvg9RExOOQ4nvQ8ygpGz7MUk7FJ8cPq+pj53K8ZY8vk/xsXa4xycwzsTj0Fpb/j7sSr4Pv2yMySbb+HsZ0+Erkv5OUpTcP9Dfo0fVd+FcDjsqkqSTZWVQC9+QdKKkMyVtk/Sl2r4dHA2MMY2Svi/pr621A9WP8X2ImTLJccj3IWaUtTa01p4p6XjF//q4qsZvCUehicehMeZ0SZ9WfDyeq7g15ZM1fItIMWPMuyXtsNZurPV7mY3mctjRl5R2KbnekWx/RdIJVfsdn2w70PbjJ9kOHJS1ti/5Sy6S9C3F/2dLOvzjcLfiUkZvwnZgHGOMr/gEs9tae1uyme9DzKjJjkO+D1Er1tq9kn4u6Y2a+tipHG/J4/MUH2uHe3wCk6o6Dt+VtPtZa21B0n/otX8f8vcyDubNkv7QGNOjuMXknZK+Kr4LJc3tsOMHksqTiq+R9N9V269Oph2fL2lfUt59p6RLjDEtSWntJZLuTB4bMMacn/QrXV31WsABlU8wE38kqbxSyw8kvS+ZeLxc0krFA6YelrQymZCcUTwY6AfJv8b/XNJVyfOrj2lAUqUH8zuSnrHW/kvVQ3wfYsZMdRzyfYiZZIxZbIyZn9yuk3Sx4vkxUx071d+TV0n6WXKsHdbxOf2fDHPJFMfhpqp/gDCKZyVUfx/y9zKOGGvtp621x1trlyn+nvqZtbZDfBfGDjbBdDZcJN2kuCS2pLhP6IOKe4vukbRF0t2SFiT7Gkn/prhv8wlJq6te588VD1t5TtIHqravVvwl9Lykr0kytf7MXGbfZYrj8IbkOHtc8X/4rVX7r02OqWdVNTlb8STuzclja6u2r1D8pfKcpP+SlK31Z+Yyuy6S3qK4ReVxSY8ll8v5PuQyk5cDHId8H3KZsYuk10t6NDnenpT098n2SY8dSbnk/nPJ4yuqXuuwjk8uXMqXAxyHP0u+D5+U9J8aW7GFv5e5TNtF0js0thoL34XWxv+xAAAAAAAApMVcbmMBAAAAAADYD2EHAAAAAABIFcIOAAAAAACQKoQdAAAAAAAgVQg7AAAAAABAqhB2AAAAAACAVCHsAAAAAAAAqULYAQAAAAAAUoWwAwAAAAAApAphBwAAAAAASBXCDgAAAAAAkCqEHQAAAAAAIFUIOwAAAAAAQKoQdgAAAAAAgFQh7AAAAAAAAKlC2AEAAAAAAFKFsAMAAAAAAKQKYQcAAAAAAEgVwg4AAAAAAJAqhB0AAAAAACBVCDsAAAAAAECqEHYAAAAAAIBUIewAAAAAAACpQtgBAAAAAABShbADAAAAAACkCmEHAAAAAABIFcIOAAAAAACQKoQdAAAAAAAgVQg7AAAAAABAqhB2AAAAAACAVCHsAAAAAAAAqULYAQAAAAAAUoWwAwAAAAAApAphBwAAAAAASBXCDgAAAAAAkCqEHQAAAAAAIFUIOwAAAAAAQKoQdgAAAAAAgFQh7AAAAAAAAKlC2AEAAAAAAFKFsAMAAAAAAKQKYQcAAAAAAEgVwg4AAAAAAJAqhB0AAAAAACBVCDsAAAAAAECqEHYAAAAAAIBUIewAAAAAAACpQtgBAAAAAABShbADAAAAAACkCmEHAAAAAABIFcIOAAAAAACQKoQdAAAAAAAgVQg7AAAAAABAqhB2AAAAAACAVCHsAAAAAAAAqULYAQAAAAAAUoWwAwAAAAAApAphBwAAAAAASBXCDgAAAAAAkCqEHQAAAAAAIFUIOwAAAAAAQKoQdgAAAAAAgFQh7AAAAAAAAKlC2AEAAAAAAFKFsAMAAAAAAKQKYQcAAAAAAEgVwg4AAAAAAJAqhB0AAAAAACBVCDsAAAAAAECqEHYAAAAAAIBUIewAAAAAAACpQtgBAAAAAABShbADAAAAAACkCmEHAAAAAABIFcIOAAAAAACQKoQdAAAAAAAgVQg7AAAAAABAqhB2AAAAAACAVCHsAAAAAAAAqULYAQAAAAAAUsWr9Rs4FIsWLbLLli2r9dsAAAAAAAA1tHHjxl3W2sUH229OhB3Lli3Thg0bav02AAAAAABADRljth7KfrSxAAAAAACAVCHsAAAAAAAAqULYAQAAAAAAUoWwAwAAAAAApAphBwAAAAAASBXCDgAAAAAAkCqEHQAAAAAAIFUIOwAAAAAAQKoQdgAAAAAAgFQh7AAAAAAAAKlC2AEAAAAAAFKFsAMAAAAAAKQKYQcAAAAAAEgVwg4AAAAAAJAqhB0AAAAAACBVCDsAAAAAAECqEHYAAAAAAIBUIewAAAAAAACpQtgBAAAAAJgRG7fu0b/9/Dlt3Lqn1m8FKefV+g0AAAAAAGbGxq179MALu3X+ioU6p73lkJ9nrVUhiFQMIxWDqktyvzDhfnw7rNwuBJFe3DWsWx5+SWFk5TpGf3p+m05c3KiM5yjrucp6jrK+o4zrKus78X3PTR5PLr6rjOvId42MMTP6O8DcQtgBAAAAADPkSJxoh5FVvhQqXww1Wgo1Ugwr9/OlQPlilNwPkuv4/tbdw/rpU30KrZVjpLPaWlTnu3EYUQkpwkkDjVJoj+jvIYisrv/N1tf8fGM0eRhSfd+PA5RM1WP78kXd+VSfoiRwef95bVq+qEG+5yjrOvI9o4wbv4bvGmU8Rxk3fo14W9V915Ffvj6M8KXWYUutf/5MIewAAAAAcFSYzpO8KLIqhpEKpUijQahCKVIhCFUIIo2W4uunXt2nf77zWQWhlecY/ckb2rSwMTsWVJRDi1LV7YmBRimuljhcGc+RY6TQxqFFZKWX94zouPl1yniO5mV8ZVynEg5Un+BX35/08arbWc+phAUTH3/61X36wPUPqxRE8j1H37p6tU5tba5UhRQqv7eq+1Xby7/f8vZyxUjleRMeH8iX9nv+QL6kMIp/B0FkdcMDrz1w2e937DrjQ5JJwpHRUqintw0ospJjpLPbWjS/3pdkVM5KjFR1O75hzIRt4/Y1lduVfSu3TeW2jNQ/VNS9W3YptFY5z1H3h89PbeBB2AEAAAAglQpBqKHRQEOFQA/39Ov/u+1JlcJInmt07QUnqXVeLj4ZLo0FEoUg1GjVCfPE8GJ0XIgx/sT7cJQiq+/eH59o+65Rne+qLuMm157qfEd1GVct9Zlku6P6jKecH+9Tn3GVy4zdrvNd5cq3K68ztt11jDZu3aOObz9QCRu+3nHOjJ7ovvHERer+0Pk1r2qo/h38+zXn6rRjmyvVLKXQJtdjoUsprLpOto/bFkQqJs+buH8hjFSqau/Zti+vJGtRZKXe/hGNFLMq181YO1ZBY61kk0fKm23VPrbyPxr3fDvF862VBkdLlcCrFEZ64IXdqQ07TPUvc7ZavXq13bBhQ63fBgAAAIDfwaFUVoSR1VAhDijKQUX59nAh0GBle0lDhTB5rJTsF8bbRwMNF+J2jMNhjJTzXOX8ZIaE7yjnjc2PyCVtEdnKtrE5E7mqbbmqx8ae46hn97D+/r+fUimM5LuOvn3Nap2/YqF8d+bWjThaWhgOpJa/g4lhS/eHZrayotY//0gwxmy01q4+6H6EHQAAAED6/S4neEE41kIwNpCyXAkRjRtCWX6sPOuh/Jye3cO67ZFX4uGUxujs9vnyHEdDhfEhRr4UHtJ7qvNdNeY8NWbHLg1ZT025yW/vGBjVV+7eoiCK5LmOvvTHr9fZ7QsqQUTOd+U5r33o5aEibECtj4Fa//zfFWEHAAAAcJQaLYXaOVjQjsFR7RgoaOPWPbr+Nz0Kongw5RuWL1B9xhubgRBOCCkmBBfRNJwyLG7KavnCBjVkXTXm/CSwcNWY9ZMQY4rbGU8NWVfea6iGmOsneQAOPexgZgcAAAAwRwwVAu0YGNWOwUJ8GRjVzsGC+iZsGxgNpnyNyErP9g2pdV6uMjRxXl0ynNKPV6SoHkRZvbpFZopt5eqI8pKh5dcaG2rp6omX96rjOw9Wyue/+aczOy9Cks5pbyHkAI4ShB0AAADADJiqqsBaq335UhJUJNUYye2+wVHtrNo2Uty/xSPjOlrclNXS5qxOWtyoN524UEuaslrSlNPi5qyWNGW1fd+orr3xkXGrYMx40LBsQc2HUwI4etDGAgAAAEyDMLLaPRyHFve/sFtf/MkmBaGV4xitbm9RMYy0Y6CgnUOFSVfyaMi4WtKc0+KmbCW8WNK8/+15df4hzZmghQNAGtDGAgAAAEyDQhBWQoodAwXtrKrE2Dk0Nidj93BR4STDLsLI6rkdQ1rV2qTzli/QkqZsHGg055IgI77dmD2y/1edFg4ARxPCDgAAABwVDlTZYG283Gl1K8nOZAZG9aDPHYMF7cuX9nttx0gLG7OVsOJ1rfOSACO+3z9c0nU/fEpBGLeRrKtBGwkAHE0IOwAAAJA6UWQ1VIyXMh0cDbShp1/X/fAplUIr1zG65HVLJakSYOwYHNVoaf9WkoznVAKMFYsbdP6KZB5GczITI7m9sCEr1zlwK8kpxzTRRgIAM4SwAwAAANPucOZFFIJQg6NjQcXgaEmDhbHbQ6NBcr+UbEu2J/sMjQYaKgaaajRdEFnd/cwOHd9SpyVNWZ15wvz9A4xkLkZznXdI8zAOBW0kADBzCDsAAABwUJWwYvkCve64eSqGkQqlSIUgVDGIVEgu8e1QhVIU7xOE2rx9UN+690WF0VhVRZ3vVcKKoergohBMOqxzoqznqCnnqznnqTHnqSnnaUlTrnK7KeerKTt2e/tAXv/0k2cVhJEyrqPuD59P8AAAKUbYAQAAgHGstdq2b1TPbBvQM9sG9Jvnduv+F3brSKzhV66qWNyYVWMSRixqzGjZooYkmPCSkMJXU85L9vHHHsv5asx6ynjOYf/sM09ooY0EAI4ShB0AAABHsUIQakvfkJ5Ogo34MjhuCOe8Or8SdBhJb1m5SG8/ebGyvqus6yjrO8ok11nPVcZzlPXGbm/uG9THb3q0Mpyz+0O1qaqgjQQAjh6EHQAAAEeBjVv36J5n+rSwMaMgtJVw4/mdw5XlUet8V6cc06TLz2jVaa1NOrW1Wacc06TNfUPq+PYDKgVxWPHXF518WKHB8kUNuvHD51NVAQCYMcZONblpFlm9erXdsGFDrd8GAADAnJEvhnrilX16tHePfrZphx58sX/c48fOy+nU1uaqS5PaFzZMuaLI4QwYBQBguhhjNlprVx9sPyo7AAAA5jhrrV7YNazHevfq0Zf26NHevdq0fbBSsTG/3q/s6xjp2gtO0t9ccsph/QxaQAAAcwlhBwAAwBxQXVlx0uJGPfbyXj3aGwcbj720tzJjozHr6cwT5uuj7zhRZ7XN1+8dP189u0fGtaG845QlNf40AABML8IOAACAGTCxDSSKrApBpHwp1GgprFzHl0j5YqjRIFS+GGrzjiH9x30vKoisjDQ2LNRIpyxt0uVnHKOzTmjRmW3zdeLixv1aURY2ZtX9IWZmAACOHoQdAAAAR9hoKdTzO4f03I4hbekb0kMv7tbDPXsqIYXvGpXC1zY3zUp668pF+sjbT9QZx89TU84/6HMk2lAAAEcXwg4AAIDXaKQY6Pkdw9qyY1Cb+4b03I5BbdkxpN7+EZVnwLuO0bw6b9zSrWe1zdcbVyxSXcZVznPia3/sUue7yvlO5fazfYP6WPcjKoWvbTUUAACONoQdAAAAB3H/87v0oye2a16dpyC02twXhxov78lX9vFdo+WLGnT6sfP0R2cdp5VLmrRyaaOWLWzQE6/sGzcz45PvOvWwwooTFtSrm6VbAQA4ZCw9CwAAUGW0FOrpbQN68pV9euLlfXroxX5t7R+pPO45RictadTKpU1auaRRJy9t1ElLmtS+sF6+60z5uizdCgDA746lZwEAAA6iOth4/OV9evKVfdqyY6iyZOvChoya6/zKUFDHSH910Ur9z3euPOyfxcwMAABmDmEHAABIvY1b9+i+LTu1pDmnUhhNGWycftw8XXTqUp1+3Dy9/vh5ap2X0yO9e8e1oLzpxEU1/jQAAOBgCDsAAECqlMJIL+4a1ua+eGjoQy/u1oMv9Ku6cXeqYMMYs9/rndPewrKtAADMMYQdAABgTgrCSD27R7QlCTU27xjUlr5BvbhruLKsqzHSvDq/EnQ4Rup82wp98l2rJg02pkILCgAAcwthBwAAmNWiyOqOJ7fprqf7VJ9xNVQItblvUC/sHFYxjCTFocYJLfU6eWmjLjx1qU5e2qiVS5p00pJGPfXqwLg2lItPO+awgg4AADD3EHYAAIBZ4/9n787D66zr/P8/P+ecpEnapFuaNF2StnRjKRRaoFJRFsVlHFRwQWKdUbR+HR1nnPnqjOJvdIbp6Iwz6ujXGQE3KsEdFRVFZd8KtKVQoKV7Wto06ZK2afZzzuf3R9rYQltampOkyfNxXecyue/73Pf75gKBF5/P+93cnmb19iZWb9/Hqrp9rKpr4tmte2lLZ7uvKR2Wz6zxw3nt9DFMKy9mRnkxp5UNpSj/yP9Y4zYUSZIGH8MOSZKUcy8euxpjZOueVlbVNR0INbo+tbtbiAf2nBQXpDh9bAlnjCvhyc17iEAywPvnT+ajl049oee7DUWSpMHFsEOSJOXUYxt2seA7j9OZzpJIBKaXDeOFPa00taW7r5k0uojTK0q46rwJnF5RwsyxxUwYWUgIgWW1jYdtQ5k3ZXQfvo0kSToVGHZIkqQek81GNu5q5qkte7o+L+xl5da93eNdM9nI3tZOrjxnHKdXlHQHG0OHHP0fSdyGIkmSTpRhhyRJekVijGzf18ZTW/by1At7ePqFPTy9ZS9N7V0rNoryk5w1fjhvObuCO1fWkclG8lMJvn7teSccWLgNRZIknQjDDkmS9LKW1TZy3/MNjCjKo7Ujw4ote3n6hT00NLUDkEoETq8o4crZ4zhn4gjOmTCCqWXDSCa6pp6871WTXJkhSZJ6jWGHJEnqls5k2bqnlQ07m9l04PPUC3t5aktXg9CDpowZyqunlnL2hOGcM3EEp1eUUJCXPOp9XZkhSZJ6k2GHJEmDwKHTUGZPHMG2Pa1s2tUVZmzc2dL98+bdLaSzf4o1hg1JMXRIsjvoSAT42GVT+bvXz+ibF5EkSToOhh2SJA0wLR1pGva1U7+vjYamdpbV7ub7SzaTyUYCkEwG0pk/BRqFeUmqRhcxY2wxbzhrLJNLhzK5dCiTRg+ldFg+yzfvOWwaymunl/Xdy0mSJB0Hww5Jkvq5g6syzp04gooRhTTsa6O+qZ2GA2FG/b62rnCjqY0d+9q7G4QeSQTOnTiCt587gUmlRUwpHUZ5yRBCCEf9jtNQJEnSqcawQ5Kkfqp+XxvffWgjNz24gWw88jVDUgnKSoZQXlzAzLHFvGbamO7fy0qGUF5SQN2eVj5867LulRn/+KbTnYYiSZIGNMMOSZL6iRgjz27bx92rGrh7dT1Pv7D3sPMBeNOssVx7QRXlJUMoKy6gpDB1zFUZANPLi12ZIUmSBhXDDkmS+lBbZ4ZH1+/ij6vquWd1A3V72wiha6vJJ98wg3HDC/n0z5/uXpVx3aunvKKwwpUZkiRpMDHskCSpl+1oaufe1Q38cVU9D63bSUtHhqL8JBdPK+UTr5/OZTPLKB02pPv6ytFFrsqQJEk6AYYdkiTl2LJNu/nV03V0pDM8V9fEUy/sIUYYN7yAq8+bwOWnlzFvymgK8pJH/L6rMiRJkk6MYYckST2gPZ3hhcZWNu9qoXZXM5t3t7J5dzOrtzfxQmNr93VTxwzlE6+bzuWnl3FGRcnL9tuQJEnSictZ2BFCmAgsBsrpmnR3U4zxv0MInwc+BOw4cOlnYox35qoOSZJOVtfo152cNW44I4ryqd3dwpbdB0ONFjbvaqFuXxvxkIkphXlJqkYXUZCXJND1N8JkgLefN4GPXjq1r15FkiRpUMjlyo408PcxxuUhhGJgWdgHzCkAACAASURBVAjhDwfOfSXG+J85fLYkSa/Y/vY0z2/fx3N1TTzw/A7+uLr+sCDjoNJhQ6gaXcS8KaOZOKqIqtFdn8pRQykdlk8IgWW1jVR/a0l3g9F5U0b3/gtJkiQNMjkLO2KMdUDdgZ+bQgirgPG5ep4kSScqxsi2vW2s2raP5+r2serAZ9Oulu5rhqQS3UFHAN46exz/55LTqBxVRFH+y/9tdE7VSMe+SpIk9bJe6dkRQpgEnAs8BswHPhZCeB+wlK7VH429UYckaXBaVtvIw+t2UDG8EOCQYKOJva2d3ddNGl3E6RUlXHXeBE6vKOGMcSVs39NK9bcf616ZseBVk5g5tuSEnm+DUUmSpN4V4pHW5fbkA0IYBtwPLIox3h5CKAd20rV9+QagIsb4gSN8byGwEKCysnJObW1tTuuUJA0c+9o6eW7bPp7dto8H1jTwwJqdHPp3u8K8JDPGFncHGmdUFDNjbAnDhhz5vwF09exwZYYkSVJfCyEsizHOfdnrchl2hBDygF8Dd8UYv3yE85OAX8cYzzrWfebOnRuXLl2akxolSae2hqY2nt2270C4sZdnt+2j9pBtKEPzkzR3ZABIBPjA/Ml8+s2nk0w4BUWSJOlUc7xhRy6nsQTg28CqQ4OOEELFgX4eAG8HnslVDZKkgeHgNJTJo4cRAjy7bR/PHAg2djS1d19XNbqIM8eV8K65EzljXAlnjithy+7WwxqEvmlWhUGHJEnSAJfLnh3zgQXAyhDCigPHPgO8J4Qwm65tLJuAD+ewBknSKWp3cwdPbm7kN0/X8YsVW8keshAxmQhMKxvGxdNKOXPccM4c17UdpaQg7yX3KSsusEGoJEnSIJPLaSwP0dW4/sXuzNUzJUmnpmw2srZhP8s3N7KstpHltY1s2NkMdG09yR4yDeW986q4/s9OpyAvedz3t0GoJEnS4NIr01gkSTpUU1snK7bs6Qo2Nu/hyc2NNLWlARg1NJ/zKkfyjrkTmFM5kkw28oFbnujehvK2c8efUNAhSZKkwcewQ5KUMzFGHl6/i3tXN1CUn2RXcwfLaxt5vr6JGCEEmFFezJ+fM47zKrtWX0waXURX26c/cRuKJEmSToRhhyTpmJbVNvLo+p3MGj+cqtFD2dPayZ6WDva2drKn5cCntev3vS2dh51vbO4gc0ivjaK8JHMmjeSNZ41lTtVIzpk44oh9Nl7MbSiSJEk6EYYdkqSXiDHy7LZ93Lqklh8t3cLLTSkfNiTF8MI8RhR1fWaOLWF4UR7rG/bz+MbdRLp6b/zVpafxscum9co7SJIkafAy7JAkAbC/Pc1Da3dwz+oG7nt+Bw2HjHSFruagb5o1lnfMmcDwwnxGFOUxvLDrk5dMHPGey2obDxv7+qrTSnvhTSRJkjTYGXZI0iC2Ycd+7lndwL3PN/D4xt10ZiLFBSleM30Ml80oY+TQPP6qZnl3WHHdq6ec0HaSOVUj7bchSZKkXmfYIUmDSHs6w+Mbd3cFHKsb2LSrBYBpZcP4wPzJXDqzjDlVIw9bqXGyYYX9NiRJktTbDDskaQBr6Uhz1zP1/O7ZOhqbO3hm2z5aOjLkpxJcdNpoPvDqyVw6o4yJo4qOeg/DCkmSJJ1qDDsk6RSWzUYamtrZvLuF2l3NbNndwubuTys79x/ed+OKM8p59/kTuei0Ugrzk31UtSRJkpRbhh2S1M89un4ndz1bT3nJEPKSicMCjS2NrXSks93XJgJUDC+kclQRl88sY9veVh5au5MIJAOcM3EEl59e3ncvI0mSJPUCww5J6mey2chzdft4cO1O7ly5jZVb9x12vnhIisrRRUwvL+Z1p5czcVQRlQc+40YUkp/6U7+NZbWNPLFpd3eD0XlTRvf260iSJEm9zrBDkvqBur2tPLh2Jw+u3ckj63ayq7kDgNJh+QQg0rVq46OXTuXvXj+dEMJx3ddpKJIkSRqMDDskqQ/sb0/z2IZdBwKOHazf0QzAmOIhvGb6GC6eVsqrp5aypbGV6m8t6V6ZccmMsuMOOg6ywagkSZIGG8MOScqxZbWNPLp+J6OHDWFHUzsPrd3J8s2NpLORgrwEF0wezXsuqOTV00qZUV58WJhRVlLgygxJkiTpBBl2SFKONDZ38J2HN/KNe9eRjX86ftb4Ej70milcPLWU86pGUpB37KkorsyQJEmSToxhhyT1oNpdzfzhuXr+8Fw9S2sbyRySciQC/NUlU/m/b5jRhxVKkiRJA59hhySdhGw28qOlW/jFk1vZuqeVFxpbAZg5tpi/uuQ0Jows5HN3PNvdc+PSmWV9XLEkSZI08Bl2SNIJauvM8Mj6nfzhuXp++8x29rR0Al0rN94/fxLvv2gylaOLuq+fWlZszw1JkiSpFxl2SNLLWFbbyL2rG4hE1jXs54E1O2ntzDA0P8mEkUXsbekkAgEoHTbksKAD7LkhSZIk9TbDDkmD2rLaxpesutjd3MHa+ibWNOznkXU7+d2z24kHWm+MKsrn6jnjef0ZY5k3ZRTPbN132GjYeVNG9+HbSJIkSQLDDkmD2OMbd/Hebz9OZzpLIhE4fWwx2/e1sXN/R/c1+clEd9CRCHDdxZP46KXTus/PqRrpaFhJkiSpnzHskDSgda/cmDyKsSMKWbF5D09ubmTFlj08uWVP97SUTDays7mDS2eUMb28mGnlw5heXkzdnlaqv/3YISs3Sl/yDLepSJIkSf2LYYekAeuJTbu59uYldGbiYcfzUwnOGlfCm84ay13PbieTjeSnEnzj2vNeElqMG1Hoyg1JkiTpFGPYIWnA2d+e5idLt/DVP649LOh43ellfPzyacwcW0J+KgEcuWfHi7lyQ5IkSTq1GHZIGjC27Wnllkc2cdvjm2lqSzNjbDEtHWmy2UheKsFHLpnK2RNGHPYdgwxJkiRp4DHskHRKW7ZpN79YsY2NO5t5dMMuYoy8aVYF1716MudVjjyulRuSJEmSBhbDDkn92oNrd3DHU9soLymgMC/JjqZ26ve10dDUzubdzexo+tPklD8/u4JPvXEmE0cVdR9z5YYkSZI0+Bh2SOqXNuzYz3/+/nnuXLn9sOPFBSnKiodQVlzAmGFD2NnUQQSSAWZWlBwWdEiSJEkanAw7JPUb2WzkwXU7+e7DG7nv+R0kwp/OJQL8zeXT+JvXTe8+tqy2kepvLTlkLOzoPqhakiRJUn9j2CGpTy2rbeTBNTvY35HmntUNbNjRTOmwIfzt66Zx1vjhfOy25d1hxqunjTnsu3OqRjoWVpIkSdJLGHZI6hOZbOTWJbX8y6+fI5PtGg87dcxQvvru2bx5VkX3aNiXCzPsySFJkiTpxQw7JPWaTDaydNNufrOyjjtXbmfn/vbuc4kAbz9vAm87d/xh3zHMkCRJknSiDDsk5dTSTbu5fflW9rR2sHRTIw1N7RTkJbhsZhmnjy3hG/euozNjzw1JkiRJPcewQ1KPizHy1At7+faDG/jV03Xdxy+cPJLPvuUMLp9ZxtAhXf/3c9HUUntuSJIkSepRhh2STsqy2sausGLyKArzU/zq6W38+ultbNndetg0lWSA10wv48pzxh32fbepSJIkSepphh2SXrFltY1ce/MSOtJZACKQTATmTy3lry+bxtjiAhbeutTRsJIkSZJ6lWGHpFckk4187e61tB8IOgCuOKOcL1w1i9HDhnQfczSsJEmSpN5m2CHphK1raOL//uRpVmzZ071VJT+V4MOvPe2woAPcpiJJkiSp9xl2SDpu6UyWmx/cyFf+uIah+Um+9p5zGT+8gCUbd7tyQ5IkSVK/Ydgh6bisqW/ikz95iqde2MsbzxzLDW87izHFXas45kwa1cfVSZIkSdKfGHZIOqbHN+7i6/es49H1uygpzOP/XXsufzarghDCy39ZkiRJkvqAYYekI1rXsJ9vP7iBHz6xhQgkAvznO8/mspnlfV2aJEmSJB2TYYekbmvqm7hzZR13rqxjTf3+w84FYFVdk2GHJEmSpH7PsEMa5O5YsZUfPL6ZzY2tbG1sJQQ4f9Io/vnKMxk/opCP/WA5nekseakE86aM7utyJUmSJOllGXZIg1RnJsunb3+any7bCnRtU/nQxZP50MVTKCsp6L6u5oPzWLJhl9NWJEmSJJ0yDDukQWhdw34+8aMVrNy6t/tYAEYU5R8WdADMqRppyCFJkiTplJLo6wIk9Z4YI7c8sok/+9qDvNDYwievmE5BXoJkwG0qkiRJkgYMV3ZIg0T9vjY++dOneWDNDl47fQxfesfZlJUUMO+0UrepSJIkSRpQDDukAW5ZbSO3PLKJe1bXk85GbnjbWbz3wkpCCIDbVCRJkiQNPIYd0gB217Pb+city8hGCAH++5rZXHnO+L4uS5IkSZJyyrBDGoBeaGzhG/eu50dPbCYbu44lgC27W/u0LkmSJEnqDYYd0gCyZXcL/3PfOn6y9AUSIXDFGWO59/kG0pmsDUglSZIkDRqGHVI/tqy2kT88t50LJo/iNdPGkEq+dIDSstpG7npmO+t37Of+NTtIhED1hZX8n0tOo2J4IctqG21AKkmSJGlQMeyQ+qlltY1cc9OjdGYi37x/AwDFQ1KMGJrHiMJ8RhTlESM8sn5n91aVN88ayz+95UzGDi/ovo8NSCVJkiQNNoYdUj/1yPqddGa6UowAXHRaKdPKh7G3tZPGlg72tHSyaVdzd9CRDHDmuOGHBR2SJEmSNBgZdkj9VHNbGoBEgPxUgr+7YvpLVmgsq22k+ltL6Ezbk0OSJEmSDjLskPrQ0fpptHSk+dmTW5k5tpg/P6eCeVNKj7gVZU7VSGo+OM+eHJIkSZJ0CMMOqY8sq23k2puX0JHOMiSVoOZD87rDim89uJEdTe18873nMadq1DHvY08OSZIkSTrcS0c7SOoVSzbspD2dJQJt6Sw/XroFgJ3727nx/vW84czylw06JEmSJEkv5coOqY+0dGSAruajAD96YgutHWk27WqhtTPDp944s++KkyRJkqRTmGGH1Ae27mll8SO1nFFRzJtnVXBe5UhueXQTdzxVB0AyEdjT0tm3RUqSJEnSKcqwQ+pl2Wzkkz95imyM3LhgLhNHFQHw5JY9/P65emIEYmTJhl324pAkSZKkV8CeHVIvu/WxWh5Zv4vPvuWM7qADYN6U0QxJJUgGHCMrSZIkSSfBlR1SL9q4s5l/u3MVl8wYwzXnTzzsnGNkJUmSJKlnGHZIvSSTjfz9j1cwJJXk368+mxDCS65xjKwkSZIknTy3sUg9aFltI9+4dx3Lahtfcu6mBzawfPMe/uWtZ1JeUtAH1UmSJEnS4ODKDqmHLKtt5Nqbl9CRzjIklaDmQ/O6V2ms3r6Pr/xhDW+eNZYrzxnXx5VKkiRJ0sDmyg6phzyyfift6SwRaEtn+eWKrQB0pLP83Y+eoqQwxQ1vPeuI21ckSZIkST3HlR1SD9nb2glAACJw22ObSSYCq+v28VzdPm5+31xGDxvSpzVKkiRJ0mBg2CH1gF372/nxE1s4e/xw3nBWOWeMG8437lnHdx/eBEAyBEYNze/bIiVJkiRpkDDskHrAf/zueVo6Mnz53ecwtawYgOe27WVZbSMRgMiSDbuctCJJkiRJvcCeHdIJeHjdTv7tzlWHTVt5cnMjP1q6hetePbk76ACYN6WUIXkJkgHyUgnmTRndFyVLkiRJ0qDjyg7pOLSnM/z7b1fznQPbUm5+YAPvubCS+aeN5l9+/Rwji/L468unHfadOVUjqfngPJZs2MW8KaNd1SFJkiRJvcSwQzqGpZt2892HN/HEpl00NHV0Hz/YgPS2xzYDkJcMPL+96SWBxpyqkYYckiRJktTL3MYiHcXjG3fxrhsf5Tcr69jR1MH751dRcGBbSkFegreeM46DQ2Sz2a6eHJIkSZKkvufKDukIstnI5+94lmxXd1ESAUqHFRy2LQXgrue205nO2pNDkiRJkvoRww7pRWKMfO6OZ3murolUIhBj7A4zXrwtxZ4ckiRJktT/GHZIh1hW28iX7lrNkg27+fBrpnDFGeUs2bj7qGGGPTkkSZIkqf8x7JAOWFbbyLtvfJR0NpJMBK44o5w5k0YxZ9Kovi5NkiRJknQCbFAqHXDj/etJH2zSESNLNu7u24IkSZIkSa+IKzsk4BdPbuX3z9WTCBDAhqOSJEmSdAoz7NCgtqy2kVsf3cQvn9rGq6aM5uOXT2X55j02HJUkSZKkU5hhhwatZbWNvOemJXRksoQAH71sKq86rZRXnVba16VJkiRJkk6CPTs0aD2wZgcdmSzQ9RfCU1v29G1BkiRJkqQeYdihQat2VwsAiWCPDkmSJEkaSNzGokFp485mfrNyG5fOGMPcSaPs0SFJkiRJA0jOwo4QwkRgMVAOROCmGON/hxBGAT8CJgGbgHfFGBtzVYd0JDf8+jmGpJL8+zvOpqy4oK/LkSRJkiT1oFxuY0kDfx9jPAOYB3w0hHAG8I/A3THGacDdB36Xes29qxu4Z3UDf3P5NIMOSZIkSRqAchZ2xBjrYozLD/zcBKwCxgNvBW45cNktwNtyVYP0Yo9t2MXf/XgF40YU8BcXTerrciRJkiRJOdArDUpDCJOAc4HHgPIYY92BU9vp2uYi5dwTm3ZT/a3HaGzpZGdTOyu37u3rkiRJkiRJOZDzBqUhhGHAz4C/jTHuCyF0n4sxxhBCPMr3FgILASorK3NdpgaoZbWNLNmwi6K8JP9z/3rS2a4/3TLZyJINu2xKKkmSJEkDUE7DjhBCHl1BR02M8fYDh+tDCBUxxroQQgXQcKTvxhhvAm4CmDt37hEDEelYltU2cu3NS2hPZwEYWZQiLxnIZqOjZiVJkiRpAMvlNJYAfBtYFWP88iGn7gD+Avjigf/9Za5q0OD20Nod3UFHAN4/fzLzp45hyYZdjpqVJEmSpAEslys75gMLgJUhhBUHjn2GrpDjxyGE64Ba4F05rEGDWENTOwCJAPmpBPOnjmFO1UhDDkmSJEka4HIWdsQYH6LrP6gfyeW5eq4EsLu5gztWbGNu1UgunVnmSg5JkiRJGkRy3qBU6gtfv2ctzR1pvnj1LKaWFfd1OZIkSZKkXtQro2el3lS7q5lbl9Ty7vMrDTokSZIkaRAy7NCA86W7nieVSPCJ103r61IkSZIkSX3AsEMDyo+e2Myvn67jLWePpaykoK/LkSRJkiT1AcMODRhLN+3mH29fCcCvnqpjWW1jH1ckSZIkSeoLhh0aML5x7zpi7Pq5M5NlyYZdfVuQJEmSJKlPOI1FA8Ka+iYeXLeTROiad5yXSjBvyui+LkuSJEmS1AcMO3TK60hn+dsfrmB4QR7/8Y6zWb29iXlTRjOnamRflyZJkiRJ6gOGHTrl/ffda3iubh83LpjD5aeXc/np5X1dkiRJkiSpD9mzQ6e02x6r5X/uXc+lM8bwhjPH9nU5kiRJkqR+wLBDp6zHN+7i+p8/QwQeXb/L6SuSJEmSJMCwQ6ewbz24kQPDV5y+IkmSJEnqZs8OnZLaOjM8sWk3IXQldk5fkSRJkiQdZNihU9Itj2yisaWTG956Jvva0k5fkSRJkiR1M+zQKWdvayf/c996Xjt9DAteNamvy5EkSZIk9TP27NAp5+YHNrC3tZNPvmFGX5ciSZIkSeqHDDt0Srl7VT03PrCe+aeN5qzxw/u6HEmSJElSP2TYoVPGstpGFn5/GZ2ZyNLaRkfNSpIkSZKOyLBDp4zfrqwjk+0aNpt21KwkSZIk6SgMO3TKWLFlDwDJ4KhZSZIkSdLROY1Fp4T7nm9gaW0j73tVFeUlBY6alSRJkiQdlWGH+r3OTJYbfv0ck0uH8tk/O4P8lAuSJEmSJElH5781qt/7/qO1rN/RzGf/7HSDDkmSJEnSy/LfHNXn1uy+hSe2X8Wa3be85Ny9q+v54u9WM23SJta2/5wVDSv6oEJJkiRJ0qnEsEN9ZkXDCr6y9F1MLHk/55b9nMqS9/OdlR/qDjSW1TbywcXLiMMepq7gm3zjqW/wod9/yMBDkiRJknRMhh3qfXV1LP3Lc/nL376PEB4gLxFJJSCViDR1/Ko70PjDc9tJlCxhyNg7ur/ame1kaf3SPixekiRJktTf2aBUvW7F19/HP7y6jQwpltYPpTMbCEQi0NiepD3Tzk+f/yn37XyGgor1pFsqSRZsIxGy5CXymFs+t69fQZIkSZLUjxl2KPfq6uCaa2DJElZMT/GXfz+ZTEhBjKxsKOQ/l5Tz6VdtJwT4hwvqWLengF9u+GXXd2OCqyd9mFnjR9IUnmdu+Vxml83u2/eRJEmSJPVrhh3KuRVf+SRLS1ZR/PoRfOvKkWRCALr2UM1raee6VIpU6DqQIHLNxDye2tH13USASRMaePesK4GL++oVJEmSJEmnEMMO5UZdHYwfz73nDOVvP15F9oyyruMhQIwkIuRnIx/ZMoNxV78dMh+ECIksTC96DyH+kkiGvFS+21YkSZIkSSfEsEO58YWPs/SdxXzmsvFkA90hB3QFGvOe289HOuYy+4UslF8H9UDLz6DoahLF72J/7Rgum93Ex171BretSJIkSZJOiGGHelZhIczKsOJtJXzwvIldW1ZiJMSuBqSJGMmPsSvo+NpP//S98uuA6wC49Y5nSXVM5ouXX0bpsCF98hqSJEmSpFOXYYd6Rl0dXPNu+O5CWPU9vj+85E+9OSLMa2njdS3N7A1J5i4pYnY2e8TbtHSk+dmyF3jTrLEGHZIkSZKkV8SwQz3j3z8M5yyH1U9xZ2cxdxcVEmIkAeSlIx+5N8Hsd70XHq6FbBpuv/2It/na3Wtpak9zwaRRvVu/JEmSJGnAMOzQySkshEmd8K4i7i0cym0lw3isqJAI5GUib1u2lyt/v5vZZ78R3vUleNfRb7Vs025uvH8DADf85jlmVpQwp2pk77yHJEmSJGnASPR1ATrFrV8PryvgjmFFfHzsGJYMLSIChEA2BMaNOp3ZD2046kqOQ/3yqW1d3wU601mWbNiVy8olSZIkSQOUYYdOzu4lMDrJT4qLDzscspG8dGRuRzmMHXtct9q5vx2AZIC8VIJ5U0b3eLmSJEmSpIHPbSx65dr2wu/+kUxLMbUMIRG7Qo5kJvLWbaO4smUSs9c1H9etOtJZlmzYzUVTRjN/Winzpox2C4skSZIk6RUx7NCJq6uDq66C0+ugai/L3/pvNK77Hz66oYLU/IuZe/caZq9thtu/f9y3vO/5BnY3d/DB10zmspnlOSxekiRJkjTQGXboxH3h46yYuooHzy7m4sYp3Pr4D0mVZDm3rZQLr/j/4IoTv+VPl71A6bAhvGbamJ6vV5IkSZI0qBh26PgVFkJpJysWjuC6cyfQkQjcNLwdQjsQ+NhpT3Hz1CJmb43Q2nrct93d3MG9zzfwlxdNIpW0jYwkSZIk6eT4b5Y6fhs2wJvPZunQAjrCgWMBCAFCoDMVWHrNfNi48YRue8eKrXRmIlfPmdDjJUuSJEmSBh/DDh2/igooLOO8trau32PXxJW8zizJzIlPXznoZ8u3ctb4EmaOLclB0ZIkSZKkwcZtLDp+mTTkPwPpBITAG+sLqF68HkaNYuln/6KrMelxTl856PntTazcupfP/fkZOSpakiRJkjTYGHbo5dXVwTXXwD9cBkVN/DFdSV7I4/OfuI+hnxoKwGx4RY1J/+e+dSQCTBpd1KMlS5IkSZIGL7ex6OV94eNQ9Dg89hVWhEp+MTbNmXsLGJo39KRu+8Sm3fxyxTayET5Ss5xltY09VLAkSZIkaTAz7NDRFRbCxBQU3wUX5LFiSIrrJmRpGprimaK9rJha1HXNK/Tz5Vu7f+5MZ1myYVdPVC1JkiRJGuQMO3R0GzbAW+dAEgiBpQUFdCa7xrBkwyubvHKo1s4MAMkAeakE86aM7omqJUmSJEmD3Mv27AghPB5jvODAz++MMf4k92WpX6iogMREYBXEyNzmNuIoIEbyX+HklUOtqtvHWeNKeNOsCuZNGc2cqpE9VrokSZIkafA66sqOEMIjIYQbgbIQwswQQhL4dO+Vpn6hrh1CAkafDY8PgxC4YsSF3Lz+PGava3nFt926p5XV25t46+zxfPTSqQYdkiRJkqQec6yVHfOBWcCbgU8B04ApIYQvAvfHGH/bC/Wpr33mGvjlA/Daf+KuFz5DXsjy+Td/leK3FZ/Ube9Z3QDApTPLeqJKSZIkSZK6Hatnx3eAOcC+GOMHYowXA7XAbw8c12Dw7O0woorlNd/j51NaOHtvIcX5Jxd0ANy7uoGq0UWcNubkJrpIkiRJkvRixwo7vnDg/NgQwsMhhHuAcmAUcGNvFKc+1rIbnv8DK5Zs5kPTn6K5MMnThXtOegpLa0eGh9ft5NIZZYQQerBgSZIkSZKOEXbEGNfEGL8NbI4xzgfeAuwFTgO+1Uv1qS+t+hUkA0tnzKLj4BSWxMlPYXl0w07a01kucwuLJEmSJCkHjmf07F8DxBhbgNUxxv+MMb41t2WpX3j2dhg1hbktEyEAMZLXA1NY7lndQFF+kgunjOq5WiVJkiRJOuBlw44Y40OH/GzIMVg074SND8CZV5G3cw+EwOtGXHDSU1hijNyzqoFXTy1lSCrZgwVLkiRJktTlWNNYCCHMABYCMw8cWgXcHGN8PteFqQ/V1cHfvQ5mZKH8Yu4ecQcJEvzTG/+LkW87uRGxz9c3sW1vGx+/fFoPFStJkiRJ0uGOurIjhPAq4D6gCbgJuBloBu4NIczrlerUN77wcRhTC/tgxU1f52eTm5jRXMjIgpMLOmpqarj6Lz4BwH+8983U1NT0RLWSJEmSJB3mWCs7/gl4T4zxvkOO/eLAVJbPAW/KZWHqA4WFUNoJ7ytixdACvldSwn1Fz5NJ5rEv3cSKqUXM3hqhtfWEb11TU8PChQs5/d1fZGjTLl7fnGHhwoUAVFdX9/SbSJIkSZIGsWP17DjtRUEHADHGCCJGygAAIABJREFU+4EpOatIfWfDBpicYkVRPh8YN5a7i4eSOTiFJZzcFJarFyzgt2XT2TlmMjuGjeRn1yzigRGVXL1gQU++gSRJkiRJxww7mo5xrrmnC1E/UFEBM17H0sICOg8ei5GQjeSf5BSWKTHy9RnzIQRiSNCZSPLNyllMjrHHypckSZIkCY69jWViCOFrRzgegPE5qkd9bVc+o1sijA6EbNeo2bduG8WVLZOYve6VZ1z5VVUk2rq+n8hmyMtmKNu8kiFVVT1VuSRJkiRJwLHDjk8e49zSni5E/cRX/p2n7riC/Cy8v+LtvPreTcxe2wy3f/+kbrto0SLu+t4DJDvaSD36I67avJILtq/hjMWLe6hwSZIkSZK6HDXsiDHe0puFqH949KaP8cupRVzUVMTH3n8DvLFn7ltdXc13Ngwls3krGx/7KbdVVnLm4sU2J5UkSZIk9bhjrezQYFJYyIrxgb/6zBTSiQRLivaf1PSVI2lKDOPq17+a/7o52yP3kyRJkiTpSI7VoFQnoaamhkmTJpFIJJg0aRI1NTV9XdKxbdjA0mvmkz7wZ0QmcXLTV15sb0snDU3tTCsf1iP3kyRJkiTpaAw7cqCmpoaFCxdS11lI8YXvoK6zkIULF/bvwKOiggpKIARC7GpMejLTV15s3Y6u4T7TDTskSZIkSTl21G0sIYSvA0edCxpj/HhOKhoArr/+etIjKhn7nn+DRJKYSVP/w+u5/vrr+2+Piro6VjcsJzF1KB8YMpPXrio8qekrL7a2fj8A08qKe+yekiRJkiQdybF6djhx5RXavHkzxRe+A5J5hBAgRgoqZ7H5sZ/2dWlHtfSrf8+Pzy9kdls7f3PFZ+E9s3v0/msb9lOQl2D8iMIeva8kSZIkSS/mNJYcqKyspG7zSiASYyRmM7RtXkllZWVfl/ZSBxqTLvzHyXTmJVmZTbDikouYvaXnGpNCV9gxtWwYiUTosXtKkiRJknQkR+3ZEUIoDSF8LoTw8RDCsBDC/4YQngkh/DKEMLU3izzVLFq0iNSezWT27aBzRy31P7ye1J7NLFq0qK9Le6kDjUk7U10hRBZY+q6ea0x60Lr6JrewSJIkSZJ6xbEalN4GDAGmAY8DG4B3AL8GvpX70k5d1dXV3HTTTaRimvSe7VTktXLTTTf1z34dFRWMTAz7U2PSbM82JgVoautk2942ppbZnFSSJEmSlHvH6tlRHmP8TAghALUxxi8dOL46hPDRXqjtlFZdXc0Pdj9I2bxz+c7t/9rX5RzVioYV3DpmM0PS8IGmvVy0Yyaz17X06DPWNRxsTmrYIUmSJEnKvWOFHRmAGGMMIex80bls7koaOFKJBJ2Z/vuHakXDCq77/XV0lHSQJHBRaxuzP/VdGD6hR5+z9mDYUe42FkmSJElS7h0r7JgSQrgDCIf8zIHfJ+e8sgEgP9m/w46l9UvpzHQCEIksHT6G2SXje/w56xr2k59KUDmqqMfvLUmSJEnSix0r7HjrIT//54vOvfh3HUEqGehI99+wY275XBIhQSZmyI8wd8R0CD0/LWVtfROnjRlG0kkskiRJkqRecKzRs/f3ZiEDUSqZoLkj09dlHNXsstnMLZ/L8zuf4eub1zN71hU5ec7ahv2cVzkyJ/eWJEmSJOnFjjWNRScpLxFI9+NtLADtrbuYvn83s9s74MnFsOXxHr1/S0eaFxpbbU4qSZIkSeo1hh05lEoG0pnY12UcU0NzHeWd6a5fshnY9GCP3n99QzMA08oNOyRJkiRJvcOwI4dSyQSd2f67siMbszRk2ig7uPokmQ+TLu7RZ6ypbwJgapmTWCRJkiRJveOoYUcIIRlC+HAI4YYQwvwXnfts7ks79XVtY+m/Kzt2t+0mHTOUF4+HYeXwF3fAxAt69BlrG/aTlwxUjXYSiyRJkiSpdxxrZceNwGuBXcDXQghfPuTcVTmtaoBIJRP9umdHfUs9AOWdHTB+To8HHTU1NXyn5nbKtm/ioklV1NTU9Oj9JUmSJEk6kmOFHRfEGK+NMX4VuBAYFkK4PYQwBHCG6HHISwY6s/13ZUd984Gwo2kHDJ9w2LmamhrOnzCB+0Pg/IkTTzioqKmpYeHCheSXjGNozHJFdhgLFy408JAkSZIk5dyxwo78gz/EGNMxxoXACuAewG6TxyGV6N8rOxpaGgAob90Lwyd2Hz8YVFwRi1k5752vKKi4esEC/jh6CvuLS1k7poqfXbOIB0ZUcvWCBT3+HpIkSZIkHepYYcfSEMIbDz0QY/wX4LvApFwWNVD092ks9S31pEKSUZksjPhT2HH1ggU8MKKSn12ziC9f/N7uoOKq9773uFd6TImRr86YDyEQQ4LORJJvVs5icuy/fzwkSZIkSQND6mgnYozvPcrxbwHfyllFA0h+MkFHP17ZUd9cz5i84q7Ea3hl9/EpMfKWylm0p/KIIUFbSPDZC6/m/KW/pGz86VyxeSULFy4EoLq6+oj3zq+qgs42ABLZDHnZDGWbVzKkqirXryVJkiRJGuSOGnYcSQhhcYzxfcd57XeAtwANMcazDhz7PPAhYMeByz4TY7zzRGo4laSSgXQ/7tnR0NJAWbKg65dDVnbkV1URWvYSCRAjIUZWTX8Vq6bNIxAZku7kgR9ez5kLFsBRwo5Fixbxm+8/Sl57C4klP+GqzSu5YPsazli8uDdeTZIkSZI0iB1r9OwdL/r8Crjq4O/Hce/vAW88wvGvxBhnH/gM2KADunp2ZLKR2E+3btS31FMeE5AcAkWl3cc/d8MinrzwKoqaGxny8G38Zc2neMuK3wF0rfRI5fPP572FSTEetYlpdXU1ta96PZ17trD2sZ9yW14r+xcvPupKEEmSJEmSesqxenZMAPYBXwb+68Cn6ZCfjynG+ACwuwdqPGXlJbuG1nT2w74dMcausCOdhuETqPnBD7qDi//46TIaRk2g5YlbWfvID7mhfi0jVv6RgnQHiWyGQOTpMy8hvvsGLiyZcsQmph3pLDs68ln4zjeRzWbZtGmTQYckSZIkqVccK+yYCywDrgf2xhjvA1pjjPfHGO8/iWd+LITwdAjhOyGEkUe7KISwMISwNISwdMeOHUe7rF9LJbv+8Kaz/a9vR1NnE63pVsrbWqhrzeuevvKbN3yM1tMvp/Xp37Ho4+8jm81yyy23cP72NVz1w+vJe/BWrqn5Bz7/+/9ldMUMfv3nnzqsienBaStrG5royGQ5a/zwPn5TSZIkSdJgc9SwI8aYjTF+BXg/cH0I4f9xgj0+juB/gdOA2UAdx1ghEmO8KcY4N8Y4d8yYMSf52L6RSvTflR31zfUAlLc0Mubhp7unr/z4nDcQYpafP3t/d3BRXV3N/sWLuS2vlbWP/ZQfpFr49JO/Yc6Td0IIZBPJl0xbeWbrXgBmGXZIkiRJknrZsVZ2ABBjfCHG+E7gt8CtJ/OwGGN9jDETY8wCNwMXnMz9+ru8gys7+uFEliXblgCwr72Jr+zNcmPlLNpSeRACIUa+O27mYWNiq6ur2bRpU/eWlCFVVVStXUKIWYjxJdNWVm7dS/GQFFWjivrk/SRJkiRJg9fLhh0HxRh/E2P8zMk8LIRQccivbweeOZn79XepAz07+ttElhUNK/jy8i8D8B+jR7B6bBmZjlYICULMkp9Jv+yY2EWLFnH+9jXMfPY+iFmu/Ok/c8H2NSxatAiAlVv3cca4EhIHVrdIkiRJktRbTnZbylGFEH4AXAKUhhBeAD4HXBJCmA1EYBPw4Vw9vz/IS3RlSZ39bGXH0vqlZLIZANIhMPL187l71Bso3ltPx9N/4KpNK152TGx1dTU1wKqvLYbEZfx43ATO+bdPUV1dTWcmy6q6fbxv3tHDEkmSJEmScuW4V3acqBjje2KMFTHGvBjjhBjjt2OMC2KMs2KMZ8cYr4wx1uXq+f1B98qOftCzo6ampnvayv9++F+7j+fFSCi6hD3Dx9D0+GLWPvqj4x4TW11dzeqH7mRIKsEHPvOl7uvXNeynI51l1gT7dUiSJEmSel/OVnao/0xjqampYeHChfztiEpWznsnb6xdyU+2tFFRMYyvNrzAO/dWsPA1p/HpL953wvcuyEtyweRRPLTuTxNzVh5oTnrmOMMOSZIkSVLvM+zIofwDKzs60n27suPqBQuYWTGDa69ZREcqj2Q2y4hR/8rElgRj24aSIcUlM175xJtXTy3lC79dTf2+NspLCnhm616G5ieZUjq0B99CkiRJkqTjk7NtLIJUon+s7JgSIzdWzqI9lUcMCdLJQFtROxPSnWyNpYQAyzfvecX3nz+1FICH1+0EusbOnjluuM1JJUmSJEl9wrAjhw727Ojs454d+VVVlG1eSQCIkQJ2EELktHQz22Ip+akE86aMfsX3P6OihNFD83lo7U7SmSzP1e3jrPFuYZEkSZIk9Q3DjhzKO9izo4+nsSxatIgzG7cSgeSmFbzm4f8C4KzMXsZPmk7NB+cxp2rkK75/IhG4aGopD63bybod+2nrzHLW+JIeql6SJEmSpBNjz44cSh3YxpHO9u3Kjurqav5pXwpqE2x77CfcM7uDQgqZkO5g4tlnw0kEHQddPLWUXz21jZ8v3wrALFd2SJIkSZL6iCs7cujgNJbOPl7ZAVA06RzykoHda5bzic9/ggSBsekMDJ/YI/efP62rb0fNY5spyk8yZcywHrmvJEmSJEknyrAjh/IO9OxI93HPDoAnNu1m1vjhFOYn2bZ/G2V5xeQBjOiZsGP8iEJK8zPsb08zfsPTzKuqpKampkfuLUmSJEnSiTDsyKH+Mo2lrTPD0y/s4YLJXU1It+7fyrhkYdfJHlrZUVNTw5alfwBgGIErssNYuHChgYckSZIkqdcZduRQXj+ZxvLk5j10ZiIXTO7qzbFt/zYmxAQUjoQhPbPd5OoFC/j8rm0ArBg3k59ds4gHRlRy9YIFPXJ/SZIkSZKOl2FHDh3s2dHXKzse37ibEGBO1Sg6s53Ut9QzrqOjx1Z1AEyJkWWJFCGbJSYSdCaSfLNyFpNj32/hkSRJkiQNLoYdOXRwGktfr+x4fNMuZo4tYXhhHvUbV5KNWcY17+3RsCO/qoqxm59mSKaTZCZNXjZD2eaVDKmq6rFnSJIkSZJ0PBw9m0P5qb6fxtKZybK8dg/vPr8r2Hjg1n+GSdDavBMm9VzYsWjRIoa9731kf3g9P6ucxVWbV3LB9jWcsXhxjz1DkiRJkqTj4cqOHDq4sqMvp7E8s3UvrZ0Zzr/+r1kxtYgvTVgHwJdHl7Dixm9CYWGPPKe6upr9ixdzW14rax/7KbfltbJ/8WKqq6t75P6SJEmSJB0vw44cOtizoy9XdjyxaTcA5//8eyy9Zj6ZgwFMCCw973TYuLHHnlVdXc2mTZvIZrNs2rTJoEOSJEmS1CcMO3Lo4DSWdLbvVnY8vnE3k0uHUja1krntZSQiECN5MTK3owDGju2z2iRJkiRJygXDjhxKJQ5MY+mDlR01NTXMnTCRR5evp27JXdTU1DB7fSuX7CumMEZu3t7A7MRTsOXxXq9NkiRJkqRcMuzIoYMrO3p7GktNTQ0LFy7kwuFTaS4s5tz6LSxcuJCaq6+mYGIZpZkMs9s7IBlg04O9WpskSZIkSblm2JFDIQSSiUA627srO65esIAHRlRy15v/BoDlF1zFAyMquXrBApoLihl2cFtNMh8mXdyrtUmSJEmSlGuGHTmWSoRen8YyJUZurJxFOtE1WTidSPLNyllMjpHmVD5F+cVQVAp/cQdMvKBXa5MkSZIkKdcMO3IsL5no9W0s+VVVDN/eNWI2xCx52Qxlm1cypKqK/R37GUaA0ukGHZIkSZKkAcmwI8dSyd7fxrJo0SLyikdDCKSW38lVP7yeC7avYdGiRTR3NjM03QlDR/dqTZIkSZIk9RbDjhxLJXp/ZUd1dTVL3/1RaN7F+rtv5La8VvYvXkx1dTX7O/czNN0ORYYdkiRJkqSBKdXXBQx0+clAZy+Pnt3b2snGlnw+9Ma5XP/1w5/d3NnMsI5Www5JkiRJ0oDlyo4cSyUTpHs57Pjjc/V0ZiJvmlVx2PHObCftmXaGZjOGHZIkSZKkAcuwI8dSyUBntne3sfz2mTrGDS/g3IkjDjve0tkCwLBs1rBDkiRJkjRgGXbkWF6id1d2NLV18sCanbzxrApCCIed29+5H4CibDTskCRJkiQNWIYdOZZKBtK92KD07lUNdGSyvHnW2Jec29/RFXZ0rewY1Ws1SZIkSZLUmww7ciyVTPTKNpaamhrOnzCBxTf8L4mWPax66LcvuaYl3bWNZagrOyRJkiRJA5jTWHIsLxFyvo2lpqaGhQsX8u9vGEfrB2uZeF8t/+fDt5MIXWNoD+pe2RHt2SFJkiRJGrgMO3KsN7axXL1gAXPeUknVDzeTl9xA5+tSfGR1BZMWLIBDwo7mzmYAhpKE/GE5rUmSJEmSpL7iNpYcy0sm6MzmdmXHlBh57k3F5CXTpJJZ8pJpnntTMZPj4SHLwQalQwtGwIual0qSJEmSNFAYduRYKpH7lR35VVVsuSdDZyZFOpOgM5Oi4bdNDKmqOuy6gys7hhXYnFSSJEmSNHC5jSXHUskEnTnu2bFo0SIe/cYdVH/rA8zP+yFFv9rJuN9sYdHixYdddzDsKLJfhyRJkiRpADPsyLH8ZIJ0jqexXHvttXz5+WJ2Ld3AL763nMrKShYtXnxYc1Lo2sZSFCExtDSn9UiSJEmS1JcMO3IslQw5X9nx2Mbd7OpI8l8ffQdXf+dvj3pdc2czw7JOYpEkSZIkDWz27MixVCKR854dP35iC8VDUrx5VsUxr2vu2M/QTMawQ5IkSZI0oBl25Fhejld27Gvr5M5n6rhy9jgK85PHvHZ/2x6GRld2SJIkSZIGNsOOHEslQ057dtyxYhttnVneff7El722uWMvQ7MRipzGIkmSJEkauAw7ciyVyM00lpqaGs6fMIFv/+/tJBtf4On7fvOy39nf8f+zd+dxclz1vfe/p6q6ezaNNIuWsaRZZNmS90XjBewQY4PBhkCISV6QQSYsGW4CCTwkJIDuzTUkw3NzsxHufbhgVguaAJc44BiMYxuDwcQ2kmVbsrBsrSPJ2kYazd49VV3n+aNrWi1rm7V7pvvzfr3q1T3VVd2nZ8o9nq9+53cG6NkBAAAAACh5hB0zLOaaae/ZkUwm1dnZqWvmX6hdTRfqqu0b9IEPdCqZTJ71vGF/WNWEHQAAAACAEkfYMcM811EQTm9lxx1r1+qxBc168PYPS9Zq85W36bEFzbpj7dqznjeYSUXTWAg7AAAAAACli7BjhsUcIz9jZe30VXessFZfbL5MGceVjFHguPpC82VqO8trWGs1lEmrxob07AAAAAAAlDTCjhnmudlvcWYam5TGW1pUv/8FSZKxoWJhRou6NyvR0nLGc1KZlDKyqjaeFKuctrEAAAAAADDbEHbMsFgUdkzniixdXV1aJCsZI2/Lo/qdb6/TtQdfVFdX1xnPGfKHJEnVXvW0jQMAAAAAgNnIK/YASl3MNZIkPxOqIuZOy3N2dHToA0cS0kFp10+/qm8tXKBL1q9XR0fHGc/JhR3xmmkZAwAAAAAAsxVhxwzznLGwY3pXZLH1rWr1B7R76Pi4jh/0ByVJNYnaaR0HAAAAAACzDdNYZthYz44gM30rslhrtWnvcV3VXDfuc4ZGs5UdNYkF0zYOAAAAAABmI8KOGZabxjKNPTv29Y7oyEBaVzePP7gYm8ZSVclKLAAAAACA0kbYMcM8Z/orO57u7pWkCVV2DB7aI0mqsVXTNg4AAAAAAGYjwo4Z5rnT37NjU/dxVcVdrV4yb9znbHvkG5Kk3RufmrZxAAAAAAAwGxF2zLATS89OX2XHpu5eXb5sfq4fyFlVVuqZlVVKLjokSfqz5cf0zMoqqbJy2sYDAAAAAMBsQtgxw8ZWYwmmqbIj5Wf0/Mv945/CsnOnNrzjBmWin3TgGG14xw3Srl3TMh4AAAAAAGYbwo4ZNlbZ4U9Tz47N+/sUhFZXjzfsaGpSe3qRnFCStYplrNpHF0tLlkzLeAAAAAAAmG0IO2bYWM+OYJpWY9mUa046/pVYrtwxolv7K+RZqy9tv0RXbh+elrEAAAAAADAbEXbMsOmu7Hh6z3G1NFSpsSYx/pPuvVcLmltUZa2u/ExSuvfeaRkLAAAAAACzEWHHDIu509ezw1qrp7t7ddXy8Vd1jPH9YcVkJDc25XEAAAAAADCbEXbMMM+ZnsqOZDKpNauv0OGBtB7+0j8omUxO6Hw/SClm+HEDAAAAAEoff/3OsLGeHf4UKjuSyaQ6Ozt1UcPFkqTfOHxQnZ2dEwo8/CCluHEnPQYAAAAAAOYKwo4ZNtazIwgnX9lxx9q1emxBs5644Z2StXr01j/WYwuadcfateN+Dj+TUsx4kx4DAAAAAABzBWHHDPOcqffsWGGtvth8mTKOKxkj33H1hebL1GbH/5x+xlfMIewAAAAAAJQ+wo4ZNh2rscRbWrSoe7McG0rWKhZmtKh7sxItLeN7AmvlZ0YVc+OTHgMAAAAAAHMF/9Q/w8Z6dgTh5Cs7urq6VHPnnXro0E4drqzV7/z73+nagy/q4vXrx/cE/rACWcIOAAAAAEBZIOyYYWOrsQRTqOzo6OhQUtKhR49p5PjL+lZsRJesX6+Ojo7xPcHwUY0aKe4mJj0GAAAAAADmCsKOGRabhtVYpGzg8a2jP1fT/Ap9+dv/dWInDx+Vb4yqvIopjQEAAAAAgLmAnh0zzJuG1VjGpPyMEt4klo/d95J8GcUs2RYAAAAAoPQRdsyw6arskKR0ECoRm8SP7Lufk2+MYt27pjwGAAAAAABmO8KOGRbL9eyYetiR8sOJVXZUVkrLPanyOflGijk90deVUx4LAAAAAACzFWHHDHMcI8dMbenZMekgo4qJVHbs3Cm9dY3kSL4xistKv71G2kWFBwAAAACgdBF2FIDnOvKnoWdHOphgZUdTk+Qsl0Jle3aEVjLN0pIlUx4LAAAAAACzFWFHAcQcM+VpLGFoNRqEE6vskKR9oRQsle8YxUabpX2ZKY0DAAAAAIDZjrCjADzXUTDFaSyj0fkTXo3l3nuly6+UbxzFbnpL9msAAAAAAEoYYUcBxFwjP5xaZUfKz1ZkJLxJ/MhS/fIlxdzYlMYAAAAAAMBcQNhRAJ4z9cqOdJA9vyI2wcoOSWH6uAIjxRzCDgAAAABA6SPsKADPnXrPjqlUdgSpfkmEHQAAAACA8kDYUQAx15nyNJapVHb4acIOAAAAAED5IOwoAM8xU57GMunKDmvljw5JomcHAAAAAKA8EHYUQMx15E9xGsukKztGh+QrG5RQ2QEAAAAAKAeEHQUQc42CcJoqO2IT/JGl++Ubkx0HYQcAAAAAoAwQdhSA5zryp7oaix9VdngTrOxI9clXFHYwjQUAAAAAUAYIOwrAc8yUp7GkgklWdqSo7AAAAAAAlBfCjgKIuc6UG5ROurIj3S/fROMg7AAAAAAAlAHCjgLwXKNgikvPTr6yo0+jVHYAAAAAAMoIYUcBeM40rMYylZ4dhp4dAAAAAIDyQdhRADHXTHkay6QrO9L98sfGQWUHAAAAAKAMEHYUgOc6U57GMlbZkfAm0aDU8SQRdgAAAAAAysOMhR3GmK8aYw4bY7bk7as3xjxkjHkpuq2bqdefTWKOmfLSs6kgo7jnyERTUsYt3S8/XhWNg7ADAAAAAFD6ZrKy4+uS3viKfR+X9Ii19gJJj0RflzzPNQqmoWdHxUSrOqRsZUcUdsTd+JTGAAAAAADAXGCsndof4Wd9cmNaJd1vrb00+nqbpJustQeMMU2SfmqtXXWu55k3b55ds2bNjI1zpu3qGdKxoVGtaZl8IcvOniH1TuY5Dm3V0TClnSajyxderoSbmPQYAAAAAAAopp/97GcbrbXt5zqu0D07FltrD0T3D0pafKYDjTGdxpgNxpgNvu+f6bA5wRhpqpmSDa0cZ4JTWCTJBrIm+2M2msT5AAAAAADMMV6xXthaa40xZ4wArLV3S7pbktrb2+1Pf/rTQg1t2v3N/Vv1L09166effuWsnvH7YPJpbTs0oIc/+psTO/Hzr9Z359fqr4P9uu/37lNjZeOkxwAAAAAAQDGNt49loSs7DkXTVxTdHi7w6xeF5zryp9izI+VnJr4SiySl+zUa9eqgQSkAAAAAoBwUOuy4T9K7o/vvlvSDAr9+UcRcIz+c2mos6SBURcyd+ImpPvletk8HYQcAAAAAoBzM5NKz/yLpPyWtMsbsM8a8T9L/kPR6Y8xLkl4XfV3yPMeRtVImnHx1x6QqO8JQSg/I96jsAAAAAACUjxnr2WGtfecZHrplpl5ztvLc7JwiPxPKdSZRnaFsZUdt5QTDitEBSVa+m/0xe07RWrQAAAAAAFAwhZ7GUpZiUdgRFLqyI9UvSfLdmDzHG3cjFwAAAAAA5jLCjgLwnOy3OchMvm/HpHp2pPokSb7jMoUFAAAAAFA2CDsKIJabxlLgyo50VNnheIpHK7IAAAAAAFDqCDsKwHOjyo4prMgyucqOsbDDobIDAAAAAFA2CDsKIDYWdhSrssMQdgAAAAAAygdhRwHE8lZjmQxrrdJBqMRke3YYQ9gBAAAAACgbhB0FkGtQOsnVWNJBNiSZ+GosUdghS9gBAAAAACgbhB0F4EWVHaPB5Co7xsKOCffsSPdLbkK+DRVzCTsAAAAAAOWBsKMAxqaxTLqyw89ImkxlR79UUSs/9KnsAAAAAACUDcKOAshNY5lkz45JV3ak+qQEYQcAAAAAoLwQdhSAl2tQOtmeHZOs7Ej3SxXzCTsAAAAAAGWFsKMAckvPhpOr7Ej5k63siKaxZHx5rjep1wYAAAAAYK4h7CgAz4l6dhSjsiOaxhJ34pN6bQAAAAAA5hrCjgIYq+zwJ9mzY/KVHX00KAV4wrVGAAAgAElEQVQAAAAAlB3CjgLwproay2QrO1L9UiLq2cHSswAAAACAMkHYUQDTVdmRiE3gx5UJJH9Iqpiv0cwolR0AAAAAgLJB2FEAsdzSs1Or7KjwJjCNJd2fvWUaCwAAAACgzBB2FMCJaSwFrOxI9WVvE4QdAAAAAIDyQthRAGNhx+hkKzv8qVV2BGFA2AEAAAAAKBuEHQVwYhrLJCs7gslUdoyFHfPlZ2hQCgAAAAAoH4QdBZCbxjLpyo4o7JhEZUcYr1FgqewAAAAAAJQPwo4CyK3GMtmeHUFGMdfIdcwETsr27Aji1dkxEHYAAAAAAMoEYUcBeM7UKzsm1K9Dyk1j8WNVkqS4G5/UawMAAAAAMNcQdhSAmws7Jl/ZMaF+HVJuGosfr5AkeY43qdcGAAAAAGCuIewoAGOMYq6RH06+suN0/TqSyaSuWbZMPzNG1yxfrmQyeeLBVJ8Uq9Kosq/JNBYAAAAAQLkg7CgQz3GmtbIjmUyqs7NTt1Uc07Y3Neq2xFF1dnaeCDxSfVKiVn7oSyLsAAAAAACUD8KOAom5Rv5Ee3YcPSq98Y1KD6dO6dlxx9q1erzJ6v6Pt+l/3bFYD/xFmx5vsrpj7drsAel+qaJWfiYKO1h6FgAAAABQJgg7CiTmOgomuhrL178uPfig0nv2nVLZscJafXl1tXzPSI6R7xl9bXW1Wm0UqKT6pYr5VHYAAAAAAMoOYUeBeK6Z2Gos1kr/9E+SpPT+l0+p7Ii3tKjhhSGZ6Clda3XrsZQOG5OdypLuZxoLAAAAAKAsEXYUiOc4Gp1Iz46f/1zq65Mkpa1RYqDvpIe7urr0id0jcqKw486Bfr3ptUbhUic7lSXVl53GQtgBAAAAACgzhB0FEptoZcdnP6vk4KCukXTU8fTL//zFSautdHR06PzGuDJudlnbEceVdaVNra7arM1OY0nQswMAAAAAUH4IOwrEO1vPjre+VTLmpC15333qlHTb+ZUabX5Wy6oPqPNd71Iy75iKlnmSpIow1IvxmGSlnbszSrS0RA1K6dkBAAAAACg/hB0F4jlnWY3lM5+RmpuliorcrjsyGT1+fqXu/3ibRlr+U0df8ys9fn6l7pCyx7W06E3vepMk6TXDI3oxHtPgkJX3stX/+9d3SUHqpGkscSc+s28QAAAAAIBZgrCjQGKuo+BMPTsuuUTaulV6y1ukqipJ0grpxGorRgqdUF9aXa02KVsJ8vzzql/Tphrr6ZpUWn2uq6G6mCq+eJfe+bZsCKJEXmUH01gAAAAAAGWCsKNAPNcoCM/Ss6O6WvrOd6R/+AcpkVBcUv0LQ5KyC7O4oVHDC0NK1NdL3/62VF2t3f27dYFXpQudSknSi5U1esOS3uwUFilb2ZFhGgsAAAAAoLx4xR5AuYg5jvzxrMZy9dVSIqGudFq2x5eMkZHU9LNmrdmxWas+/YncoXv69+jGkUFVZZZI6tPTRwJd3vNVPXlwgd4g0bMDAAAAAFCWqOwokJg3vtVYkp//vFoHBrRW0l+cl8jtf3HEajAWU0djoyRpcHRQPSM9ah08quQPn1HVcV+PNVRr9/yYdvzg77InJVh6FgAAAABQfgg7CsRzHPlnm8YiKZlMqvOb31TTUkd/eWNcTRdX5h57c21aHb4v/fznSiaT+s3fuESS1OoHusM3StV6emlRQn+4ZJFe3Z4NSTZc/xr99cc/JomeHQAAAACA8sE0lgKJuebMDUoj69at0+VN0s/+oEqukRIN1frXVCgbj2mwrVZyXSUfflidP/iBPvEncdVcmlbCjOor9RWykmSMRq20obZSShk9fWODLooPa7Oq9P1//b7e/673F+S9AgAAAABQTIQdBeI5zjmnsXR3d+udN8TkOZJjjHYlYqrr93V0/iINXLJYuvtu3fG+9+mat8e1/G9GFHOsgiuM0k9U6/GMle8YeRmr+ZmM3r9kkUbfZORG+crb3v8BJU2lOjo6CvBuAQAAAAAoHqaxFIjnmnM2KG1ubtZPd2cURIftjMU0dMAq9OvV5x+U3vterZD06zd7ijlWniN5jlXsulC33r1PknTnL4+qz3WUNkbWMQrc7HN9vqVCnZ2dSiaTM/guAQAAAAAoPsKOAom5jvzw7GFHV1eXnjuW0CcfSeuY4+i45+rgy3GFo/XqHT2oZDIpx3F05KWE/NAoCKUgNNp2f6C/3zQkm8poT6On9uGUjJRdsza6ve/PWvV4k9Uda9fO+HsFAAAAAKCYCDsKxHPOvRpLR0eH7r77bv3HyzXaEc82FDX9lQr9eo1kBvVfPvxftPaiSn2xeYk++b2levqXtfrOH8S16N5A93z9HoWHpRerE2pJBbLGqHk0kLGSjJHvGX1pdbXa7LlXhAEAAAAAYC4j7CgQz3Xkj2PpWUnacSSlLc1G77v0iC65oFfWr5ckrV/t6YGPtioVd/TYcK3iD8T0e8m0BtevV0dHh9pb2nVoUUKffyL7PLc92KOEb+VmrLzAquGFISVaWmbqLQIAAAAAMCvQoLRAYq5RcI5pLFJ2RZZrbg/0jt87ophj9YErjO5MbtcLkr551TxlHEnGKONID2Xiuk3Sgajp6Juve7M2PbFJ37hiidwg1MJ/P6Y3PjusH6yu1m0vDGnNrrRWre+a0fcJAAAAAECxUdlRIONZjUXKrsjyurwGpDHH6vq2rZKkIyurJGPkZKxi1uq8rUPyGxpy566qXyVJqry8UlcuuVLB176hbwSLtOVHR/WNYFGuAgQAAAAAgFJG2FEgsXGsxiJlV2R5+P4g14DUD41++dKrFBsO1bsgpiUHUvpw78v6Qdtu3bZgSAMDA7kVVp5+8GkptApsoOe//5Qkaffu3QrDULt37yboAAAAAACUBaaxFEjMdRSE567s6OrqUmdnpz7wAUd/8p64Dj+yWJu0QjXNRpK09JJAf/DGXjmOpFdL6T6r1Nq1Skr60Ac+pHd+uUGXXjiq4c0pdXZ2ShIhBwAAAACgrBB2FIjnGmVCK2utjDFnPG4smPjUf/ukvnJer/7Pjri8q3bKRqdc3TQsuZIcyUo6cLvRmvtC7Vq7VtfcEdPy392nmGMVXGH09j0xNa9dKxF2AAAAAADKCNNYCiTmZr/V41mRpaOjQy/u3KNY0yW6ZKGvYHiFEr6Vk7Ha9HKVlJFsRlJG2vYjq0RLi1ZYqxfyen14jtWv3+yx1CwAAAAAoOwQdhSI52RLM8azIkvO4kt1VX1a4UiL3vg/98jee0jv+foxOfdUacPXXD36u476789OfYm3tOjQ/YGCqNdHEBodvj9gqVkAAAAAQNlhGkuBeBOo7MhZcqnqN39X9erXN/1Gdf+oWxV/WKtnn/Z03RdG1NzcrK71XbmpLzV33qn174xp5M2eKu8PtPjeQF0sNQsAAAAAKDOEHQUSc7OVHeNZkSVn8aWSpCvj+/XV3bulwcPS318o3fRJhZ//y5MO7ejoUFLSZ9atU/e/dp8ShAAAAAAAUC4IOwrEc7KVHcGEKjsukyRd4nZnv37xx5KstOq20x7e0dFBuAEAAAAAKHv07CgQbzKVHTWL1O/Va7WJwo5tD0jzl+dCEAAAAAAAcCrCjgIZm8YShBNbHWVf/HxdqN3S6LC049FsVcdZlq4FAAAAAKDcEXYUyIlpLBOo7JDUHVuhlnCvtP0hKRiRVt0+E8MDAAAAAKBkEHYUyIkGpROr7NjlrVBcgfT4P0uJWqnlhpkYHgAAAAAAJYOwo0Bi0dKzQTixyo6neudl7+zfqAe3Div5nf873UMDAAAAAKCkEHYUiBeFHROp7Egmk3pkZ0p+mD13QfegOjs7lUwmZ2SMAAAAAACUAsKOAok5UYPSCfTsuGPtWt1RcUiuCSVrdd2NCQ3Vp3XH2rUzNUwAAAAAAOY8wo4C8XLTWMZf2bHCWp1fFS07a4ysI21qddVmJ9b3AwAAAACAckLYUSBerkHp+Cs74i0teiK4UEHoymasFEo7d2eUaGmZqWECAAAAADDnecUeQLmIORPv2dHV1aXPPGn0356/RecduU9Ld2cUe9mqa33XTA0TAAAAAIA5j8qOAhmr7JhIz46Ojg75NbX6Trhc/8/jvv7cXabB9evV0dExU8MEAAAAAGDOo7KjQGJj01gm0LNDkkI5+uAfdepj3//HmRgWAAAAAAAlh8qOAvGiaSwTqewIMqGC0KrCc2dqWAAAAAAAlBzCjgI5MY1l/JUd6SAbjCRi/JgAAAAAABgv/ooukFi09Kwfjr+yI+VnJEkVMSo7AAAAAAAYL8KOAhkLOyZV2eHxYwIAAAAAYLz4K7pAxqax+BPo2TFW2ZGgZwcAAAAAAONG2FEgsbEGpRNYjWWssqOCnh0AAAAAAIwbf0UXyIkGpVR2AAAAAAAwkwg7CsRzxqaxsBoLAAAAAAAzib+iC8QYI88x9OwAAAAAAGCGEXYUkOcaenYAAAAAADDD+Cu6gGKOQ2UHAAAAAAAzjLCjgDzXKJhEzw4qOwAAAAAAGD/+ii4gz3UUhOOv7EhT2QEAAAAAwIQRdhRIMpnUkYMH9KWvfE2tra1KJpPnPIfKDgAAAAAAJo6/ogsgmUyqs7NTlzdv00ffs13Nl0udnZ3nDDzo2QEAAAAAwMQRdhTAunXrtOaWhfrOh/9Of/G2H+nB7x3QmlsWat26dWc9Lx2EcsKMYq4p0EgBAAAAAJj7CDsKoLu7W7fcNk8xN5Dnhoq5gW65bZ66u7vPel46CJUIfBlD2AEAAAAAwHgRdhRAc3OzHnlgQH7GU5Bx5Gc8PfLAgJqbm896XsrPqCJIF2iUAAAAAACUBsKOAujq6tLGR47o9rWr9I8PvUu//dFbtfGRI+rq6jrjOclkUt/9RlLK+Lpm+fJxNTQFAAAAAACSV4wXNcbsljQgKSMpsNa2F2MchdLR0SEp27vjnxf8hmJDh3X33e/I7X+lsYam7/7I72v19Q8ovtdVZ2fnSc8FAAAAAABOz1hrC/+i2bCj3VrbM57j29vb7YYNG2Z2UAXyiXs36/5nX9amv3q9PPf0hTUpx9HuNzer5XsHFHMD+RlPe97epNb7u1URhgUeMQAAAAAAs4MxZuN4CiaYxlJgN65s1EA60LP7+k7svOsuyZjctsJabbl9/kkNTbfeNk9t1p50nIzJngsAAAAAAHKKFXZYSf9hjNlojOks0hiK4tXnN8gY6fHteUUtd90lWZvb4i0t2vB820kNTQ8/MKBES8tJx8lawg4AAAAAAF6hKD07JN1ord1vjFkk6SFjzAvW2sfyD4hCkE5J51y1ZC6pq47r0vPm6xfbe/Snt1xw2mP+6tNd+sdfST3/o1kXLXxUVQ8M6Lwf7lXX+vUFHi0AAAAAAHNPUSo7rLX7o9vDkv5N0rWnOeZua227tbZ94cKFhR7ijLphZaM2dfdqKB2c9vF08/UarF6gh3+wWR/74y362+ekwfXraU4KAAAAAMA4FDzsMMZUG2Pmjd2XdKukLYUeRzH9xgWN8jNWT+06dspjAylfX3xsh25atVC7Nz6qUNLu3bsJOgAAAAAAGKdiVHYslvQLY8yzkp6S9ENr7Y+LMI6iWdNSp4Tn6Bd5fTuSyaRaW1u1/Oa1Oj7s66JgZxFHCAAAAADA3FXwnh3W2p2Srij0684mFTFX17TW55qUJpNJdXZ2qv0N5+mP3ufpsad+pE9/5OtaVpUR9RwAAAAAAExMsRqUlr3qwb36xcFKefPqpZF+3fCWNv34292KuTv1p6/39IZNTVq3bh1hBwAAAAAAE1SspWfLWjKZ1Lc/e5eubv61PnX3Gr3+o+/U7e+/TjE3kOeGirmBbrltnrq7u6X//t+LPVwAAAAAAOYUY60t9hjOqb293W7YsKHYw5g2ra2tar5cevB7BxRzA/kZT/91/W/pb+7899zXb3h7k7qfyzYnBQAAAAAAkjFmo7W2/VzHMY2lCLq7u/Wev7xEMXevPDeUFKjW36Y3vL1Jt9w2T488MKCNjxzR3XffXeyhAgAAAAAw5zCNpQiam5v1yAMD8jOegowjP+PpkQcG9Msf7dOnPvi8up+T7r77bpabBQAAAABgEqjsKIKuri51dnaeUslxzz33EHAAAAAAADBFhB1FMBZorFu3Tp+6/3k1NzdTyQEAAAAAwDShQSkAAAAAAJgTxtuglJ4dAAAAAACgpBB2AAAAAACAkkLYAQAAAAAASgphBwAAAAAAKCmEHQAAAAAAoKQQdgAAAAAAgJJC2AEAAAAAAEoKYQcAAAAAACgphB0AAAAAAKCkEHYAAAAAAICSQtgBAAAAAABKCmEHAAAAAAAoKYQdAAAAAACgpBB2AAAAAACAkkLYAQAAAAAASgphBwAAAAAAKCmEHQAAAAAAoKQYa22xx3BOxpgjkvZM8vRGST3TOBxgorgGMRtwHWI24DrEbMB1iNmA6xDFNpevwRZr7cJzHTQnwo6pMMZssNa2F3scKF9cg5gNuA4xG3AdYjbgOsRswHWIYiuHa5BpLAAAAAAAoKQQdgAAAAAAgJJSDmHH3cUeAMoe1yBmA65DzAZch5gNuA4xG3AdothK/hos+Z4dAAAAAACgvJRDZQcAAAAAACgjcyLsMMZ81Rhz2BizJW9fvTHmIWPMS9FtXbTfGGM+Z4zZbox5zhhzdd45746Of8kY8+68/WuMMZujcz5njDGFfYeYC85wHd5ljNlvjHkm2m7Pe+wT0TW1zRjzhrz9b4z2bTfGfDxvf5sx5slo/3eMMfHCvTvMBcaY5caYR40xW40xzxtjPhzt5/MQBXOW65DPQxSMMabCGPOUMebZ6Dr8VLT/tNeOMSYRfb09erw177kmdH0CY85yHX7dGLMr7/Pwymg/v5cxI4wxrjFmkzHm/uhrPgslyVo76zdJr5F0taQtefv+p6SPR/c/Lulvo/u3S3pAkpF0vaQno/31knZGt3XR/brosaeiY0107m3Ffs9ss287w3V4l6Q/P82xF0t6VlJCUpukHZLcaNshaYWkeHTMxdE535X0juj+FyT9UbHfM9vs2iQ1Sbo6uj9P0ovRtcbnIVvBtrNch3weshVsiz6jaqL7MUlPRp9dp712JP2xpC9E998h6TvR/Qlfn2xsY9tZrsOvS3r7aY7n9zLbjGySPirpW5Luj77ms9DauVHZYa19TNKxV+x+q6R7ovv3SPrtvP3rbdYTkhYYY5okvUHSQ9baY9baXkkPSXpj9FittfYJm/1Jr897LiDnDNfhmbxV0rettWlr7S5J2yVdG23brbU7rbWjkr4t6a1RSn+zpO9F5+df04AkyVp7wFr7dHR/QNKvJS0Vn4cooLNch2fC5yGmXfS5Nhh9GYs2qzNfO/mfk9+TdEt0rU3o+pzht4U55izX4ZnwexnTzhizTNKbJH05+vpsv0fL6rNwToQdZ7DYWnsgun9Q0uLo/lJJe/OO2xftO9v+fafZD4zXh6JSxK+aaPqAJn4dNkg6bq0NXrEfOK2o7PAqZf8Vic9DFMUrrkOJz0MUUFS2/Yykw8r+cbhDZ752ctdb9HifstfaRK9P4CSvvA6ttWOfh13R5+E/GWMS0T5+L2MmfFbSX0gKo6/P9nu0rD4L53LYkRMlnSwrg2L4P5LOl3SlpAOS/qG4w0E5MMbUSPpXSR+x1vbnP8bnIQrlNNchn4coKGttxlp7paRlyv7r4+oiDwll6JXXoTHmUkmfUPZ6vEbZqSl/WcQhooQZY94s6bC1dmOxxzIbzeWw41BU2qXo9nC0f7+k5XnHLYv2nW3/stPsB87JWnso+iUXSvqSsv+zJU38OjyqbCmj94r9wEmMMTFl/8BMWmvvjXbzeYiCOt11yOchisVae1zSo5JepTNfO7nrLXp8vrLX2kSvT+C08q7DN0bT/ay1Ni3pa5r85yG/l3EuN0h6izFmt7JTTG6W9M/is1DS3A477pM01qn43ZJ+kLf/zqjb8fWS+qLy7gcl3WqMqYtKa2+V9GD0WL8x5vpovtKdec8FnNXYH5iRt0kaW6nlPknviDoet0m6QNkGU7+SdEHUITmubGOg+6J/jX9U0tuj8/OvaUBSbg7mVyT92lr7j3kP8XmIgjnTdcjnIQrJGLPQGLMgul8p6fXK9o8507WT/zn5dkk/ia61CV2fM//OMJec4Tp8Ie8fIIyyvRLyPw/5vYxpY639hLV2mbW2VdnPqZ9YazvEZ2HWuTqYzoZN0r8oWxLrKztP6H3Kzi16RNJLkh6WVB8dayT9f8rO29wsqT3ved6rbLOV7ZLek7e/XdkPoR2S/rckU+z3zDb7tjNch9+IrrPnlP0Pvynv+HXRNbVNeZ2zle3E/WL02Lq8/SuU/VDZLun/SkoU+z2zza5N0o3KTlF5TtIz0XY7n4dshdzOch3yechWsE3S5ZI2RdfbFkl/Fe0/7bUjqSL6env0+Iq855rQ9cnGNrad5Tr8SfR5uEXSN3VixRZ+L7PN2CbpJp1YjYXPQmuz/7EAAAAAAACUirk8jQUAAAAAAOAUhB0AAAAAAKCkEHYAAAAAAICSQtgBAAAAAABKCmEHAAAAAAAoKYQdAAAAAACgpBB2AAAAAACAkkLYAQAAAAAASgphBwAAAAAAKCmEHQAAAAAAoKQQdgAAAAAAgJJC2AEAAAAAAEoKYQcAAAAAACgphB0AAAAAAKCkEHYAAAAAAICSQtgBAAAAAABKCmEHAAAAAAAoKYQdAAAAAACgpBB2AAAAAACAkkLYAQAAAAAASgphBwAAAAAAKCmEHQAAAAAAoKQQdgAAAAAAgJJC2AEAAAAAAEoKYQcAAAAAACgphB0AAAAAAKCkEHYAAAAAAICSQtgBAAAAAABKCmEHAAAAAAAoKYQdAAAAAACgpBB2AAAAAACAkkLYAQAAAAAASgphBwAAAAAAKCmEHQAAAAAAoKQQdgAAAAAAgJJC2AEAAAAAAEoKYQcAAAAAACgphB0AAAAAAKCkEHYAAAAAAICSQtgBAAAAAABKCmEHAAAAAAAoKYQdAAAAAACgpBB2AAAAAACAkkLYAQAAAAAASgphBwAAAAAAKCmEHQAAAAAAoKQQdgAAAAAAgJJC2AEAAAAAAEoKYQcAAAAAACgphB0AAAAAAKCkEHYAAAAAAICSQtgBAAAAAABKCmEHAAAAAAAoKYQdAAAAAACgpBB2AAAAAACAkkLYAQAAAAAASgphBwAAAAAAKCmEHQAAAAAAoKQQdgAAAAAAgJJC2AEAAAAAAEoKYQcAAAAAACgphB0AAAAAAKCkEHYAAAAAAICSQtgBAAAAAABKCmEHAAAAAAAoKYQdAAAAAACgpBB2AAAAAACAkkLYAQAAAAAASgphBwAAAAAAKCmEHQAAAAAAoKQQdgAAAAAAgJJC2AEAAAAAAEoKYQcAAAAAACgphB0AAAAAAKCkEHYAAAAAAICSQtgBAAAAAABKCmEHAAAAAAAoKYQdAAAAAACgpBB2AAAAAACAkkLYAQAAAAAASopX7AGMR2Njo21tbS32MAAAAAAAQBFt3Lixx1q78FzHzYmwo7W1VRs2bCj2MAAAAAAAQBEZY/aM5zimsQAAAAAAgJJC2AEAAAAAAEoKYQcAAAAAACgphB0AAAAAAKCkEHYAAAAAAICSQtgBAAAAAABKCmEHAAAAAAAoKYQdAAAAAACgpBB2AAAAAACAkkLYAQAAAAAASgphBwAAAAAAKCmEHQAAAAAAoKQQdgAAAAAAgJJC2AEAAAAAAEoKYQcAAAAAACgphB0AAAAAAKCkEHYAAAAAAICSQtgBAAAAAABKilfsAQAAAABAudi4p1dP7Dyq61c0aE1LHa8/g6y1Cq0UhKHCMHubCa027T2uTd29etWKBl3X1iDHMTM6jtmm2NdAoRB2AAAAAMAM6Bv2taNnULuODGlnz6A27unVk7uOyVrJSGprrFJNRUzGGBlJjpEcY2SMZIyRYyQjI8fJ7peyt07+47lzs8cZZc8fe57c88modyitn73Yo4y1co3RTasWqrEmcdKYrew535c9xyFnevjoYFqPRa/vGOlVKxpUWxlTJrTKhFZBaBVaqyBjlbF5+6LbTBRWnLo/Oj46L7cvPPtAP/fIdklSzDVKeK7inqO46yjuOUp42duxfYmYm7097WOO4q6b25fIvz3N4zuPDOq5fX26dGmtVi2uzb3Xsfce2hPvKcx7L/nHZUJF3w+ddFyY9/7D/OeI9h84PqIfbj6oTGhV4TlK/uH1JRt4EHYAAAAAwCSlg4y6jw5rZ8+Qdh4Z0q6eweh2SEeHRnPHuY5RbYWXCwqsJBmj+uq4QputQrBWCvNuw1CyChVmTuy3NhtHnHh8rILh5PPHjsnf1z/iKxMNIGOtntx1TDWJU/8kNOModDjXIeY0TzKQOvH6oZW2HuxXY3VCrmPkOkZedDu2xWOunPz9xsh1o69NdI5r5JjsvhPHOnIdyXWck57Tc4x+ueOoHn3hsGz0Hl51foOuWL5Ao0GodJDRaBBmt0yotB/dBqH6RvzoscxJj40dH5wjWCm2se9PmBcC+ZlQT+w8StgBAAAAAOXIWqtD/WntPDKYCzV29gxqV8+Q9h4bVv7fuY01Ca1YWK1bL1mstsZqrWisUdvCajXXV+m5fX3q+PIT8oNQMc/R3739ioL+oblxT+9Jr3/Pe68t6ut/+c5rCv6H9lXNdfrljp7cGP7s1lXTMoZMaHPBRzqTOSUMSUe3/7Zpn+59er+sspU8b71yqX7riqYosHHkOMoFOU5eqDO2OeZEcDP2eP45rzwu+/iJ4OmVP4PrVzRM+b3PVsaeqwZpFmhvb7cbNmwo9jAAAAAAlLCBlK9dPdmqjB1RdcbOI9lQY3g0kzuuMuaqrbFabQurdX5jtVYsrMl9XVsRO+trFLtfQrm/frHH8MqwIfn+wk8jmQ0/g6kwxmy01raf8zjCDgAAAADlYOOeXv1yR4/aGqtVGXOjCo0TgcbhgY5xxfYAACAASURBVHTuWMdIy+qqstUZC6u1Igo1Viys1uJ5FWXX1BLTZ66HDcU23rCDaSwAAAAACmKif+QFmVDDfkYjoxkNpQMNj2aiLcjuG81oZDTQ0Nj+dHDS8SP+ifN6h0Z1KC/MGFNXFdOKhTV6zYULo1AjG2g011epIubOxLcBZW5NSx0hRwEQdgAAAACYEdZa9Y342ntsRD978bA++/BLyoRWjmN004ULVRl3o9AiP7zIhhlDo9lmkRNRFXejzTvpfkNNQo5RLuwwkn7/umb9+a2rVFcdn4F3DqDYCDsAAAAATNrIaEb7eoe1t3dYe4+NaO+xYXUfG9be3hHtOzasgXRwyjmZMLsSyKLaRC6QqKuOa2ldflDhnTG8qIy7qk64qop5qkpk91d47lmnlryyV8LvXL2MoAMoYYQdAAAAAM7Iz4Q6cDwVhRl5oUZ02zN48tSQipij5XVVWl5fpeva6rWsrlLL66s0mAq07t82y88UZyWQNS11Sr7/enolAGWCsAMAAAAogGI3JTzT61trdWQgfVJlRn6gcaAvpUze2qquY7R0QaWW11fqdRct0vL6qlygsbyuSo01cRlz+gqL1sbqon4P6JUAlA/CDgAAAGCaWWv1cl9K2w7264WDA/rPHUf1i5d6NBYZLJ6XUHXCk+caeY6jmGvkOkaem73vOY48x2Qfdx3Fosdy+3Ln5B3vmujxU/ft7R3R//7JSwoyVq5j9PqLFyvlZ9R9bFj7ekeUfkVvjEXzElpeX6X2lrpciLGsvlLL66rUNL9CnutM6vtC2ACgUAg7AAAAgCnoG/G17eBALtjYdnBA2w4NaCB1olfFvIQnm3dOQ01CKxZWK8hYBaFVEIYKMlZ+JlTKDxWEGQWZaF8YKhPa3ONBaLOPje0LQ1l76rjOJAitfvLCYa1cVKMLFs3TzasX5QKNsSoNViEBMNcRdgAAAADjkA4y2nF4SNsO5YUaBwd0oC+VO2ZehafVS+bprVeep1VLarV6yTxduHieth8ePKk55l//9qXTWuGQyQtM8gMSPwpMntt3XB/73nPZfhmuo2/94fVUWAAoaYQdAAAAQB5rrfb1juQqNF44OKAXDvRrV8+Qgqh3Rcw1On9hja5rq8+FGquWzFPT/IrT9quY6eaYrmPkOq4SZ/i/+9bGai2tq6I5J4CyYexEat6KpL293W7YsKHYwwAAAECJ6R0ajao0+rXtULZS48VDgxrMWy51WV1lLswYCzbaGqsVm2TfCgDA5BljNlpr2891HJUdAAAAKGkpP6OjQ6P6+UtH9Ni2I4p5jnqHfb1woF+HB04smzq/MqbVS+bpjquXatWSWq1aMk8XLq7RvIpYEUcPAJgMwg4AAADMKaNBqN7hUfUMpnVsaFRHB0++f3QorZ7B0ejrtIZGM6c8R2tDlW5c2RhVa8zT6iW1WlybOOOSqQCAuYWwAwAAADNu457eM/aLyIRWvcPZcKJnMK2jeUFFT3SbH2r0561yks9zjBpq4qqvTqixJq7WhirVVyfUUBPXc/uO6z+ePyQryTXS77Yv1wdfu7IA7xwAUAyEHQAAADins4UV+ay1GkwHOj7s6/iwr97hUW3ae1z/65GXlAmtHMfourZ6hdbmQo1jw6OnXTrVMVJ9dVz11XE1VCd08Xm1aqiOq6EmG2Dk7keP11Z6Z6zM2LinVz978UhuNZTrVzRM17cGADALEXYAAADgrJ7adVTv+spT8oNQnmP0u+3LVBX31Dvsq29kVL3Dvo4Pj6pvJBtwjK1YcjqZ0OrXB/t1wcJ5WrmoJhtk1GQrMcZCjbH7C6ricp3pmVYy06uhAABmF8IOAAAA5ASZUC8dHtTmfX16bv9xbd7fry37+5SJAgw/tPrWU3tVFXe1oDKmBVVxLaiKafWSWi2oimlBVUx1VXHNr8zeLqiK6eXjI/rY955TkMlWVXz5zmuKEjasaakj5ACAMkHYAQAAUKaCTKjtR7LBxub92W3ry/1KB6EkqSbh6dKltXrTZUv0wJaDyoRWMdfRPe+9RtevaJzQay2tq6KqAgBQMIQdAAAAZeCpXUf1wJaDqkl4GkgF2ry/T8+/3KeUnw02quOuLlk6X2uvb9Fly+brsqXz1dpQLSeaRjLenh1nQlUFAKCQCDsAAADmgFzY0Fav1U216h0ezTUAPTZ04v7Y7Vgfjd7hUR0dGNWwf2L51YTn6PJl8/X717bosmW1umzpAq1oPBFsnA5hBQBgLiHsAAAAmIWstdp/fERPdx/Xj7cc0ANbDp52xZJXmlfhqa4qrrqod8aKxmp1HxvWpu7jssqucPInN6/Uh26+YMbfAwAAxULYAQAAMAukg4y27O/X03t69XR3djvUn5YkeY7JBR1G0msuXKjbL1uiBVVx1VXFVV+dbRQ6vzKmmOuc8twb9/Sq48tP5JZdfdX5E+u3AQDAXEPYAQAAUASH+lPauKdXT+/p1cbuXj2/v1+jmWz/jOX1lbneGFc312l4NNCdX30qF1b86S0XTGhKCcuuAgDKjbHjqYcssvb2drthw4ZiDwMAAGBSBlK+7n/ugB7aekjpINTuniHtPz4iSYp7jq5YNl9XN9fpquY6Xd2yQIvmVZzyHFNtEAoAQCkwxmy01raf6zgqOwAAAKaBnwnVfWxYO48MaVfPoHYeGdLOniHtPDKknsH0Sce++vwGve/GNl3dUqeLm2oV906devJKNAgFAGD8CDsAAADOIX8llOX1VdpxZEi7eoa088hg9rZnSN3HhpUJT1TMNlTHtWJhtW5evVCH+tN67MUjspJcI92wslHvvbGteG8IAIASR9gBAAAQGUoHOtif0qG+lA72p3SgL6Ut+/v04PMHFZ5m5m/Cc9TWWK2LmubpTZc1qa2xWisWVmtFY43mV8Vyx23c06sndx3N9dy4fkVDAd8VAADlh7ADAACUvI27j+kn2w6rtaFadVXxbKDRn9LBKNQYux1IBaecm/CcXNBhJN180SL9watb1dZYrfPmV8pxzDlfnwahAAAUFmEHAAAoOWFotf3IoJ7cdUw/3nJQj2/vOeUYx0iL5lVo8fwKrVhYrRtWNmpxbYWWzE9ocW2FmuZXanFtQr8+MHDSsq1/fNPKSYUV9NwAAKBwCDsAAMCcF2RCbT3Qr6d2HdOTu47pV7uP6fiwL0mqSbi54xwj/f51LfrQa1eqsSYuzx1fY1CqMgAAmFsIOwAAwJyT8jN6du9x/Wp3Ntx4ek+vhkYzkqTWhiq9/qLFuratXte1NejIQEodX3kyV5nxtquWasn8U5d2PRuqMgAAmFsIOwAAwIzLrWYyzsoIa63SQai0HyoVZLRh9zE9uu2IrLXae2xEz+w9rtFMKElavWSefufqZbq2rV7XttVrce3JQUZzQxWVGQAAlBnCDgAAMCOstTrUn9b3n9mvv39wm4LQyjVG17bVqTLuKeVnNOJnlPJDpXP3s1+ngozsaVY/kaSVi2r07le36Nq2Bl3TWqcFVfFzjoXKDAAAygthBwAAmDJrrQ70pbR5f5+27O+LbvvVM5g+6biMtdp2aFDnLahQZcxVTcJTQ7Wripijypirilj2fkXuvqsndx7VQ1sPyUpyjfS2q5bqg69dWZw3CgAA5gTCDgAAcE7501Cubl6g/cdHTgo1tuzv09GhUUmS6xhdsKhGN61aqEvPq1Xcc/Tpf98qP5PtmfGlO9snVGVx5fIFeuylI7meG9evaJiptwkAAEoEYQcAADijwXSgBzYf0Cf/bbOCjJUxUnXC00AqkHQi2Lh59SJdtmy+Ll06XxctqVVl3D3peVYtqZ10zwxWQwEAABNF2AEAQJnrG/a1++iQdh8d0p6jw7nbPUeH1DM4etKx1mZXO/m99uXZYKOpVhUx9wzPfMJUe2bQcwMAAEwEYQcAAGXg0W2H9fDWQ2qojkvGaM/RIe2OAo3jw/5JxzbNr1BLQ5Ved9FitTRUKxOG+txPtisTTUO56y2XEjwAAIBZjbADAIASkgmtdh8d0q8P9Gvry/3aeqBfz+49rt68QMNIWlpXqdaGar3psia1NlSrpaFKrY3Vaq6vOm2lxqvOb2QaCQAAmDMIOwAAmKOGRwNtOzigrXnBxgsHBjTiZyRJnmO0clGNzltQqePDvqwkx0gfed0F+tNbLpzQazGNBAAAzCWEHQAAzHIbdx/TIy8cVn11XKOZMBds7OoZkrXZY+ZVeLq4qVbvuHa5Lm6q1cXn1WrloholPFcb9/Sq48tP5FYzuWHlwuK+IQAAgBlG2AEAwCwRhlb7j49o+5FB7Tg8qJcODeqZfce17eDAScctq6vUxU21essV5+WCjaULKmWMOe3zspoJAAAoN4QdAADMsI17ek8KGvxMqD1Hh7T98OCJ7cigdhweyk1BkaSG6vhJS7g6RvrQa1fqo7eumvAYmIYCAADKCWEHAAAzJBNa/XDzy/qz7z6rIGNljNS0oFKH+lIKQps7bumCSp2/qEbXXtugCxbXaOWiGq1cWKO66vgpU1B+c9WiIr4jAACAuYGwAwCAaTA8GuiFgwMnrYKS3yxUkqyVKmOuOl+zIhtoLKrR+QtrVJ04869jpqAAAABMHGEHAADnkD8N5ermBToykNbzB/pPCjbym4XWVni6KGoWWhV39aWf71Imk63M+Ns7Lp9wYMEUFAAAgIkh7AAA4AystfrR5gP6yHeeyU1DmVfhqW8kyB2zvL5SFy05e7PQm1cvpjIDAACggAg7AABQNtjY1zui5/b16bn9x7Vlf5827+tTfyrIO0ZaXlelj7xumS5uqtXqplrNr4yd87mpzAAAACgswg4AQNmx1upAX0rP7evT5v3Ho9s+HR/2JUkx1+iiplr91hXnqbbC01ce352bhvKpt15KcAEAADDLEXYAAErew1sP6YebD8hzpCODo9qyv089g6P6/9m77/C6y/v+/8/7DA0PyXtvlgEDBhswAdKQpBSaDRklxhktuGmT/tqmzSD5Nr900CZtZpt+MyDLiZKmzV5NyGQlBmywmcZgvPeQJS9J53w+9/ePc3QkeQGxtY6fj1xcOlv3J1ZyoZffAyCXCZw5fjjXnDuB86Y0cv7kEZw5YRi1ua6Vry89Z4JtKJIkSYOIYYckqaq0HCzwcLlaY+XGvTywbg/N5YoNgOmjhnDVWeM4f0oj500ZwewJw6nLZ4/zibahSJIkDTaGHZKkQautkPDYlhZWbmzh4U17WbmphbW7DlSenzlmKBMb69h7sEAEsgFef/FU3n7V6f13aEmSJPU6ww5J0oC3fH0zv1mzi0mN9RSSlJWb9rJyYwtPbt9Hkpb2vY5vqOWCKSN47bwpXDBlBOdNbqRxSJ7l65tZePtSCsXSzI0Fs0b389VIkiSptxl2SJIGnI5iylM79vHY5lZ+9eQOfvLYNmLser6hLscFU0fwttmzuGDKCC6YOoLxDXVH/ax500fSdNMCZ25IkiSdQnot7AghTAWWAOOBCHwuxvjJEMIHgZuBneWXvi/G+OPeOockaWA72FHkia37eGxLC49tbuWxrS2s3rafjiQFSptROoOOTIA/vmIm7//DswkhPOfv4cwNSZKkU0tvVnYUgb+JMT4YQhgOLA8h/Kz83MdjjB/pxe8tSRoglq9vrlRVnD52GI9taeHRLS08tqWVRzeXZmyUO1EYOSTPnMmNvPWKGZw7qZE5kxrYc6CDGz9/X6UN5do5E59X0CFJkqRTT6+FHTHGrcDW8u19IYQngMm99f0kSQNLjJEfrNzCO/97JcU0EiiV+XWa1FjHOZMaefn5k5gzuZFzJzUwsbHuiCBj1lhsQ5EkSdLz0iczO0IIM4ALgfuAy4F3hBDeBCyjVP3R3BfnkCT1rp372vnNml3c/dQu7n16F1tb2irPReD3zhzLTVfO5NxJjYwaWvOcP9c2FEmSJD0fvR52hBCGAd8C/irG2BpC+DTwj5T+vfcfgY8Cf3yU9y0GFgNMmzatt48pSfodHOpIuG/tbu59uhRwrNq2D4ARQ/JcftoYpo6q54v3rqOYlFpQ/r+XnGFoIUmSpF4XYvfx9if7w0PIAz8Efhpj/NhRnp8B/DDGOOd4nzN//vy4bNmyXjmjJOn4us/cmDt1BI9ubuGep3dxz1O7WL6+mY4kpSabYf6MkVxxxhiuPH0s50xqIJsJR7zfoEOSJEknIoSwPMY4/9le15vbWALweeCJ7kFHCGFieZ4HwGuAR3vrDJKkE7N83R7eePt9dBRTQoAhNVn2tycAnD2xgbdcPoMrTh/DxTNGUV+TPepn2IIiSZKkvtabbSyXA4uAR0IIK8qPvQ+4IYQwl1IbyzrgT3vxDJKk5yFNI6u27eP+tbt5YF0zv3pyB+3F0grYGGHG6KHc/MJZvOC0MYwdXtvPp5UkSZKOrje3sdwDHG034I9763tKkp6fQpLyyOYW7l+7h/vX7mHZuj20thUBmDyinvkzRvLbNbtJ0khNLsPfv2qOVRqSJEka8PpkG4skqf90n5lxzsQGHtrYXAk3Htqwl0OFUlvKrLFDedn5E7lk5igunjGKKSOHHPF+gw5JkiQNBoYdklTFfrtmF2/+wgMUkhQCZAIkKYQAZ09o4A0XT+XSmaOYP2PUMdtSnLkhSZKkwcawQ5KqSIylmRt3P7WTu5/axW/KLSilJ2HejFH82e+dxkXTR9JYn+/fw0qSJEm9xLBDkga5nfvauefpndy9ehd3P72LnfvaAThz/DCunTOBOx7bRpJG8rkM77lmtlUakiRJqnqGHZI0yLQVEpata+bup3Zy11O7eGJrKwAjh+S54oyxvPCMMVx5xlgmNNYBztyQJEnSqcewQ5IGuOXr9vDDR7YSY2TtroPct3Y3bYWUfDYwb/pI3vUHZ/HCM8Zy7qQGMpkjl2A5c0OSJEmnGsMOSRqAkjSybN0elvx2HT96ZFvl8Ukj6viji6dx5RljWDBrNENr/b9xSZIk6XD+W7IkDRAdxZTfPrObnzy6jZ89vo1d+zvIdqvUyARYeOl03n7V6f14SkmSJGngM+yQpH50qCPhrqd28tNHt/HzJ7bT2lZkSE2Wq2aP45pzJzByaA03ffkBCsWUfC7Dglmj+/vIkiRJ0oBn2CFJfWxfW4FfrtrBTx/bxq9W7eRQIaGxPs/vnzOBa+dM4IozxlCXz1Ze33TTAgeMSpIkSc+DYYcknaBn23ayfH0zv1q1gxgjj29t5d6nd9ORpIwZVst1F03m2jkTuXTWKPLZzFE/3wGjkiRJ0vNj2CFJJ+CBdXt4421LKSaRbCbwsvMnMrwux8H2hAMdRba1tPHw5hZiLL1+zLAa3nTZdK6ZM4ELp43sMZNDkiRJ0slh2CFJv6Ond+znL7/+EIWklGQU08gPH95KY32eITVZhtbkaG0rVIKOTIC3Xj6Dt191Rj+eWpIkSap+hh2S9DwVk5Tb71nLx362mnwmkM8G0jSSz2VoumlBj5aT5eubWXj70m4DRsf048klSZKkU4NhhyQ9D6u37+Nd/7OSlZta+INzx/OPr57Dxj2HjjmzY970kQ4YlSRJkvqYYYckPQfFJOWzdz3DJ3/+FENrs/zHDRfy8vMnEkJg3PC644YYDhiVJEmS+pZhhyQ9i28/uIkP/2QV21vbedl5E/n7V53LmGG1/X0sSZIkScdg2CFJx/DghmY+esdq7n16FwD5bOCPr5hp0CFJkiQNcIYdktRNRzHlfx/dyhfuXcfKjXupyWYIQATSNLL0md22pEiSJEkDnGGHpFPa8vXNLH1mN+dMHM6jm1v5ytL17NjXzqwxQ/mHV53LaWOH8SdffqDbNpXR/X1kSZIkSc/CsEPSKWv5+mbeeNtS2otp5bEXnjmWD792Br93xlgymQDgNhVJkiRpkDHskHRKemDdHt77rYcrQUcA3nrFDD7w8nOPeK3bVCRJkqTBxbBD0ikjTSO/WLWDz9y5huXrmxlemyWXCcQYyecyvOy8Sf19REmSJEkngWGHpKq2fH0z9z69i/Ziwh2PbeepHfuZPKKeD77iHF5/8VSe2LrPFhVJkiSpyhh2SKpa31+5mXd+YyXFNAIwfdQQPvGGubzs/InksxnAFhVJkiSpGhl2SKoqO/e184OVW/juis08vKml8ngmwOsvnsKrL5zcj6eTJEmS1BcMOyQNasvXN3P36p1EIg9tbOGep3aSRjh3UgNvecF0vn7/RopJ59rYMf19XEmSJEl9wLBD0qD1nQc387f/s5IkltpUxg6v4c9edBqvnjuZM8YPB+AVF0x2JockSZJ0ijHskDSopGnkV0/u4Av3ruXep3dXHs8EeMsLZvD2q87o8XpnckiSJEmnHsMOSQPa8vXNLH1mNxdMHcHT2/fxpd+sY93ug0xsrGPhpdP45vJNtqlIkiRJ6sGwQ9KAtXx9M2+8bSkdxZRYfuzCaSP4m6vP4po5E8hnM1x30RTbVCRJkiT1YNghaUBK08hn7lxDezGtPHbjpdP4p9ec1+N1tqlIkiRJOpxhh6QB5+kd+7jl24/wwLpmMqH0WE0uw2sumtK/B5MkSZI0KBh2SBowOoopn/71Gv7zV09TX5Pl3157PrPGDGXp2j22qUiSJEl6zgw7JA0Iy9c3c8u3H2b19v284oJJfODl5zB2eC0A82aM6ufTSZIkSRpMDDsk9at7nt7Fx+54kgc37GViYx2ff/N8XnL2+P4+liRJkqRBzLBDUr/59K+f5sM/eRKAbCbwb6+7gCtOd32sJEmSpBOT6e8DSDr1bGtp40+/sqwSdAAQIys37u2/Q0mSJEmqGoYdkvpMkkaW/HYdL/3Ynfz6yZ288dJp1OUzZAPkcxkWzBrd30eUJEmSVAVsY5HUJ1Zta+WWbz/CQxv2csXpY7j1NXOYPnoo1180haXP7HbbiiRJkqSTxrBDUq/67ZpdfOLnT7Fs3R4ah9Tw8TdcwKvnTiaEAMC86SMNOSRJkiSdVIYdknpFjJFP//pp/u2nq4lANgQ++voLuOqscf19NEmSJElVzpkdkk66VdtaWXj7ffxrOegoiTy+pbUfTyVJkiTpVGHYIemk2Xuwgw9871H+8JN389iWVm66cqYDSCVJkiT1OdtYJJ2Q5eub+c2aXbQeKvA/yzfReqjAwkun887fP5ORQ2u4ds5EB5BKkiRJ6lOGHZJ+Z8vX7eGG2+6jI0kBOHfScL5+8wLOnthQeY0DSCVJkiT1NcMOSc9bjJF7nt7Fe7/1cCXoyAT4w/Mm9gg6JEmSJKk/GHZIes5ijNy5eif//ouneHDDXkYPrSGXCcQYyzM5xvT3ESVJkiTJsEPS8S1f38zSZ3aRz2b40SPbWLlxL5NH1PNPr57D6+ZP4dHNrc7kkCRJkjSgGHZIOqbl65u54XO/pSMpLZAdO7yGf7nuPK6/aAo1udIyJ2dySJIkSRpoDDskHdXGPQd59zdXVoKOALzpshnccMm0/j2YJEmSJD0Lww5JPXQUU267+xn+45dPESM9ZnK84DRnckiSJEka+Aw7JFX8Zs0u/u67j7Jm5wGuOXcCH3jFOWxtaXMmhyRJkqRBxbBDOsUtX9/ML57YzqObW7jrqV1MHVXPF99yMVfNHgfApBH1hhySJEmSBhXDDukUtnzdHv7oc0sppKW5HK+bN5l/fPV51OWz/XwySZIkSfrdZfr7AJL6x96DHbz7W49Ugo5MgBljhhl0SJIkSRr0rOyQTkHL1+/hL772ENv3tfUYQLpg1uj+PpokSZIknTDDDukUkqaRz971DB+540kmj6jnO39+OYUkOoBUkiRJUlUx7JBOEbv3t/PO/17Jnat38ofnTeBD159PQ10ewJBDkiRJUlUx7JCq3PL1zfzPso389LFtHOhI+KdXz2HhpdMIIfT30SRJkiSpVxh2SFVs+bo9vOFzSymmkQB85HUXcP28Kf19LEmSJEnqVW5jkarYp371NMVu21a2tbb184kkSZIkqfdZ2SFVqV8/uYNfP7mTTIAAbluRJEmSdMow7JCq0Jqd+/mLrz/E7IkN/N3LzuahjXvdtiJJkiTplGHYIVWZloMFbv7yMmqyGW570zymjBzCC04f09/HkiRJkqQ+Y9ghVZFikvIX//UQG5sP8rWbFzBl5JD+PpIkSZIk9TnDDqmKfOh/V3HX6p186LrzuHjGqP4+jiRJkiT1C7exSFXif5Zt5PZ71vKWF8zgjy6Z1t/HkSRJkqR+Y9ghVYHl6/fw/u88yhWnj+H/vOzs/j6OJEmSJPUrww5pkPvpY9tY9Pn7GTU0z6feeCG5rP+zliRJknRq87ciaRC7+6mdvO2ryznYkdB8sMCanQf6+0iSJEmS1O8MO6RBasveQ/z1N1YQY+l+MUlZ+szu/j2UJEmSJA0Ahh3SIPTE1lau+7+/4UB7Qk02QzZAPpdhwazR/X00SZIkSep3rp6VBpm7n9rJn331QYbV5vj2n7+Agx0JS5/ZzYJZo5k3fWR/H0+SJEmS+p1hhzSI/M+yjdzy7Uc4fdwwvvjWi5nYWA9gyCFJkiRJ3Rh2SINAjJF//8XTfPznq7n89NF8+sZ5NNTl+/tYkiRJkjQgGXZIA9jy9c38Zs0uVmzYyy9W7eC6iybzoevOpybnuB1JkiRJOhbDDmmAWr6+mYW3LaWtmALwunmT+dfXXkAIoZ9PJkmSJEkDm389LA1QP1i5pRJ0BGDGmGEGHZIkSZL0HFjZIQ0gy9c3s/SZ3RwqJHztvvUAZALUuFZWkiRJkp4zww7peegMI3pjzevhbSvnThrOX//+WTy5bZ9rZSVJkiTpeTDskJ6j5eubeeNtSykkKTW5DE03LXjWAOL5hCP/df+GHm0r18yZyEvPHs9Lzx5/si5BkiRJkk4Jhh065a3YsYJl25cxf/x85o6be8zX/eTRrbSXw4i2Qsqnf/00b7l8Jis37q2EGZ3hxpxJDazfc5B/+MHjJGkkmwm8/arTuHjGaMYMr2HMb8KaHgAAIABJREFUsFpGDqlhxca9/OKJ7TyyuYW7n9pFAEK5beUFp43po/8GJEmSJKm6GHao6nWGGY01jbR0tJRCjfYOVqz6Ft+OrXx/229JY8pF49q5/vRJbN39MuZN/JMelRhPbd/HN5dvAkpVFwT4+RM7+PkTO4DSXI0Zo4ewdvdBYjzyDMU08slfPA08XXksAN1f+vr5U3jNhZN5cMNe21YkSZIk6QQYdmjQ6x5mPL59Gzv2Zhg3IuVVs68E4KY7bqI9aa+8PkNgdns7q2rypAAhcP0Ze3j/pVsIYTWFmXfyD0uWUV83k8wZL+FrWybwnQc3UVeT4xNvmMvmvYdYMGs033lwE1+9bwMAaYRd+zsqQUcAXnTWGH6zZg/FJCWfzfBvrzuf8Q317NzXzq797fzk0a389pk9pTMFmD56KJedNobLrOiQJEmSpBPSa2FHCGEqsAQYT+kvsD8XY/xkCGEU8A1gBrAOeH2Msbm3zqHq9tCOh3jLT95CGkvtJZWqij3w3XVfZMLQ8T2CDoCUyOO1NaUXh8AFYw7w/gVbyIVSCwlErjvzfzn7Z9D25O082vE+9scz+dD15/Oy8yf1+KxvPriJQjEln8vw3mvP5h9++Fjl/jtefCbveDHHnNkxZ3IjC29fWnm921YkSZIk6eTozcqOIvA3McYHQwjDgeUhhJ8BbwF+EWP8UAjhvcB7gff04jlUxb782JcrQQd0hhUlxVhg0/5NHNlXEsq9KBBiZMGEg2TL742x9E/DmkAIkXwssiDzBCvSM1m3+2CPT5k3fSRNNy3oEWacNWH4EeHGsdpRjvZ+SZIkSdKJ67WwI8a4Fdhavr0vhPAEMBl4FfCi8su+DPwaww49R8vXN/PdJ+5lSLyHKcUd3N38EKH8n5S0RxtJZ6CRARa0dfCS/Qd5rLaG7wwbTiSSDxlePelKrh4xlkzyQSKldpTf3PdSrtzwMDEUKMQs98ezqTlG5cW86SN7hBSH3382z/f1kiRJkqRn1yczO0IIM4ALgfuA8eUgBGAbpTYX6VktX9/MDV/+OrVTPwshqTyeC1leM+JcGrbu5uH9MCJNGFG/hu8NG0oSIJ/J82dXvI/w8Cr+65GRtA2pY/KELXz8Vdd3bV/ZPoUHV93O/duu4s/e8M8w9X5Ydzfr6y7gqv0zuMXKC0mSJEkaNHo97AghDAO+BfxVjLE1dOsziDHGEMJRdldACGExsBhg2rRpvX1MDQI/WLmFhtHfpz2TAqEycyPGhEnP3M1NLa2V18aD8Mr9+1lWX8/8c29g7pw3csvqh1lTt403XjCZr92/gTMa51Rev71+Idf/7wTe9QdnlR6YeglMvYTZwOy+vUxJkiRJ0gnK9OaHhxDylIKOphjjt8sPbw8hTCw/PxHYcbT3xhg/F2OcH2OcP3bs2N48pgaDR77JiLU30D5sM5kYyZT7VTKx1I4yv60DgJQM3+EqCqGWuR0JN+3vYO7s6wF4aMNeLpg6gqvPHU9HMeXup3ZWPv5Xq0o/hi+ePa6PL0ySJEmSdLL15jaWAHweeCLG+LFuT30feDPwofLX7/XWGVQlHvoqX//le/j8mFFcvf8ga3a9ilHT27l2bIGWhonMH3kWc9b/FcWYIZOv4bExr+ZXrdfy75fthxlXwtRLONhRZPX2fVx9zngumTGKEUPy3PHYdq6ZMxGAX67awcTGOmZPGN7PFytJkiRJOlG92cZyObAIeCSEsKL82PsohRz/HUL4E2A98PpePIMGu33b+M6dH+Cfx4ziqgMH+ZddzXy/MfLRrddx25teTDZTaov6+7vambx3OTctehMNq0dy+89W84/zr6axPg/AI5taSCPMnTaCXDbDS2aP5+dPbKeQpKQxcs/Tu3jNhZPp3mYlSZIkSRqcenMbyz1U9mEc4SW99X1VRQqH+Ml/X8cHRwxhwcF2PrxjDzW5WiZc8FK2/rSN367ZzRVnjGF/e5GmzRN4y+Vvh6lnc1HbLgBWbtzLC88stUCt3LQXgAumjADg6nPH860HN/HA2j0kMXKwI7GFRZIkSZKqRK/O7JB+Zxvu41df/D1uybZyRs1Udm68mY1z/hLe/H3mX3ENDXU5vrl8IwD3PLWLjiSthBUXTG0kBHhwQ3Pl41Zs3MvUUfWMHlYLwAvPGEtdPsMdj2/nl6t2UJvL8ILTxvT9dUqSJEmSTro+WT0rPS8b7+c3//Ua/mbcKM7uKDBt/yu5u+EsZr3mRZDNUAe8cu4kvrl8E61tBX65ajsNdbnKatjhdXnOHDechzbsrXzkyo0tXDhtROV+fU2WK88Yyx2PbSOfy3DZaaOpr8n28YVKkiRJknqDlR0acJYt/Th/OXYkszoKfHr7LkZtfYhFl00nl+36cX3tvKm0FVJ+9PBWfrlqJ7931jjy3Z6/aPoIHtrQTJpGduxrY/PeQ8ydOqLH97n6nPFsaWlj/e6DtrBIkiRJUhUx7NCA8s3ffJO373+YScWEz2zfTV2a5X7OOWJLygVTGjlt7FA+9rPV7NrfzksOCysunDqS1rYiz+w6wMqNLQBHhB0vOXt8ZajM2HJ7iyRJkiRp8DPs0IDxxd/+go+s+ntGJpFRG17BF9qu44a2W1iWnMHbvrqc5eu7ZnCEEHjtvKns3NdOAEYMyff4rIuml4KNBzc0s2JjM7lMYM7kxh6vWbvrAJ3LV/76v1f0+HxJkiRJ0uBl2KEBYfXup/jsE+9keCwyesMr+XXhRfxy7I08FM8EoFBMWfrM7h7vOX3sMAAiHBGGzBozjIa6HA9t2MvKjS3MnjicunzPmRzdP+9ony9JkiRJGpwMO9TvNrRu4K0/XEh9LPCizRewtHAltfkMb7psBrX5DNkA+VyGBbNG93jf6h37Km0oh4cVmUxg7rSRLF+/h5Ub91ZWzna3YNZoanLH/nxJkiRJ0uDkNhb1q637t/LmH95ISA5wS8s4Ri/6FCPW7WXBrNHMmz6SsyYMZ+kzuyv3u1swazS1+QyFYnrUsOKiaSP4xM93AkfO6wCYN30kTTctOObnS5IkSZIGJ8MO9ZudB3dy4w/fxKG2PfzrtnYufNt/MXzUGObNHFN5zbzpI48ZQjxbWHHhtK77Rws7nu3zJUmSJEmDk2GH+sWetj3c+KO3svfQNj6zbRcfOvh/eN++WuaNen6fc7ywojPgqMlmaDlUONEjS5IkSZIGCWd2qM+1drSy+I4/ZceBjXxm+3a+c+CNrEhmnvQBoU/v2E8AOpKUGz9/n9tWJEmSJOkUYdihPnWgcICbf/o2ntqzmn/ftp0NBy7lG+mLe2VA6NJndldWy7ptRZIkSZJOHbaxqM+0Fdu44XuLWbv/UW7d3sr5tdNZ87rP8s4NB3tlQGjntpVjDTCVJEmSJFUnww71ifu3PMBf/eL9tCZbeceOwIsOtrP+Dz/LRadN4qLTeud7um1FkiRJkk5Nhh06qZavb+a7T9xLbshaXjX7SpJD0/nCA7/krv1/DyGSBRYkW/mb4l8wd9cwzuvl87htRZIkSZJOPYYdOiHL1zez9JldjBlWy52rd/LTNXdSP+1LAHzrmS9yaP3NZBofoGZkBCAQ+VTNhdyTuZi32VYiSZIkSeoFhh16XlbsWMGy7cuYP34++1un8JYv3E8xLQUZmQD58Y8QQul+GouEIWsI2UMQIUMkR4ZJ57yDpnMWWHEhSZIkSeoVhh06pqamJj7xnvfwkc2b+dspU1h4y5v5au336MgFcpkaCptupphOIVO/ntyQZ3jh1Eu5d2sjADFCPpMn6ZhFbuS9nNeW8MIEFrziP5k77ff6+cokSZIkSdXM1bM6qqamJhYvXsy1dXt48mVjuLZ2N7+99zu0ZyAS6Ug6qBm2ltph6xky7XPUjL2Dhwof5vfPHQZATbaGL1xzOx98+RzI7+eGA6287VVLDDokSZIkSb3Oyg4d1fWLFnHurDpues9MOnKBfBEO7nglWX5MICGTwqc/93m+8tGb+fXWBIAkFtlTXAdAIe2goaaBjc/8C7kYedHlt8CU+f14RZIkSZKkU4WVHTqqWTFy++yhdOQCMRPoyAWSfDsdu18EwEVbz+GSnz3CBRNmARAI5DN58pk8Q3JDAHjwkSZ+vvsRFuRGMvzSP++vS5EkSZIknWIMO3RUNdOnM3rVAXJJadhoPkbOPJglFkszOc5OAkyYwKj6UQBcOO5Cbrv6NjrSDs4bex6jckP5xqqvsTmf4/fnvR1C6LdrkSRJkiSdWgw7dFS33norH1hziDffuxuAv92zh++ktzM1bAGg8WDpa2t7KwCj60czd9xcdhzcwfhiwtyWnTxZkycbI1fVjO2fi5AkSZIknZIMOwSUBpJePGUKd4bAxVOnAvDd//gPqC1VZExJErIhYWZmEwD7rn85AK0dpbBjy/4tpEmRXQd2MHbNnVzY1g7AxGKR9c/c0deXI0mSJEk6hRl2qLJ55eo4nEcWvI6r02EsXryYtpEjGTP5HADaQyCNGXYwEugKOSphx961NP/HBRRJGVc3muGh9KO1OZfj5m0/Y8WOFf1wZZIkSZKkU5Fhh7h+0SLuGjGNb/3RrXz0ykV8649u5a4R07h+0SKKrSkAbSHwYHourWkdAPs69gFdbSzNyUHWH9oJwLiL3krz/LcSgBgChZiybPuyvr8wSZIkSdIpybBDzIqRz047j/ZcnpjJ0JHN8Zlp5zEzRgpvWghARwjkazPUTjh6ZQfAiroaAMbuWc/8s15DbbaObMiSz+SZP961s5IkSZKkvpHr7wOo/9VMn87ILauIlOZz5NKEcRseoXb6dApJAYC2TGB8soWafAKFbpUdHa0MJ8s+Eh6qK1V9jJ9xFRPGzeW2q29j2fZlzB8/n7nj5vbPxUmSJEmSTjmGHeLWW29l5UebKuthL733a1yybTXnLFnC7rS0jaU9BCbEXeQzHUBX+0prRytnhTqWxQOsHDYC0nZGn/YSAOaOm2vIIUmSJEnqc7axnOKampr4+Hvewz0XvZy4dxsAM9sPcktjIwCFtFTZ0R4CmRCppVTR0X1mx8z2Q9QSaE7bGVU3inwm3w9XIkmSJElSiWHHKezP//zPedeNN/LRScN5zfgHefuq28jWrmX9Czp47ag2Fi9ezCOPPwLAoWwtAPm4H4B9hX0kaUJrRyuNB1uYmBsGwPgh4/vnYiRJkiRJKjPsOEU1NTXx0U9/mh9fNoxVf3SA3x/6Pa5+ydMMnXEbD87fxv++eyb3TozM+MXPADhQP7r0xnR/5TN2HNxBEhMa0iKT68cBMHbI2D6/FkmSJEmSunNmxynq+kWLWHVaPX/yJ9MpZOH2OJxX7NtPDCkE6MgFbps9lDtygTpgf7aePXEYMTlY+YxN+zcB0JCkTGqcDvvWMG7IuH66IkmSJEmSSqzsOEXNjJEvzR5KRzYQQ6AjBIgQYnkjSxIZveoA2cZSe8qBkGF9nEAhaat8xqZ95bAjjUwaPRuAja0bWbFjRR9fjSRJkiRJXQw7TkFNTU1sD4EJeydVfgDyMfIHv2xmwuppAFz+5S3MW9vOeXPPA+AAgbVxAoW0ncba0vDSzfs3A9AwZAzF8iaX+7fdz8133GzgIUmSJEnqN4Ydp6DrFy3igYlnseSyv+M1LYcA+PCO3Vy85hCr95V+JH7ISPYvWcKkyaWBowcjbA4TaY9FxtaV5ndU2lhGzGBv+14AIpFCWmDZ9mV9fVmSJEmSJAGGHaekWTHynzMu5MX5h5hZbks5s9DBe+sCL7vmxQB8oelrLFy4kEKhFIYcipFdtVNpD4ExuaEAbO5sYxl5OtfMuIbabC3ZkCWfyTN//Px+uDJJkiRJkhxQekqqmT6dPUMbeUv2Th6kFFwkBMZMHEmsKeVfu/YfAKCYtAOlsGPfkGm0h8BYsgBsat0AQMO4c5g8bi63X307y7YvY/74+cwdN7evL0uSJEmSJMDKjlPS3/3Drew/91yuyDzCI3vqACgkkZe99Erqa0qzN3YdKG1dKRRLlR9tpBxqmEF7CIwsFsmGLLvam8nEyNBxcwCYO24uN513k0GHJEmSJKlfGXacYpqamvjo1+7k5UOXA3DXk1sBaKsdzrkzJ1FfU3pd86Fy2JF0ANAeU+qGjqA9BGrbWxleMxyA4WlKZtzsPr4KSZIkSZKO7ZhhRwhhdrfbtYc9t6A3D6Xe0dTUxJ++46+44Nzp3MwP2bm5yME0D0CuYQy0tVCXL1V2NB8szeoolNtYCiSMHJolDYG6gy2VsKOBDNSP7IerkSRJkiTp6I5X2fG1brd/e9hz/7cXzqJe1NTUxPU33sjtL7iYLw37GENzHYyfkOX/DE0ASGuHQ9tecqVxHOxtK4cdaQGAJCQ0lMZ7UHtwDw01DQA0ZGqRJEmSJGkgOd6A0nCM20e7rwGsqamJxYsX8/iMCxl1/gRqKAIQA2wZWcq7ijVD4VALKaXwo+VQz7AjhoSG+tLn1ba1MDw3BICGcoWHJEmSJEkDxfEqO+Ixbh/tvgaw6xct4q4R0/jGaz8AGQgBYgqksKel9EeZ1A6DQ3tJYinsaG3vDDvKwUimyJDa0mtrY2R4sTTLo6HOFhZJkiRJ0sByvMqOKSGEf6dUxdF5m/L9yb1+Mp00s2Lk5dPOI5dJeEPuTtYkE3h8zTDC3SsJC0oVGkl+CLS1kKSlsGN/e2kLS2fYEULCkLrSc7Ux0rB/FwANQ8f39eVIkiRJknRcxws73tXt9rLDnjv8vgawmunTGbfhEW7KNjAl7OLN7e9myp1f5cPb4a2veAXEpSQ1Q8thRync2N9RGkxaLFd6AGRzpQCkNkYamjfCkAwNDVP7/oIkSZIkSTqOY4YdMcYv9+VB1DuampoY2trKX3VsYEh2J3cUL2Jy01e5ZNtqvrxkCdvP2s7Sx5aS5OshJiTl7SuHiu2kaaQQU7IRkgAhU2ptqa1tpKGtFYaMoGHYhP68PEmSJEmSjnC8mR0a5DoHk/7D0FZG3VBPTSjwz4eu4w+2rOKWxkaAyoyOpKbczlI4CECkSPPBDgqkDClPaClyAIDa4ZMYnqYANNQ29uUlSZIkSZL0rAw7qtj1ixZxYFQ7179pCJlJWQKBkfVreOIVY3ntqLbShpYnHgegmC+tWkkKpVYVQpGd+9spxEh9LP2YtHa0AlDbMIXmTOmxPYf29PFVSZIkSZJ0fIYdVWxWjKyYkSVmgRBYWVfDM6f9kv+8bhw/fvdM7p0YOe2OnwKQlsOOYrHUqkIosr31IEmAujQLdIUd62jncyNKFR2fefgzrNixom8vTJIkSZKk4zhm2BFCuKPb7Vv65jg6mWqmT+eZdQlEiDFyf10daYgQAoVc4LbZQ/lSKL22mKsDIC2WZnaEkLCttdTSkk9Lo11a2lsAeHLrAyTl96VpwrLtzquVJEmSJA0cx6vsGNvt9ut6+yA6+W699VayWyKrHytQTGDVk/Og3JKSTyKjVx0g2zAcgCRfW/pa7N7GUprRkS2HHZ2VHfMOtVMTI9kYyYfA/PHz+/KyJEmSJEk6ruOFHbHPTqFesXDhQvYvWcK9ueHsL8D6rWcQdpwFwEs/uZ55a9u55NJLAEjLlR3F8jaWbDZhR+u+0gcleaAr7JhbjNy2fTfvaDnAbRe9m7nj5vblZUmSJEmSdFzHXD0LzAohfB8I3W5XxBhf2asn00mxcOFCaFwOj3+PjgWX0VbcTS3wjXQs5y35J06b+RQrnlpBMVsDBNKkA4CafEpLa2n4aFosVX20tpfCjrobvsHcTQ8wd8aVMPWS/rgsSZIkSZKO6Xhhx6u63f5Ibx9EvSgtQLaGieOn0tw2kn3AsuXLGF0/mg/c+wEAElKobSAphx35XMrBA81QBzEtVX20dJRmdtRMfwHMfGG/XIokSZIkSc/mmGFHjPFOgBDCS4DfxBgP9dmpdFI0NTXxife8hx/M301yWi0bDm0iM67UnZTGFIAkJqWvaQJ1jRQ7w45syqGWUtiRJqWwo7W9lVzIkcscLyOTJEmSJKl/PZfVs28CVoYQloYQ/i2E8IoQwsjePphOTFNTE4sXL+bauj384KyRrM1nefTxJ2hrK21Y6Qw7YiyFH0lMoL6RNC0AkMkkFNr2AlBMhwKlyo6abE1fX4okSZIkSc/Ls/4VfYzxzQAhhEnAa4H/BCY9l/eq/1y/aBHnzqrjT947k45coC6NzGvZRUvzLtobu8KOlG4VHnUjSNJtECCTTUjKA0k7klLYUUyLNNQ09M8FSZIkSZL0HD1rYBFCuBG4EjgP2AV8Cri7l8+lEzQrRq6bPZRCNkAIFAJsG72TFlJq6WpfSdNy2NHZxnJwI2QhhCL1odS51J4Mq3xubba2z69FkiRJkqTn47lUZ3wCWAN8BvhVjHFdr55IJ0XN9OmMXrWDTIQEyMUIeycTJjwFdLWvdFZ2FGMR6kaQ7k8gG4gUqcu0AdCWDiWXyVFMi4YdkiRJkqQB71lndsQYxwB/DNQBt4YQ7g8hfKXXT6YTcuutt3LR2nZmLS3N3finh7dSc2ASI0eW2lAqlR2d7SwxhfoRJGmxdJ8idZTme2Tywyohh2GHJEmSJGmge9awI4TQAEwDpgMzgEYolwNowFq4cCH7lyzhMUrzNuraMxSmTWfYsNL9zoqOylaWzjaWzscpUptpB6CmrtGwQ5IkSZI0aDyXNpZ7uv3zqRjjpt49kk6WhQsXsumMTXz1ia9y8WWXM3RHAyETIe2a1dEZdnS2sSQEAJK0QG0otbE01A+hmC2tn63NGXZIkiRJkga257KN5fy+OIh6R6S8Wjabp5Ck1ISeW1h6tLHUNZKUsg460g7qsqXKjhH19ewrhxyunpUkSZIkDXTP2saiwS1Jy7M5MlmKSYRQHkwaj9LGUt9V2VFIC9RnCwCMGlJPXbmyo/OrJEmSJEkDlWFHlauEGdk8xTQlHF7R0WMbS1dlB0Am2wHAiCH1lYoOKzskSZIkSQOdYUeVq2xdyeQoJJFweGVH2n1AaVdlBwDlsGOMlR2SJEmSpEHkmGFHCGFICOHdIYR3hRDqQghvCSF8P4TwryGEYX15SP3uuio7chSTFMozOyohCN3uH1bZUaQUdoxOipXBpFZ2SJIkSZIGuuNVdnwJGA/MBH4EzAf+DQjAp3v9ZDopKhUcIUsh7ZrZEWPPr0nsnNnRpT0tDSht/dEvKytnreyQJEmSJA10x9vGcmaM8fUhhABsBV4aY4whhHuAlX1zPJ2owys7Aj0rOypf0wRydSQhUF9MOZTL0JYpvfYTuTO46jtNcFHGyg5JkiRJ0oD3rDM7Yumv/n9c/tp5P/b2wXRyVMKMkCWNHLGNpUdlRwgkIUNdrhRotGfKz4U8zZPPAKAuZ2WHJEmSJGlgO17YsaxzNkeM8Y87HwwhnAbs6+2D6eToDDUKmWz5kZ5hxxEVHiFQH0o/FgcyGUIM5JOUKeWKkM52FkmSJEmSBqpjhh0xxptijPuP8vga4MpePZVOms4Qo0hn2NFz9WylsiMthx0E6suPHcwE8mRo6ljO1Na9gGGHJEmSJGnge16rZ0MIS6DSyqJBIJZDjWK5WuPwNpYjKjwC1KXlsCNkqM3lmfcft1L32hsAww5JkiRJ0sB3zAGlIYTvH/4QcFUIYQRAjPGVvXkwnRxJWgCgUMm1jjOgFEiI1KdFyJQrOzKlH5HO1bOGHZIkSZKkge5421imAI8Dt1Ma9BAorZ/9aB+cSydJWg4xCqFnG0tl9SxdA0pjjCRAfVKEXI4DIUMukwe6Qg7DDkmSJEnSQHe8Npb5wHLg/UBLjPHXwKEY450xxjv74nA6cUlaBKBY/qOOh1V2dLaxFGOxcruuWKoGKVV25GlqauIjt/wdAO966000NTX13QVIkiRJkvQ8HW9AaRpj/DjwVuD9IYRPcfxKEA1AaTnsqLSxhJ6VHZWZHWlSCUDqy9UghzIZ2g51sHjxYuaG0qzaBaGFxYsXG3hIkiRJkgasZx1QGmPcFGN8HfC/wFd7/0g6mdLObSzlAaWV7SuHVXakMaVYDkbqu82fHblpG/dOjKx82VgA7rthIvdOjFy/aFHfXIAkSZIkSc/Tc97GEmP8UYzxfb15GJ18nTM7OmLPAaXpYStoi2lXG0t92hV2rCpEbp89lCQTSq/LBG6bPZSZLuSRJEmSJA1QtqVUuc4Kjg5KYUXnQNI0PXL1bOdr67oFGSFbw+hVB8gXI0UgV4yMXnWA2unT++oSJEmSJEl6Xgw7qlxaGVDaGXYcvbKjZxtLWnn/jGkzuGjtk6T/upbvzR7KtasOMG9tO2ctubXPrkGSJEmSpOfjObexaHDqquzodGTIAcduY5kycQr7lyzhK8VxPPrj3XylOI79S5awcOHCPjm/JEmSJEnPl5UdVS6W21U6t7F0VnQk5VkeKUe2sdTESIiRGAL5bJ6FCxcabkiSJEmSBo1eq+wIIXwhhLAjhPBot8c+GELYHEJYUf7nD3vr+6ukM8AoxJ5tLJXZHd1Wz3a2seQoBR4A+Uy+L48rSZIkSdIJ6802li8B1xzl8Y/HGOeW//lxL35/0bV6tjKgtNtA0tLzXfc7b2dyddSUO1kMOyRJkiRJg02vhR0xxruAPb31+Xpuks6ZHOXworNtJcbDKjtiQjGWKzvyQ8hjZYckSZIkaXDqjwGl7wghPFxucxnZD9//lFKp7OhsYynfP6KyI00qczyy+aFdbSxZww5JkiRJ0uDS12HHp4HTgLnAVuCjx3phCGFxCGFZCGHZzp07++p8VaczzOic2XG0lbMAxVisBCDZ/BDyzuyQJEmSJA1SfRp2xBi3xxiTWBoccRtwyXFe+7kY4/wY4/yxY8f23SGrTCXMOOx+59fu7SyVsKNmmANKJUmSJEmDVp+GHSGEid3uvgZ49Fiv1cnRObOjozyz42izOuCwNpaaoQ4olSRJkiQNWrne+uAQwteBFwFjQgibgP8feFEIYS4QgXVq3gANAAAgAElEQVTAn/bW91dJVxtL+T49Z3V0rqDt3sZy5y/uIn/hMACefPxJmN+XJ5YkSZIk6cT0WtgRY7zhKA9/vre+n44uOTzsOMbq2TSm/OSOnwBwZsch1sShAPzw+z+kKdvEwoUL+/LYkiRJkiT9zvpjG4v6UOwMO8r3D5/V0b2N5Yp/+WcAZp2Wq8zs+PvaItcvWtSHJ5YkSZIk6cQYdlS5pNymUihlHJVVtJ0hR2foUYxFbiwtbCELlbBjR2NgZvm2JEmSJEmDgWFHlTtiZsdxKjtyE8YBkEljZfXs3p0JtdOn9+WRJUmSJEk6IYYdVS6pDCBNyWZCV7gRk0rgAaVBpTe++UYA7vxhG89sK70uvzvl1ltv7eNTS5IkSZL0uzPsqHJdA0lTcpnY4/HO5zrXy1525WUAfIJxLNtSCjuKb73J4aSSJEmSpEHFsKPKpZ2VHWlKPhu6Hu8WdtRkawDoSDoAuOMnd/C2m98GwJWXX9mXx5UkSZIk6YQZdlS5tHMAaZqQzR5W2UHPyo7OsCOTyVQe6/wqSZIkSdJgYdhR5TpndiQxIXeMyo7Dw45cyJHPGnZIkiRJkgYnw44q19nGkqQJ+W6VHUlMjhl2ZDNZajI1PZ6TJEmSJGmwMOyocknn15j2aGOJxK6wo1zF0ZGWw46Qrczx6HxOkiRJkqTBwrCjinVfLZvEpMeA0iQ9TmVHsLJDkiRJkjR4GXZUsSQmXbfThFy3P+0elR2HhR3f/fZ3+eQH/xGAxa++nqampj46sSRJkiRJJ86wo4p1hhml2wm5Z5vZUW5jeedfv5M54QAAl2dbWLx4sYGHJEmSJGnQMOyoYj0qO2JKNtv1XIxHzuxoT9oBuGNs5LFrRgNw75snce/EyPWLFvXRqSVJkiRJOjGGHVWsZ2VHSi5z9MqOXCYHdLWxLDljCMVQmu9RzAZumz2Umd3mf0iSJEmSNJAZdlSxw9tYst3CjjSmxPJa2s42lkJSAGD0qgPUFCPZJJIvRkavOkDt9Ol9eHJJkiRJkn53uf4+gHrPEZUd2Z7Pdba5dG5e6WxjmbemjfCva/ne7KFcu+oA89a2c9aSW/vu4JIkSZIknQArO6pY95kdaUzJZno+d/jMjs4BpQe+9GW+UhzHoz/ezVeK49i/ZAkLFy7su4NLkiRJknQCrOyoYt0rO5KYkOnWxtJjQGm31bO5kOPGG2/kxhtv7NvDSpIkSZJ0kljZUcWStKuyI5I+++rZpINM8EdCkiRJkjS4+ZttFescQAqlKo9M6PZcjMTYc0Bpe9JONpNFkiRJkqTBzLCjih0xs+Owyo7O5ztndhTSArlgZ5MkSZIkaXAz7Khiado1syOSkD2ssuOobSwZfyQkSZIkSYObv9lWscMrOzKZngNLO9tcerSxBNtYJEmSJEmDm2FHFeu+jSWSks32fM42FkmSJElSNTLsqGLdw47SgNKeA0sPH1DakXQ4oFSSJEmSNOgZdlSx7m0skZTu4zh6VHZ0a2Nx9awkSZIkabDzN9sqliaFyu1ISjZTquTIhAwpR1Z2FNICuYxtLJIkSZKkwc2wo4qlxfbu9yptLPlMniRNuraxlGd2AA4olSRJkiQNeoYdVSxJu4UdIRLKlR25TI5IPKKNBbCNRZIkSZI06PmbbRXr3sYSurWx5DK50urZw9pYOp+TJEmSJGkwM+yoYmmxA4AsAULs0caSpkcOKAXbWCRJkiRJg59hRxVL0lLYkQtZIO3RxnK0AaWAq2clSZIkSYOeYUcVS5NS2JEPWQg9B5SmMSXFAaWSJEmSpOpj2FHFkkrYkQMiIXSr7Ihp1zYW21gkSZIkSVXEsKOKxfKA0mzIlCo7Ml3hRvewoyZbU3mPbSySJEmSpMHOsKOKdc3syBFICeXHD6/syIWuDSxWdkiSJEmSBjvDjiqWVio7shAi4RiVHc7skCRJkiRVE8OOKtY5s6NUuXGUAaXlsCMbsmRC6UfBNhZJkiRJ0mBn2FHFuio7chBS6DagNIlJJezIhExX2GFlhyRJkiRpkDPsqGJpLAKQoXMbS3lGx2EzOzIhU5nbYdghSZIkSRrsDDuqWFpuY8lmSpUdR6yepSvs6GxfsY1FkiRJkjTYGXZUsSTpWdkBRx9QmiFTqejovplFkiRJkqTByLCjiqVp58yOPOFolR2dYUemK+zonN0hSZIkSdJg5W+2VSwphx0h5IGusKOzsiPG0v0MXW0suYyVHZIkSZKkwc2wo4rFtNTGEsiVN7F0a2MhJYlJ6fkQKpUdDiiVJEmSJA12hh1VLOkMOw6r7MhlcqRpVxtLNmQrFR22sUiSJEmSBjt/s61iaaWyI1+q7OjexkJX2BFCqIQctrFIkiRJkgY7w44qdvjMjs42liMGlIaMbSySJEmSpKph2FHF0jQp38qXW1gi2ZAlhECSJkRKlR492lgy/khIkiRJkgY3f7OtYp1tLFAKMlKKlSqOlJQk7RpQWmljCbaxSJIkSZIGN8OOKnZE2BFLYUcglFbPdqvsqLSxZGxjkSRJkiQNboYdVayyjSWWwo6kHHZkM9keMzsCodLG4swOSZIkSdJgZ9hRxSozO2IpwCimBbIhS6b8x57E0vMOKJUkSZIkVRPDjiqWxFJlR6QcdpQrOzrncxTK21qyIVt5zDYWSZIkSdJgZ9hRxWLsrOwohxtJqbKjM9Aodra5BNtYJEmSJEnVw7CjinXO7EjT0h9zsduAUuiq7LCNRZIkSZJUTQw7qtj/Y+/O4+Q463vff5+qXmfVaKSRRsvMSHiTbIMtjcGJSTA2YIsQnGAnlzAxhG2ycU9yc8/JgpKDQ85wQk4SshxuiCEEBMOSC4TFQBywwawGJDC2bEteNbKl0TYazdKzdFfVc/6o6p7uWSTLUvfMlD5vXvXq6urq7hqpqHF99Xt+TxD4cq1kbRRuFCs7okCjOPVssWmpxDAWAAAAAMDyR9gRY7715Uiy0TCWfJCX4zgyJgw/vMCb6dVBZQcAAAAAICYIO2IssIFcSX4wM2ylvLKDsAMAAAAAEEeEHTEWBL4cmYphLI4pq+ywXmkaWoaxAAAAAADigrAjxoJoGEtQVtlR3oyUyg4AAAAAQBwRdsSYbwM5xswJO4oBR/G5NFPRUZyCFgAAAACA5YqwI8YC68uVmdOzoxhwzFfZUXwOAAAAAMByxZ1tjPk2kCOjYFbPjvJhLMX+HcWKjoShsgMAAAAAsLwRdsSYtUFU2RE+L1Z2lE89O7uigwalAAAAAIDljrAjxnwbyJiZBqXFYSuna1DKMBYAAAAAwHLHnW2MBTaQK2dOz47yqWeNGMYCAAAAAIgXwo4YK87G4i8w9awf+HOmnGUYCwAAAABguSPsiIn+/n5ds2GD7jNG12zcqP7+fgUKKzsCvzLsKO/ZUVxnGAsAAAAAIC64s42B/v5+9fb26kazQj98aY9eFTSot7dXnu/JMUaeDffzAk+u45aCjeKwFmmmoqM4nAUAAAAAgOWKO9sYuPX223VZ+6X6v17fJ89xlXnx6/StT+3Ux4NpOcaRH1V2SJIjp1S94dm5lR3FRwAAAAAAlisqO6qkv79fXV1dchxHXV1d6u/vr9p3bbZW/9xxpTzHkYxRwXH1gY4r5RkjR05p6lkpHKbiRH/t883GQs8OAAAAAMByR9hRBcVhJR0vlN71/svV8UKpt7e3aoFHqrNTbQcfkmPD8SrJwFfbwQclI7llDUolyXGcUqDhBd6ckIPKDgAAAADAckfYUQU7d+7U9htX6+7PDGpn7yO6+zOD2n7jau3cubMq39fX16drjjymNYcfkyT9wr+/Ry859rh8Y+QYV74/s69r3NJ0s/M1KCXsAAAAAAAsd4QdVXDw4EHduKNRSddTwg2UdD3duKNRBw8erMr39fT0aHzXLg2mkpKkz2atJj78QQWS3Nk9O8qmnvUCrzSkpdiYlGEsAAAAAIDljrCjCjo6OnTPV8dU8BPyfEcFP6F7vjqmjo6Oqn1nT0+Ptr5omyTpP+75hl5/2+sUGMkYR4Wynh2ucSumnnUcR/39/fq7P3+3JOlXXvbyqvYXAQAAAACg2gg7qqCvr0977jmuX/3rd+h/feG1uum2du2557j6+vqq+r0TeU+SlJv2JL+gQOaMlR0jwyPq7e3VVicnSbo+MVzV/iIAAAAAAFQbYUcV9PT06M4779RDj6/X33/2Z3TwQenOO+9UT09PVb93fDpszpGb9qWgIF8Ke3aUNSh1jVsx9WzLwIC+2271yCtbJUn3/eZGfbfd6tbbb6/qsQIAAAAAUC2JxT6AuOrp6dE9hR/p2NiU7ur/w5p8Z7GyYyIfVXaYsGeHVWVlRzHsKAQFPexbfeiyevlOuE/BNfrgZfX63JOTGqzJUQMAAAAAcH5R2VFF2aSrybx/5h3PgyCwmsiXVXZEw1gc40p25q+5orIj8GRSabXuyylVsHJ9q6Rn1bovp3RnZ02OGwAAAACA843KjirKJF1NlXcHraKJwkyokst7UlBQ+M2OVFbZYYwphR2S1LGhQ9ue3q/gr57WFy6r1459OW1/elqX7qpufxEAAAAAAKqFyo4qyqYcTRZqU9kxMe2V1sPKjrz8aDaW2ZUdxQalktTW1qbxXbv0Ma9Ne78ypI954fNq9xcBAAAAAKBaqOyooloOYxkvCzvCnh3ezDCWskzLMU5p6llJMjLq6ekh3AAAAAAAxAaVHVWUTbqaLPiy1lb9uybKQpXxaS+s7JBk5Eq2cjaW8soO13EFAAAAAECcVC3sMMZ82BhzzBizt2zbSmPM14wxj0ePLdX6/qUgkwqDhGmv+n07cuWVHdHUs4GRzDyVHeU9OxzyLgAAAABAzFTzTvcjkm6ete2PJd1jrb1Y0j3R89jKJsOwoxZDWXJ5r3LdzyuQkeTIlld2OG5F2FE+pAUAAAAAgDioWthhrf2WpJOzNt8i6aPR+kcl/VK1vn8pKIUdNWhSmpsOvyOTdMIqD99ToDNXdpQPaQEAAAAAIA5MNftJGGO6JN1lrb0ien7KWrsiWjeShovPT6exsdFu3769asdZLSfGp/XEsXG9aOOKUvBRLcfGpvXU8XFlkq5SrqOtKwp6aORJZVLNGhpplVv3tCRpbf1ara5brYeOPyRJak4365KWS6p6bAAAAAAAnA/33XffHmtt95n2W7SGDTZMWRZMWowxvcaY3caY3YVCoYZHdv440RCRIKh+g1I/+o6k68i3VrJB9IdbOUzFRP8rfw4AAAAAQJzUeurZo8aYdmvtoDGmXdKxhXa01t4p6U5J6u7utt/85jdrdIjnz7ceO643fviH+qff+hl1d62s6nf94z2P62++9ph2XLFW+46M6RuvPKJX7v5zXdx2vb7y3R1q3LJTkvT2K9+uWy+5VTd/Nmyncv3G6/WPN/xjVY8NAAAAAIDz4bn2nax1ZccXJb0pWn+TpC/U+PtrKpuqXc+O8bynVMJRczYZ9ewoKJwDprJnhzGmok8Hs7EAAAAAAOKmmlPPflLS9yVdaox51hjzVkl/KemVxpjHJb0ieh5btZyNZWLaV0M6obpUQhN5f2Y2FuNKZUNXXONWDF1xHRqUAgAAAADipWrDWKy1v7bASzdW6zuXmkxNZ2PxVJdy1ZB2lct7sn5BgZGswmNwjCPf+nKMUxFw0LMDAAAAABA3jGGoouIwlqlahB15T/WphOrSCVkrFQp5+ZJslGc50dAV17gVU8+WrwMAAAAAEAfc6VZRTYex5H3Vp13VRwFLfno6HMZSVtlRfCzv00HYAQAAAACIG+50q6gUdhSCqn/X+LSn+nRC9emwkqNQmFZgpGBW2OEaV45D2AEAAAAAiC/udKsokwz/eGvRs2Ni2g+HsaTCsMPLTyvQTM+O4gwsVHYAAAAAAOKOO90qMsYom3Rr0rNjfNpTXdpVfToMNbxCXr4xUtSAtFTZ4dCzAwAAAAAQb9zpVlk25daoZ4dXWdlRCCs7ZGeGr0hRZQdhBwAAAAAgxrjTrbJs0q3R1LO+6tMJNUQ9O/zibCx2VmWHcUvBR/l2AAAAAADigjvdKssknaqHHXkvUN4PVJ9yVRfNxuJ507LGKAjCsKMYcBhjKis7OAUAAAAAADHDnW6VZVOupqo8jKU4TKZ8NhbPy0uSbNSzw3XKZmMpCzuMMVU9NgAAAAAAao2wo8pqMYxlPO9JkurLG5R605JmhrGU9+wwxsiocjsAAAAAAHFB2FFlmRqEHRPTxbAjoZTrKOEY+V5BkmQDR8aEs7BIlaFH+SMAAAAAAHHBnW6VZZPVn41lvBh2pBIyxqgu5Srww2EsgTVKOs6ccKP4yDAWAAAAAEDcEHZUWTblaqralR1RmFJsTtqQTsgPosoOKyVcU6romF3ZwTAWAAAAAEDcEHZUWS16duTKhrFIUl06IRtEDUoDo4RjqOwAAAAAAFwwCDuqLFODYSy5fGXYUZ9yFQThtkCOkq4zp7Jj9iMAAAAAAHFB2FFl4TCWoKrfkZsuTj3rRo8JBdEwliAIh7EsVNFRnJUFAAAAAIC4IOyosmzSVd4P5PnVCzxyZQ1KJakulZBsuM0GjhJOWWXHArOyAAAAAAAQF9zpVlk2GYYKU14Vw45omEzxu+rTbins8K2UnKeygwalAAAAAIC4Iuyoskw0Q0o1+3ZMTHuqT7lynHBISn16prIjCIwSbtnUs6JBKQAAAAAg3gg7qqxU2VHFGVlyeU91UXNSKWxQamz4fYE1YYPSaPiK48wfegAAAAAAEBfc6VZZMeyo5vSzuWlfDWVhR10qIaOZyo7yYSylXh0OYQcAAAAAIJ64062ybCr8I67mMJbctKe61EzvjYZ0QsaEPUKCwCjhmDkNSansAAAAAADEFXe6VZapRWVH3gv7dETq0q7cqLLDD1TRs2Oh0AMAAAAAgLjgTrfKajGMZSLvq76ssqM+lZCjqLLDhsNYEiYMQ0qhh8PUswAAAACAeOJOt8qyUQgxVcVhLOPTsxqUphNyTNSgNDBKOHMrO4zCWVgIOwAAAAAAccOdbpXVpLJj2ldDqnI2FkWVHb4fVnbMruSYPZwFAAAAAIC44E63ymozG4unuvTMMJa6lCsnalDqBaqo7Cg+GkNlBwAAAAAgnrjTrbJMNIylWrOxWGuVy3sVU882JAMFYZahwEqJeaaepbIDAAAAABBX3OlWWbGyY6pKlR3TXqDASnXlw1hcGw1ikTzfKOk6c2dhMUw9CwAAAACIJ+50qyzpOko4pmrDWManwylm68uHsSSs/GiYStig1CwYchB2AAAAAADihjvdGsgmXU3mgzPv+DxMTIchSn1ZZUddIihVdviBlCir7Jj9WJyVBQAAAACAuCDsqIFMyq1pZUfSeip+mxfNxlKq5HAqG5QWZ2kBAAAAACAuEmfeBecqm3Sr1rNjIl8MO8r+KoOCbBRm+IFVwnFkqOwAAAAAAFwgqOyogWzSLYUS51uxsqO8Qan8wkxlRzCrsoOpZwEAAAAAMcedbg2Ew1iq1LMjmtK2fBiL/MJMzw4/nHq2OFxloSloAQAAAACIC4ax1EA26WgqX51hLLliz46Kyo78zGws1lHCcWRnhRzFyo7iIwAAAAAAcUFlRw1kk9VrUFoKOyp6dnilyg7ZcBhLMeSgsgMAAAAAEHeEHTWQreJsLLl5h7HkZ8IOOUq4zpyQg8oOAAAAAEBcEXbUQCbparKKw1gSjlHKLfur9AsKiiGGNXrwgZ/oo//7/ZKk67dsUX9//0ylB6cAAAAAACBmuNOtgepOPeurPp2orNAom43FytGnP/kJXeRMSpJuSp5Ub2+vDh86LEmlxqUAAAAAAMQFYUcNVLtnR31qVmARFBQUsw9r9Ectw3ryZ1skSXf/QZe+2261YfePJUlGDGMBAAAAAMQLYUcNFHt2WGvP+2fn8p7q0rMm1fHz8kshhqPvr5+SH/1NFxJGH7ysXncH4bEUe3kAAAAAABAX3OnWQCbpylpp2gvOvPNZyk37lTOxSJJfUClWsUYNA65SBSvXt0p6Vq37cnKydZIIOwAAAAAA8ZM48y44V9lkOMxkquArkzy/PTLmHcbiF+SXRqc42nzIVddfPa0vXFavHfty2v70tPZd+UI9ah8l7AAAAAAAxA53ujWQjcKIavTtyOXnqewICgpKw1iMCu/4XX3Ma9PerwzpY16bxnft0qauTZKo7AAAAAAAxA+VHTVQrOyoxvSzE/kFKjuK69bRDde/TO/5nQMVuzz87YclEXYAAAAAAOKHO90aKA5dqUplx/R8DUpnZmOxMkq4c2dcKYYchB0AAAAAgLjhTrcGisNYpqoSdvhqON0wFmuUdOf+NRN2AAAAAADiijvdGqgr9uzIn9/ZWPzAarLglz5/5oW8Zr7JUcI5TWUHpwAAAAAAIGbo2VED2SoNY5nIe5JUUdnR39+v8U/9pZI3pMMN1lGCyg4AAAAAwAWEO90aqFbPjomo4WldKgw7+vv71dvbq593xuXb4l5GX//Pu+e8l7ADAAAAABBX3OnWQKlnx3mejWV8OqzsqE+Hn3/r7bcrt3JaW16YVGDCoStX60nd9KfvnPNewg4AAAAAQFxxp1sDVRvGMh1+Xn1U2bHZWj3Q5coalWZjudbZp1f73pz3uiY8JmPm9vMAAAAAAGA5I+yogecSdvT39+uaDRt0nzG6ZuNG9ff3n/Fzi5UddVFlR6qzU08d8CVfpWEs9wdbVGhqnPPeYkVHMfQAAAAAACAuCDtqIJ0I/5gnZw9jGRqSbr5Z/f/8z+rt7dVbtyWU+v+u0FuvdtXb23vGwGN2g9K+vj6ZQ4E+u2tCk5m83nrFcTkXHVZubGTOZxXDDio7AAAAAABxQ9hRA45jlEk6mppd2fGRj0h3361bf+u3tOfG1XrTZwZ1Te8jetNnBrXnxtV63a//+mkrPXKzGpT29PRoh7V64bWu3vH243rH1Uf18Tf9rb5106Ruvf32ymOisgMAAAAAEFOEHTWSTbqVw1isld73PknSZkmP7GhU0vWUcAMlXU9f/42r9E893aet9MhNz516drOkfa9JKOlYJRwp6VgdvNnTJmsr3ltqUMopAAAAAACIGe50aySbdCuHsXz729LIiCQpZYyOfXVMBT8hz3dU8BM6Wlij3/7wgxWVHrOrM3KzenZIYd+Oo3d58gIjL5AKgdGRL1ulOzsr3sswFgAAAABAXBF21EgmNauy4+/+TsrlJEl91qrpa0Pq+VCf/u5T1+uTt7XrZcP3V1R6PLKjsaI6o7+/X3/7nvdKkm645KJS1UdfX5/aPudp168l9Q93X6Ff/+gfaNW/++rr66s4HoaxAAAAAADiKnHmXXDObrlF2ZYbNPW9Ialne7gtlQqHskjqkfS/VqzVjw9u0d2f/7ym9w/o/erUdW9JSPJU8BP60SOblO4ckxQGHb29vfr5G35bj/sF3eTXqbe3N/ysnh71S3rn7/2eshM3yr3y5XqkYZf+dNYhUdkBAAAAAIgrwo5aeM97lP3br2synZ3Zls9X7PKihlZJ0vdGjmlvIqGGLw3oI7d1amJHkx4bvE7/WfdqpVf+g+4zRq+T5F75Sv3JlpfJGqPPvr5P3/rUTl1+++1ST48kaXJyUj2XD2n99f+mxkcqwxBppldHMfQAAAAAACAuCDtq4fLLlX3JiHKP7Jfq6qSJiTm7HGpukyStL4zpRbfeqv5XvUrvffe7dfCuvVq5+oRSN12s7W++UYP/zei3BrbpvlM/F1aGGKOC4+oDHVfqrsP7NCjp1ttv1/bXdKjzf/ybkq6nwg0Jvfy2dnWVhSGuEw5fIewAAAAAAMQNd7o1ksmkNLnpIulv/kZKp+e8fqipTZnCtFr/4l3Spz6lnre8RQcOHFAQBHr2+BF9KXenPvab79Jtv3qPPvAH79PveR9XxsvL9T0lA19tBx8qNSHdbO2c2V3Ke3709/fr/e/5n5Kkm6/aNu+0tgAAAAAALFeEHTWSTbqaKvjStm3zhx3NbVo3PiTTvX3Oa5ut1cArkhXhxVUv2Ks3fGqnEt/p1+s+tVMvPvJYqQlpqrNTx2fN7nLsq2NKd3aW+n1c5obVJa9IDc87rS0AAAAAAMsVYUeNlKae3b1bKhTCjcaEw1qM0aGm1Vo/eix8fZb5wov9Xx3Tu48+rsd/8Bl9Ijmp8V27Sv04+vr6tPbLz+gjt7Xr7+/cqo/c1q72Lz+jvr4+3Xr77fpuu9W+l6+UrNXX/0uHvttu50xrCwAAAADAckXYUSPZ4tSz3/62NDkpZTJSR4fU3y9t3KhDzWu0YfhI+PosC4UXH/3oRxUEgQ4cOFAKOqSwCen4rl1674PSf/vdh/XeB1UKQzZbqw9dVq/AGMkYea7RBy+rr5jWFgAAAACA5YwGpTWSSUZhxw9+ILmudMst0r/8i1Rfr8nrb9DQX35b68dOSI//cM57i9PJvnfnTh2862F1dHSor6ySYz49PT3zvp7q7FTrvmNKelaepIRn1bovV+r3AQAAAADAckfYUSPZpKu8F8jfslXun/6p9Ja3lF47lA8LbNb/yi9KXxud9/0LhRdnq6+vTw1vfKOCv3paX7isXjv25bT96WlduqvvnD8bAAAAAIClgLCjRrKpMNCY+tznVZ+u/GM/dGpSkrT+lpul339DVY+jWCXysZ07dfArBzXa0aHLdvWdlyAFAAAAAIClgLCjRrJJV5I0WfDnhh3DUdjRkq3JsZyvKhEAAAAAAJYiGpTWSKYYduT9Oa8dOjUh1zFa0zh3SloAAAAAAHB2CDtqJJsKw46pwtyw4/CpKa1tyijh8tcBAAAAAMC54u66RsqHscx2aHhS61fUZggLAAAAAABxR9hRI9nTDmOZrFm/DgAAAAAA4o6wo0YyqfkrOzw/0JHRKSo7AAAAAAA4Twg7aqRY2TG7Z8eR0Sn5gaWyAwAAAACA84Swo0YW6tlRmnaWyg4AAF3j5uoAACAASURBVAAAAM4Lwo4aKc7GMpkPKrYfOhWFHVR2AAAAAABwXhB21EiGyg4AAAAAAGqCsKNGFurZcejUpFY1pEphCAAAAAAAODeEHTWSdI1cx8yZevbQqUmqOgAAAAAAOI8IO2rkE5/4hPzpCb3nr/5aXV1d6u/vlxQOY6FfBwAAAAAA509isQ/gQtDf36/e3l694i/+UC95yWH9x8el3t5eWSsdOtGkG7e0LfYhAgAAAAAQG8Zau9jHcEbd3d129+7di30Yz1tXV5c6Xijd/ZlBJV1PBT+hm25r18H9jdIv/6Xu+MWt+o3rNi32YQIAAAAAsKQZY/ZYa7vPtN+iDGMxxhwwxjxkjHnAGLN8U4zn6ODBg7pxR6OSrqeEGyjperpxR6OOjOUlSetb6hb5CAEAAAAAiI/F7NnxcmvtVc8lkVnuOjo6dM9Xx1TwE/J8RwU/oXvvntDazVslMe0sAAAAAADnEw1Ka6Cvr0977jmum25r1//82LV6wwf/hx61tyrlhhUdt7+0u9SwFAAAAAAAnJvFalBqJf2nMcZK+mdr7Z2LdBw10dPTI0nauXOn3nXX97XmhktV132rtq/+kbq3fFL1j+TV29tbsS8AAAAAAHh+FqVBqTFmvbX2kDGmTdLXJP3f1tpvzdqnV1KvJHV0dGwfGBio+XFWy4Tjqu/PevWnOz9calg6cFu7uu46qEwQLPbhAQAAAACwJC3pBqXW2kPR4zFJ/y7pxfPsc6e1ttta27169epaH+L5dccdkjGl5SIb6Or271U0LH1kR6M2WVuxn4wJ3wsAAAAAAJ6zmocdxph6Y0xjcV3SqyTtrfVx1NQdd0jWlpZUZ6eGvjJS0bD02FfHlO7srNhP1hJ2AAAAAABwlhajZ8caSf9ujCl+/yestf+xCMexaPr6+tTwxjfqI7dt1MSORtV9dUzrvvyM+nbtWuxDAwAAAABg2at52GGtfUrSi2r9vUtJT0+P+iW9d+dOHfzSXnV0dqpv1y6akwIAAAAAcB4sSoPSs9Xd3W1379692IdRHcaEw1UAAAAAAMBpLekGpQAAAAAAANVC2AEAAAAAAGKFsAMAAAAAAMQKYcdie9e7FvsIAAAAAACIFcKOxXbHHYt9BAAAAAAAxAphBwAAAAAAiBXCDgAAAAAAECuEHQAAAAAAIFYIOwAAAAAAQKwQdgAAAAAAgFgh7AAAAAAAALFC2AEAAAAAAGKFsAMAAAAAAMQKYQcAAAAAAIgVwg4AAAAAABArhB0AAAAAACBWCDsAAAAAAECsGGvtYh/DGRljjksaeJ5vXyXpxHk8HOBscQ5iKeA8xFLAeYilgPMQSwHnIRbbcj4HO621q8+007IIO86FMWa3tbZ7sY8DFy7OQSwFnIdYCjgPsRRwHmIp4DzEYrsQzkGGsQAAAAAAgFgh7AAAAAAAALFyIYQddy72AeCCxzmIpYDzEEsB5yGWAs5DLAWch1hssT8HY9+zAwAAAAAAXFguhMoOAAAAAABwAVkWYYcx5sPGmGPGmL1l21YaY75mjHk8emyJthtjzD8YY54wxjxojNlW9p43Rfs/box5U9n27caYh6L3/IMxxtT2J8RysMB5eIcx5pAx5oFoeXXZa38SnVP7jTE3lW2/Odr2hDHmj8u2bzLG/CDa/mljTKp2Px2WA2PMRmPMN4wxjxhjHjbG/F60neshauY05yHXQ9SMMSZjjPmhMean0Xn459H2ec8dY0w6ev5E9HpX2Wed1fkJFJ3mPPyIMebpsuvhVdF2fi+jKowxrjHmJ8aYu6LnXAslyVq75BdJPy9pm6S9Zdv+StIfR+t/LOm90fqrJX1VkpF0raQfRNtXSnoqemyJ1lui134Y7Wui9+5Y7J+ZZektC5yHd0j6r/Psu1XSTyWlJW2S9KQkN1qelLRZUiraZ2v0nn+T9Ppo/QOSfnuxf2aWpbVIape0LVpvlPRYdK5xPWSp2XKa85DrIUvNluga1RCtJyX9ILp2zXvuSPodSR+I1l8v6dPR+lmfnywsxeU05+FHJN02z/78XmapyiLpDyR9QtJd0XOuhdYuj8oOa+23JJ2ctfkWSR+N1j8q6ZfKtu+yofslrTDGtEu6SdLXrLUnrbXDkr4m6ebotSZr7f02/JveVfZZQMkC5+FCbpH0KWvttLX2aUlPSHpxtDxhrX3KWpuX9ClJt0Qp/Q2SPhO9v/ycBiRJ1tpBa+2Po/UxSY9KWi+uh6ih05yHC+F6iPMuuq6NR0+T0WK18LlTfp38jKQbo3PtrM7PKv9YWGZOcx4uhN/LOO+MMRsk/YKkD0XPT/d79IK6Fi6LsGMBa6y1g9H6EUlrovX1kp4p2+/ZaNvptj87z3bguXpHVIr4YRMNH9DZn4etkk5Za71Z24F5RWWHVyv8VySuh1gUs85Dieshaigq235A0jGFN4dPauFzp3S+Ra+PKDzXzvb8BCrMPg+ttcXrYV90PXyfMSYdbeP3Mqrh7yT9oaQgen6636MX1LVwOYcdJVHSybQyWAz/JOkFkq6SNCjpbxb3cHAhMMY0SPqspN+31o6Wv8b1ELUyz3nI9RA1Za31rbVXSdqg8F8fL1vkQ8IFaPZ5aIy5QtKfKDwfr1E4NOWPFvEQEWPGmNdIOmat3bPYx7IULeew42hU2qXo8Vi0/ZCkjWX7bYi2nW77hnm2A2dkrT0a/ZILJH1Q4X9sSWd/Hg4pLGVMzNoOVDDGJBXeYPZbaz8XbeZ6iJqa7zzkeojFYq09Jekbkn5GC587pfMter1Z4bl2tucnMK+y8/DmaLiftdZOS/pXPf/rIb+XcSbXSXqtMeaAwiEmN0j6e3EtlLS8w44vSip2Kn6TpC+UbX9j1O34WkkjUXn33ZJeZYxpiUprXyXp7ui1UWPMtdF4pTeWfRZwWsUbzMgvSyrO1PJFSa+POh5vknSxwgZTP5J0cdQhOaWwMdAXo3+N/4ak26L3l5/TgKTSGMx/kfSotfZvy17ieoiaWeg85HqIWjLGrDbGrIjWs5JeqbB/zELnTvl18jZJ90bn2lmdn9X/ybCcLHAe7iv7BwijsFdC+fWQ38s4b6y1f2Kt3WCt7VJ4nbrXWtsjroWhM3UwXQqLpE8qLIktKBwn9FaFY4vukfS4pK9LWhntayS9X+G4zYckdZd9zlsUNlt5QtKby7Z3K7wIPSnpf0syi/0zsyy9ZYHz8GPRefagwv/jt5ftvzM6p/arrHO2wk7cj0Wv7SzbvlnhReUJSf+/pPRi/8wsS2uR9FKFQ1QelPRAtLya6yFLLZfTnIdcD1lqtkh6oaSfROfbXkn/Pdo+77kjKRM9fyJ6fXPZZ53V+cnCUlxOcx7eG10P90r6uGZmbOH3MkvVFknXa2Y2Fq6F1ob/ZwEAAAAAAIiL5TyMBQAAAAAAYA7CDgAAAAAAECuEHQAAAAAAIFYIOwAAAAAAQKwQdgAAAAAAgFgh7AAAAAAAALFC2AEAAAAAAGKFsAMAAAAAAMQKYQcAAAAAAIgVwg4AAAAAABArhB0AAAAAACBWCDsAAAAAAECsEHYAAAAAAIBYIewAAAAAAACxQtgBAAAAAABihbADAAAAAADECmEHAAAAAACIFcIOAAAAAAAQK4QdAAAAAAAgVgg7AAAAAABArBB2AAAAAACAWCHsAAAAAAAAsULYAQAAAAAAYoWwAwAAAAAAxAphBwAAAAAAiBXCDgAAAAAAECuEHQAAAAAAIFYIOwAAAAAAQKwQdgAAAAAAgFgh7AAAAAAAALFC2AEAAAAAAGKFsAMAAAAAAMQKYQcAAAAAAIgVwg4AAAAAABArhB0AAAAAACBWCDsAAAAAAECsEHYAAAAAAIBYIewAAAAAAACxQtgBAAAAAABihbADAAAAAADECmEHAAAAAACIFcIOAAAAAAAQK4QdAAAAAAAgVgg7AAAAAABArBB2AAAAAACAWCHsAAAAAAAAsULYAQAAAAAAYoWwAwAAAAAAxAphBwAAAAAAiBXCDgAAAAAAECuEHQAAAAAAIFYIOwAAAAAAQKwQdgAAAAAAgFgh7AAAAAAAALFC2AEAAAAAAGKFsAMAAAAAAMQKYQcAAAAAAIgVwg4AAAAAABArhB0AAAAAACBWCDsAAAAAAECsEHYAAAAAAIBYIewAAAAAAACxQtgBAAAAAABihbADAAAAAADECmEHAAAAAACIFcIOAAAAAAAQK4QdAAAAAAAgVgg7AAAAAABArBB2AAAAAACAWCHsAAAAAAAAsULYAQAAAAAAYoWwAwAAAAAAxAphBwAAAAAAiBXCDgAAAAAAECuEHQAAAAAAIFYIOwAAAAAAQKwQdgAAAAAAgFgh7AAAAAAAALFC2AEAAAAAAGKFsAMAAAAAAMRKYrEP4LlYtWqV7erqWuzDAAAAAAAAi2jPnj0nrLWrz7Tfsgg7urq6tHv37sU+DAAAAAAAsIiMMQPPZT+GsQAAAAAAgFgh7AAAAAAAALFC2AEAAAAAAGKFsAMAAAAAAMQKYQcAAAAAAIgVwg4AAAAAABArhB0AAAAAACBWCDsAAAAAAECsEHYAAAAAAIBYIewAAAAAAACxQtgBAAAAAABihbADAAAAAADECmEHAAAAAACIFcIOAAAAAAAQK4QdAAAAAAAgVgg7AAAAAABArBB2AAAAAACAWCHsAAAAAAAAsULYAQAAAABAjewZGNb7v/GE9gwMX5DfXyuJxT4AAAAAAMCFYc/AsO5/akjXbm7V9s6WZXMMnh9o2guXqYJ/2sfpgq+p6HH280OnJnXvvmMKrOQY6ecuXqW2xoxcx8hxjFxjwnVj5BhVbJ95XXKifWa2z9q3uN1RuF+0/emhnN73tcfk+VbppKP+t127aH8P1UbYAQAAAAB43ibzvoYn8jqZy5ceT00USs+HJwoazuX17PCEDgxNlN7XmEkonXDlOirdtDulm32V3fSbsht5zdzIR9tNtG95IODMusk3UUgwnMvr3v3H5QdWjpG6O1uUSSUqAon8PAGGF9hz+jNKJxylE478wKr4UYGVfnLwlOpSCfnWKgisAmtL+/iBLW33rZU9t0OYo+AFuv+pIcIOAAAAAMDydqaqhtnBRTGomO/5qYm8Tk7kNVUIFvy+5mxSK+tTaqlLynVMabuR9ILV9drS3jxzk1+6sdesG/+ZAKC47gdWXhAo76tiHz8IQ4HykCCwVkEQ7jc2VZAfpQ2BlZ4+kdO6ljqlE46as0mlG9PKJN1SOFFcn7Mt6SiTCB/TCVeZWY/phKN02XuMMaU//54P3a+CFyiZcPSvb37xcw4brJ0JQUo/r7WyQfjzLvTnUL5976ER7fz8Xnl++P3Xbm49i7NneSHsAAAAAICYCAKrXN7T+LSn8anoMVrfe3hE/3zfU2FVg2N07eZWGel5BRftzRltXdcUPQ+3tdSnSq+31KXUnE0q4c60iZx9o/9nr7m85lUFs4/hA7d31/QYtne2qP9t1z6voTzGzAxXeb62tDdp8+qGRR9KVAvGnu9amCro7u62u3fvXuzDAAAAAIBzMl9lhbVWU4VAY9MF5aZ9jU95M+vThei5p1wUWpTW5wk0cnn/OR9LS11Sm1bVh2FFFFSsqEtqZdnzhYKL8/nz19pSOAY8f8aYPdba7jPuR9gBAAAA4EJwrje51lpNFnxN5n1N5H1NFsLHibxXsa20nvfC1wu+pvJhc8ofHTipwIbDOFobUsp7gXJ5vzS04nRcx6ghnZhZMmWPqbLns1+Lth04kdPvf/qB0hCGODenRHw917CDYSwAAAAAYm1sqqB7Hj2mP/zMgyr4gRKO0Rte0qGV9WlNFDxNReHERCmoCMOLYphRHmScrWzSVV3KVTblaqrgl5pTWklrmjLq7myJAolk9OiG67NCi7CZ50zvh+djS3uT2poyVDXggkDYAQAAAGDZGp/2NHhqUoMjUxocmdThU1M6MjKlwyOTOjIypcGRKY1PexXvKQRWH/3+gCQp5TrKpmYCibqUq7pkQs11KbUnK7dnk66yqUTlvilXmaSruuL2svdkEq6csv4Ks/tFvPuWK2oeOGzvbCHkwAWBsAMAAAC4ACzHPgW5aU+DI1GQcWqqFGiUHk9NaWxWkGGMtKohrXXNGW1eXa/rLlql9uaMprxA77/3CXlBoKTr6ENv6tbPbG49L30onqtzaU4J4OwQdgAAAADL3LTna3TS0+hUQaOTBY1OedFjQaOTnh47OqYv/vSw/MDKNUY3bmnT+pasUglHaTecIjPlOkolosV1lE46FduK02kWX09FU2qWv+dMQyzKA5ct7Y1lIcZkZZARbRud8uZ8xqqGtNatyKirtV4/+4JVWtucUXtzRu3NWbU3Z7SmKaNUYv4A46UXrVr0oIHKCqA2CDsAAACAGjhdZUXeCxYMKma2z34e7jcyWdC0t/B0oZLkGJV6RfjW6juPn5DrGE37gfJneO/ZSLmzApCyQCTvBXri2LhO14dzVUNKa5sz6mit07WbV2ptc1brVmS0timjdSuyamtKK51wn/fxETQAFw7CDgAAAOA8KviBhsbzOjE+reNj4fLAs6f06R89Iz+wcox08ZpGBYHV6FQYVkwVTh84JByjpmxSTZlE9JjU2uaMmjJJNWeTc15ryiaix/D5I4dH1PMvPyj1ivjY215SMe1pwbea9nzlvUD5KADJe4Gmo6W4fbrgV7webosevfL3zf2s8qDDSPq5i1fpdds2aG1zRuuawyAjk3z+QQYAlCPsAAAAAM4gCKxOTuR1fGy6IsQorY8Xn+d1Mpc//WdZaSrva+u6pjCsqDt9UNGUTSibdM9pFo7tXSsX7BVhjFEqYRYc+nG+zG7O+XuvuIQqCwBVY6w983zOi627u9vu3r17sQ8DAAAAy9jsYSTWWo1Oejo+PqXjY/lSYDFfoDGUy8ufZ/xFJulodWNaqxvSWt2Y1qrosWK9Ia1nhyf05o/8qHSj3/+2ay/IG/3l2CQVwNJijNljre0+436EHQAAAIijsamCDp6c0MGhCX3vySF94ocH5QdWxkitdSmNTnnK+3OHjyRdo9UNaa1aIMQof16feu4VF9zoA8C5e65hB8NYAAAAsCxZa3V8bFoDJyc0MDShg0O5mfWTEwsOJ7FWWtOc0W3dq6PgIqXVjWm1RSFGczZ5TkNGFkJzTACoHcIOAAAALFkFP9Czw5MaGMrpmSjIGIiqNQ6enNBkwS/t6xhp3YqsOlvrdNPla9XZWqfOlXXauLJOwxN5vX3X7tIwknffcgXBAwDEGGEHAAAAFtX4tKeBoZwORkFGWJmR08DQhA6fmqyYqjSTdNSxsk4dK+v10otXqbO1Th0r69TZWq/1K7KnbbK5UINOAED8EHYAAACgqqy1+sb+Y/r6I8e0siElx5jSkJODQxMamjXcZGV9Sh0r67S9s0W/fPX6UpjR2Vqntsb08x5iwjASALhwEHYAAADgvJgq+BoYmtBTx8f11Imcnjw+rqeO5/TY0TFN5GeGmxjNDDd51eVr1LGyvlSh0dFap6ZMcvF+CABALBB2AAAA4IxKM4lsWqn1LXV66vi4njyRC4ON4zk9dWJczw5Pqnyiv7VNGW1aVa+L2xr04LMjsgr7avz+Ky7Rf7nx4kX7WQAA8UfYAQAAcAGYb9pTzw80NuVpZLKg0amCRie96LHy+YETOX3niRMVvTOK6lKuNq2q11UbW/S6qzdo8+p6vWB1gzatqld9OlH67p4P3V9qDnrdRatq+aMDAC5AhB0AAAAx5fmB9h0Z0xceOKQPf+eAfGtlFPbEmCr4ypUNLZmPY6SmbFLWqhR0GEk3bmnTm6/bpM2r67W2KXPGHhrbO1toDgoAqCnCDgAAgJgYzuX1k2eGtWdgWD8eOKWfPnuqoleGJFlJ61Zk9JJNrWrKJtWUSUSPyfAxmyit16dcGWPmVGb89vUXnXVgQXNQAEAtEXYAAAAsQ0Fg9fix8TDYOBguTx3PSZJcx2hre5N+ZfsGbetsUcp19P/82wOlsOKO115xVsEDlRkAgOWGsAMAAGAZ+NZjx/Wlnx6WMdLgyJQeOHhKY9OepHBYyraOFbpt+wZt62jRCzc0qy5V+Z95bU2ZcworqMwAACwnhB0AAABLSMEP9PSJnB4dHNX+I2Pad2RMDz57SifG86V9OlfW6bVXrdO2jjCA6Gyte059MwgrAAAXCsIOAACARWCt1fGxaT16ZEz7j4xq3+CYHj0ypiePjSvvB5KkhGN0UVuDVjemNTSel5XkGulXr9mo3335RYv7AwAAsIQRdgAAAFRREFidyE3rnkeP6b79x+Q6RidzBe07MqrhiUJpv7VNGV3W3qifv2SVtqxt0mXtjdq8qkGphDOnQei1m1sX8ScCAGDpI+wAAAA4gz0Dwwv2u5jIezp8alKHTk1p8NRkaf3wqUkdHpnU4KmpUqVG0cVtDbrp8rW6bG2jLmtv0mVrG7WiLrXg99MgFACAs0PYAQAAcBp7DpzUGz70A+W9QK5j9Mqta1TwbSnMOFVWnSFJjgmrNNpXZPXCDSt08xUZPXlsXPc8eqw0DOWXrl5/1sNQ6LkBAMBzR9gBAABQZqrga++hEe0ZGNaegWF954kTmvbCygwvsLp33zFtWlWvdSuy2ta5QutWZLV+RVbromVNY1oJ16n4zOLnMAwFAIDaqFrYYYzZKGmXpDWSrKQ7rbV/b4y5Q9LbJR2Pdn2ntfYr1ToOAACA0zkyMlUKNn58cFgPHx5RwbeSpK7WOl3T1aLvPTkkP7BKuY76337tWVdYMAwFAIDaqmZlhyfp/7XW/tgY0yhpjzHma9Fr77PW/nUVvxsAAKCk2HPjmq4WpROufnwwCjcGhnV4ZEqSlE44etHGFXrrSzdre2eLru5YoVUN6Yr3n0tQwTAUAABqp2phh7V2UNJgtD5mjHlU0vpqfR8AAEC5ILA6MJTTF396WP947xPyA1vx+rrmjLZ1tuhtHWEIsaW9SamEM+9nEVQAALC81KRnhzGmS9LVkn4g6TpJ7zDGvFHSboXVH8PzvKdXUq8kdXR01OIwAQDAMhUEVk+dyGnvoRE9FC2PHB7V+LRXsZ+R9JoXtetPdmzRuhXZxTlYAABQdcZae+a9zuULjGmQdJ+kPmvt54wxaySdUNjH4y8ktVtr33K6z+ju7ra7d++u6nECAIClq3wYyVUbV+jpE+NhqPHsqPYeGtHDh0eUy/uSwuEoW9qbdOX6Zl25vlmuY7Tz8w+VmoP2v+3se24AAIClwRizx1rbfab9qlrZYYxJSvqspH5r7eckyVp7tOz1D0q6q5rHAAAAlq+pgq8vPXBY7/z8Q/J8Kxkp5Tql2VEySUdb25t02/YNujwKNy5ua5gzG0rXqnqagwIAcAGp5mwsRtK/SHrUWvu3Zdvbo34ekvTLkvZW6xgAAMDyEARWB09OaN+RMe07Mqr9R8a0/8iYDgzlVNFqw0qXr2vSG17SqSvXN+sFq+vnBBvzoecGAAAXlmpWdlwn6XZJDxljHoi2vVPSrxljrlI4jOWApN+s4jEAAIAloHwYSmdrnfYfGdO+I2PaHwUbjx0d12QhHIZijNS5sk6Xrm3Ua160TmnX6B/ufUKeHw5D2fkLWwkuAADAaVVzNpbvKOwDNttXqvWdAABgaRiZLOjZ4Qk9c3JS9z91Qh+7/+Cc2VAkqbU+pUvXNur1L96oLWubdOnaRl28pkF1qcr/RLn2BasYhgIAAJ6zmszGAgAAlrfyyoztnS3KTXt6dnhSz5ycCEON4clSuPHs8IRGp7wFP+vll67WW1+6WZeubdTqxvRz+n6GoQAAgLNB2AEAACpMFXwdG53W0bEpHR2d0p6BYe36/oD8wMoYqSGd0NisMCOTdLSxpU4bWrLq7mrRhpZs9LxOJ3PT+s2P7ynNhvKOGy4muAAAAFVF2AEAwAVgz8CwvvvEiVI1xbHRKR0dndbR6PFYFGwcHZ3WyGRhwc+xVtq8ql43X9GuDS3ZMNRYWafW+pTC3uTz63/btQxDAQAANUPYAQBAjIxOFTRwYkJPD+V04ES47D08oseOjs+7f8IxamtMq60po02r6nXt5latacpES1prmjI6cmpKvR/fXarM+O+/ePlZBxYMQwEAALVE2AEAwBI3u1/G2FRBA0MTejoKM54eymlgaEIHTuQ0lMtXvHdtU0ZJd6biwkh63bb1estLN2lNU0Yr61JynIUrMiTpkjWNVGYAAIBlhbADAIAlJO8FOj4+XRpmsmfgpP71uwfkRf0ymjIJjUxW9stY05RWV2u9Xrl1jTpb67VpVZ26VtWrc2W9silXewaG1fOh+0uVGW94SacuX9d8VsdFZQYAAFhOCDsAAKiysF/GcV2yplFtTRkdG53SsbGwX0bYCHS6tO3krMqMctZKHSvrtePKtdrUWh8GGq11c6ZpnW17ZwuVGQAA4IJC2AEAwHlkrdWzw5N6ZHBUjw6O6ntPnNCPDgzLzrOv6xitakhpTVNGG1qy2tbZorbGsE9G8fHIyJTe8ckfl6oy7njt2ffLkKjMAAAAFxbCDgAAnqdpz9fjR8f1yOFRPTI4Wgo4itOyGiOtyCZLQUexX8abr9uktqa0WuvTcs/QL+OK9c1UZQAAAJwlwg4AQOzNbvD5fN5/776jWlWfViEI9OjgmB45PKonj4/LC8Iooy7l6rK1jXrti9Zp67ombWlv0mVrG/Xo4NicfhlXrKdfBgAAQDURdgAAYiMIrE7kpsM+GFGDz588M6zP7Tkk31o5RtrW0aL6dEJeEKjgWRWCQJ5vVfADFfxAXmBV8AIVgnDbdCHQZMGv+J61TRltXdekV2xt09b2Zm1d16TOlXXzzmpCvwwAAIDaI+wAACx5ew6c1H2PHdfm1Q1aWZ8KG3tGDT6PjExVNPj0g/m6Y4QCKx08OaH2FVklHaOEa9SQTCjpOkq6RgnXUdIxSrqOEq6jlGv08OFR7RkIY3pDqgAAIABJREFUe244Rvqd6y/Sf73p0rM6fiozAAAAaouwAwCwJASB1dGxKT19IqeBoQkdGMrpwImc9g2OaeDkxLzvWVGX1JrGjNqa0rq4bZXWNmW0pimttqaM1jRltLYpo4Mnc3rjh39YGkbyT7++/ayCh9nTtr78srbz9SMDAACgSgg7AABVVd4v4+qNKzQ4OqUDJ3I6MBSGGmG4Ea5Pe0HpfSnXUUdrnRKukZFKlRWvv6ZDv/WyF6itKa1M0j3j969tzpzTMBKGoQAAACw/hB0AgKqw1upLDx7WH3z6p/ICKyPJdY08f2aYSTrhqLO1Tp2t9XrZJavVtapeXa316mytU3tzVq5j5lRW3Lp9gzpa687qWM51GAnDUAAAAJYXwg4AwHkzkff0/SeH9M39x/XNx47pmZOTpdespG0bV+iXrt6grlV16mqt19qmzLxNPctRWQEAAICzRdgBAHjerLV68vh4GG7sP64fPn1SeT9QNunquotadfMV7dr1vQPy/LAq4492bHleYQWVFQAAADgbhB0AgLOSm/b0vSeH9M39x/TN/cd16FRYvXFRW4Pe+DOduv7SNl2zqUXpRNhP4+bL11KVAQAAgJoi7AAAnNaeAyd110OD8gOrJ46N60cHTqrgW9WnXP3sRav0Oy9/gV52yWptaJm/jwZVGQAAAKg1wg4AwBzWWu0/OqYPfuspfe7Hh1RsKbqxJas3X7dJ11+yWt1dK5VKOIt6nAAAAMB8CDsAACWPHx3TXQ8O6q4HD+vJ47nSlK9SNO3rizv0uy+/aDEPEQAAADgjwg4AuMA9dXxcdz04qC8/OKj9R8dkjPSSTSv1G9dt0voVGf1O/49L075eu7l1sQ8XAAAAOCPCDgC4AA0M5aIKjkE9OjgqSbqmq0V//trLteOKtWprypT2ZdpXAAAALDeEHQAQc3sGhnX/U0PavKpeAycn9OUHB/XQoRFJ0raOFfqz12zVL1zZrrXNmXnfT4NRAAAALDeEHQAQQ9ZaDY5M6QsPHNLf/Odj8gJbeu1FG5q189VbtOPKtQvOoAIAAAAsZ4QdALDMWWt18OSE9h4a1d7DI9p7aEQPHx7VyVy+Yj8j6e0/v1nvfPWWxTlQAAAAoEYIOwBgiSsOQ7l2c6uu2rhCT58YD4ONQyPaezgMNsamPElS0jW6ZE2jXrGlTVesb1bCcfTuLz2sgh82GL3p8rWL/NMAAAAA1UfYgf/D3p2H51mXef9/f+8taZK26b7QJm1ZiqyFFi2CoAKiqKDiglbEEYnO6OOoo/M4wzzKqP2NMzqLz+hPBXWEmYgOyAgiiogIohToBmWHpm1om25pumS9t+v5407TppQ2LU2uLO/XceTofV/XldxnjyP80Q/neX4lDWIPrd7Gh374CLlCRAiQTiTIFooAlKUSvGraGC6bN51Tpo/llGPGcvyUKspSyV4/Y+7U0S4YlSRJ0ohi2CFJg0yxGLF0XQu3LV/Pbcs3kCuU9m1EEZw6YwwfeHUtpxwzlmMnVZJKJg7581wwKkmSpJHGsEOSBom129q4bcUG/mfFel7c3kFFJsnZx47nodXbKRRLYyh/e8lJBheSJEnSIRh2SFKMdrRnufPxJm5bvp7ljTsIAc49biKfvegELj55KhWZVK+dHQYdkiRJ0qEZdkjSAMvmi9z/3FZuW76ee5/eQrZQ5PjJVXzhLSdy2bzpTBs7qtfzjqFIkiRJh8ewQ5L6WakzYxuTqsp4qmk3dzy2ke1tWSZUZli0sIbLz5zBydPHEEKIu1RJkiRpWDDskKR+ks0XuWXpi3zpjifJF0tLRlPJwMUnT+XyM4/hdcdPIt2HBaOSJEmSDo9hhyS9Qnt2asyvrSYQeHjNdh5e08yydS105oo9zwXgL84/ls++aW58xUqSJEkjgGGHJB2hrnyBnz76Il/+xVM9nRt7nDh1NFecVcOkqgz/93cvkC+UTlM5f+7kmKqVJEmSRg7DDkk6hD2dG2fNGkcyEXhodTMPNTSzdG0LXfnenRvvmDedL116MtUVmZ7rC4+d6GkqkiRJ0gAy7JCkg/jl4xv5y5+sPGDnxqLX1DJ5TBn/es9zPZ0bHzx7Vq+gAzxNRZIkSRpohh2StJ+Gra3ctaqJX67axNNNu3quB+DS00udG+Mr9wYaZ80ab+eGJEmSNIgYdkga0faMqMwcP4p129r55aomntm0G4Aza6r58GtrufmRF3s6Nz702lm9gg6wc0OSJEkabAw7JI1Yj6xpZtH3HyZX2DuiMr92HP/nbSfxllOmMr16FABvP/0YOzckSZKkIcSwQ9KIky8U+Z8VG1h819M9QUcAPnb+HL7wlle95Hk7NyRJkqShxbBD0oiR6w45vvW7F2jc3s7siRW0deUpFiPSqQQXnTQ17hIlSZIkHQWGHZKGtWXrWvjT6m10Zgvc8fhGXtzewSnHjOGGDy3gwldNZnnjDkdUJEmSpGHGsEPSsLR1dxe3LG3kn+95nkL3sbFzJlbyg6sW8MYTJxNCABxRkSRJkoYjww5JQ1rpNJVt1E6opD1bYOna7Sxd20LDtrZezyUCXD7/GC541ZSYKpUkSZI0UAw7JA1JHdkC//GnNfzz3c9RiPaeplJdkWZB7Tjed9ZMRpen+fKdT5LLl46NXThnYowVS5IkSRoohh2SBrVS50Zpp8bsiZXc+/RmfvPUZv7w/FY6c8We5wLwZ+fM4u/eehKJROi5PnfqaHdySJIkSSOMYYekQWvZuhY+cMMSsvkiIUAUQQRMG1vO+xbMZPbESr7262d6Ojfeetr0XkEHuJNDkiRJGokMOyQNSk07O1j8y6foype6N6IIzp4znr+95CROOWZMz4LRU2dU27khSZIkqRfDDkmDyrrmNr7z+9X8bPl6isWIZAhERGRSCT538YmcOmNsr+ft3JAkSZK0P8MOSbHas5NjRvUofv/cVm5fuYFUMsEVZ9XwsfPnsHlXl50bkiRJkg6LYYek2Dy6djuLbniYbKE0qpJJJrj63Nlc87o5TB5TDsCMcRWGHJIkSZIOi2GHpAGVKxRZ0tDMXas2cfvKDT1BRwDqzpvD5y6eG2+BkiRJkoY8ww5J/WrZuhb++MJWylJJnt/Syj1PbWZnR46KTJJ5M6t5dO12isWIdCrBG06cHHe5kiRJkoYBww5J/ebepzdT95/LKBQjACoySd588lTefMpUzjthEuXpZM/ODndySJIkSTpaDDskHXUd2QI/eLCBb977fE/QkQjw8fOP5VMXHN/rWU9TkSRJknS0GXZIOmqKxYifr9zA1+9+lqadnbx61jgeW7+TfKFIOpXgnOMmxl2iJEmSpBHAsEPSK7JnDKWqLMUty17kiQ27OG3GWP7tffN4zZwJjqlIkiRJGnCGHZKO2LJ1LXzghiV05UsnqkysyvDNK+bx9tOmk0gEwDEVSZIkSQPPsEPSEckXinzzt8/3BB0BuHJhLZfNOybewiRJkiSNeIYdkg7bC1ta+dwtj7HyxR0kQinoSKcSnHv8pLhLkyRJkiTDDkl9VyhGfP8PDfzzPc9RmUny7+8/g+ljy1myZrs7OSRJkiQNGoYdkvpk9dZWPn/LYyxv3MHFJ0/hq+84lUmjywCYP2t8zNVJkiRJ0l6GHZIO6tG12/n2717gj6u3UVmW4ptXzOPS06cTQoi7NEmSJEk6IMMOSQdULEZ894HVfP3uZ4kiSAT4xntO58JXTYm7NEmSJEk6KMMOSb105Qv8fMUGvvdAAw1b23quB+DZTbsNOyRJkiQNeoYdkgDY1Znjxw838sMH17BldxcnTx/DZy86gf//9y+QyxdJpxIsnDMh7jIlSZIk6ZAMO6QR7rdPbeb6P6zmifW7aM8VeN3xE/mX987jnOMmEELgnOMmsqSh2dNWJEmSJA0Zhh3SCPaDBxv4yp1PA6WdHF9/92m8Z8HMXs/Mrx1nyCFJkiRpSEnEXYCkeNy6bD2Lf/l0z/sAbNndFV9BkiRJknSUGHZII0wURXz7vhf43C2PcfL0MZSnEiQD7uSQJEmSNGw4xiKNIPlCkS/d8ST1DzfyzjOO4R8vP41VG3a6k0OSJEnSsGLYIY0QHdkC/+vm5fz26S38+euP5a8vnksIwZ0ckiRJkoYdww5pBGhu7eLqG5fy2PodfPmyk/nQ2bPiLkmSJEmS+o1hhzTM/fLxjfzdz5+gtSvPdxbN582nTI27JEmSJEnqV4Yd0jD2oz+u4bpfPAVAJpVg0uiymCuSJEmSpP7naSzSMFQoRvzLb57tCToACoUiSxqaY6xKkiRJkgaGnR3SMLN5VyefunkFD6/ZzhvmTuKh1c3kCkWPlpUkSZI0Yhh2SMPIA89t5TM/XUl7tsA33nM6754/g2XrWjxaVpIkSdKIYtghDQP5QpF/++3zfPv3L3D85Cp+8oEzOX7KaACPlpUkSZI04hh2SEPcPU9u5u9/8STrd3TwvgUzue7SkxmVScZdliRJkiTFxrBDGsJuemgtX7z9SQDSycB7z5pp0CFJkiRpxPM0FmmI+umjjVx3x5M974vFyNNWJEmSJIl+DDtCCDNDCPeFEJ4KITwZQvjL7uvjQwj3hBCe7/7TZQLSYSgUI75y51P875+t4rQZ1ZSlEiQDnrYiSZIkSd36c4wlD/xVFEXLQwijgWUhhHuADwP3RlH0tRDCF4AvAP+7H+uQho3dnTk+dfMK7nt2Kx9+7Sz+7q2v4rH1Oz1tRZIkSZL20W9hRxRFTUBT9+vdIYSngWOAy4DXdz92I/B7DDukQ2psbufqGx9lzbY2Fr/zFBa9phbwtBVJkiRJ2t+ALCgNIcwCzgAeBqZ0ByEAm4ApA1GDNJQ93NDMx/9rGcUIbrr61bz22IlxlyRJkiRJg1a/hx0hhCrgZ8CnoyjaFULouRdFURRCiF7m++qAOoCampr+LlMalJata+GGB1Zzz9ObqZ1QyQ+uOovZEyvjLkuSJEmSBrV+DTtCCGlKQUd9FEW3dV/eHEKYFkVRUwhhGrDlQN8bRdH1wPUACxYsOGAgIg1ny9Zu533XLyFfjEgEuO7tJxt0SJIkSVIf9OdpLAH4AfB0FEX/ss+tO4Crul9fBdzeXzVIQ1UURXzt18+QL5ZyvgCs2rAz3qIkSZIkaYjoz86Oc4ArgVUhhJXd1/4W+Brw3yGEq4F1wHv7sQZpSFm2roWHVm/j8fU7eXRtC8lEgCjyWFlJkiRJOgz9eRrLg5T+h/SBXNBfnysNVcvWtbDo+0vozBUBeOcZx/DB19SwZM12j5WVJEmSpMMwIKexSDq0JQ3beoKOABw3uYr5s8Yzf9b4eAuTJEmSpCGm33Z2SDo8q7e0AaWgoyzt2IokSZIkHSk7O6RB4IcPruG2FRu46KQpzJs5loVzJjq2IkmSJElHyLBDitGydS38xx/XcOfjTbz55Kl8e9GZpaWkkiRJkqQjZtghxWTZuhbef8MSsvkiiQBXvbbWoEOSJEmSjgJ3dkgxWdLQTDa/dyHp8sYd8RYkSZIkScOEYYcUk2ljy4FS0JFOuZBUkiRJko4Wx1ikmDzw3FbKUwnqzpvD+XMnu5BUkiRJko4Sww4pBi9ub+cXjzfxkXNm8dk3zY27HEmSJEkaVhxjkWJwwx8aSAS4+tw5cZciSZIkScOOYYc0wLa1dvHTR1/knWccw9TuvR2SJEmSpKPHsEMaYDf+aS3ZQpG6846NuxRJkiRJGpYMO6QB1NqV58Y/reVNJ03huMlVcZcjSZIkScOSYYc0gH7ySCO7OvN8/Hy7OiRJkiSpvxh2SAOkK1/ghj80cPacCZxR4zGzkiRJktRfDDukAXL7io1s3tXFx19vV4ckSZIk9SfDDmkAFIsR331gNSdNG8N5x0+MuxxJkiRJGtYMO6QB8JunNtOwtY2Pv/5YQghxlyNJkiRJw5phh9TPoijiO/evpmZ8BZecMjXuciRJkiRp2DPskPrZkobtPPbiDurOm0Mq6X9ykiRJktTf/JeX1I+WrWvhb/5nFWNHpXj3/BlxlyNJkiRJI4Jhh9RPlq1r4f03LGHttjbaugo8uXFX3CVJkiRJ0ohg2CH1k/uf20I2XwRKezuWNDTHXJEkSZIkjQyGHVI/KBQjHnx+GwCJAOlUgoVzJsRclSRJkiSNDKm4C5CGo3+6+xmWN+7gY+fNYcyoNAvnTGB+7bi4y5IkSZKkEcGwQzqKlq1r4YcPruGXq5r44MIa/uaSV8VdkiRJkiSNOIYd0lGyZyFpNl8kEeDS06fHXZIkSZIkjUju7JCOkjtWbuhZSBqAR9e2xFuQJEmSJI1QdnZIR8Gzm3Zz2/L1BCC4kFSSJEmSYmXYIb0Cy9a1cNeqJm5dtp6KshRfu/w01ja3u5BUkiRJkmJk2CEdoWXrWvjADUvo6h5d+cpl83jrae7pkCRJkqS4ubNDOkJLGpp7go5EgBdbOmKuSJIkSZIEhh3SETttxligtIw0444OSZIkSRo0HGORjlDTzk4APvCaGt515gx3dEiSJEnSIGHYIR2h/1m+gVkTKvjqO04hhBB3OZIkSZKkbo6xSEdgfUs7DzU0864zZxh0SJIkSdIgY9ghHYHbV24E4J1nHBNzJZIkSZKk/Rl2SIcpiiJ+tnw9r541npnjK+IuR5IkSZK0H8MOjSjL1rXw7fteYNm6lgO+74vH1++kYWsb7zrTrg5JkiRJGoxcUKphbdm6FpY0NPPq2eN5pmkX1/3iKQrFiBBg3Kg029tzAJSnE9R/dGGfTlS5bfl6MqkEl5w2rb/LlyRJkiQdAcMODSl7wouFcyYwv3YcD63exvLGFhbOmfiSoGLZuhbef8MSsvniS35OFEEyuXexaFeuyJKG5kOGHQ83NPPTpS9yVu04xpSnj85fSpIkSZJ0VBl2aMjYE17k8sVSZ0ZFhua2LACZ5AvcXLe3M6MzV+Af7nq6V9Bx7nETWbp2O7lCkXQqwWcunMuX73ySrlyRiFJ3x0E/f+12PviDh8kVIh5du51l61r61AkiSZIkSRpYhh0aEnKFIv/462d6wosoKl0PQARkC0Wuu+MJPvumufzu6S387pnNbNjRSTIRIIpK4cZFJwD06gyZO3U0Dz6/lZ8t28C371vNW0+dztSx5T2fu2xdC3c/uYndHTl+/dQmcoXSBxeKUZ86QSRJkiRJAy9Ee/7VOIgtWLAgWrp0adxlKAbL1rVwz1ObuO/ZrTy7aXev8OKLbzuZL9/5JLl8EUIgKkbsO7Dyf972KubNHNcr3Hg5L2xp5dJvPUjt+AouOW0ac6eM5qGGZn70p7U9wUrthAo27uigWCx9fl93fEiSJEmSjo4QwrIoihYc6jk7OzRoLVvXwhXXP9TTTfGZi07g3OMmvqQzY8/7Ox/fyH/8cS0AyQCduSLza8f1KZA4bnIV17xuNt+89wWe3rT7JfcTAd67YCYL50zoU3giSZIkSYqPYYcGpSiK+LffPtcTdCQCpBLhJeHF/u9vfqSRXL60k2PhnAmH9ZmZVLJnLCYAbzttGvc8vbnXz+treCJJkiRJio9hhwadrnyBv7ltFX94fhuJUAoe+hJezK8dR/1HFx5x58XCORMoSyd6wo0PnzObD58z204OSZIkSRpi3NmhQeW+Zzbzdz9/gg07OvnsRSdwzrETWLJm+4CFDfsfbStJkiRJGjzc2aEh56HV2/jIj5YSAelk4JzjJpbGRmaNH7AaHFORJEmSpKEvEXcB0h7X/2ENe/qMit1Hu0qSJEmSdLjs7NCg0JkrsKKx5bB2dEiSJEmSdCCGHRoUfvxwIzvac3z5spPZ3Zl3Z4YkSZIk6YgZdih2nbkC371/NQvnjOdDZ8+KuxxJkiRJ0hDnzg7F7iePNLJldxd/ecEJcZciSZIkSRoGDDsUq85cge/cv5pXzx7P2ce6o0OSJEmS9MoZdihW37j7WTbv6uKSU6fGXYokSZIkaZgw7FBsHm5o5vsPrgHga796hmXrWmKuSJIkSZI0HBh2KDb/9fC6nte5fJElDc097+9eczc3PH4DK7esjKM0SZIkSdIQ5mksis3abW0EIBEgnUqwcE5pZ8cfN/yRzz3wOQKBsmQZN7zpBuZNnhdvsZIkSZKkIcOwQ7FYu62NVRt28YFXz+SYcRUsnDOB+bXjALhh1Q0ARETkijmWbl5q2CFJkiRJ6jPDDsXi5kcbSSYCn77wBCaPKe+5vrltM49vfZxESBAIpBNpFkxZEGOlkiRJkqShxrBDAy6bL3Lr0vVc+KrJvYIOgO89/j0iIr5x3jdYt3sdC6YssKtDkiRJknRYDDs04O5+chPNbVk+8JraXtfX7VrHbc/fxnvnvpeLZl0UU3WSJEmSpKHO01g04G5+pJEZ40bxuuMm9rr+rRXfIpPMUHdaXUyVSZIkSZKGA8MODZj6+nrOeNWZ/Gl1M9vvu5mbb/5xz73bX7idX6/9NRfVXMTEURMP8lMkSZIkSTo4ww4NiPr6eurq6ph63BtJFAu8+YXHqKuro76+npVbVvLFP30RgLvX3c3KLStjrlaSJEmSNJQZdmhAXH7llfxu/GyePun1FEOCuy77Ag9U13D5lVfym3W/oRgVAcgX8yzdvDTmaiVJkiRJQ9nLhh0hhN/s8/pvBqYcDVdzooh/OvUCCAFCIJdI8t2aU5kdRezO7gYgQcKjZiVJkiRJr9jBTmOZtM/r9wD/0M+1aBjL1NbSliqDKCJZLJAuFpjcuIqy2lqWb17OyRNO5sLaCz1qVpIkSZL0ih0s7IgGrAoNe4sXL+ab97cybeMzbH/hEd7VuIpXb3qOcTf+IzfuvpEvv/bLvPP4d8ZdpiRJkiRpGDjYzo45IYQ7Qgi/2Od1z9dAFajh4ZyL38GW8TNo2rSK5x++lR+nO2i96SYKJxRIJ9JcUHtB3CVKkiRJkoaJg3V2XLbP62/0dyEa3u57dgsAD/zkO9RMuBGAQrHAhbdeyHkzzmNMZkyc5UmSJEmShpGXDTuiKLp/IAvR8Hbfs1uZM6mSmgkVPdce3fwo2zq2ccnsS2KsTJIkSZI03Hj0rPpdezbPkoZm3jh3cq/r//XUf5FOpKkuq46pMkmSJEnScGTYoX73pxeayeaLvOHEvWHH0k1LuX/9/eSKOT5x7ydYuWVljBVKkiRJkoYTww71u/ue3UJlJslZs8b3XPv1ml/3vM4VcyzdvDSO0iRJkiRJw9DLhh0hhIkhhC+FED4VQqgKIXwnhPBECOH2EMJxA1mkhq4oirjvmS2ce/xEMqm9v26ZZAaABAnSiTQLpiyIq0RJkiRJ0jBzsM6OHwNlwPHAI0AD8G7gTuD7/V+ahoPnNreycWcnb9hvX8eOrh1UZ6r55Bmf5IY33cC8yfNiqlCSJEmSNNwc7OjZKVEU/W0IIQDroij6evf1Z0IInxiA2jQM7Dly9vX7hR2rtq3ijClncM1p18RRliRJkiRpGDtYZ0cBIIqiCNi2371iv1WkYeX2lRuYPLqMDTs6eq7t7NrJ2l1rOXXiqTFWJkmSJEkarg7W2TEnhHAHEPZ5Tff72f1emYa8B57bytNNuwnAou8vof6jC5lfO44nm58E4JSJp8RboCRJkiRpWDpY2HHZPq+/sd+9/d9LL3H7YxsAiIBcvsiShmbm147jiW1PAHDyxJNjrE6SJEmSNFy9bNgRRdH9ACGEC4A/RVHU8XLPSgeSDKH7T0inEiycMwGAVeuXMmtHgjHb22HqmDhLlCRJkiQNQwfb2bHHh4DHQghLQghfDyG8PYQwrr8L09C3aVcXteMr+Oyb5vaMsERRRFf+Pq44ZT3P3XpV3CVKkiRJkoahg42xABBF0VUAIYTplI6e/TYwvS/fq5GrWIxY2djCW0+bzifecFzp4qhRLH1fgm9+v4N0IiJ//j08954yTrgzAR02DkmSJEmSjo5DdnaEED4YQvgecCtwIfAt4HV9+L4fhhC2hBCe2OfadSGEDSGEld1fl7yS4jV4NWxrY1dnnjNqqve52MCWP5tEOhGRSkAqEbHzmpmwZk18hUqSJEmShp2+dGf8G7Aa+C5wXxRFa/v4s39EKRi5ab/r/xpFkQtOh7mVL+4A4Mx9w45p03j6/mreWGwkEBFFMKW1AqZOjalKSZIkSdJwdMjOjiiKJgIfAcqBxSGER0II/9mH73sA2P7KS9RQtKKxhdHlKeZMrOp1/XfNCW5+oAYiSAWoedsq2PyDmKqUJEmSJA1HfRljGQPUALXALGAsUHwFn/nJEMLj3WMuLjodplY07mDezGoSidBzbXPbZl6synH6xEqSAUICSALtP4utTkmSJEnS8NOX01geBN4OPA68L4qiuXuWlh6B7wDHAvOAJuCfX+7BEEJdCGFpCGHp1q1bj/DjFIf2bJ5nNu3ijJnVva4v27wMgHFN46BA6asIVFw+4DVKkiRJkoavvpzGctrR+rAoijbveR1CuAG48yDPXg9cD7BgwYLoaNWg/rdq/U6KEZxR07txZ+maB6jKQu3S1RDeCMeXlYKOKVfHVKkkSZIkaTga0ONjQwjToihq6n77TuCJgz2voWlF93LSeft1djy4+h4mtnWxKpFn3tyvQu3ZcZQnSZIkSRrm+i3sCCHcDLwemBhCWA98CXh9CGEeEAFrgY/11+crPisaW5g1oYJxlZnS+5PH8W+XVtN0YhUhk+Ga4mRuuOAC5m2IoKMj5molSZIkScNNv4UdURS9/wCXPXZjmIuiiBWNOzjnuInQ1MQf/updfOKvZxIRQRQRhUAuwNIrzmHeJw95qI8kSZIkSYetLwtKe4QQnuuvQjQ8NO3sZMvuLs6oqeb3//5p/ur8nUTR3pUrIYpI5yMWZKfA1KkxVipJkiRJGq5etrMjhLCb0rgJwJ7zQyv2XI+iaEx/F6ehZ0VjaV9H+nNv4lPXZIhIABGJAqRCxGWFCi594UTmvdAWb6GSJEmSpGHrYGMs/wFUA5/fc4pKCGFNFEUYUiefAAAgAElEQVSzB6QyDUkrGlsoSwaevGQqUWgBIFGIWLirjD/vaGTe274DH313zFVKkiRJkoazlw07oij6VAhhPnBzCOHnwLfY2+khvUR9fT0/uncbs7NdbEquhRljSRQiMvmIP9/ZxrxkgKopcZcpSZIkSRrmDrqzI4qiZcCF3W/vB8r7vSINSfX19dR9/M+JxtcwNorIjx5Npi3PRa2nc8PaGuYVmyCfhfr3wIuPxF2uJEmSJGkYO+SC0iiKilEU/V/gvcBH+78kDUWXX3klP6o9i0Iqw7JjTuLRk2o4dlOCr376ZuadfUL31pcICllY+4e4y5UkSZIkDWN9Po0liqIm4Ip+rEVD2Jwo4qY5CwCIEhDKt9DSPoHZUQTlY0sPhSQkMzDrdTFWKkmSJEka7g52Gssd+18C3hBCqAaIoujS/ixMQ0umthbynRBFpJLNhGSWyS90UFZbWxpfSZbB+X8Ns8+Dma+Ou1xJkiRJ0jB2sNNYZgBPAd+ntJg0AAuAfx6AujTELF68mFv/+3EqdzdTaP4pzIWFTzVyyeLvwbZbYfKJcN7n4i5TkiRJkjQCHGyMZQGwDLgW2BlF0e+BjiiK7o+i6P6BKE5Dx6JFi9h0xmtpa93M9rZlAFR88ZssWrQItj4Hk06MuUJJkiRJ0khxsKNni8C/hhBu6f5z88Ge18hWLEbsKJTxkfe8jfbq7SzbvIyr3301dO2GXeth4glxlyhJkiRJGiEOGV5EUbQeeE8I4a3Arv4vSUPR5t2ddOQKzJlUyc83Ps3xzzTDpk1Q2FB6wM4OSZIkSdIAOZzTWH4ZRdHf9mcxGroatrYBUDuxnBd2NtDevoOV//I52Pps6YFJc2OsTpIkSZI0kvQ57JAOpmFrKwAvXn0mhQQsP76Ca45bwcqv/QUUIhg3O+YKJUmSJEkjhWGHjorVW9uoTCd48uJjAYgSgVwqsPSMaaV9HUnXvUiSJEmSBoZhh46Khm1tzJ5cxQQqAEgUItL5iAW5dph2UszVSZIkSZJGEsMOHRUNW1uZM7GKVGs7iQg+ccx7uWH16czL7XA5qSRJkiRpQBl26BXrzBXYsKODOZMq2fSWc5lSNY26i7/IvM/8LQQ8dlaSJEmSNKAMO/SKrWtuJ4pgzqQqNrVvYlrltNKNrc+U/rSzQ5IkSZI0gAw79IrtOYllzsRKmlqbmFI5pXRj23MQEjDhuBirkyRJkiSNNIYdesUatrUBUDth1H6dHc/CuFmQLo+vOEmSJEnSiGPYoVds9dZWpo4pp7O4k3wx3zvsmDg33uIkSZIkSSOOYYdesYatbaXlpG2bAEphRyEPzS/AJJeTSpIkSZIGlmGHXpEoikrHzk6qpKmtCYCplVOhZQ0Ucy4nlSRJkiQNOMMOvSLb27Ls6swze2JV77Bj67OlBxxjkSRJkiQNMMMOvSJ7lpPuGWOpSFUwJjNmn2NnHWORJEmSJA0sww69InuOnT12YhWb2jYxtXIqIYTSsbNjjoGy0TFXKEmSJEkaaQw79Io0bG0jk0pwzLhRNLU1Ma1yGvX19Tz9u1vYvnwdZ82cSX19fdxlSpIkSZJGEMMOvSKrt7Yxa0IFyUSgafcGxt71B754zTUcP7ZAdQa+QBN1dXUGHpIkSZKkAWPYoSNWX1/PfUseY/QDv2HB7Jlsz+5ge6qNn52dJJUOJGYkufxDFbSN7+LyK6+Mu1xJkiRJ0ghh2KEjUl9fT93HPk6xaiKp8tFcfXwVAA+fVMU1H6hhZVkGEoEoAStmJZkdRTFXLEmSJEkaKQw7dEQuv/JKfjpjHlEyxSMzT+bf33IWAFEikEsElpaXExUjKELD2gJltbUxVyxJkiRJGilScRegoWlOFHH2nDMBiBIJioUKkkCiEJEqRizo7OQ//pRlzLN50hsjFt+0ON6CJUmSJEkjhp0dOiKZ2lrKd24BIFEskKBAMhdRdU8733g8Yl5Xlk8+kOVzyRm03nQTixYtirliSZIkSdJIYWeHjsjixYtZ/q8/BSC15Famv3YZoTPLh9/2FV4/4UlY9iPasztjrlKSJEmSNBLZ2aEjsmjRIlo+8CEAXvjjj9k4MWJMzWmlDo72bVAxIeYKJUmSJEkjlWGHjljNca9idHmKXK6LsillnHvyuaUb7c1QadghSZIkSYqHYYeOWEt7lnEVGZramsgX89SO6T5xpW0bVEyMtzhJkiRJ0ohl2KEj1tKeY1xFmsZdjQDMHD2zdKO9GSoNOyRJkiRJ8TDs0BHb0Z6luiJD4+5S2NG7s8MxFkmSJElSPAw7dMRKYyxp1u1ax6jUKCaNmgTZdsh3GHZIkiRJkmJj2KEj1tKWY1xlqbNj5uiZhBBKJ7GAYyySJEmSpNgYduiIZPNFWrvyjKvI0Li9gdrla2DTptIIC9jZIUmSJEmKjWGHjsiOjiwAY0clGDfqOV67cC3P3XoVtG8vPeBpLJIkSZKkmKTiLkBD0472HADh52/ne//fGtKJiPyF9/Dc5x/khLEpx1gkSZIkSbGxs0NHpKWt1Nkx5pI86UREKgGpRMTOS6tLD1SMj7E6SZIkSdJIZtihI9LS3dnR2jCTXDGQL0K+GBj7wlhIpKC8OuYKJUmSJEkjlWMsOiI72kudHWUrKrhm6mw+Omc60++t5IRn1kHtBAgh5golSZIkSSOVnR06Itu7w470//oYj22toGbajZzwiV/Da8/wJBZJkiRJUqwMO3REdrTnKEsliEJpnKU8WV660d5s2CFJkiRJipVhh45IS1uWcRUZugpdAGSSmdKN9m2exCJJkiRJipVhh45IS3uO6op0T9jR09nRtg0qDDskSZIkSfEx7NAR2dHeu7OjLFUGhTx07nCMRZIkSZIUK8MOHZGW9izjKtN05jtJhASpkIKO7aWbjrFIkiRJkmJk2KEjsqM9R3VFhmwhS1myjBBCaYQF7OyQJEmSJMXKsEOHrViM2NGRY3xFhs5CZ++TWMCwQ5IkSZIUK8MOHbbdnXkKxahnQWmvk1jAMRZJkiRJUqwMO3TYWtqzAD0LSstT+5zEAp7GIkmSJEmKlWGHDltP2FGZpiu/b2dH94LSivExVSZJkiRJkmGHjsCO9hwA1Xs6O3p2dmyD8rGQTMdYnSRJkiRppDPs0GHbf4ylLFlWutG2zREWSZIkSVLsDDt02Fq6OzvGdS8o7Qk72ps9iUWSJEmSFDvDDh22He1ZEgHGlB8g7PAkFkmSJElSzAw7dNha2rNUV2RIJMIBxljs7JAkSZIkxcuwQ4etpS1HdUVpCWlnvpOyVBlEkZ0dkiRJkqRBwbBDh62lPcu4itJxs9lCttTZ0bULijk7OyRJkiRJsTPs0GFrac8xbk9nR6GzFHa0bSvd9DQWSZIkSVLMDDt02HZ07+yIomjvzo727aWbjrFIkiRJkmJm2KHDVhpjSZOP8hSjIuWpcmjf09kxPt7iJEmSJEkjnmGHDktnrkBnrsi4ygxd+S4Ax1gkSZIkSYOKYYcOS0t7FoBxFRm6CvuEHXs6OxxjkSRJkiTFzLBDh6WlLQfAuIr0fmFHM6TKIV0RZ3mSJEmSJBl26PDs6eyorsjQWegE9oyxNJdGWEKIszxJkiRJkgw7dHj2HWPJFkqvy1LdYyyVE+IsTZIkSZIkwLBDh6mlfe8YS2d+n86O9maoMOyQJEmSJMXPsEOHZUfb3jGWXjs72rZ5EoskSZIkaVAw7NBhaWnPUVWWIpNKvHRBqSexSJIkSZIGAcMOHZYd7VmqK9IAPWHHfb+6G7KtrFn8L5w1cyb19fVxlihJkiRJGuEMO3RYWtqzjKvIAHvDjm//41dhRp7avyjyT2dupK6uzsBDkiRJkhQbww4dlu3tub2dHflS2PHQuZ1wVTuJ9+Z5wy1F2i7s5PIrr4yzTEmSJEnSCGbYocOyY5/Ojs5C6TSWztdFkASSECVh4yWB2VEUY5WSJEmSpJHMsEOHpaUty7juzo5soXQyS9MfgQJEhdKfz94VUVZbG1+RkiRJkqQRLRV3ARo68oUiuzrzVO/X2VF8KMCNFaxIdLHj9ojdd8LimxbHWaokSZIkaQSzs0N9Ul9fz2tOOAmAH3ztK9TX19OV7yKVSBHVfQTWp3j7pyM+8thMWm+6iUWLFsVcsSRJkiRppDLs0CHV19dTV1fH2ZnJAJzemaeuro7HnnyMsmQZr5lXCkE2bGlh7dq1Bh2SJEmSpFj1W9gRQvhhCGFLCOGJfa6NDyHcE0J4vvvPcf31+Tp6Lr/ySh6oruE3b/0MAI+e/V4eqK6h5ne/oSxZBtm20oOZyhirlCRJkiSppD87O34EvHm/a18A7o2i6Hjg3u73GuTmRBHfqzmVXKK04iWfSPLdmlP5cTpQniyHrt2QroBEMuZKJUmSJEnqx7AjiqIHgO37Xb4MuLH79Y3AO/rr83X0ZGprmdy4ilSxAEC6WGBy4yqS1VVkkhnItkKmKuYqJUmSJEkqCVEU9d8PD2EWcGcURad0v98RRVF19+sAtOx5fzCjR4+O5s+f32916uA2b95M8pln2DJ2CrvGTGLitnVUd+xm04kTCKnAycVUqbtjxoK4S5UkSZIkDWP333//siiKDvmPz9gWlEallOVlk5YQQl0IYWkIYWkulxvAyrS/KVOmUDjxRHaF0vttFCiceCKZTIZESEBUcIRFkiRJkjRopAb48zaHEKZFUdQUQpgGbHm5B6Mouh64HmDBggXR73//+wEqUS/ne/ev5h9+9QxPffliKjIprvrVVaQSKX7QtBmKefjIr+MuUZIkSZI0jJWGRA5toDs77gCu6n59FXD7AH++XoGOXGlnR3mq1MXRWejsPo3FnR2SJEmSpMGjP4+evRl4CJgbQlgfQrga+BpwUQjheeDC7vcaIjpyBcpSCRKJUpKWLWT3Hj3rsbOSJEmSpEGi38ZYoih6/8vcuqC/PlP9qzNbYFRm726OznwnZaky6GqFMjs7JEmSJEmDQ2wLSjX0dOQKjErvDTu6Cl37dHaMjrEySZIkSZL2MuxQn3Xkii8NOxJlkN3tGIskSZIkadAw7FCfdWQLlO8XdpSHJERFx1gkSZIkSYOGYYf6rDO3d2dHFEV0FbrI0H3sj6exSJIkSZIGCcMO9dm+OzuyxSwA5XtuGnZIkiRJkgYJww712b5jLJ35TgDKou6b7uyQJEmSJA0Shh3qs33HWLKFUmdHWbFYuunODkmSJEnSIGHYoT4rjbGUfmU6C3s6O7rDDsdYJEmSJEmDhGGH+qw9u3dnR9em9QCU7d5VumnYIUmSJEkaJAw71GcduQKjMikAVv3n1wHYuOKB0k13dkiSJEmSBgnDDvVJoRiRzRcZ9bXFrDyugq/WPAvAt6bsZGVZBuacGHOFkiRJkiSVGHaoTzpzBQBGff6vWHrFOeSSAYBCCCwtL4cnno2zPEmSJEmSehh2qE869oQdE6pZ0DWZVKF05mwqiljQkYVjauIsT5IkSZKkHoYd6pOObCnsKE8nmbe6g6u21ALwtY0Z5rXn4yxNkiRJkqReDDvUJz1jLJkk3HYb49/xfgBefdICmDAtztIkSZIkSerFsEN90jPG0n30bGuuFYDKbLvHzkqSJEmSBhXDDvXJnjGWPWFHW7aNUalRpHLtHjsrSZIkSRpUDDvUJ3s6O8ozezs7KtOV0NUKZXZ2SJIkSZIGD8MO9UnnfmMsbbk2qtJVkG1zjEWSJEmSNKgYdqhPDrSzozJdCdndhh2SJEmSpEHFsEN90pEtAt2nsbB/Z4c7OyRJkiRJg4dhh/qkZ2fHPp0dVZkqd3ZIkiRJkgYdww71SUc2D+wzxpJtpTJVAYUux1gkSZIkSYOKYYf6pCNXIJkIpJMB6O7sSGRKNw07JEmSJEmDiGGH+qQjW2RUOkkIgSiKaMu1UZlIlW66s0OSJEmSNIgYdqhPOnKFnuWkHfkOilGRqpAu3XRnhyRJkiRpEDHsUJ905go9+zracm0AVO359cmMjqssSZIkSZJewrBDfdKR3Rt2tOZaAaiktL/DMRZJkiRJ0mBi2KE+6cgVKM/07uwYHXXfdIxFkiRJkjSIGHaoTzpyBUalS78uPZ0dxe60w9NYJEmSJEmDiGGH+mTfnR2t2VLYUVXMl24adkiSJEmSBhHDDvVJR3bvaSw9nR2FQummOzskSZIkSYOIYYf6pCNXoHz/01hyWSBAuiLGyiRJkiRJ6s2wQ31yoDGWynxXqasj4a+RJEmSJGnw8F+p6pN9j55ty7VRliwjnWt3X4ckSZIkadAx7NAhRVFEe673zo6qdBV0tbqvQ5IkSZI06Bh26JC68kWiiJ6dHa25VqoyVZBtgzI7OyRJkiRJg4thhw6pM1c6dWXfMZbKdCVkWx1jkSRJkiQNOoYdOqSOPWFHZu+C0qp0lWGHJEmSJGlQMuzQgV13Xc/Ljmzvzo7WXGups6Or1TEWSZIkSdKgY9ihA/v7v+95uaezo3yfMZZSZ0ebC0olSZIkSYOOYYcOac/OjorMfp0d2VbIjI6zNEmSJEmSXsKwQ4fUkS0CpZ0dURTRlm1jtJ0dkiRJkqRByrBDvdTX13PWjBncD5w1cyb19fV7F5Smk3QVushHeSqTGSByZ4ckSZIkadAx7FCP+vp66urq+Kf5Tbzuu0n+6cyN1NXV8dv77gdKOztac60AVIVU6Zvs7JAkSZIkDTKGHepx+ZVX0nZhJ2+4pUjiowXecEuRtgs7Oe367wOlMZa2DWsBqNzdVvomd3ZIkiRJkgYZw46R7LrrIISerzlRxMZLAlESSEKUhI2XBP46VQbAqOlTWf5nFwGw9ac/KP0MOzskSZIkSYOMYcdIdt11EEU9X5naWp67K4ICPV/P3hWRnjQFgOdnBr5y1XQA/n1ekZVlGXjne2MrX5IkSZKkAzHsUI/Fixez805YclUC7ivj6c+k2XUnvPFNbwHg8fecRT4ZACgkAkvLy+Gn/xNnyZIkSZIkvYRhh3osWrSI1ptu4sOPzIAHy/jVi+NovekmjjvxJMrTCc7qmkyqGAGQKkYs6OyEabUxVy1JkiRJUm+GHepl0aJFPLt6HbQV+atrrmDRokV0ZAuMSieZt7qDK7bOBOCbjROY15V1Z4ckSZIkadAx7NCB7Ypg5wYAOnKlsIPbbmPsW94JwGsufk/pubKquCqUJEmSJOmADDt0YDuLsGsjUAo7yjNJANpybZQny0nnOkrPZQw7JEmSJEmDi2GHetTX1zNr1iwSiQQ37oro2tYAQGf3GAvA7txuKtOV0LUbkmWQTMdZsiRJkiRJL2HYIaAUdNTV1XHsuVtY/N9VbDw9QVmxg5/+5w/2jrEArdlWRmdGQ7bNERZJkiRJ0qCUirsADQ7XXnstZ12S584f5UgnInLvCDz34zFc/43rGPOxn1BVVvpVac21ljo7sq0uJ5UkSZIkDUp2dgiAxsZGLnxbinQiIpWAdCJi55yIROsmOrIFyvfp7KjKVJU6OzKjY65akiRJkqSXMuwYIfbdxzFr1izq6+t73a+pqeG3d+bJFQP5IuSKgbENgXmzJ9KZK1DRvaC0NddKVbqqtLPDzg5JkiRJ0iBk2DEC7NnH0ZQbxejXvJum3Cjq6up6BR6LFy/m0btSXPLBDN9aMYUr/nECJzREfPDSN/be2bEn7HBnhyRJkiRpkDLsGAGuvfZa8tU1TLliMdWv+yBTrlhMvrqGa6+9tueZRYsWcf3117NmyVS++2A1z2weT0dyNKfPmtBrjKUt29Y9xuLODkmSJEnS4GTYMQI0NjZSXnMqIZUmJJKERJLymlNpbGzs9dyiRYtYu3YtZx53Jue/7XxGTT4Wdm2kM1dkVCZJMSr27uxwZ4ckSZIkaRAy7Ognh9qRMZBqamrofPEJIAAQRUU6G1dRU1NzwOenVU6jqa0JxhxDtHM92UKRUekkHfkOIqLS0bPu7JAkSZIkDVKGHf1gz46MmtPgS98+mZrTeMmOjIG0ePFiRo2uJoRS2LHjwXpSOxpZvHjxAZ/fE3ZEY6bDrg0AjEon2Z3dDdB99Kw7OyRJkiRJg5NhRz+49tprmX/BJO6+tYlr657i7lubmH/BpF47MgbSokWLOO9Dn4dcJwDjx47l+uuvZ9GiRQd8flrVNLoKXWyvHE/o2kUlHZRnkrRmWwGoSpZDMQcZww5JkiRJ0uBj2NEPGhsbueAto0kn86SSRdLJPBe8ZfRLdmQMlF2dOZ5tK+eDrzuBsaPSfPDPP/2yQQeUOjsANpWXxlSmhu2MSidpzXWHHXt+bQw7JEmSJEmDkGFHP6ipqeHeX+0mV0iRLyTIFVLc+6vdL7sjo7/d9XgTXfkil585g9oJFaxrbj/o83vCjo3J0q/HtJcLOxxjkSRJkiQNQoYd/WDx4sUsu3cr7/7yVXzjrvdw8bunsezerS+7I6O//Wz5euZMqmTezGpqJ1QeMuyYXjUdgKZQAGBaaGZUJtETdlx39UcB+MKnPhfr4lVJkiRJkg4kFXcBw9GeEZFrb1nGqvaLSTy+5KA7MvrTuuY2Hl3bwucvnksIgdrxFdy1qolcoUg6eeCsa0xmDKNSo2jKl0KRaWynPJ3kV3+4F4APRduBNG/LbefiujqAWP5ukiRJkiQdiJ0d/WTRokVc+9lPksiU8/gzz8cWBvxs+QZCgHedeQwANRMqKBQjNrR0vOz3hBCYXjmdpo4tdJVPLHV2pJPM/fGPAHjT+WkAzr2wnLbxXVx+5ZX9/veQJEmSJKmvDDv60eQxZQBs2dUZy+c/3XQ3yfAPvPvMF5k2dhQAsyaUlo6u237wUZapVVPZ2LqRjlFTSzs7Mkn+YVSCEEWMChEAUYAVs5LMjqL+/YtIkiRJknQYHGPpR1PGlAOweVcXx00ePaCf/UzT3cyacCmfeEOeXOHHPNM0mxOnXUzthAoAGpvbgEkv+/3TQzVPbfgTbYlapoUGytNJUpOryXQVSQBRFEERGtYWKKutHZi/lCRJkiRJfWBnRz/aG3YMfGdHS/s9vY6+bWm/B4DJo8soTydYe7Alpc3NzFhRz7vO2sIzFet6TmOZ/9r5jOooEkLg98/l+dlN7aQ2RrEtXpUkSZIk6UDs7OhHk0d3j7Hs7hrwzx5XcRG5wr8DeXKFFOMqLgLoXlL6/9i77/i4rgLv/98zRRpJVrcly0WS5RI7jh3HVoLTuxOTkAAJS4gJbYN5YMMubZfiLbCsfws8hPawy66ThRBQQrJZ2EAKTiMFiJPIJbbjLluWi6xm9TL1/P6Yq7EkS66aGXn0eb9e9zUz596Ze0ZzfOX56pQTrMiSkaFdt0Z096NBeVxWoQsbVfdIjiZXTFHxf39UR0M5Ulu97l3rVzhnulY/vJrJSQEAAAAAYwphRxxlpXs0Id2TlJ4d501epnse/JZunL9D75rxfs0tuSm2r7QwU/tbuod/Yk2N2l+cK48rII9LkqzaK6xmvPxbdR5+SJPcViqcpZqj6xPyPgAAAAAAOF0MY4mzopx0NXYkvmdHQ4dff6yZI2u/MijokKSygkztb+lRJDLMxKJ79ij3qZBCEaNQRApGjLL2Gnl9fnX5OzSht12avSxB7wIAAAAAgNNHz444K872JaVnx/YjHZKkeSU5x+0rm5glfyiixk6/Juf6Bu/8wQ805ze92hVJ09t3+fRkxkR9uKFHT6y8W033zND0cEiadUMi3gIAAAAAAGeEnh1xVpyTrobOJIQd9dGwY+5wYUdBdEWW/Z/6G8mYwdvTT0uS3noioI99oENbD+Tox3m5mlXYp05/u7JCEelL30/cGwEAAAAA4DQRdsRZcY5PDR3+6FKtCbS9vlNT8zKUm+E9bl//8rP7P/RxqbRU8g3o3REISJLukPSnigxF0sLa7/Xoe8unKZzuUlZrWFr97US8BQAAAAAAzghhR5wV5fgUCEXU3htM6Hm313doXkn2sPum5mXI4zLa78uTtm2TbrtNyswcdEyFpAfnZsnKSsYo4DIKuFx6oyEozZ+fgHcAAAAAAMCZIeyIs+Kc6PKzDQmcpLQvGNbepq5h5+uQJI/bpan5GdHlZ7OypMcek+6/X0pPjx2TJqlwR7eMdUsDOqXUdWfFufYAAAAAAJwdwo44K86JDhFJ5CSluxu6FLHDT07ar6wwS3VHe44VLF48KOxYLWlxTa8yqm9URbtX1hhJ0vTyRfGqNgAAAAAAo4KwI86KsxMfdvRPTnrCsKMgU7XN3ccKqquloDPUxhityMzUWkkHeqbpjtpMGWfOkeqnn9dnPvOZeFUdAAAAAICzRtgRZ0XOMJbGzsQNY9lW36EMr1ulBZkjHlNWmKmOvpDaeqITkuq116Te3uhkpaWlUlWVvifpjqwjujv7Hc1zJi791xlpuv8nP1FVVVUC3gkAAAAAAKePsCPOfF63cjO8Ce3ZseNIh86bnC23y4x4TFlhdO6N/S3OUJY33pDcbun226V33pHe+15VSDrft1+bfR7tTkuTJN2/vFg7Z2bojnvuiffbAAAAAADgjBB2JEBxTnrCwg5rrbbXd55wCIt0bPnZ2hZnKMu8edKaNdKvfhWdtFRSWlmZXrXn601fhsLO88LG6IG5WZqR4KV0AQAAAAA4VZ5knNQYUyupU1JYUshaW5mMeiRKcY4vYaux1Lf3qb03qPNHWHa2X/8Ql7r+nh1PP33cMatXr9Y31vtUvuV8ea84oJCRvCGrwh3dSi8rG/W6AwAAAAAwGpISdjiutdY2J/H8CVOU7VNNY2Le6qlMTipFh9dMzvFp/8AVWYa4++67tWrLM2reM1HLX3tVT87N0s07urVkn1/nPbx6VOsNAAAAAMBoYRhLAhTnpKux069IZOShH1VVVSovL5fL5VJ5efkZTwC640inJOm8ySfu2VFVVaUje7bol/+7dsTz+UMRSZJ5/3v1i1CRtj7Tol+EitT18MNasWLFGdUPAAAAAIB4S1bYYSU9Z4xZb4xZmVwu45gAACAASURBVKQ6JExRdrpCEauj/SufDFFVVaWVK1eqdKH0T/82X6ULpZUrV55R4LGtvkPTCzKU7fOOeEz/+Xo6WuUtKld9MGPY8/UGojN1XHrJEtXW1ioSiai2tpagAwAAAAAwpiUr7LjCWrtY0nJJf2WMuWroAcaYlcaYamNMdVNTU+JrOIqKc3ySNOIkpatWrdKS6ydp7RP1WrVym9Y+Ua8l10/SqlWrTvtc2+s7NG/yiYewrFq1SqG8UmXMWCx3epaK71qtUF7pcefrDUbDjsw092nXAwAAAACAZElK2GGtPeTcNkr6jaRLhjlmjbW20lpbOWnSpERXcVQVOWFHY+fwk5TW1dXp+uXZ8rpD8rgj8rpDun55turq6k7rPL2BsGqbu086X0ddXZ18pQskE12a1ri98pUuOO58PU7PDp+XsAMAAAAAcO5IeNhhjMkyxmT335e0TNLWRNcjkYpz0iVJjSP07CgtLdWLz3YqGPYoFHYpGPboxWc7VVpaesLX3VG/Vq/XfEk76teqqqpK85Zeq4iVfviNvz3hEJjS0lL11W2RDYdknSVk++q2HHe+PqdnRwZhBwAAAADgHJKMnh3Fkv5ojHlb0puSnrbW/j4J9UiYSdnRsGOk5WdXr16tDX/2a8WDq/W95z+s93zqYq1/sUmrV4+84smWg8+qrPA2XVz+fZUV3qZHNj2tectm6jPXPK4Z0/adcM6P1atXy9NWp4ZfrVJf7SYZl0tp4Z5B56uqqtKHb71NkvS3H/vIGU+YCgAAAABAoiV86Vlr7V5JFyb6vMmU7nGrICttxDk7VqxYoX1dbj24L1sb6uZJTc9ozZpPjzgR6L7mbr26+wnNK4kOe5FCuuv9rbpzyUvyukP67HUe3XRniVatWjXsa/SXrVq1SofW/lhT/89/6YNfvl8rVtwp6dgEpl/7i8XyXvO4woc7tHLlykHPBQAAAABgrEp42DFeFWWnj9izQ5LKL7xU2rdVRdnpmnnbPVqxYulxx+yoX6tdDb/TI29UyO26QJ+43CMppGDYo2DLgdicH1J0zo9vPPXOiOdbsWJFLLi4a83rqunwy1orY4zuuOceLbm1VGX/+aa87j8reJ1H72srUfk990iEHQAAAACAMS5Zq7GMO8U5PjV2Dt+zQ5L2NHYpM82tdy8o0cYDrQqEIoP276hfq7LC2/TuBT/Rzz7+VX32+tna3/JbvVX7ea1YOV8Prek67Tk/+r1/8TTta+7Whro2SVKFtXpnyISp25Zna4YzvwcAAAAAAGMZYUeCFOekjziMRZJqmro0c9IEXTKjQH3BiLYebh+0v7XnuUHhg7Uva27JTbp05nd1x41f1PoXm3TTnSVaveZ83XRnyUnn/Bjo3QtK5PO69OsNByVJaWVlemvbzEHhSeOznUovKzvzHwAAAAAAAAnCMJYEKc7xqanTr3DEyu0yx+3f09ild80o0MXlBZKk6tqjWlyaH9t/tPsyBcM/Vv+wlfzMG2P7Bs7B8Y2n3lFpaanWrFlzyvNrTEj36Ob5k/W7tw/rH249X59e9S39564Mtf5LieaU/FGZz3ZqytMHtPrhh8/iJwAAAAAAQGIQdiRIUY5PESu1dPlVlOMbtK/LH1J9e59mFU3QpOx0zZiYpTf3tWrlVceOeW33bP3i9X/VZ68/pMKsZZpbctOg1xg4B8eZyG/bpY6+CZpUuVyFV94tX6ZHa3/1ih7Ys0OlpaVa/fDDTE4KAAAAADgnMIwlQYpPsPzs3qYuSdKsogmSpMqyfK3ff1SRSHSOjEAoome3HlFJ3nW6fNb9xwUdZ6uqqkrf+dJfauGkt/T335qsi+Y2qv7X/59W/9MqRSIR1dbWEnQAAAAAAM4ZhB0JUuz05hhu3o49jYPDjotnFKi1J6gaJwR5dVeT2nuDuu3CKXGp26pVq7Tkuol67LP/qi8uq9IjK/9BF55/VKtWrYrL+QAAAAAAiCfCjgT504vPSJLev+LjKi8vV1VVVWzfnsYueVxGZYVZkhSbt+PN2qOSpCffPqz8TK+umD0xLnWrq6vT9UNWX7l+ebbq6uricj4AAAAAAOKJsCMBqqqq9Lf3fUoXTd+mL/9dSKULpZUrV8YCjz2NXSorzJTXHf04ygszNXFCuqprW9UTCOmFbQ1avqAktn+0lZaW6sVnO8946VoAAAAAAMYSwo4EiA4TKdQjn/x7ffkvXtTaJ+q15PpJsWEi/cvO9jPG6JIZ+Xpz31E9v61BvcGwbo/TEBZJWr169VktXQsAAAAAwFhC2JEAJxomEgxHtL+lJzZfR7/KsgIdauvVg6/tU0muLza0JR5WrFihNWvWqG6z9I2/ekd1m3VaS9cCAAAAADCWEHYkwImGiexv6VYoYo8LO5p3vCFJ2nKoXfVvPKVHH30krnVcsWKFamtrWX0FAAAAAHDOI+xIgP5hIss/NEP3P7dC7/vq+2LDRIauxCJF5/j4xuc+qUUlb+sz1zyuigl/HDTHBwAAAAAAGJmx1ia7DidVWVlpq6urk12Ns1JVVaVVq1ap95JPKKOoTP+y1KMPf3iFfvzSbn33uV165xs3KSvdI0kqLy9X6UJp7RP18rpDCoY9uunOEtVtlmpra5P7RgAAAAAASBJjzHprbeXJjqNnR4L0DxP59y9/QpowUfOufLckqaapW1NyfbGgQ2IpWAAAAAAAzgZhR4Itm1+sdI9Lv3v7sKTosrMzh8zXwVKwAAAAAACcOcKOBMv2eXXd3CI9tblewXDkuGVnJZaCBQAAAADgbBB2JMFtF05Rc5dfv9l4SD2B8HErsbAULAAAAAAAZ85z8kMw2q6dW6QJ6R79v5d2S9JxYYcUDTwINwAAAAAAOH307EgCn9etWRk9OnC0V5J01/KrWVYWAAAAAIBRQtiRBFVVVXrl4e9KkiLBPtV3hbVy5UoCDwAAAAAARgFhRxKsWrVKPZ1tstbKeNJVfNdqhfJKtWrVqmRXDQAAAACAcx5hRxLU1dXJN22+ZCMyxsi43PKVLlBdXV2yqwYAAAAAwDmPsCMJSktL1Ve3RTYcim6RsPrqtqi0tDTZVQMAAAAA4JzHaixJsHr1aq1cuVINv1olX+kC9dVtkaetTqvXrEl21QAAAAAAOOfRsyMJVqxYoTVr1qjE26vON55QibdXa9asYalZAAAAAABGgbHWJrsOJ1VZWWmrq6uTXQ0AAAAAAJBExpj11trKkx1Hzw4AAAAAAJBSCDsAAAAAAEBKIewAAAAAAAAphbADAAAAAACkFMIOAAAAAACQUgg7AAAAAABASiHsAAAAAAAAKYWwAwAAAAAApBTCDgAAAAAAkFIIOwAAAAAAQEoh7AAAAAAAACmFsAMAAAAAAKQUwg4AAAAAAJBSCDsAAAAAAEBKIewAAAAAAAAphbADAAAAAACkFMIOAAAAAACQUoy1Ntl1OCljTJOk/Wf49ImSmkexOsDpog1iLKAdYiygHWIsoB1iLKAdItnO5TZYZq2ddLKDzomw42wYY6qttZXJrgfGL9ogxgLaIcYC2iHGAtohxgLaIZJtPLRBhrEAAAAAAICUQtgBAAAAAABSyngIO9YkuwIY92iDGAtohxgLaIcYC2iHGAtoh0i2lG+DKT9nBwAAAAAAGF/GQ88OAAAAAAAwjpwTYYcx5qfGmEZjzNYBZQXGmOeNMbud23yn3BhjfmSM2WOM2WyMWTzgOR91jt9tjPnogPIlxpgtznN+ZIwxiX2HOBeM0A6/bow5ZIzZ5GzvHrDvq06b2mmMuWlA+c1O2R5jzFcGlM8wxrzhlD9mjElL3LvDucAYM90Y8wdjzDZjzDvGmL9xyrkeImFO0A65HiJhjDE+Y8ybxpi3nXb4Dad82LZjjEl3Hu9x9pcPeK3Tap9AvxO0w4eMMfsGXA8XOeX8XkZcGGPcxpiNxpinnMdcCyXJWjvmN0lXSVosaeuAsu9I+opz/yuSvu3cf7ekZyUZSUslveGUF0ja69zmO/fznX1vOsca57nLk/2e2cbeNkI7/LqkLw1z7PmS3paULmmGpBpJbmerkVQhKc055nznOY9Lusu5/x+SPp3s98w2tjZJJZIWO/ezJe1y2hrXQ7aEbSdoh1wP2RK2OdeoCc59r6Q3nGvXsG1H0mck/Ydz/y5Jjzn3T7t9srH1bydohw9JunOY4/m9zBaXTdIXJD0i6SnnMddCa8+Nnh3W2lclHR1SfLuknzv3fy7pvQPKH7ZR6yTlGWNKJN0k6Xlr7VFrbauk5yXd7OzLsdaus9FP+uEBrwXEjNAOR3K7pF9Za/3W2n2S9ki6xNn2WGv3WmsDkn4l6XYnpb9O0hPO8we2aUCSZK2tt9ZucO53Stouaaq4HiKBTtAOR8L1EKPOua51OQ+9zmY1ctsZeJ18QtL1Tls7rfYZ57eFc8wJ2uFI+L2MUWeMmSbpFkkPOo9P9Ht0XF0Lz4mwYwTF1tp65/4RScXO/amSDgw47qBTdqLyg8OUA6fqPqcr4k+NM3xAp98OCyW1WWtDQ8qBYTndDi9S9K9IXA+RFEPaocT1EAnkdNveJKlR0S+HNRq57cTam7O/XdG2drrtExhkaDu01vZfD1c718PvG2PSnTJ+LyMefiDp7yRFnMcn+j06rq6F53LYEeMknSwrg2T4iaSZkhZJqpd0f3Krg/HAGDNB0v9I+py1tmPgPq6HSJRh2iHXQySUtTZsrV0kaZqif32cm+QqYRwa2g6NMRdI+qqi7fFiRYemfDmJVUQKM8bcKqnRWrs+2XUZi87lsKPB6dol57bRKT8kafqA46Y5ZScqnzZMOXBS1toG55dcRNIDiv5nSzr9dtiiaFdGz5ByYBBjjFfRL5hV1tpfO8VcD5FQw7VDrodIFmttm6Q/SLpUI7edWHtz9ucq2tZOt30CwxrQDm92hvtZa61f0s905tdDfi/jZC6XdJsxplbRISbXSfqhuBZKOrfDjt9K6p+p+KOSnhxQ/hFntuOlktqd7t1rJS0zxuQ7XWuXSVrr7Oswxix1xit9ZMBrASfU/wXT8T5J/Su1/FbSXc6MxzMkzVZ0gqm3JM12ZkhOU3RioN86f43/g6Q7necPbNOApNgYzP+StN1a+70Bu7geImFGaodcD5FIxphJxpg8536GpBsVnT9mpLYz8Dp5p6SXnLZ2Wu0z/u8M55IR2uGOAX+AMIrOlTDwesjvZYwaa+1XrbXTrLXlil6nXrLWrhDXwqiTzWA6FjZJjyraJTao6Dihv1R0bNGLknZLekFSgXOskfRvio7b3CKpcsDrfELRyVb2SPr4gPJKRS9CNZJ+LMkk+z2zjb1thHb4C6edbVb0H37JgONXOW1qpwbMnK3oTNy7nH2rBpRXKHpR2SPpvyWlJ/s9s42tTdIVig5R2Sxpk7O9m+shWyK3E7RDrodsCdskLZS00WlvWyX9o1M+bNuR5HMe73H2Vwx4rdNqn2xs/dsJ2uFLzvVwq6Rf6tiKLfxeZovbJukaHVuNhWuhtdF/LAAAAAAAAKniXB7GAgAAAAAAcBzCDgAAAAAAkFIIOwAAAAAAQEoh7AAAAAAAACmFsAMAAAAAAKQUwg4AAAAAAJBSCDsAAAAAAEBKIewAAAAAAAAphbADAAAAAACkFMIOAAAAAACQUgg7AAAAAABASiHsAAAAAAAAKYWwAwAAAAAApBTCDgAAAAAAkFIIOwAAAAAAQEoh7AAAAAAAACmFsAMAAAAAAKQUwg4AAAAAAJBSCDsAAAAAAEBKIewAAAAAAAAphbADAAAAAACkFMIOAAAAAACQUgg7AAAAAABASiHsAAAAAAAAKYWwAwAAAAAApBTCDgAAAAAAkFIIOwAAAAAAQEoh7AAAAAAAACmFsAMAAAAAAKQUwg4AAAAAAJBSCDsAAAAAAEBKIewAAAAAAAAphbADAAAAAACkFMIOAAAAAACQUgg7AAAAAABASiHsAAAAAAAAKYWwAwAAAAAApBTCDgAAAAAAkFIIOwAAAAAAQEoh7AAAAAAAACmFsAMAAAAAAKQUwg4AAAAAAJBSCDsAAAAAAEBKIewAAAAAAAAphbADAAAAAACkFMIOAAAAAACQUgg7AAAAAABASiHsAAAAAAAAKYWwAwAAAAAApBTCDgAAAAAAkFIIOwAAAAAAQEoh7AAAAAAAACmFsAMAAAAAAKQUwg4AAAAAAJBSCDsAAAAAAEBKIewAAAAAAAAphbADAAAAAACkFMIOAAAAAACQUgg7AAAAAABASiHsAAAAAAAAKYWwAwAAAAAApBTCDgAAAAAAkFIIOwAAAAAAQEoh7AAAAAAAACmFsAMAAAAAAKQUwg4AAAAAAJBSCDsAAAAAAEBKIewAAAAAAAAphbADAAAAAACkFMIOAAAAAACQUgg7AAAAAABASiHsAAAAAAAAKYWwAwAAAAAApBTCDgAAAAAAkFIIOwAAAAAAQEoh7AAAAAAAACklbmGHMcZnjHnTGPO2MeYdY8w3nPIZxpg3jDF7jDGPGWPS4lUHAAAAAAAw/sSzZ4df0nXW2gslLZJ0szFmqaRvS/q+tXaWpFZJfxnHOgAAAAAAgHEmbmGHjepyHnqdzUq6TtITTvnPJb03XnUAAAAAAADjT1zn7DDGuI0xmyQ1SnpeUo2kNmttyDnkoKSp8awDAAAAAAAYXzzxfHFrbVjSImNMnqTfSJp7qs81xqyUtFKSsrKylsyde8pPBQAAAAAAKWj9+vXN1tpJJzsurmFHP2ttmzHmD5IulZRnjPE4vTumSTo0wnPWSFojSZWVlba6ujoRVQUAAAAAAGOUMWb/qRwXz9VYJjk9OmSMyZB0o6Ttkv4g6U7nsI9KejJedQAAAAAAAONPPHt2lEj6uTHGrWio8ri19iljzDZJvzLG/IukjZL+K451AAAAAAAA40zcwg5r7WZJFw1TvlfSJfE6LwAAAAAAGN/iuhoLAAAAAABAohF2AAAAAACAlELYAQAAAAAAUgphBwAAAAAASCmEHQAAAAAAIKUQdgAAAAAAgJRC2AEAAAAAAFIKYQcAAAAAAEgphB0AAAAAACClEHYAAAAAAICUQtgBAAAAAABSCmEHAAAAAABIKYQdAAAAAAAgpRB2AAAAAACAlELYAQAAAAAAUoon2RUAAAAAAKQea60C4Yj6AhH1BEPqCYS1YX+rNh9s17sqCnRpRaGyfV6lefgbfCKt39+qdXtbtLSiUEvK8pNdnbgh7AAAAACABEn2F82B519cmid/KKK+YFg9gbB6g2H1BgbeDw0q7w2E1XPc/ZB6+5/vHNsTCKvP2R+O2GHr8Yt1+2P3M7xu5WR4lOPzKifDqxyfx7n1Dikf+thzToYlZ9MGrLUKR6xCEauIjd6Gw1Zhp7x/Cw26H1EkIoUiEW2v79DXf7tNoUhEaR6Xqu5dmrKBB2EHAAAAAIyiUDiibn9YXYGQuvpC6vKH1O0PacvBNv3gxd0Kha08bqOPXlauKbkZA76cRmJfUmO34RHK+48PDy2PDPP8aHm3P6SGDr/64wcjafgoYmRet1GG162MNLcy0zyx+xPSPZo0Id0pdyvD61FGmkuZaR75vNGyP+1p1tOb62UluYx07dwiLZqWp46+oDp6Q9HbvqCauwLa29ytjt6gOvpCIwYm/U43LDnY2quth9o1b3KOKoqyFApHfz7RW6tg+NjPNTigPBSOxPaHI1bB8LGy0JDjgs5t7Dhnf1tvULsaOmVt9Oc/NT9DaW6Xwjb6WcUCjBHCipP8KE5LMBTRur0thB0AAAAAcC4b6S/q1lr1BsPq8kfDiW5/OBZQdAeOhRVd/nC0zB9SZ//+IeVd/pD8ochJ6xIMWz342r5h97mM5HG55HYZeVxGbrdz6zKDy/vL3EZulytW5nW75PP2H+OKvcbepi4d6fBLin7RfldFga6cPUkZThiRkeZ27keDigyv51i5s8/rPvNeFHOKs/XC9gYFQxF5PS595ppZJ/2i3f/ZxMKQ3uDgcMQJRAaWt3QHtK+5O1YeGs2EwNH/GXmcz8bjjv6cvW5X7DPxOp+V131sf18gLOtUx0rKTHNrTnG2PC4jl+vYZ+Z2RV/fZfo/XyO3MbHP3jW0DQzzfLfLNeg5bpfR3uYuffvZnQpFop/B0orCUf/ZjBXG2tH/4EdbZWWlra6uTnY1AAAAAJyFM+m+HwpH1OcMtYhuw9wPRYdQ9IUi8g/Z1+vcr2/v1bq9LYpYyRhpSq5P4Yhigcapfh/OSnMrK92jCemeIbeDyweW9ZfXtfToa7/ZomA4Iq/bpf/48GItLi0YFGa4TfRLazys39+qFQ+ui4UNyRjCkOhhPEPDkof+VKtH36yL9S75i8rp+kDltFgo1B9WDAwoBoYZ/SHGmX5G4/EzGG3GmPXW2sqTHkfYAQAAAGA0hCNWHb1BtQ+zbavv0GNvHVA4YuU2RksrCpSR5pE/FlQMDDKioUVvMHzGf5V3mejwBp+z9QRDau0OxvafV5ytC6fnHhdcHAsr3McFGple91kHEcn+opns8ycbYcO5j7ADAAAAQMypfsE6UWDR3hsctK+tZ3B5pz90yvXJz/Rqcm6GfF6XfB63fF6XMtLc8nncSvdGH/u8biewiN73edzypbnl87hiIYbP64qFGukDjvO6jYw5FkyMhS+5GBsIG85thB0AAADAOBaJWLX3BtXS7dfrNS3656e2KRS2cruMbllYogyv+/gwo+fkgUWax6XcDO+pbZnH7u9t6tLHH3qLv6gDOCuEHQAAAEAKCUes2noCOtodUEu3c9vlP3bfeXzUedzaExxxFQu3y6ggK+20A4vcDK98XvcZvwfCBgBn61TDDlZjAQAAABJg6Bf9cMSq1QkvmgeEFC1d/eGFP3Y/Gl4ERpxEMzfDq8KsNBVkpWnGxCwtKSuIPS6ckKajXQH96+93KOxMjFn1yeQM4VhSlk/IASAhCDsAAACAUWKtVZc/pIYOvxo7+tTQ2afGDr+2HGzXM1vroyuBSJqQ7lbXgCUoh8rP9EaDiqx0zZw0QRfPSNNEJ7womJA+KMjIz0w7peVAF07Po1cFgHGDsAMAAAA4BT2BaIjR0NGnho5oiNHY2Rcra+yM3vYEwsc9N83tivXKsJJmFk3QVXOKVOgEFv3BRkFWmvIzvfKcQnhxuuhVAWA8IewAAADAuDDSfBF9wbAaO/xq6Oxzgoxor4z+8KI/2Bhu4k6f16XJOT4VZfs0f0qOrptbpOKcdBU7ZcU56SrK8Wnnkc5BK4H8w63zCR4AII4IOwAAAJCSAqGImrr8OtLep3U1zfr+C7sVjli5jNEFU3PUGwyrocOv9t7gcc9N87iioUW2T+dNztaVsyepOMcXCzL6Q4zsdM+g5U1HsqQsX1X3LmUYCQAkCGEHAAAAzinhiFVLlz82fORIR190foxY74xoz4yW7sDwz7dWjZ1+LZyWq6UVhU4vjP4QIxpk5GZ4TynEOB0MIwGAxCHsAAAAwJhgrVVrT3DQ0JEjHQOGljjDTJo6/cetSuIy0sQJ0cBiap5PF5XmqTj7WE+Mo90Bfe03WxQKR4eR/PjuxQQPAJDCCDsAAAAQV6FwRK/tbtJre5pVmp+pnAzvoIk++8OMpk6/AuHIcc/Pz/TGel3MnZwd7YmR41PxgN4YEyeknXRSz/KJWQwjAYBxgrADAAAAJxWd3LNZC6flqbwwS609AbX1BI+7besJqHXIbUff8RN7SlJ2ukdFTs+LS2YUqCgnXZMHDCUpyvZpUna6fF73qLwHhpEAwPhB2AEAAICYQCiiA6092t/SrX3NPapt7tbmg23afLBd9iTPzfZ5lJfpVX5mmvIy01Q+MUt5GV7tbuzS6zUtsooON/nEFTP0+RvmKCud/4oCAOKD3zAAAADjwMBlVxdMzdXB1h7VOoFGNNjo1v6WHh1s7Rk0H0a2z6OsNHcs6DCSbrpgsu5YPE35mV7lZXqVl5mm3AyvvCMMI1m/v3XQsqvLLygh6AAAxBW/ZQAAAFKMPxRWQ7tfh9t7dbitV9X7W/XYWwcUjlgZScZocKCR7lH5xCxdOD1P7100RWWFWSqfmKXywkwVZKVpQ13boLDik1dWnNZwEJZdBQAkmrH2ZB0Sk6+ystJWV1cnuxoAAABJ098z45IZBZqWn6HDbX2qb+9VfVtfLNSob+/T4bY+NXf5T/hal1YU6M4l01U+MVPlhVkqyEo76TKrA3uGEFYAAJLFGLPeWlt5suPo2QEAADBGhMIRNXX5Vd/epyPtfc5tr7Yd7tCf97ZopL9RZaW5VZKXoZJcn+ZNztGUvAyV5Pk0JTd629Dep0/8/K1Yz4wv3TT3tAMLJvcEAJxLCDsAAAASYN3eZr20o0ml+ZnKzvAMCDP6VN/Rp4b2PjV29g0aXiJJ6R6XMtLcsaDDSLrh/GJ96JLpKsnN0JS8DOX4PCfsmTFz0gSGkQAAxhXCDgAAgLMUCEXU0BENL+rbo8NJ6p1hJfXtfao72q323uOXXx3YI2NO0USV5Po0OTfDufVpco5PeZne4+bM+D9Xz6RnBgAAJ0DYAQAAcBKv7GzUc9saVJTjU4bXFZsv40h7nw63R+fIGDrEJDvdo5K8aHhhJG051B5bevVjl5Xr8zfOUbbPe0rnZ4JPAABOD2EHAACAo7MvqF0NXdrd0KmdDZ3a3dCldw63q7UnOOi4gT0yzpuc7QwniQYbU5xeGQODjKFLr96ycMopBx396JkBAMCpI+wAAAApb+hKIj2BkHY3dGlXQ6ezRQOOw+19sef4vC7NLsrWlLwMtfUEY70y7rtulj5/w5yTrl4yED0zAABILMIOAACQsqy1em5bg+57ZINCYStjpIkT0tTYGYgdk+ZxadakCbpkRoFmF2frvOJszSnO1rT8DLlc5rheGVfPKTqtoKMfPTMAAEgcwg4AAJAyuvwhbT7Ypk0H2rSpLnrb2OmP7bdWKshK1z1LyzW7OFtziieonFpttQAAIABJREFUtCBTHrdrxNekVwYAAOcewg4AAHBOCkes9jR2aWNdazTcONCmXQ2dsaVbywszdfmsiSrMStPD6/YrHI72zFj9vgWsZAIAQIoj7AAAAGPe+v2tenF7g7J9HnX2hbSxrk2bD7apOxCWJOVmeLVoep5umj9Zi0rztGhanvKz0mLPX76ghJ4ZAACMI4QdAAAg7oZOEGqtVUdfSEe7A7GttTuglu6AWnsCaulybrsDOtLWq4YBQ1HcRjp/Sq7uWDJNi6bnadH0PM2YmHXCeTTomQEAwPhC2AEAAEZde29Qtc3d2tfcrT/XNOuJ9QcVsZKRlJvpVVdfSKH+8SZDpHtcKsxKU8GENOVnpikwIU2Nnf7Yaih/ff1s/c0NcxL6fgAAwLmFsAMAAJzU0J4ZUnQy0P5Ao7a5W/taore1LT062h0Y9nWspNKCTF05e6LyM9NU6AQaBVnHtsy0wf89GboayhWzJ8X77QIAgHMcYQcAADihV3Y26t6HqxUKW7mM0ZziCWrqCqi5yz/ouJJcn8oLs3TT/MmaMTFT5YVZmjExS81dfn38obdiYcU/vWf+aQ0pYTUUAABwugg7AADAID2BkN7cd1Sv17ToTzXN2nqoI7YvbK06/SFdP7dI5ROzoqHGxCyVFWQpI8097OvNLs4+67CCOTcAAMDpIOwAACDOhhsCMpYEQhFtrGvVn2ta9OeaZm060KZg2CrN7dJFpXn6YOV0/WbjIYUj0Z4ZP7zrIpZuBQAAYxphBwAAcfTbTYf0ucc2xSbnnDExS5NzfcrxeZXt8ygnI3qb7fMqZ8Btf3mOz6vdjZ16q7Z11MKScMTqncPt+nNNi/60p1nVta3qDYblMtKCqbn6yysqdPmsQlWWFcR6a/zFxdPHdGADAAAwEGEHAABxUNfSox+8sEu/2XhI/WuOWGfzhyKqaepSZ19InX1BdQfCp/y6k3PSVZCVrgnpHmWlu5WV7lFWmkdZ6R5N6H/cvy/N4xzn0a4jnfr9tiPq7A1qx5FOdfSFJElziifogxdP12UzC/WuikLlZniHPS89MwAAwLmEsAMAkPISOYykvr1XP3pxj/67+oDcLqPbFk3R77ceUSgcHQLy3Q9ceFwdQuGIuvwhdfSG1NEXVGffsdtnttTrDzsaZRXtGZKfmaaSXJ+6/CE1dfm1v6VHXf6Quv2hUwpNjKTr5hbptkVTdOnMQhVl++LycwAAAEgmwg4AQEqrrj2qDz2wTuGIVZrHpap7l8Yl8Gjq9OsnL9fol2/sl7VWd7+rVPddO0tFOb6Thi0et0t5mWnKy0w7bt+MiVn6c01zbCWTf3nfghHrH4lY9QbD6vaH1OUPqScQVpc/pMerD+g3G6I9TFxGWlyWr9sXTR3tHwEAAMCYQdgBAEhZ6/e36r5HNyoYjg4k6QtG9NVfb9bKq2bq2vMmqXBC+lmfo60noP98da8e+lOtAuGI7lg8VZ+9bramF2TGjjmbISCns+yqy2Viw1iKBpR73S49s6U+FpgsrSg8o7oAAACcK4y19uRHJVllZaWtrq5OdjUAAOeIw229+tazO/Tbtw8rP9OrLn9I4YiVMUY5Po9ae4IyRlpSmq/r5xXrhnlFmlU0QcaYUz5HZ19QP/tTrR54da+6AiG9Z+EUfe6G2aqYNCGO7+zMjfUVYQAAAE6FMWa9tbbypMcRdgAA4imRX7J7AiH9xyt7tebVGlkrfeqqCn3q6pnacaQzVofFpXnaeqhDL2xv0AvbG/TO4Q5JUmlBpm5wgo+LZxTI63YNe47eQFi/WFern7xco9aeoJadX6wvLJujuZNz4vreAAAAQNgBAEgyfyis/914SKt+s1XhiJXHbfSLv7xESysmjvq5IhGr3759WN96doeOdPTp1oUl+sryuZqWn3nS59a39+rF7Y16YXuD/lzTokAoomyfR9ecV6Qb5hXpmjlF2tPUpT/taVJHX0i/3XRYjZ1+XTVnkr544xxdOD1v1N8PAAAAhkfYAQBImHDEandjpzYfaNfbB9u0+WC7dhzpiM2V0S/N49KtC0t068ISXTFrktI8w/eeOB0b6lr1z7/bpk0H2rRgaq7+6T3nq7K84Ixeq9sf0h/3NOvF7Q16aUejmrsCcjkjWyLOW5k3OVtfv22+3sW8FwAAAAl3qmEHE5QCAE5o6DAUa632t/TEQo3NB9u09VCHeoPRZU+z0z26YGquPnHFDGWne/T/XtqjUDgit8vo8pmFen5bg3694ZByfB4tmz9Ztywo0eWzJp528FHf3qtvP7tD/7vpsIqy0/XdD1yo9180VS7Xqc+7MVRWukc3zZ+sm+ZPViRitelgm77z+x1at/eopOhKJrdeWELQAQAAMMYRdgAARrR+f6tWPLBO/lA0rJg/JUe1LT1q7w1KktI9Ls2fkqMPXjxdC6flauG0PFVMzBoUOFw6c+KgsCQQiuiPe5r09OYjWvvOET2x/qByfNGQ4d0LS3T5zBMHH72BsP7z1Rr9xys1iljpr66dqc9cM0tZ6aP7K83lMlpcmq+/vWmuVjy4bsBKJqM/DAcAAACji2EsAIARrX56mx54bV/scVF2uq6fV6SF0/K0cFqu5hRnjziR56nwh8L64+5mPb25Xs9va1CnP6TcDK9uml+sWxZO0WUzC2Ovb+2xeTnq2/t0y8ISfeXmuYOWeI0XVjIBAAAYG5izAwBwVp7dUq8vPv62eoJhuYyU5nap6pNL4/Zl3x8K67VdzXp6SzT46PKHlJfp1U3nT9bkXJ/+u/qADrf36YKpOfrHW+frkhlnNi8HAAAAzl3M2QEAOCOBUETfenaHfvqnfbpwep4+fXWFapq6496rId3j1g3nF+uG84vVFwzr1V1NemZLvZ7cdEh9oYgkyes2+vp75p/xBKQAAAAYHwg7AAAxh9p6dd8jG7Sxrk0fu6xcX3v3vFFZMeV0+bxuLZs/WcvmT9YPX9ilH764WxEbXWL2jX1HCTsAAABwQon/HywAYEz6w85G3fKj17S7oUv/dvdiff22+UkJOoa6YnZ0iVq3kTNBKCuhAAAA4MTo2QEA41woHNH3X9ilf/tDjeZOzta/r1isikkTkl2tmCVl+aq6dykThAIAAOCUEXYAwDjW2Nmnv350o9btPaq7Lp6ur982Xz6vO9nVOs6SsnxCDgAAAJwywg4AGKder2nRZx/dqC5/UN/9wIW6c8m0ZFcJAAAAGBWEHQAwzkQiVj95pUb3P7dT5ROzVHXvu3Te5OxkVwsAAAAYNYQdADCOtHYH9PnHN+nlnU16z4VT9K/vX6AJ6fwqAAAAQGrhf7gAME5sqGvVfVUb1NwV0Dffe4E+/K5SGWOSXS0AAABg1BF2AECKW197VD9+uUav7mzUlPwM/c+nL9OCabnJrhYAAAAQN4QdAJBCrLU62Nqr7fUd2nGkU6/XNGvd3qOyklxGWn37AoIOAAAApDzCDgA4R3X7Q9pxpFM7jnRoR32nttd3aOeRTnX6Q5IkY6TcDK+sc7yRtOVwu646b1LS6gwAAAAkAmEHAIxx1bVHtfadI8rPTFMgHIn12tjf0hM7Jtvn0bzJOXrf4qmaOzlH80qyNac4WzuOdGrFg+sUDEXk9bi0tKIwie8EAAAASAzCDgAYg452B/Tqrib9esNBvbq7edC+iklZumBKru5cPE3zSnI0tyRbU/Myhp1sdElZvqruXap1e1u0tKJQS8ryE/UWAAAAgKQh7ACAMSAcsdp8sE0v72zSy7uatPlgm6yVMr3u2DEuI/3N9bP1NzfMOa3XXlKWT8gBAACAcYWwAwCSpKXLr1d3N+nlnU16dVeTWnuCMkZaND1Pn79hjq45b5ICoYg+/F9vxIahXDGb+TYAAACAk4lb2GGMmS7pYUnFkqykNdbaHxpjvi7pk5KanEO/Zq19Jl71AIBkW7+/Vev2tuiSGQVyu4xe3tmkV3Y2avOhdlkrFWal6drzinT1eZN01exJys9KG/R8hqEAAAAApyeePTtCkr5ord1gjMmWtN4Y87yz7/vW2u/G8dwAMCa8trtJn3joLQXDNlbmGtJ744IpuXK5jp9vox/DUAAAAIDTE7eww1pbL6neud9pjNkuaWq8zgcAY0VnX1Avbm/U01vq9dKORoUjx4KOWxeW6Ju3X3Bc7w0AAAAAoychc3YYY8olXSTpDUmXS7rPGPMRSdWK9v5oTUQ9ACAe1u9v1au7mmSMtO1wh17e1aRAKKLJOT4tnz9Zz21vUDgcnXPj45fPIOgAAAAA4izuYYcxZoKk/5H0OWtthzHmJ5K+qeg8Ht+UdL+kTwzzvJWSVkpSaWlpvKsJACMaOOfGtPwMHW7r0+G2XtW392rTgTb9fusR9XfeyM/0asW7SnXLghItLs2Xy2Viz2fODQAAACAxjLX25Eed6Ysb45X0lKS11trvDbO/XNJT1toLTvQ6lZWVtrq6Oi51BIDhRCJWWw6169E36/R49QFFRrhUprldCoQjkqJzcXzhxjm677rZCawpAAAAMH4YY9ZbaytPdlw8V2Mxkv5L0vaBQYcxpsSZz0OS3idpa7zqAAAnM7DXxYyJWXptwFKwLd2BQccaSTeeX6wPXVKqKXkZKsnzaXdDl1Y8uC62NOylMycm540AAAAAiInnMJbLJd0jaYsxZpNT9jVJHzLGLFJ0GEutpE/FsQ4AMKLXa5r10Z++pWA4Ihmpv6NbQVaarpo9UdecV6TcDI8+XbUhFmZ86uqZg4aiLCnLZ2lYAAAAYIyJ6zCW0cIwFgBnamDPjfMmZ2vD/la9ue+o3tx3VOv3tyo84Bp42cxC/d3Nc7Vgaq7cA5aCZc4NAAAAYGxI+jAWAEi2oT03jKSIldwuowum5urWC0v0zJZ6RSJWXo9LX1x2nhZNzzvudZaU5RNyAAAAAOcQwg4ASTWavSastapt6dHLOxv1yq4m/XF3s0L9M4taaWlFgT5z7SwtLs1XVnr08veRS8vptQEAAACkGMIOAHGxqXGTqhuqVVlcqUVFi4Y9Zv3+Vn1ozToFwxGleVx65JNLTx44HHhTqn1NKr9Smn6J1u1t1uPVB9XjD2tbfYfqjvZIkiomZmnZ/GK9sK1BYafnxpdumnvc69NrAwAAAEg9hB0ARt2mxk2697l7FQwHleZO0wPLHhg28PhzTXNs2VZ/KKJ//t07+v4HF6li0oThX3jbk9ITn5AiIUU8Pv1w6v364c5jQUVlWb4+eeUMXT2nSKWFmZKYbwMAAAAYjwg7AIy66oZq+cN+SVIgElB1Q/WwYUdfMCwpOpeGyxi9c7hD13/vFd04r1grr6rQkrJ8mUBXNOTY9Ki0/4+yzvGRYEDBmlcl3S5Jchvp2rlFuufS8kHnoOcGAAAAMP4QdgAYdQsKFwx6XFl8/GTJoXBET22uV8XETN2xZJqWVkzU9IIMvfDc79Sy5QH9bmeauiYc0OXB1+WN9KkpbZpeNTfqlsjL8piwrNura69/v376vI0tC7u0ojBRbxEAAADAGEbYAWB0HXhTkW2PS5LKc8pV21Gr3W27j+vZ8b+bDmt/S4/W3LNEy+ZPjhbuf113v/NpWQVlvFK3P12Ph67Q/4Sv1Ia+2VpSVqDSC+7VEvuOXDOu1MXTL1FVGcNUAAAAAAxG2AFgdETC0uv/Lr3wj1qfmy1XXo4eWfRFfWF3lb7z5ne0pHiJKnIrJEV7dfzgtec1tXyPiiZNlTRZatop/c+9UiQoI0lyaUvZx/T3O6+WleQy0nVzi3TxlZdJujl2WoapAAAAABiKsAPA2Wk/JG38pbThYanjoCSp2peueYGAsl/8F62+/Ue648VP6a9f/Gu9Z+Z7NCd/jh7b8ora8n4tY6w++dxaPTDpOi1682eSO11ye6VIRHKnKe+CZUrfG2SYCgAAAIDTYqy1ya7DSVVWVtrq6upkVwNAv0hY2v28tP4hafdayUakimul8ivkf/X/6rJpk/Shji596Wi75M3Qg/Ov0w/b3x78Gs5Mo24r3dfapnun3yjd/G2pdd+gpWVZTQUAAABAP2PMemvt8ZMCDkHPDgCnrv3ggF4ch6SsIunyz0mLPyIVzJAkbckrVmDjd7Tkiq9JpddJL31T2veSTH6urIkOUCnvyNfh7DaFbUReSZVXfE26+NPRc0yYJE2/JHZKhqkAAAAAOF2EHQBOLByS9vT34nhOslaaeZ1087ek85ZHh50MsN72yMho8fwPSum50l/8XJXvPKb0t1YraCPyWKtvdm2XuqTq6Req8ppvaNG0y5Pz3gAAAACkJMIOAMNrOyBt/IW04RdS52FpQrF0xRekxfdI+eUjPq26oVqz82crNz03VrZo/gf1wKTz9MLTX9YN9Ru0KBCQjEuLypZLBB0AAAAARhlhB4BjwqHoHBzrH4rOySFJs26Q3v1/pTk3HdeLY6hgJKi3m97W+2a977h9CydeqJ81v19zAxtkjVvGnRadlwMAAAAARhlhBwCpdX+0F8fGX0qd9VJ2iXTV30Z7ceSVnvLLbGvZpt5Qr5YULzlu37Nbj+jJlmm6c9lDutK7IzYBKQAAAACMNsIOYLwKB6Vdv4/24tjzYrRs9o3SLd+TZi+T3Kd/eag+El01aWjYEYlY/ejF3Zo5KUuXXXO15LrlbGsPAAAAACMi7ADGm9ba6GoqG38pdTVI2VOkq/9OuugeKW/6Wb30+ob1mpE7Q4UZhYPK175zRDsbOvWDDy6S22XO6hwAAAAAcDKEHcB4EA5KO5+N9uKoeUkyJtp7Y8nHpFk3nlEvjuNOEQlrY+NGLZ+xfFB5de1R/eOTWzUl16f3XDjlrM8DAAAAACdD2AGksqP7jvXi6G6UcqZK13xFuujDUu60UT3Vztad6gp2DRrCsn5/qz70wDoFw1Zet9GmA21aUpY/qucFAAAAgKEIO4BUEwpIO5+J9uLY+wfJuKQ5Nzu9OG6QXO64nPbJPU9KkjI8GZKknUc69Y9PblUwbCVF5+1Yt7eFsAMAAABA3BF2AKmipSbai2NTldTdJOVOl65dJS1aIeVOjeupq49U69Edj0qSvvTK32lW+It6c0eO0tyu6Bwd1srrcWlpReFJXgkAAAAAzh5hB3AuCwWknU9L1T+T9r0iGbd03vJoL46Z18WtF8dAa3du1z+99UVZRXtwBMIB7WzfpC/ceK/uWVqmvc3dWre3RUsrCunVAQAAACAhCDuAc1FLjbTh59LGKqmnWcotla79++hcHDklCavGT9c/o++9/XVJIcm4ZYyV1+XRf37gg7pkymxJ0pKsNEIOAAAAAAlF2AGcK0J+acdT0V4cta8N6MXxcWnmtQnpxdEvHAnrW+t+qF/t/pkiwRL1Hlwht6dbV1/Yoc9edrMWFS1KWF0AAAAAYCjCDuD/Z+/Ow+ss6/yPv+/nOfvJnjZpuiRtaaEUkEgDVJABNxRFROqClOqAUEfEZVRwlJlxGes4uMuMo5ZRKIQfOoIKbogMIiAgBYJlKaUkTbpkafacfXnu3x8nPWlBStGepEk/r+vq1fOc5znn3Oe5kj/66ff+fg91/Vvh0eug7SZIDEBVI7z2XwpVHOVzJn05d3fdw7/c+0VGcj14oyeS7XkbjufDRx2XvXIlzXWq4hARERERkamlsEPkUJRLw9O3FyaqbLsXHB8c9eZCL47FrwHHmfQlWWv54n3f5sfPXYsFHOPy7bM/QJVzpHpyiIiIiIjIIUVhh8ihZPeWQi+OtpsgOQjVC+F1ny1MVCmvn5IlPdI5xK+ffpK7dn+Pfq8NAGPAMdAR28Qlx52skENERERERA4pCjtEplo2BU/fVqji6Ly/UMWx7OxCFcei06ekimOPhzt2896ffAN31h0A1PF6Rv33kvNy+B0/LfUtU7Y2ERERERGRF6OwQ2Sq7H4GHrkeHr8JkkNQvQhe/3lovgDK6qZ0aYlMju89eC8/fOZqfHU7yI0tI9N7LqteezKnHvM+NvZupKW+RY1IRURERETkkKSwQ2QydT4AD30PBrZC7yZw/HD0WwtVHAtPm9IqDoCO/jg//OMz/HTbD7AV9+K4UTK7VpMbPRa/z2Xl4lqa65Yo5BARERERkUOawg6RydL5AFz3ZrAeYODES+GMf4LorCld1sPbBvl/D3XR3h9n0+BDhBp+hlM5xBkNb2Xd332Krb2eGpCKiIiIiMi0orBDpFS6u+H88+FHP4K62fCrT44HHYBxoKJhSoOORCbH1+54hh/cvw3cMYL1vyDS+DiN5Yv4t1O/yQn1JwCwogmFHCIiIiIiMq0o7BApkbZvXMHGiqdp+fonaD6lEnqfKDQftRbcQGHbyhToj6XZ8MdtbHiwk+FEBn/lRoL1vwKT4cTK9/Ddt36SgBuYkrWJiIiIiIgcDAo7RA62cJi2eYaL/2kR2eV1BLw2/ufpPprvy8EP74Rt9xaCjgUnTeqytvXHWX9vOz95ZAfpnMerj/YYDN/E9uQT5BOL8Hav4kOvPUdBh4iIiIiITHsKO0QOtvZ2Hv7m+WR9A2AMGQf+YOfQHI+CvxFO+8SkLufHD3dx7X0dbOmNEXAd3vbKOqoa7uOW9usJ5UNcdNSVBBIn86o3z9Z2FRERERERmREUdogcLHv16Kjp7wYTLGxZAX4ZtfjqOzjl65+k+eobJ2U52bzHJ//3cX7etgsAn2P45Dl+ftn9Bdq3tnPWorO48sQrmRWe2gapIiIiIiIiB5vCDpGD5NFvfJKHqp7mVZceyaNn1hL0/Fw8NMrAsx4/Prma/z53Nj/MPMb6JRGad1pIJku2lq6BBB+++TEe3z5ceMJJ4qv7Ndds/hNzo3P5zuu+w2nzp6ZniIiIiIiISKkp7BD5a41XcrTtfpz1b6vi3uVl2OV1fBfAWs5IJrlsaIRro7UYC9YxZHyw8fxTab78hpIt6/bHd/GZWzeBgU+8YSnfefinuLN/Dm6MNy04n8+f9o9E/JGSfb6IiIiIiMhUU9gh8ldq+8YV/PD4bdx9wgKsobBlxRg8a8FxuC8cpi0QoOWufvzLImQcg+tZWjL1MGfOQV9PIpPj87c9xY82bueExiquOqeBHz7zdXwN9zA7cAQfOu7rrDp25UH/XBERERERkUONwg6Rl6G1tZV3XHghTy0Jc9GnF5N3K8b7cpjCBeM9OgDyGDZ213BJ+yjf2Xo8lxy9ibcOzaV5a+KgrumRziFuf3wXdz7Vw66RFP9w+kLmLHiED97zjwBc0XIFFxx9AT5Hv+4iIiIiInJ40L9+RA5Qa2sra9eupWNpmLsuayTvmuI5Yy1+a3l1IsV9wRB5B/w5S0vZSdBzIycDC259M2NNy+CKrx+0NT2ybZB3f/9Bcl4hZPngmUEeS/wbTz7yJKfNO41/XvnPzC2be9A+T0REREREZDpQ2CFygFatWcMxi0Nc9KnF5HwGrMVYMJ7h3FiGt/vCND8wh7Z5c9n4uiNpuWsLzVvjxdcvrVrK1uGtB209qWyef/n5k4Wgw2QIzf4drdvvoyZUzVdO/wpvbHojxpiXfiMREREREZEZRmGHyAFabC3nLYuScwvHxoNcfAmp/tfzQftVfEe+Gm78H5qBZoAz9339kuol3LPjHtL5NEE3+DetZedwkg/csJGnukcJlG3BX/9TnMAQf9fwVtad/ikqg5V/0/uLiIiIiIhMZwo7RA5QoKmJ2s19OB54jsXxHFIDb8CmG6kNjvLndDmz9vP6pVVLyds8HSMdLKtZ9lev48H2AT7U+igZO8Lpp/6BRwfvpso3jw8e+wUuOP6Mv/p9RUREREREZgpnqhcgcqhr62vj2ns/y1euPIHXZbLMbk/AcI6V12axiQXUMIbf5Jk9t2m/77O0eikAzw49+1etw1rLdfd3sPraBwlUb6RsydfZNHwflx1/GXedf5uCDhERERERkXGq7BDZS2trK9/81Kf46s6dfHL+fE7714/yf4Eb8WyOYNjy3ctmMeIFiPdk+E2Px5yIpTo9DEBj46L9vndjRSM+x/dX9e1IZfNc9dMnuPWJx2g46heM8QwnVJ/AZ0/5LIsrF/9V31VERERERGSmUtghMm7PtJVPNFieecssWvrLuH1wJ6H6PBhDFngs5GdhfT0r617BNV++hjO+cjd1mScLb1BWv9/39zt+FlUuelmVHY90DnHnUz3c+dROtttfUXHE3RAI87kVn+PtS9+OY1ScJSIiIiIi8nwKO0QAurt5z4UXcswRYf7+04vJu+DmHOzuMsCA9fBbS0smzy2OS8QfwVpL72iaFlOo7KB8/2EHFPp2PNb32AEt6ZHOIS5Y/yA5fzvBhlsJBvs4c+Gb+NRJn2JWeH/dQURERERERA5v+m9hke5uOKsZXh3gdyeXk3cBY7COh+MmyCXngzH8Z+9uml/37yTIE/VHiaVzJLN56hgPO8rmvORHLa1eSne8m1gmtt/r2vra+Paj12DqryOy8LsYJ8NZs/+Zr5z+FQUdIiIiIiIiL0GVHXJ4C4dpe6WPjRdW0pIu5/VenhsseFj8OYuzK0LqqEImeEQ2C6EK4tk4UX+U3tE0AHOcYWJEKAtEXvLjllQtAWDr8Faa65r/4jVtfW28/473k/Ey+MohO/IK6H8n737D6QfpS4uIiIiIiMxsquyQw0praysnzp/PPcaQNoa2eYaLLmniW7OquHRuPTiwZDANFt50dQdushHjZAAYcxxyw12k82ki/gh9oykAlkTi9HqVZHLeS35+cSLL8Iv37fjjrj+S8QqfaTCc2ngcre8/nRVN1X/r1xcRERERETksqLJDDhvPb0B6/+Y4PcvLyTkUG5A+HAyRzBhwDDdSR3jWHBynUMERMw7x4U4Aor4ofWOF5xsDo2xPVOMMJ1k0K7rfNTREG4j4Imwd+ssTWay1tPW1gQWLIeQG+PApb6K5TkGHiIiIiIjIgVJlhxw2Vq1Zw/0Nlts+s5hrVtXz0ysXcdpIBmMBa/Fby4kPRvCXlwPw8J8eT3PgAAAgAElEQVQfIeU5xbBjzHFIjHYBjG9jKVR21NohdlPJtv74S67BMQ5Lqpa86PjZrz+4gQe6HyAzdBKnz17DtW+89kW3u4iIiIiIiMhfpsoOOWwstpbzlkXJ76nk8EFnuY/qXWkSc4Os7+mj2ZxMak4W4rvYHRvBWjBOBgvEHUN8bBcEIRqI8uRomkjAIZQaoM8ey8DAS4cdUNjKcvf2u/d5rq2vjese/ym/2/Fz8okjyfady0VvP5XmupqDfyNERERERERmOFV2yGEj0NRE7eZ4sZLDl7OMbo6z2+fHAM3pDHzna6TyhYqNntgo4GGdLACx8jri8V6gsI2ldyzFonKLySUYcWvpHEgc0DqWVC1hMDVIf7IfKAQdl/z2Eu7adSuYPJnBUwCHhzoGD/IdEBEREREROTwo7JCZr7sbTj+dr11xBSd0pCnbnYFYnrOu7uCU9hSNAYekY/AA4v0kc0kA+uOjYLLFtxmrnEs8PQYUtrHsHk2zNFIYIWvL6uk4gG0sAEuqJyayADzc8zDpfHr8rMEX6ibgc1i5uPZv/+4iIiIiIiKHIYUdMuO1feMKrq14miM6HyC2YQMjPj/ZrOWGXB2Jt17IaMAPQNoYbHw3qVyhsqM/PlacxAIQi84i7hhgvGfHWIpFoULYEahuoPMAt7EUx8+ONykdSA0AYC24xs+7jjuD1ktWavqKiIiIiIjIX0k9O2TmCocLo2U/vYj80XUEs4+x/rO30vChRjJ+h29kw7zrqHcQDT0N5Egag/OBC7GXLgJgMDUGe4Udo6FK4k4hH4z4IvSOpmisGwWgrHYe29uTZPMefnf/GeKs8CxqQjVsHd7KzX/+Azc9fTNeYhGzfK/ga2evoqXhlaW5HyIiIiIiIocJVXbIzNXezsbzTyXnGqxjyPoMG1edTKZ+FqmqKA++9ULyxgGTAyDlGFKf+lDx5UOJGMZJF493W7dY2eF5QVJZjwZ3BICa+kbynmXnUPKAlrakagkP7NzIF//0GfKZSuLb38tnTrlcQYeIiIiIiMhBoLBDZq6GBlrSdfuMlm15bicpmyHtZTjZN4bBgpMHIGkMSSaajI5kYhh3orKjP5sj4bgAxJOFX51ahsENMq+hAYBtB7iVpTJYya5EJ7gxkjtW49gwW/tiB+Nbi4iIiIiIHPYUdsiM1vz1m6mJ55mdy7O+p5fmo3rIpBN41uP47mcIk8UaC0AKh3RyoPjasXScaLAQhBhrGc7EiIfK8WEYjBVeU5UfhLJ6mmZFAdh2AE1K2/ra9hk9a5ycGpKKiIiIiIgcRAo7ZEZpbW3lxPnzuccYTlywgFu+9S1syEe59WjOZsk5kHcLW1HiN15PYq/fgET1AlLJiXGv8UycaLgQdlTmHWKZGPFgGVFr2B0rbG+JZvuhvJ7ZZUGiAZdtBzB+dmPvRvKeB4AxljOOH1VDUhERERERkYNIYYfMGK2traxdu5azQoM885ZZnBUc4L2f+hRJCpNWsJaMNcXrd8fjGCdXPE6VzyGZGi4ex3MJwuOVHeV5H4lcjEQgTNR69I4Wwo5gajeU1WOMoak2ekATWcrtUXieC9Yh6PPz4VPepKBDRERERETkINI0FpkxVq1ZwzGLQ1z86UXkHEMwa7n/6g7+3rGkrQNukPTYacCzAPTFxsBki69PhsrxD3VAqPBrkcolqQ4UwpByL0RPPkE8ECWSyNI7kqAs6MON9cKi0wBYOCvC091j+13jjqEEX7ktRUX0ct7zdxlOW7CS5rrmEtwNERERERGRw5fCDpkxFlvLecuiZF0DxpD1wQ+WR8m7hnTegJch/blvw0/PAqA/Fi9OYgFIBcIE0qNADQBpL0HAn4U8lJsoOQaIuxVEPY/UUA/zygzEh6GsHoCm2ii/fbKXXN7D9xfGz8bSOS65fiPpnMfNq9/Jkrry0t8UERERERGRw5C2sciMEWhqonbz+DYSa/HlLPOGZwHj21iATLyveH1/Yt9tLEl/mBSFXhphX5islyLsxjHWUuGrxJosI3hEPQ9GtrM0Ot6fYzzsWFQbJedZdg2nXrC2vGf56P97jGf7YvzXBSco6BARERERESkhhR0yY6xbt44TOtL40h4N/Vmu+IHH/5zyGQAyjsED0me/tnj9UDKxzzaWlC9IcjwUqQnVkCNFwMSIWEtZoAqAvmyMqLX4Y7tYHB4fFVs+B4Cm2ggAHeN9O/Zulnrsuf/IXZv7+Oxbl/N3R84u6X0QERERERE53CnskGmvra+NazddyzFvOIax668n63fYHs/zh8AJZPfaqJU2hsy31hWPBxNxzF5hR8LnIzUedlQEqjFOGp9JEPE8yqOFsbADmREinkck2U2jf7TwwvHKjoXj42c7B+LFZqln2nJuOvfTJJe/geSf78Btv7+Ut0JERERERERQzw6Z5tr62vj73/w9nvUIukG+8/rvYO4wLD1+ORfvbuTXe4UZaWNI+zLF4+FkgqDfKx6nHB8ppxB2lPmqME43ECdiLTVldTDeezRqfNTb3TS442HHeGVHXXmQsN9lW3+CK9esYVnDUZz/nn8n6/pwPI/b//w7XvGb/4TVq0t7U0RERERERA5zquyQaW1j70byNo/Fks2mePDZuwBI5pIc3f0cuBM9OdLGkE4OFo9H00nKwhPvlXRMsbIj7FSCkyFvk0Q8S13NvOJ1IV8Zc80AsxgC40C0sC3lpptuItO3jUeu/xEnBiJ86MzLyPr8YAxgWb/gWBZZW8K7ISIiIiIiIqCwQ6a5lvqWwgMLfs/j6Dt/D0Aql6Lnuz/YZ5tK2hgyyaHi8Vg6QUVwotIjZQphR8C4ODaMcdLkvCRh6zFv9oLidX5fBfNMP9X5wULQ4bjFbStzR4fY0vgKcpd+n95ZjfjyOdx8jkA+R13XJoJNTaW9ISIiIiIiIqJtLDK9HbP4VfBfS5iby/Ifvf2Uuz3AXFJjg/SMpvZtQBqqIJ0aLh6PpVPUBNL0AsYaYrkMYddPCAfPC2CcDCmbYrZnqa2cO/GhTiVzzVZC2UEoqwNg1fi2lXfPX07O9WH8Aa7+1bdoGtzJmsbjOK9rEyf1bGH5hg2TdGdEREREREQOX6rskGll7wknJy5YwM1f/jcAKjxLczZLwi1sQ0kFHLpHErDXaNlMuIp0erR4HM8mqfAlAfDlA4xlEqT8YUIYvLwfgOF8kojjpyxYUXxd1qmixsQIxTqhrNCvY7G1fK/xOLzxbTCO5/HbshrO2bWZZx/6CTf5k8Q2bGC1+nWIiIiIiIiUnCo7ZNrYs1XkQ0sdnlgxm7OeHODy//g3Gr/YSNwxYC1JTPH6ncOxfbaxpEKVZDITYUcikyLspsADNx9kLB0n6Q8StpZcLgDAgM0QcQKUB8qLr4vbagCcgWeh8WQAAk1N1HVtIpDPkbUWv5enrmsToaYmvG3bSnlbRERERERE5HkUdsi0sWrNGo5ZHOK9H2sCC8G3zOaG63ZyFZAwDvjLSGSOB3YA0D06As5ePTtC5aQTPRAYP/bSBJ0keEA+QjybJOX6CXkp0plCZUcOS8QXJuAGcPDjkWUoXzOxqPHKjnXr1lH23vfi3XwVt2jbioiIiIiIyJTSNhaZNhZby/plUSxgHUPWZ/jxkVEAEo4BL03yfZcXr+8ZHaO2bOJHPBWMksnEJt7QZAmYwjaWfD5CIpsk5foIennSWX/xsrAvAkDAKYxu6YpXTbzH+NjZ1atXE9uwgZv8SW1bERERERERmWKq7JBpI9DURNVzuwujXK3Fl7NEutMAJB2HvJcjmdhdvL43NkZNJEdi/DgTiJLOJYFyAk6AjMnhmBR+a8l5YVL5AVKOSziXoQ+3+NsR8RcClYivjFRmlD8PluHh4OBBWX3x81avXq1wQ0RERERE5BCgyg6ZNtatW8eyvvGGo/1Zzrq6g8aRfPF8whgS8d7icX9ijKpAonic8odJ4+Eal6AbASeLsWlCnsWaKJl8ipSBkJcnl5x430iw0K+jLFAGQCYXpidTqPJ4/5oP0NraWrLvLCIiIiIiIi+fwg455LX1tXHtpms55g3HMPitqwFIpT1uyNXRccna4nUJxyGZ6C8eDyXjlLkTYUc6ECJjDAHHj4sfY3JYmyIABH0RsjZNEgh5HiaZLL4uEqgEoGo89LBekFyqcO4did2sXbtWgYeIiIiIiMghRGGHHNLa+tq46I6LuObRa7j0t5cy98S5ADQe2cgt9zzGvYMT01fijiGRGCgee2QIuxOhRdoNkjaGoOPDMQEwWXJemiCGiC9E3qZJkSdkLf7kREgSCRd6dLiOBWBZ8GHml8UBOOu8CPGaNKvWrCndTRAREREREZGXRWGHHNIe7nmYnJfDwyPrZWnb3QbAWGaM+57dDU6qeG3MuCTTI8Vj42TwkSTqeQCkfP5CZYdxMdYPTo6czRA0LmWBKBiPWD5DyFqimb0qO0I1tPW18Xh/G9ZCT+Ov+XOoMNLFOvDYQpdF1k7G7RAREREREZEDoLBDDmnLa5cXH/sdPwvKFwCQzCWpr/TjOOni+dFwNYnMRNiByWL2hB3WELNOobIDg7U+fG6OrFcIOyqChYkrsXySsGeZ5U1UdoQjs9jYuxFrLcZA3lgeDoSweQsetG/LE2xqKvGdEBERERERkQNVsrDDGLPAGHO3MeYpY8yTxpiPjj9fY4y50xjz7Pjf1aVag0xj2/8E936NxvgwAE0VTaw/cz01oZriJXmShJzR4nGmvJZkJk7YV2geapws1qYIWbDWz3AeMsYQtGA9Pz43TzqfIeD4qQxFiu8TspZZJoYPF4BItJ6W+haCbhBsISjJ3x3l279Pc8uGBL5dlnXr1k3GXREREREREZEDUMrKjhzwCWvtcmAl8CFjzHLgn4C7rLVLgbvGj0UmbP8TXPcW+L8vMvrTDwBQGaikua6ZscxY8bLNfb2E3THc8S0kiVAliVyyGIg4TpaclyKAg/V8jGSypB2XAJZ83sX15UjbHCHXT3W4rPi+AQy1ZoywKcyejUTraW56FZ/8zxiZ3teT6Hw/31z2JV7dvpizd3rENmzQyFkREREREZFDSMnCDmttt7X20fHHY8DTwDzgbcD145ddD5xbqjXINPXUbZDPgPUYoTACdjhdqPDYO+x4rr+fkJugNl+4JhEqI5lPUx0sFAtFQx6ZXIqgccH6GU0nSLsBgp4ll/fhODnSNk/ACVIb2SvscELUMErEjFd2lM2B9nb6my8kO3AGXmohWdfHg+esIbRrl4IOERERERGRQ8yk9OwwxiwEXgk8BNRba7vHT/UA9ZOxBplGshP9MkZ9hUagI+O9OGLZWPFc1/AA4WCa+lwh7IgHIiTJUxkoB2soC1tSXoaQGwDPTyyTJOPzEfBy5LIuxmRJYwn6QtRGyovv6zgRas0YEQqTXiKhSmhoYKUvRiCfw/Vy+PM5VvpiMGdOyW+HiIiIiIiIvDwlDzuMMWXALcDHrLWje5+z1lrgL46xMMasNcZsNMZs3L17d6mXKYeAtr42rt10LW27Hiw8Eaxk9NQPATCaHiXv5RnNTPwI9caHwUlTmTeAIe4PkTAOEQwGP+FAnrSXJeQGAT/xbIq04yOYz5HJuRiTKTQs9YWpK5uo7DAmQo0ZpWw87NjTA2TFrmdozTzCx5traM08woqdmyflvoiIiIiIiMjL4yvlmxtj/BSCjlZr7a3jT/caYxqstd3GmAag7y+91lr7feD7AC0tLZrrOcO19bXx/jveT87LEfDnWF81h+bhHkYChcahFkssGyOWiVEbqmUgNQBOkixZAiaE8fzEXT9JxxCxFuv5CYbzpOI56n0hfMZPKpsi5DgEMkkyWZcw42GHP0x9eUVxLXmnjFrTT9SrImDB54z/mtx6KyuAFQAXnDbp90hEREREREQOTCmnsRjgf4CnrbVf3+vUbcD7xh+/D/h5qdYg08fvOn9Hxsvg4ZE1ho1LXw3A6Ghn8ZqR9AhjmTHmls0tPOEkSZIj6EbxvABxxyVhDIFsDi8fIODLksYj6AsTcIKk8mnSxhDIpcH6yNksGWMI+KPMik5UdmRtlBozRs7L4BhDW1/bpN4LERERERER+duUchvLqcAa4LXGmLbxP28Gvgy8wRjzLPD68WM5zO3ZnmIs+DG0HPl2AHbs7ipeM5weJpaNURepw+DguEnixhIOVmLzQfqzeZLGwU0nsdZPwEmSNoaQP0rQDZLJp0kDoXwWxzrkyBbOB8qKW1UAkrac9mCWx0yWFJZLf3upAg8REREREZFppGTbWKy198F404MXel2pPlemH2stD/c8DMCSTIZ/XbyK5sVvwnP8tPfthPGii0e272QsM0Z5oByXCDXRGDFjqIjOwiZ305uKkXEMgVQSvAAOCVLGEAyUEfJ7jGYHyOARsJaw55EFko5DIFC+T9gRy5exMRQqNpPJelk29m6kua55cm+MiIiIiIiI/FUmZRqLyP607W5jR2wHBqj2PJpXfABcH7vceRg3jpcrTEpp2zURdth8iEhwAIBZVQ1YL8BAsnAcSMWwnh9rxys7guVEfSHyZEhbj6C1RG2u+PnBYMU+YcdQtoyWVIqAtbgY/I6flvqWybshIiIiIiIi8jdR2CFT7odP/BCf4+OYvMtAMArVTfTH0jyRnkPeyeBlagGoq8qRyCWIuGVks0Hy7jAA1ZXzCDhhxrKDAETTMbB+cl6StOMQDFYSDYTBZMl4OQLWEmUi7AgFK/E7fvYUIvVnymlOZ1jf08fls1ey/sz1quoQERERERGZRko6jUXkpWzs2cjd2+8G4GnHEnGCAHztt1uYa+eSdLswySqIGBz/EACZbAAvH2bM9gAQrVhAeaCMETsGBsrTo/iCixnN9QIQDFVTHsxhnDR5CpUd5V62uIaAP4wxBp8JkbNJdqXKwUBzOkPzgjNBQYeIiIiIiMi0osoOmVK3PXdb8bEHjNkMm3YM8qOHu2hY0syo41DnGHxE2BHbAUAs6cfmQ2TIAxAta6AqXFbobgpU5UYJuSFGcgkAQqEqKoJhjJsGIOhZqp2JsCPoFgKWwHjQ0pepnFhgpKY0X1xERERERERKRmGHTKlEthBIuNbijj+34ec3Uhn285q/O5Wk47A8CrlsiO1jhbBjaMwBL1R8j7JgObMiFcXjinyGSr/LmC0EGsFAlKpwpHjeb2G2kyke7wk7gm6hb8ewrcbu6a0bVtghIiIiIiIy3SjskCm1eWgzx7kVXD40wmVDhR4cvv6HeEfLAuysBgCODmbI5yLsGA87+kYcygMT4UbUH6W+bOI4bC017sRnhNwQ1eFo8diaILP+QtgR9oWwng8PH9nAeHWHKjtERERERESmHYUdMmU6RzvpHO3k7GSGS0ZGeWW60DT0UaeBGx7YxgPb+wBYZMcwXoSsVwgouocssyITW02i/ijzKquLxxHPUuva4nHQDRINTFSC5G2YWaSKxwE3QGtrK7u2bgMvAMBY1l84OTbRyFRERERERESmB4UdMmXu3XEvAKf1PgenfJgnKt4OwHNuFdmcx0NdhUqO6rEeasMTYcaOAWiITlRylPnLmFM2EX6ErUets9e0FV+IkDsRdmRsmFoSxeP77r6PtWvXUpNNYU0eJ9xJdvcgNm/hK1ce5G8tIiIiIiIipaawQ6bML9t/QbUHAzVN8LrPcpuzCgDXF8Pvc1g0u/DjWTmyk0XVE9tJMtkAR0QK+1QMEPaFKQtMbFOJeJZaM9GANOSGCPqCxeN4PkSNFy8ev/4L67i/wTK8IIBx0pQ1fp+eBhfjAOW/hQU+CIdLcQtERERERESkBBR2yJR4cNeDPDHwJEPGcmmZ4e7tj/F4VxqDy0lLA7RespLZVYVpKxW5LMdWToQV5EMcEfQAiLohjDFE/RNhR9KLUu0li8dBX3Cfyo54LkJtbqh4vCrjce2yKBYwBjB5Hg4HCwcOcO4K6OgoyX0QERERERGRg09hh0yJ/918c+GBMWTxuOnxu8l7UBOqYWGdZUVTNaPpUQAqPY+5FPp1WC8AuCxKF8KKPSFHxD8xbWXYq6Yq1V88DrkhAm6geJywZZRnY8Vj/+wGajfHCWQteAasS0siXdjG4gGmEebMKcVtEBERERERkRJQ2CFTomfXw2AtLga/42dzRx0nLqymLjKLgeQAACOZEQDKPI+qROGxzYeoSI2Rf+C+wrlgoVfHnrDDegH6qSE6PrkFCg1K967siHllhOxEA9NPfOwT/OtzSa74gUdm9xuIdV7Kf4xcwa5HKuDGFOzIl/BOiIiIiIiIyMGmsEMm3dDm23kqN8JbYgkuHx7jqvkfYHtPHe9qWUBNuIbB1CAAo+lRygPluFWNVP7qJwBYL8RosIynTSG8iD72ZOFvX3T8fIDRXJRweqInR8i3b8+OmFdGcK+w492r3s3PrrmGPwROIDNwBl5qIQ+bo/hZ02XwUBfcemtpb4iIiIiIiIgcVAo7ZNLd+dC3yBnDRaOjXDI8QuCpZygL+njLKxqoDdUWw46RzAgVgQqYvYyq5U2FF+dDYAzH0g1AtKYwpaXYs8ML0Jfdt3Ij6AYJuhNhx5it3CfsCLpBVl1+ORe/opFgLovr5fDn86z0xbR9RUREREREZBpS2CGT7kepXVTnciRxsK6fG7oX8NbjG4gEfNSGahlIDmCtZTQ9SmWwEmYdSeXoTgBMLsir7eO0mG041tIXHqXtlHKiNYVQwnoBnvPPI+y9eNgx4lXgAP7xwGPPuRW7nqE18wgfb66hNfMIK3ZunqQ7IiIiIiIiIgeTb6oXIIeRUIj/PT3ClgvmYazl0vrZnHfvXB6YcwTnzK8CCg1KM16GeDY+UdkxaxmV2cJ0lYXudj5c/hCbnAAe8FzAz6WXLOTvB18P/A48Pz3UErLexMf6Qvv07BjxqsCFoLXkjIPf8RdO3HorK4AVABecNim3RERERERERA4+VXbIpLnvH97El9/VANZijSFjHH64/HgAPn/7kzzSOURtuBaAgdTARGXH7GU85/eDha5IksvnVXNbNIIBMIaMgS/98cf4MhbjxtgRSBa3sfgdP45x9unZkckWmpkGPUvQDWKMmdT7ICIiIiIiIqWlsENKLxymbUmEDx2/lYxbCBacvMVYQy65GIBszuPB9gFqQjUADKYGGUgNsDO2k7b+P/NIKATY8VG1BpNtJGhcXAv+rMc3BxLk/OAEBulfcDvP+QrVGiGnMHJ2720s2bSPvOcjZC0B45/EGyEiIiIiIiKTQWGHlF57O7de1ILnGDAGx8LKvhDvfOa1eMkmHAN+n8PKxbXFsOMLD3yBscwYT/Y/yaWbrqEy7xGyFtda/K7LW997DevPup7LV3yUvqs7uKd8fEeWMVjj8URgPORIpgp/z24AwFqHsVAFA0QJeJbg4NDk3w8REREREREpKYUdUnoNDewq92A8rAjkLB8cXMbct30UgH84/QhaL1nJiqZqehI9AGwd3gqAxZK1lhF/gPW9A1w+Emf9CVfSXNdMc10zlxx3CU6ujtrNcYIZi5u3+POWV6UKPT6CNgULfAQz4z08PB8nOM8yy4wSxBIMWVjgIzcejoiIiIiIiMj0p7BDSm5g21M8Eh3mTWNpLs9WsH7rCTRvTbClN0ZVxM8VbzyKFU2FEbJbBrfs81qDwe8GaHndOppPvYJLzvsRzcdesM8169at44SONGdd3UHo1l6+8psdNKcyBL1CNQjnrsBs24bPc8D6eJV5ErDkgIRj+P1JUY70+WhtbZ2kOyIiIiIiIiKlpLBDSu6/f/RRcj7Da1JjXLLsIpr/4wa49Vae7R3jyLryfRqEntxwMkE3iGtcAk6Adxz5Dtafub4QcJz2CVhw0gvef/Xq1cQ2bOCGXB1/+tUAqU0e5CFkLUFrwTTCnDmEc1DjeSx6tIvH/QHaA34GXZcr3jSfW+fCqjVrJvO2iIiIiIiISIlo9KyUTjjMY/MNP75qMVj47Kxa5n7m4zRv/Ag2keDZvhhnv6Jhn5c01zVz7ZnXsrF3Iy31LTTXNR/QR61evZrVq1cXDs47j86nduHNG8Xdnef/1v+C7pNbCVXWEvKFiNzxa35XW4edT6HhqQvrl0W59bkk3Qf5FoiIiIiIiMjkU2WHlE57O61nzsKaQmPSrDFsfFslzMqye9ZcRpJZltaVveBle3pxHGjQ8Xytq1ax/Leb8JJ5hkMuv59nuOiii+jb3k3u6We51HGIPTRGYLzHhy9nCz0/mpr+1m8sIiIiIiIihwCFHVIyY9k4DxxThtkzRcVaWtIpOHcFz/76HgCOrC8/6J+7as0a7m+wJGr8bK8P8OsrF/GnRh/zbJ58xOX9i4K84rkkZ13dgXdrL2dd3cGKjjTr1q076GsRERERERGRyadtLFIyn/3JpYxWO1yyZZTobEtLIklzIgOmkS1ZPwBLSxB2LLaW85ZFMRasY8j64PZTquiuDWAN/PrKRZx3dQdvfi7JuvYUo42NLNuwbmIbjIiIiIiIiExrCjvk4AuH+b+j/dz5kUawcOOSctZv7aH5j0k4/mzYkStOYplVdvBHvgaamqjd3Ic/V5i44stZhg1YQ2E7jW+iR4fneQf980VERERERGRqKeyQg6+9nTuvexeYYTCQtbCxooHmm38Hc+YAsPW7f3zBJJaDZd26dZS99714V3fw82VRztocZyVwz6nVZH2oR4eIiIiIiMgMp7BDDr6GBiJOCAAnb/EbS0usrhh0WGvZ0vvCSSwHy+rVq2kFbrjqKrp+1cWumhpWDA5y1l7hx4qONEdtUI8OERERERGRmUgNSqUk0pk4lVkfH44ez/qePpqfm9iusnss/aKTWA6W1atXs23bNjzPo7+/n/gNN3BDro4nfjXADbk6Yhs2qEeHiIiIiIjIDKXKDimJjhWLOMoNcUkqBE4UbvpN8dyzfTGgNJNYXszq1asVboiIiIiIiBwmVNkhB521lo6RDhZVLoLtf4IFJ8NevTm29Nvf2aYAACAASURBVI4BsKS+dJUdIiIiIiIicvhS2CEH3UBqgLHMGIvCddC/pRB27OXZvsIkltllwSlaoYiIiIiIiMxkLxl2GGP+tNfjd5Z2OTITdIx0ALAolSo88fywo3esZJNYRERERERERF407DDG/NEY8z2gzhizzBjjAp+evKXJdLUn7Fg8tAMcP8w7oXhuzyQWbWERERERERGRUtlfZcepwH8BLnAl8HtgsTHmy8aYsyZhbTJNdYx0EPaFqdv1Z2g4Hvzh4rndscIkliNLOIlFREREREREDm/7Czt+AKwARq21F1trTwM6gV+PPy/yF7WPtLOwogln12N/YQvL5E9iERERERERkcPL/kbP/jtwGjDHGHM/kAbqgRrge5OwNpmmOga3csIz/eCloHHfsEOTWERERERERKTUXrSyw1q7xVr7P0CXtfZU4GxgBDgCuHaS1ifTTCKboDvVx4AzRlswoEksIiIiIiIiMukOZPTshwGstQlgs7X2q9bat5V2WTIthcPc+Zp5ADw0P8Klc+poe+ViCBd6drS2tvLj2++i7pnHOKmxkdbW1qlcrYiIiIiIiMxQLxl2WGvv2+uxQg55ce3t3H/2MQBYY8hi2HjmfOjooLW1lbVr1+JUziXk+jnTK2Pt2rUKPEREREREROSg29/o2ev2evy+SVmNTG8NDUSfKYydda3Fj6WlYRBOnM8FF17IzxuWkwlG2TRnKbecv44/VDWyas2aKV60iIiIiIiIzDT7q+w4fq/HHy31QmRmyDTNpzqd5/KhEdb39NGcycC5K2gGvndEoX+HdRyyjst3G49jkbVTu2ARERERERGZcfYXduhfofKybT/5KI7I+blkZJTmZBo8wDQy0tSELzEMgOPl8Xt56ro2EWxqmtoFi4iIiIiIyIyzv9Gz840x3wbMXo+LrLUfKenKZFrqHO3kjHgerAvHXgz3d8GOHOvWreMP3/sNeHn8993EeZ2Pc1LPFpZv2DDVSxYREREREZEZZn9hxxV7Pd5Y6oXI9BfLxBhMDdI4px7GKuBdX4V3Fc6tBn7cFYGdQzz74I+5qbGRYzZsYPXq1VO6ZhEREREREZl5XjTssNZeP5kLkemva6wLgKb4MNQse8F5U1HHqbMb2OZ5k700EREREREROYy85OhZ+Rt97nNTvYJJ0zVaCDsah7uheuELzw8maKyJTvKqRERERERE5HCjsKPUPv/5qV7BpOkc7QRgQToBNYv3OTeWyjIYz9BUG5mKpYmIiIiIiMhhRGGHHDRdY13UBaoIWws1i/Y51zmQAKCpRmGHiIiIiIiIlNaL9uwwxlzDfsbPahqLPF/XaBdN/vLCQfW+YUfXYCHsaFRlh4iIiIiIiJTY/qaxaAKLvCxdwx28pnMAHB9ULtjnXLGyo1Y9O0RERERERKS0NI2lhDZ338HQd46luvsOljW8caqXU1JjmTEGsyP0umna8mU0u/v+aHUNxqmNBigL7i9fExEREREREfnbvWjPDmPMLGPMZ40xHzHGlBlj/tsY84Qx5ufGmCWTucjpaHP3HTTVnsOJa5+iqfYcNnffMdVLKp1wmN+9rhGA++siXDq3jLYlEQiHi5d0DiS0hUVEREREREQmxf4alN4EBIGlwJ+AduAdwC+Aa0u/tGnkc58DY/b5M/SzT+J3c/hcD7+bY+hnn3zBNRgzM0bTtrdz39nHAGCNIWsMG88/FTo6ipd0DiTUnFREREREREQmxf7Cjnpr7WeAjwBl1tqvWGs3W2vXA1WTs7xp4nOfA2v3+VN97lfJ5n3k8g7ZvI/qc7/6gmuwdmaEHQ0NBN0AWItrLf68pSVTD3PmAJDJeXSPJGlUvw4RERERERGZBPtroJAHsNZaY0z/8855pVvSzLCs4Y2s3fBVVkbu5JRTPzTje3bEcwnmZvy8M95PS//RNG9NFM/tGErgWY2dFRERERERkcmxv7BjsTHmNsDs9Zjx40Uv/jLZo2vwePhZLxe/Y2YHHQDtR81muRPmksfa4SPfhPrlxXOdg3smsSjsEBERERERkdLbX9jxtr0ef/V5555/LH+BzzXkHHeql1Fy2XyW7WPbObNiPOCoXrjP+a7xsbNqUCoiIiIiIiKTYX+jZ++ZzIXMRD7HIevO/FGrnaOd5G2exZkMlDdAYN9Qo3MgQSTgMrssOEUrFBERERERkcPJ/hqUyt/If5hUdrSPtAOwODYE1S/c4dQ1GKexJoIxZrKXJiIiIiIiIochhR0l5HMccs7Mr+x4buQ5DIaFgzug5oVhR+dAgkY1JxUREREREZFJorCjhHyuIdvYNNXLKLmO4Q7mRhsIx3peUNnheZauwYSak4qIiIiIiMikedGwwxjzir0e+40x/2yMuc0Y8yVjjP7legD8rkNu7typXkbJtY+0szhSXzh4XmVH31iadM6jsTY6BSsTERERERGRw9H+Kjuu2+vxl4ElwNeAMPDdEq5pxvA5hlzeTvUySirv5Xlu+DniqSHagoEXhB2dA3EAmrSNRURERERERCbJ/sKOvbtJvg64dHxCy8eB5pKuaobwuw7ZvDfVyzgoWltbOXH+fO4xhhMXLKC1tRWAuzrvImdzPDa2jUvn1NHmxfd5XedgYeystrGIiIiIiIjIZNlf2FFpjHm7MWYVELTWZgGstRaY2eUKB4nPNeS86Xmr9g43ltfUcPHFF3OmLWfTyndyplfG2rVraW1t5d6d9wKFH4isMWwc3rLP+3QNJHAdw9yq8BR8CxERERERETkc7W9UyD3AOeOPHzTG1Ftre40xc4D+0i9t+vM5zrTcxtLa2sratWv5WFUjm1a+k+u6NkHU4cJ3f5Gc4xLI5/jDzVdxzJo1/PfDXwMKqZkfQ0t9yz7v1TmYYF5VGL+rXrgiIiIiIiIyOV407LDWXvQiz/dQ2NYiL8Hvmmm5jWXVmjUsaziKC85fR9rnx1gw1uK5LgBpY/hu43H8YtdmPuP4cHC4LGk5ueoomusmdji1trby67uHOGpsiBMXvJePffnLrF69eqq+loiIiIiIiBwmXtZ/txtjNpRqITPRdN3Gsthavtt4HGlfAIyDNYaF/dvw57NgPaxxSDg+gk1N9MR7qIvU8YHeHTSnErD9T8BEdYhTXocvGN1n64uIiIiIiIhIKb1oZYcx5rbnPwW8xhhTBWCtPeeFr5K9+Zzp2aA00NTEaDACxmA8j2A+y8d++988CNzSdDwVR57Cn1a+gw8uO4dn4r+lwQmAzcO2++H6c+B9t7FqzRoWNB3Pe4NR/jxnKc+cv6649QVVd4iIiIiIiEgJ7a9nx3zgKeBaCv0nDdBCYfysHAC/Oz1Hz378X/+d/3zCT333Foa3PMB5XZvIdz/D92tqGHzwxzQOPEH1u77ErbsrCJfvYFk8Of5KC/kMbLuXxRYaz7i48KzjkLVucetL99R9NRERERERETkM7G8bSwvwCHAVMGKt/T2QtNbeMz6CVl6Cz3XIedOjsmPP9JW7HZdv39eH5/fR+/D1PPvQT7jJnyRxww309/fjeR7bnnmCmy47g+FEmv5UH6nRQmZmjQtuANv0agLnfZKe+sX48jncfA6/l6euaxPBpqYp/qYiIiIiIiIy0+2vQakHfMMY87/jf/fu73p5Ib9jyOYt1lqMMVO9nBe19/SVH77jUnJ1Sxj97TVcc9UVL9pQ9OiGCl57TIT7Mnkqcz6S1s+vgm/ll//7G8rvuAZOfQ+vfegW5mx5gFsaj+O8rk2c1LOF5RvU9kVERERERERK6yXDC2vtDuCdxpi3AKOlX9LM4Rsft5r3LD730A07itNX3vMl0q4fx8tzZ2/nS/bXeO2xAe57FI7Ixeiwc/lo12ksX1DPlqNPY/GzD3Lj/TdSUVHB4EM/4abGRo7ZsEHTWERERERERKTkDrhSw1r7S+CXJVzLjLMn4Mh5Fp87xYvZj8XWcnbjcaRdHxgDlgPqr1FZHgfglEAMf2eK+Y7DlqNPA2vZtfCVPDD7CI7pfobQNNnKIyIiIiIiIjPDyxo9Ky+P3ync3kN9IkugqYmK3nbAYKxHIJ87oP4a3fFCFLI02c2vn93OMW2/wXh5MIasU2hIushOvwatIiIiIiIiMr0p7CihYmXHIT6RZd26daTrF4Ex+Dfeznk3X8VJPVtYt27dfl/XE+8h4oaoyGXZbqpp6HycoBqSioiIiIiIyBRTw9ES2tOzI3uIb+M4/z0X8JXNFbBjC1vvvvaA+2t0x7tpCFRigDec/w8kP/AFvJuvUkNSERERERERmVKq7CghvzM9Kjvu3tzHcNbhOx8/vzBadtu2A2ok2h3vZo4TBODM8z9IbMMGbvIni+NqY2pIKiIiIiIiIlNAlR0ltKey41APOzY8+P/Zu/c4u6r6/v+vtc9lMplcJgm5QZJJAkoEgwECYr0AtghYK1S02g6Rfr1Mv1rtt7+2ftX6+PViG3/VXrxUrQW0Eh0VL7Qo3otaFLmYQMAgCCEXQkgyuSdzycy5rN8f58xkEhIIydlnZk5ez8dje87ZZ5+915ksdpx3Pmutjcyc1MRlZ818Tp/b2rOVs2iB/ERomU57e7vhhiRJkiRpxFnZkaJcdc6O0TyMZf2OHu54dDt/cGEbucyxd4cDxQPsOrCLWf29MLUy34ckSZIkSaNBamFHCOFzIYSuEMKaYfv+JoSwOYSwurq9Oq3rjwbZZPRWdnR2dnLBnDn8wxv/FMol8k/+4jl9/iebfgJAoXcnTDs9hRZKkiRJknR80qzs+DxwxRH2fzTGuKS6fSfF64+4wdVYRtvSs52dnXR0dPDKZCo/WXIl8554kL/447fT2dl5TJ9f3bWav/zZXwLwuXGR1S2T02yuJEmSJEnPSWphR4zxDmBXWucfCwaHsRTLo6uy45ply7ijdR63vPGD9Oea2DrnbO5oncc1y5Yd0+dXbltJsVwEoASszJRSbK0kSZIkSc/NSMzZ8a4QwoPVYS5TjnZQCKEjhLAyhLBy+/bt9WxfzRwcxjK6KjsWxsi/tZ1DIanMT1sKCZ+Zt5gF8dhCmaUzl5IJGQByMbL01N9Ira2SJEmSJD1X9Q47/g04HVgCbAH++WgHxhivjzEujTEunT59er3aV1MHh7GMrsqOfFsb3dkmCIGkXCJXLjHjiV/S1NZ2TJ9fMmMJr5z3SvIhw41bu1iy8FUpt1iSJEmSpGNX16VnY4zbBp+HEG4Abqvn9ettcHWT4ihbjeWDf7+cj/+sjyk7NtH70I943RO/5MKtj3LWihXHfI5I5LRkHEtohvHTUmytJEmSJEnPTV0rO0IIs4e9/F1gzdGObQTZpDpnxyir7Ghe9Ap2ts5m96++zWP3fJ0v5froXrGC9vb2Yz5HV28XM0plmLbQZWclSZIkSaNKapUdIYQvA5cAp4QQngT+GrgkhLAEiMAG4I/Suv5oMFjZMZpWYymWynzqx2s5a/Ykvn3nNwnHGVRs793Oef19MHVxjVsoSZIkSdKJSS3siDH+/hF2fzat641G2VG0GktnZycfe+97+d3W57PhNX/OH8zrOe6gI8ZIV18X0w/sh6kLa9xSSZIkSZJOzEisxnLSGFyNZaQrOzo7O+no6OAyJvG1S99G666n+Ph73kJnZ+dxnW9P/x6K5SIziwWYdnqNWytJkiRJ0okx7EhRLjM65uy4Ztky7midx9fe9CF2t0ymZ9J07midyzXLlh3X+bp6uwCYXizBVMMOSZIkSdLoYtiRouwoWY1lYYz8+7zFFDIZAMoh8Jl5i1kQjy+E2d63HYAZpZKVHZIkSZKkUcewI0W56moshRGu7Mi3tTHjiV8SAGIkVy4x44lf0tTWdlzn295bCTumZ1tg/NTaNVSSJEmSpBpIbYJSDavsGOE5O5YvX07oeCcxJGTWreJ1d36ZC7c+ylkrVhzX+bb1bgNgeuuCWjZTkiRJkqSaMOxI0WhZjaW9vZ2/2p+FDfDUvd/gS7k+zl6xgvb29uM63/be7bSWIT/1jNo2VJIkSZKkGjDsSFFuaDWWkV96tnXhEpKNa9nx61W0NB32x75lC7zpTXDzzTBr1rOeq2vnI0wvDkC2KaXWSpIkSZJ0/JyzI0VDlR0jPIwF4P5Nezhz1qSnBx0A/9+fQLgHPvTuZz/RpnvZ/tQqZhRL8OBXYNO9tW+sJEmSJEknwLAjRdnBCUpHeBhLuRxZ/cQezpvXeugbzc0wNwuTvg8X5yuPc7OV/Uey5wn43vvZngmVlVjKZdjw0/S/gCRJkiRJz4FhR4pCCGSTMOKVHY91dbO/v8h586Yc+sa6dXDV+ZABQoBsgDe1wV13wcUXw9atleN2rIX/eid84lxKT93PjkyG6aUyZPIw/+V1/z6SJEmSJD0T5+xIWTYTRnyC0vue2A3AeW2HhR2zZ0NmOoRHYLCNLTvg5j+AuA4+/IfwG7Phof+E7Di44G389GePUA7rGChMh+s+DXMvrO+XkSRJkiTpWVjZkbJcklAY4cqO+5/YzZTxOeZPG//0Nw88VXl8/u/DTQfg/gFo2gyX5mHyXXD/N+CuInx0L6vf/a/8+YK1AHS29rH60kuOPuRFkiRJkqQRYtiRsmwmUBzh1Vjue2IP586bQgjh6W8uaYY5F8C1/w53b4S551SqPEKoPHY/H25aC2vWsfJNL6VQnXS1lARWvumlsH59nb+NJEmSJEnPzLAjZdlMQrE8cpUde3sLrO3qfvrkpABdj8C2NbD4DZXXs2dDMhdKQClWHllQWY529myW9s8gU/0quVJk6cDMY1qqVpIkSZKkejLsSFkuCRRGsLLj/k3V+ToOn5wUYM3XISRw9u8e3PdkGbqvgMV/VHl8sjT01pLH+7igewoTk/HcuPY8lqztTbv5kiRJkiQ9Z05QmrJsJhnR1Vjuf2IPSYBz5h5W2REj/PJrsOBimDDj4P5bbjn4/PcOO9ktt7D7W2/gnOZpLFn2mdTaLEmSJEnSibCyI2XZTKAwgqux3PfEbq6atpkJ934cNt178I3N98HuDbD49cd8rlK5xPq96zl98um1b6gkSZIkSTViZUfKcskIVHZsuhc2/JTyvJcRN93NR8Lfw4+KkGmC674J2bnw12+Ethwses0xn/apnqfoL/VzeqthhyRJkiRp9DLsSFkmqfNqLJvuhZteA8UBAvC5mJCjOu9GsQ9+/gn4eQ/M2AZ9s6D5CBOXHsW6PesAWDh5YQoNlyRJkiSpNhzGkrJcvYexbPgpFAeACDGyrjyLgZghEirzdDz8LWi9HZoSyGyDuVlobj6mUz++93EAFkxekOIXkCRJkiTpxBh2pKzuE5TOfzmEQAQOkOcvi2/nDwr/L3cveCdc/WXYM+/gsQlw9fmwfv0xnXrdnnVMb57O5KbJqTRdkiRJkqRacBhLyrL1HsYy90KYdBoHwjiu7Wrnvvh8xmUT8pf8IbRNgf/4DyhuhCRCGQjzYNasYzr1ur3rWNjqEBZJkiRJ0uhmZUfKcpmEQrmOlR0xQs92ml9wOTumLGHh9BY633YR5+cPwMUXw9pe6L4CFv9R5XFtT2X/1q3PctpYCTucr0OSJEmSNMoZdqQsm6lzZUf3NigegCnz2d0zwMvOOIXz26aw+qPv4cZJD7P6hVPh41+F3/tH+PhXWf3Cqfxb68N89LfO4n9C4IK5c+ns7Hzaabf1bqOn0OOys5IkSZKkUc9hLCnLJgmFes7ZsXsjAL0tp7HvQJHTPvJ3rP7zb/G29y5g4AUzyBfu58YzxrPk8T5Wn97M/3r/AopnzSBTiuy/YxyfuXMnr+joAKC9vX3otEMrsTiMRZIkSZI0yhl2pCyXCRTruRrLnkrYsSXMBLZy2of+mpU/3EV/bguEQH8OPn31DN6574X8YsYBipmtEAKlbOBrl07lWy+dwp0fWc+Z115LJwcDj8GVWBzGIkmSJEka7RzGkrK6r8ZSrezYWDwFgDkLT2UmkyBUl55NAne9cAJvX7qeHesfquwvV5apJQQO5AKfvnoG/3J6Mx0dHUNDWtbtXUdrUytTx02t33eRJEmSJOk4WNmRslwSKNRzzo49G2DCTJ7YXwlYTmtt5uZxW8gXAy/amecXM/qroQZ856JWxvcUOfPefTz0slYGMgyFIfed2cKdHz5Y4bFuamVy0hBC/b6LJEmSJEnHwcqOlGUzgWI9V2PZvRFa29i8p4+mbML9O/6Hb8/t5jfPuII/2b6IpoFYqeRIAnsmZRloyvBnP9vN9f+wnuc91F15LwT6c4GP/t5M/uX0Zt5z7bU8su5eHvj2XUecvFSSJEmSpNHEsCNllWEsdZ6zY0obT+7uY/r0Lbznp+8hEvnRph/Brl3cuOYFvGTbuMqwFaAc4AeXn8Vr1/ez+L+6GFeIhOocI/c9v4Wv/eVC/uT3Z9E7IctZu/YfMrRFkiRJkqTRyLAjZZVhLHWq7CgVYe9maG3j8X0PcWDSVyjHyrWL5SIr//Qalnzi67xz55mMG4hkSpF8MfKqlkV8ZMUKzlvfz9UfWc8ZD3UTIpWJSxPovLwy/8cjr5zKnbMj1yxbVp/vI0mSJEnScTDsSFk2k9RvNZZ9T0IssTqfZUvzR+lPtgCQkJBLciyduRSAJY/3ccPj5/GuOW/khsfPY8naXtrb2+lesYK/3jDA4v/qIl+ohCGZUnXYC1BKAjcsamFBrGOliiRJkiRJz5ETlKYsmwn1G8ayewMAdxX3EUORAAQCF516Ee940TtYMmNJ5bhbbmEJsATgVQc/PrjM7IQ3v5nyR9Zz66IW3rK/SGf7qRSykC1Gpj3SQ1NbW32+jyRJkiRJx8GwI2W5JKFQrwlKq8vOLpj8YuA2AJoyTYcGHc+ivb2dTuALH/gAG7+9kXnAFZv7uXVRC1c+0sP56/s5c8XydNovSZIkSVINOIwlZdlMIEYo1WMoy56NEDLE/NkAvKD1PG541Q3HHHQMam9vZ8OGDcQY6fviF/lCcQZrvrOTLxRn0L1ixVAFiCRJkiRJo5GVHSnLZSp5UqFUJpNk0r3Y7o0weQ6rtv2KEGDZC/7wOQcdh2tvbzfckCRJkiSNKVZ2pCybBID6TFJaXXb24d1rAHj5vPPSv6YkSZIkSaOMYUfKstXKjmI9lp/dvRFa23iy92EyxVm0jpuc/jUlSZIkSRplDDtSlstUKjsKaa/IMtALPV3E1nnsKa9lUjgj3etJkiRJkjRKGXakLJtUKzvSXpFlzxMAfD/2Ug49TGmaku71JEmSJEkapQw7UpatVnYU067s2LOR1U153v/EfwGwsfg9VnetTveakiRJkiSNQoYdKTs4jCXlyo7dG1k5bhzFWAKgTImV21ame01JkiRJkkYhw46UHRzGkn5lx9JCJBCIEbJJjqUzl6Z7TUmSJEmSRiHDjpTVr7JjAy8aP5tc0kzpwBz+4SWfYsmMJeleU5IkSZKkUciwI2VDlR11mLNjR+scBsq9lPedzysXXJDu9SRJkiRJGqUMO1I2NEFpmquxxAi7N/JYy2QAWrNzyWb8o5UkSZIknZz8jThluWroUEizsqNvN/TvY20+D8Bp4xekdy1JkiRJkkY5w46UZZM6LD27ZyMAjzFAKE1k/pQZ6V1LkiRJkqRRzrAjZYPDSQppDmNZvxqAx3q3Uzwwk9OmNKd3LUmSJEmSRjnDjpQNrsaSamXHrZ+mDDy+fxOlAzOZY9ghSZIkSTqJGXak7OBqLClUdjQ3w9wsNP2azZkMBzKROQOB09pfX/trSZIkSZI0Rhh2pGywsqNQTqGyY906uOp8SOAHE8YDsCA8xd4bP1/7a0mSJEmSNEYYdqRscM6OVCo7Zs+GZC6r83k+OaUVgHtnbOQvfnoHqzburv31JEmSJEkaAww7Upb6aixPllnZNI1i9WU5lCnn13L3up3pXE+SJEmSpFHOsCNlubRXY7nlFpZOm0sgECMQsyQDZ3DRwmnpXE+SJEmSpFEuO9INaHTZOqzGsqRQYmZThl2lmbDzDVx/7TWc3zYltetJkiRJkjSaGXakLFddjaWQxpwdVbHQw+6mMhPi2cyadLZBhyRJkiTppOYwlpQNVXaksRpL1Z5CH/1ESgOTmTjO/EqSJEmSdHIz7EjZwWEs6VV2bC33AVAYmMTEcbnUriNJkiRJ0lhg2JGyg8NY0qvs2BoLAPT3TWRCk5UdkiRJkqSTm2FHypIkkAQoprUaS4xsrS48290zkQkOY5EkSZIkneQMO+ogm0nSW42l0MfWbIYsCcXCeOfskCRJkiSd9Aw76iCXhPSGsRT62JrNMiPbAiRMdBiLJEmSJOkkZ9hRB9lMkt4wlkIPW7MZTslMAnAYiyRJkiTppGfYUQe5TLqVHdsyWaZkK2HHxCZXY5EkSZIkndwMO+ogmySpLT1b7t/PtmyG1swUwMoOSZIkSZIMO+ogmwkUy+lUduzq7aIYAhOSatjhnB2SJEmSpJOcYUcd5DIJhZQqO7Z2bwGgOZkGwKRxDmORJEmSJJ3cDDvqIJuEVJae7ezs5B//5W8B+P5XbwccxiJJkiRJkmFHHaSxGktnZycdHR1MmFoC4BQKAHzrlq/V9DqSJEmSJI01hh11kMZqLNcsW8adsyN3njsFYuTBS7bTlF/LG69bVtPrSJIkSZI01hh21EE2CTWv7FgYIzcuaqEUgBAoJZFs06MsiCktcStJkiRJ0hhh2FEH2UxS88qOfFsb0x7pIYlAjCTlhOyumTS1tdX0OpIkSZIkjTWGHXWQywSKNV6NZfny5Zy3vp/nb+tlSqnEpLtfwcSdk1m+fHlNryNJkiRJ0lhj2FEH2SShWK5tZUd7ezvdK1YwkGQ5pVBiU/kM8qe30d7eXtPrSJIkSZI01hh21EEaE5RCJfCYedpMmrN5Fi0+l9Pb5tT8GpIkSZIkjTWGHXWQTZKaD2MZNFAu0hQS9h8oMrEpm8o1JEmSJEkaSww76iCbCTUfxjJoIJbIhwzd/UUmjjPskCRJ09IwUgAAIABJREFUkiTJsKMOcpmEQlqVHbFILmTp7i8ywbBDkiRJkiTDjnrIJoFSapUdZfJJhlI5MqEpl8o1JEmSJEkaSww76iCbSVKZoBQqYUeWSkWHw1gkSZIkSUox7AghfC6E0BVCWDNs39QQwg9DCI9VH6ekdf3RJJcJFMspDWMhkgmVig7DDkmSJEmS0q3s+DxwxWH73gfcHmN8HnB79XXDq6zGklJlB5FMqIQcE1yNRZIkSZKk9MKOGOMdwK7Ddl8F3FR9fhNwdVrXH01ymZDeBKVAJuQBmDjOOTskSZIkSap3KcDMGOOW6vOtwMxj+dCvf/1rLrnkktQalbZNu3p5au8BLvnZh2t+7l9tXU9X2MrWnid41x2tjM9nan4NSZIkSZLGkhGboDTGGIGjju0IIXSEEFaGEFYWCoU6tqz2QghUvm5txViu/gADAJkk1PwakiRJkiSNNfWu7NgWQpgdY9wSQpgNdB3twBjj9cD1AEuXLo0/+clP6tTE2vvkjx7jn37wKD/4+yvJZ2uXL/Xt38KFt7yK1yWLuemhdr77V5fROj5fs/NLkiRJkjSahHBs/8hf78qObwLXVZ9fB9xa5+uPiGym8mOu9YosAwf2AhBjEwAtTlAqSZIkSVKqS89+GbgLODOE8GQI4a3APwCXhRAeA36r+rrhZavDSwo1XpGl0L8fgGLMMy6XkMuM2KgkSZIkSZJGjdRKAWKMv3+Ut34zrWuOVoMhRLHGK7L0D1QqO4rlnCuxSJIkSZJUZSlAHWQzlcqOYrm2lR0DA90A9JfzTHQIiyRJkiRJgGFHXeSSyo+5UOPKjoHqMJb+UhMTxhl2SJIkSZIEhh11MVTZUes5O6qVHX3FPBMNOyRJkiRJAgw76iKt1Vj6Cz0AdBeamOAwFkmSJEmSAMOOusiltBrL4Jwd+wt5JjQ5QakkSZIkSWDYURdDlR21HsZS6ANg34DDWCRJkiRJGmTYUQeDc3YUaj2MpVgZxrJ7oMmwQ5IkSZKkKsOOOhhcjaXWlR0DxQOVx3LeOTskSZIkSaoy7KiDg6ux1Hjp2eowFmKWieOcs0OSJEmSJDDsqIvc0DCWGs/ZUapUdlDOMcFhLJIkSZIkAYYddZEdGsZS6zk7KmFHjBkmOoxFkiRJkiTAsKMuhiYorfWcHaWBypOYdYJSSZIkSZKqDDvqIDe49GyNV2MZKPVXnsSsw1gkSZIkSaoy7KiDbDI4QWmN5+woF8hEgMTVWCRJkiRJqjLsqIPByo5CrefsKA2QoxKkTGxyNRZJkiRJksCwoy6Glp6t8WosA+Ui2WrY4TAWSZIkSZIqDDvqIK3VWAqxSDYmjM9nyFSHykiSJEmSdLIz7KiDXFqrsZSLZJ2vQ5IkSZKkQxh21EE2pdVY+mOJJGZcdlaSJEmSpGH8LbkOBldjqWllR6nIAJEQM7SMc3JSSZIkSZIGWdlRB4OrsdR06dlCL4UQCDFhosNYJEmSJEkaYthRB5kkEEKNh7EUehkIAcpZh7FIkiRJkjSMYUed5JKktsNYCr30h0CMGScolSRJkiRpGMOOOslmQm2Xnh2oDGMplbJMsLJDkiRJkqQhhh11kk0CxXItKzv6GAhQLGeZ6ASlkiRJkiQNMeyok1wmoVDLyo5CD/0hUC7nnKBUkiRJkqRhDDvqpDKMpdaVHYFyzDmMRZIkSZKkYQw76iSbJBRquRrLQE9lzo6YdzUWSZIkSZKGMeyok1zNKzsqS8+WynlXY5EkSZIkaRh/S66TbCahWMvKjkIf/VZ2SJIkSZL0NP6WXCfZJFCoYWVHub+bYgiUYpOrsUiSJEmSNIzDWOokl0ko1nA1lkKhB4BibHIYiyRJkiRJwxh21Ek2EyiWa1fZseaXqwCIMcvvnHcOnZ2dNTu3JEmSJEljmWFHneSShEKNKjs6Ozv52V0/qbyIWS7vz9LR0WHgIUmSJEkShh11k63haizXLFvGZRNaKi/KGW5503LuaJ3HNcuW1eT8kiRJkiSNZYYddZLNJBRqNIxlYYysnzgRgBhzFJIMn5m3mAWxhkvbSpIkSZI0Rhl21EkuCTWboDTf1kZTaV/lRTlDrlxixhO/pKmtrSbnlyRJkiRpLHMZjzqp5TCW5cuX03zPuwEIu7fzuq+s4MKtj3LWihU1Ob8kSZIkSWOZlR11UhnGUpvKjvb2dgbaTgNg35OP8aVcH90rVtDe3l6T80uSJEmSNJZZ2VEnlWEstZtTI9eUBYq8913v4M9ufnXNzitJkiRJ0lhnZUedZDNJzebsAOgv9gMwp3VSzc4pSZIkSVIjMOyok1wm1Gw1FoCB0mDYMbFm55QkSZIkqREYdtRJNjnxyo7Ozk4umDOH/wmBgdIBAGZOmFCL5kmSJEmS1DAMO+rkRFdj6ezspKOjg46XbKf58+MZaCsC8L1vf69WTZQkSZIkqSE4QWmd5E5wNZZrli3jgmtyzPtygWwywDnlPm79wQRee+3/A9f+cQ1bKkmSJEnS2GZlR51kT3A1loUx8shrsmSTSDaBbBJZOrOHFw/UbtJTSZIkSZIagWFHnWQzCcVyJMbjCzzybW1su61IoRwolqFQDqzc1kL+1Dk1bqkkSZIkSWObw1jqJJcEAIrlSC4TnvPnly9fzoQ3v5n/fds8zp17gJVbx/PAjvF88K/eU+umSpIkSZI0phl21Ek2UymiKZYiucxz/3x7ezufjQe4b+/HuG9vZbnZEGFZ+7JaNlOSJEmSpDHPYSx1MljNcSKTlL78t18OwIyB6ZVzFstcOG8enZ2dJ95ASZIkSZIahGFHnWQHh7GcwCSlW7q3AJD/9cGCnCubdtLR0WHgIUmSJElSlWFHnRwcxnL8lR1beiphxwuSZkKMDGQD3/2/C7hzduSaZQ5nkSRJkiQJDDvq5uAwlhOo7OjZQiyW2TylWNkRAoVs4IZFLSw4zlVeJEmSJElqNIYddZJNalDZ0b2FuA9OKZxCU4xkSpFsMTLtkR6a2tpq1VRJkiRJksY0V2Opk+xgZceJzNnRs4XTpizgtB3N3LC1i7feDVc+1MP56/s5c8XyWjVVkiRJkqQxzcqOOskNztlxAquxbOnZwrwZi2hmgCX9Azxw206+UJxB94oVtLe316qpkiRJkiSNaVZ21MmJrsZSKBfY3red05un0By2EMuB4uanYNasWjZTkiRJkqQxz8qOOhms7Cgc55wdXb1dlGOZ0kAr89kKxTJ86N21bKIkSZIkSQ3BsKNOBufsKB7naixbuivLzk788e1clllFyAETvw9zs9DcXKtmSpIkSZI05hl21MngaizHW9mxZfPDALS1BhIihFD507v6fFi/vlbNlCRJkiRpzDPsSFFnZycXzJnD/4TAO95wDfDsc3YM/8wFc+fS2dkJwH23rwDg8WyeEIByhDIQ5jlvhyRJkiRJwxh2pKSzs5OOjg46XrKd5s+P59rzKtUXP7z9R8/6mfeFrbz8ZXnexxZed+21rD5jPP95yhaIkZ/Ne4hV2Sb4WRG6r4AnS/X6SpIkSZIkjQmuxpKSa5Yt44Jrcsz7coFsMsA57Zu466Yf8+IP/xze8cajfqb9tAT+cDwEuKYErOjlnkUtlBIgBMqU+Z/8qZz/pe9Z0SFJkiRJ0hFY2ZGShTHyyGuyZJNINoFsEvmN593DHyVH/5EvjJEHT88QEyAJxAzcPz/Drkd6CBGIkI+RF+6cZdAhSZIkSdJRGHakJN/WxrbbihTKgWIZiuXAzx97MbmZRw8p8m1t0BwIIRBjZW6PzRtKnPsUzCo08VutB/j6/CeZuXt3vb6GJEmSJEljjsNYUrJ8+XLGveU63v6DBSyd2cNTP8iyau+lXPOGnqN+5kN//0HOWPXHdD1VZHVTE+sWtnD6aWUu3TbALVN38+Hf3kA2icx46Woeee18Fv1wG/T11fFbSZIkSZI0+hl2pKS9vZ3PxP08sP1TPLB9PDQBRC5YdNZRP/MHS1pgbcKjD8B7rj2VcgLjOiZxw4fWc/b8XrKZSJJAjiK733ImXH933b6PJEmSJEljhcNYUvSbv/2bALz0tJfyokW9vPs1f8vAY8uPfHCM8PNPwuQ2Vv7GiylXJyQtJIE737yEX3S1UCoFiqWEQinLlMdnOm+HJEmSJElHYGVHivZsfwKAV3/3y1z24f3kknUUL1rFo2+4hefflhw6BGXTPfDUffDqf+Lsb9wOYRvESC5Gnp/Zyme2t3Djzeey+OzzOeVH/Sy6cz/8+Qh9MUmSJEmSRjErO1K07/u3AjDp0vHkhq3Ksvftc+Huu+Hii/nGpz7FBXPmsP0vXsnefvjKrzM079hbOUEIfHL9NE4N+wDYsWEOLzv3ehb9+U1wyy0j9bUkSZIkSRrVDDvSEiN7br8NgJZv9lGsrspSKAcmP3o6qzv/kRsmPcyaT7yPD07cyimLsmx9ZIC3/u9303nJC4dOM+e/fsHeJAPAldwFc7PQ3DwiX0mSJEmSpLHAYSxp+elP2RP6gRbO/mIPq55/Pr+4dBO7f3Yqv/uvP+Ut71tA8QUzaCpGruraRhgY4MyzcvSs7OXvv98Jl00DYNeVZ7M72QzAlFiCq8+HD9w6gl9MkiRJkqTRzcqOtHzsY+zNlcgVyjT3FXnJP6znhvuez8pTFnPH7y2lkA3EJHAgF/j01FZWj2siJnD//AxfOK2JpkwTAF356ezK5ACYXChBmOfEpJIkSZIkPQPDjlq46ioI4dDt298mXhJ42znb2fTxJpLle3jZpMCW3tU8eWBD5XMxQgjc1TyOt8+awQP5PIs3lMjOG8+5M84F4O6BCdwYLwVg8r7L4MnSCH1JSZIkSZLGBoex1MKHPgSrV0NXFxw4AMCj12V4Z8c2ckkkc0El1/h06Q7+7hen0npekas37aXrqSZ+Pn5cZYnZCD98JMPa/QnJhIQLZ13I3Vvu5t7Fi9m9exstuRZyH/vaCH9RSZIkSZJGP8OOWjj7bPjVr+Atb4HbboPeXva+JsPC6gosMUJIIET4wEVPEYDiiwJ33jyFewZmUyKSLUSyDxSYeMECABZnTqM5M461255k3nQo5yeP7HeUJEmSJGmMcBhLrbS0wM03wz//MzQ1se/nCYXqCiwA5TJEKj/wwSVoJ80t8rb7CxACf7fpLF7RvISbzpkJQP8XbyLbm6WU6yO/ZyOTmww7JEmSJEk6FoYdtXbeedDUxPo1ed7+/fl88v6ZfPDO2ay6bQI33HopA9UApFgOTP7eJC7uPh2AJ+96iPYrr+LBxXuIEd71vEfZE8cTMt2szWZI7nnIJWclSZIkSToGDmOptZUroVBg6SMF/n3zDNZsG0+uGGn+yB5uvmwZW9Y0M+95P2fm3VNouX4L/eH7cPFZfOllF1EevwmIhAAkJQiRkO2BUODAlPmw/vYR/nKSJEmSJI1+VnbU2k9/Cn19LNkcuWFFH+8afxlv+MxO/vbxPhYtfJz5ZyUUvjyZ3/nEev576nxWvvg66B/Pliklyn2nApU5PrJFCP1TCJluQqaXtnJwyVlJkiRJko6BlR21ds89kMnAVVex5LOfZUlLCwd+/2O89nfaaPs//0guU6Tw2iy/+qc/4yt7LqYUEpqLOzm1/2Gu/ckv+OgfZnjF5pm8/Uv3cfOl4/jO0n6IkdN37xvpbyZJkiRJ0phgZUetveAFcP318JWvVCYtBRYCv7pyIrlMkWymTC5TZME5T1EKCYRA7D+FXa39LJ+2i2zI8o/v+SZL1uzirHe8mzJlyiHS2v62kf1ekiRJkiSNESNS2RFC2ADsB0pAMca4dCTakYpvf/tpu/JtbWz/7n4Kb80CRQqlLDNuXs+4GQMUkgxJ3zRKU8uM+41pnDXtLMbnxgMwddzUoXO4GoskSZIkScdmJIexXBpj3DGC16+b5cuXM+HNb+bzr59L75UTGf/d/bz2W/fw0Kkf4BvzFvPS/BrufkuGZFrC+TPPH/rc8LCjtal1JJouSZIkSdKY4zCWOmhvb6d7xQo+/CC8548f4sMPwvJ3vIMv5fp47J6vc+vmg5nPF9/3r3R2dgJWdkiSJEmSdDxGqrIjAj8IIUTg32OM149QO+qmvb2d9vb2p+3v7Oyk4486yPSXKOUSLt+6nY6ODgAuf93lQ8dNappUt7ZKkiRJkjSWjVRlx8tijOcBVwJ/HEJ4xeEHhBA6QggrQwgrt2/fXv8W1sk1y5Zx56xIOZdAgP/+kzbunB25ZtmyQ6o5HMYiSZIkSdKxGZGwI8a4ufrYBfwncOERjrk+xrg0xrh0+vTp9W5i3SyMkRsXtRAiEAKFbOCGRS0siJGvfvmr0FsG4FVnvmhoeIskSZIkSTq6uocdIYSWEMLEwefAq4A19W7HaJFva2PaIz3kipFMKZItRqY90kNh2jQ6OjqY0FMgP1Dm1bmddHR0GHhIkiRJkvQsRqKyYybwsxDCA8C9wLdjjN8bgXaMCsuXL+e89f1c+ZH1lG/ZxpUfWc/56/t5cudO7pwd6ZmWZyAX+O7/XTA0vEWSJEmSJB1d3cOOGOO6GOOLqtvZMcbl9W7DaDK4UssXijNY852dfKE4g+4VK1gI3LiopXLQYcNbJEmSJEnS0bn07CjQ3t7Ohg0bKJfLbNiwgfb29qHhLfnCocNbmtraRrq5kiRJkiSNaiO19KyexfLly5nw5jdT/sh6bl3UwpWP9HD++n7OXHFSF8JIkiRJkvSsrOwYpY42vKW9vX2kmyZJkiRJ0qgW4hiYA2Lp0qVx5cqVI90MSZIkSZI0gkIIq2KMS5/tOCs7JEmSJElSQzHskCRJkiRJDcWwQ5IkSZIkNRTDDkmSJEmS1FAMOyRJkiRJUkMx7JAkSZIkSQ3FsEOSJEmSJDUUww5JkiRJktRQDDskSZIkSVJDMeyQJEmSJEkNxbBDkiRJkiQ1FMMOSZIkSZLUUAw7JEmSJElSQzHskCRJkiRJDcWwQ5IkSZIkNRTDDkmSJEmS1FAMOyRJkiRJUkMJMcaRbsOzCiFsBzYe58dPAXbUsDnSc2Uf1GhgP9RoYD/UaGA/1GhgP9RIG8t9sC3GOP3ZDhoTYceJCCGsjDEuHel26ORlH9RoYD/UaGA/1GhgP9RoYD/USDsZ+qDDWCRJkiRJUkMx7JAkSZIkSQ3lZAg7rh/pBuikZx/UaGA/1GhgP9RoYD/UaGA/1Ehr+D7Y8HN2SJIkSZKkk8vJUNkhSZIkSZJOImMi7AghfC6E0BVCWDNs39QQwg9DCI9VH6dU94cQwidCCGtDCA+GEM4b9pnrqsc/FkK4btj+80MIv6x+5hMhhFDfb6ix4Cj98G9CCJtDCKur26uHvff+ap/6dQjh8mH7r6juWxtCeN+w/QtCCPdU998cQsjX79tpLAghzA0h/DiE8KsQwkMhhP9T3e/9UHXzDP3Q+6HqJoQwLoRwbwjhgWo//Nvq/iP2nRBCU/X12ur784ed6zn1T2nQM/TDz4cQ1g+7Hy6p7vfvZaUihJAJIdwfQrit+tp7IUCMcdRvwCuA84A1w/Z9BHhf9fn7gA9Xn78a+C4QgIuAe6r7pwLrqo9Tqs+nVN+7t3psqH72ypH+zm6jbztKP/wb4C+OcOxZwANAE7AAeBzIVLfHgYVAvnrMWdXPfBV4U/X5Z4B3jPR3dhtdGzAbOK/6fCLwaLWveT90q9v2DP3Q+6Fb3bbqPWpC9XkOuKd67zpi3wHeCXym+vxNwM3V58+5f7q5DW7P0A8/D7z+CMf797JbKhvwZ8CXgNuqr70Xxjg2KjtijHcAuw7bfRVwU/X5TcDVw/aviBV3A60hhNnA5cAPY4y7Yoy7gR8CV1TfmxRjvDtW/qRXDDuXNOQo/fBorgK+EmPsjzGuB9YCF1a3tTHGdTHGAeArwFXVlP6VwNernx/epyUAYoxbYoz3VZ/vBx4GTsP7oeroGfrh0Xg/VM1V72vd1Ze56hY5et8Zfp/8OvCb1b72nPpnyl9LY8wz9MOj8e9l1VwIYQ7w28CN1dfP9PfoSXUvHBNhx1HMjDFuqT7fCsysPj8N2DTsuCer+55p/5NH2C8dq3dVSxE/F6rDB3ju/XAasCfGWDxsv3RE1bLDc6n8K5L3Q42Iw/oheD9UHVXLtlcDXVR+OXyco/edof5WfX8vlb72XPundIjD+2GMcfB+uLx6P/xoCKGpus+/l5WGjwH/FyhXXz/T36Mn1b1wLIcdQ6pJp8vKaCT8G3A6sATYAvzzyDZHJ4MQwgTgG8Cfxhj3DX/P+6Hq5Qj90Puh6irGWIoxLgHmUPnXx0Uj3CSdhA7vhyGEFwLvp9IfL6AyNOW9I9hENbAQwmuArhjjqpFuy2g0lsOObdXSLqqPXdX9m4G5w46bU933TPvnHGG/9KxijNuqf8mVgRuo/J8teO79cCeVUsbsYfulQ4QQclR+weyMMd5S3e39UHV1pH7o/VAjJca4B/gx8BKO3neG+lv1/clU+tpz7Z/SEQ3rh1dUh/vFGGM/8B8c//3Qv5f1bF4KvDaEsIHKEJNXAh/HeyEwtsOObwKDMxVfB9w6bP+bq7MdXwTsrZZ3fx94VQhhSrW09lXA96vv7QshXFQdr/TmYeeSntHgL5hVvwsMrtTyTeBN1RmPFwDPozLB1C+A51VnSM5TmRjom9V/jf8x8Prq54f3aQkYGoP5WeDhGOO/DHvL+6Hq5mj90Puh6imEMD2E0Fp93gxcRmX+mKP1neH3ydcDP6r2tefUP9P/ZhpLjtIPHxn2DxCBylwJw++H/r2smokxvj/GOCfGOJ/KfepHMcZ2vBdWPNsMpqNhA75MpSS2QGWc0FupjC26HXgM+G9gavXYAHyKyrjNXwJLh53nLVQmW1kL/K9h+5dSuQk9DnwSCCP9nd1G33aUfviFaj97kMp/+LOHHf+Bap/6NcNmzqYyE/ej1fc+MGz/Qio3lbXA14Cmkf7ObqNrA15GZYjKg8Dq6vZq74du9dyeoR96P3Sr2wacA9xf7W9rgL+q7j9i3wHGVV+vrb6/cNi5nlP/dHMb3J6hH/6oej9cA3yRgyu2+PeyW2obcAkHV2PxXhhj5T8WSZIkSZKkRjGWh7FIkiRJkiQ9jWGHJEmSJElqKIYdkiRJkiSpoRh2SJIkSZKkhmLYIUmSJEmSGophhyRJkiRJaiiGHZIkSZIkqaEYdkiSJEmSpIZi2CFJkiRJkhqKYYckSZIkSWoohh2SJEmSJKmhGHZIkiRJkqSGYtghSZIkSZIaimGHJEmSJElqKIYdkiRJkiSpoRh2SJIkSZKkhmLYIUmSJEmSGophhyRJkiRJaiiGHZIkSZIkqaEYdkiSJEmSpIZi2CFJkiRJkhqKYYckSZIkSWoohh2SJEmSJKmhGHZIkiRJkqSGYtghSZIkSZIaimGHJEmSJElqKIYdkiRJkiSpoRh2SJIkSZKkhmLYIUmSJEmSGophhyRJkiRJaiiGHZIkSZIkqaEYdkiSJEmSpIZi2CFJkiRJkhqKYYckSZIkSWoohh2SJEmSJKmhGHZIkiRJkqSGYtghSZIkSZIaimGHJEmSJElqKIYdkiRJkiSpoRh2SJIkSZKkhmLYIUmSJEmSGophhyRJkiRJaiiGHZIkSZIkqaEYdkiSJEmSpIZi2CFJkiRJkhqKYYckSZIkSWoohh2SJEmSJKmhGHZIkiRJkqSGYtghSZIkSZIaimGHJEmSJElqKIYdkiRJkiSpoRh2SJIkSZKkhmLYIUmSJEmSGophhyRJkiRJaiiGHZIkSZIkqaEYdkiSJEmSpIZi2CFJkiRJkhqKYYckSZIkSWoohh2SJEmSJKmhGHZIkiRJkqSGYtghSZIkSZIaimGHJEmSJElqKIYdkiRJkiSpoRh2SJIkSZKkhmLYIUmSJEmSGophhyRJkiRJaiiGHZIkSZIkqaEYdkiSJEmSpIZi2CFJkiRJkhqKYYckSZIkSWoohh2SJEmSJKmhGHZIkiRJkqSGYtghSZIkSZIaimGHJEmSJElqKIYdkiRJkiSpoRh2SJIkSZKkhmLYIUmSJEmSGophhyRJkiRJaiiGHZIkSZIkqaEYdkiSJEmSpIaSHekGHItTTjklzp8/f6SbIUmSJEmSRtCqVat2xBinP9txYyLsmD9/PitXrhzpZkiSJEmSpBEUQth4LMc5jEWSJEmSJDUUww5JkiRJktRQDDskSZIkSVJDMeyQJEmSJEkNxbBDkiRJkiQ1FMMOSZIkSZLUUAw7JEmSJElSQzHskCRJkiRJDcWwQ5IkSZIkNRTDDkmSJEmS1FAMOyRJkiRJUkMx7JAkSZIkSQ3FsEOSJEmSJDUUww5JkiRJktRQDDskSZIkSVJDSS3sCCGMCyHcG0J4IITwUAjhb6v7F4QQ7gkhrA0h3BxCyKfVBkmSJEmSdPJJs7KjH3hljPFFwBLgihDCRcCHgY/GGM8AdgNvTbENkiRJkiTpJJNa2BEruqsvc9UtAq8Evl7dfxNwdVptkCRJkiRJJ59U5+wIIWRCCKuBLuCHwOPAnhhjsXrIk8BpabZBkiRJ0uiwauNuPvXjtazauPukvP5oMNI/g5G+vk4e2TRPHmMsAUtCCK3AfwKLjvWzIYQOoANg3rx56TRQkiRJqpNVG3dz97qdXLRwGue3TUn9esVSmUIpMlAsM1Aqc98Tu1m5YReL50zmBbMmUYqRUjlSLnPw+dC+eNg+Dn2/+njI+7H6ueHvD+2DJ/f08p/3baZUjmSSwO+86FRmTR5HjBCJlUYPe4ix8qLyPsOeH9zP0P54yDGVc8Rhz2H7vn5+9OuuoetffvZMZk9uJpsEkiSQTQKZJJAJgUym+jh8f5KQSTjkMZsEkjD8mHDI+YYeQyCbqTx/eMs+7t+0hxeeOpkzZ02kXIZiuUw5Roqlgz/3wZ9jsVR9LB/cP/Re9c/qkPfiwX1D78VIqRTZsreP7z20behn8MozZzBtQp4YoRwj5Xjw51aOhz5GKn1I1yz6AAAgAElEQVSlXP1Zx8Hjq4/l6g+7HCvHRQ6+P3ie/QeKrN3eTYyQBLjihbM4+9TJzJw0jhkTm5gxqYmZE8fROj5HCCGN/yx0Eglx+F0izQuF8FdAH/BeYFaMsRhCeAnwNzHGy5/ps0uXLo0rV66sRzMlSZKkE1IslektlOjtL9E7UKR3oMT9T+zm7277FYVSJJsJdLxiIae1jmegWKoEEqUy/cUyhVKZgWGPA4e9Hgwv+ktlCtX3h39m+DnK9fm/+cctCZBNqoXmAQZ/tR38HTcQhj1n6JffMPQ/h+0/5BzhaefrHSjRO1Aaun5TthJWHBou1PY7jgbDg5hita8NaslnaGnKkoRAEqo/twDJYY8BqsdUXw8dP3hMqB7D048hkCSV/Zt29bJhZ+/Q9fPZhIFi+WltzmcSpg8LP2ZMaqqGIZVQZDAcmTI+T5IYipxsQgirYoxLn+241Co7QgjTgUKMcU8IoRm4jMrkpD8GXg98BbgOuDWtNkiSJEmDDq+sOFIo0TtQomegeMi+noEifQMleg45rlh5XSjR2z9s30DpiL+8DVcoRT7148eP+F4uE8hnEnLZpPKYSWjKJuSzleeVx8DkfI58Jhzcnzl4TNMhx1Ye73p8B7c/3EWk8gvpby+ezZWLZ5OEwV+EOfg8VCoSMtWKhIP7OPT96nvJ8PcP2zf8HKuf2E37Z++hUCyTyyZ0vu2iulS4DFq1cTftN979jNcfXtFSGlYRUXyGSopiufz06ozqZ4cfXy5HvvPLLdz24JahP4fXvuhUXnPOqUNhxPDt8IqRoS0cZV/msPeqf07P9DNY8dYXj/ifwVmzJ9G1/wBd+/vZtu8AXfv66drfT9e+yr7Ht3dz17qd7O0rPO18uUxg+oQmpk8ax8ynhSMHH6e1HBqK1LvKSiMjtcqOEMI5VCYgzVCZG+SrMcYPhhAWUgk6pgL3A9fGGPuf6VxWdkiSJOmZHCiU2NHdz47uAXZ29w97PsCO7n7W7+hmzeZ9Q0MdspnKv3IfqxCgJZ+lOZ+hJZ9hfD7L+HyG8U1ZWvKZ6v4s45syjM9laWkadkw+w1N7+vjQdx+hWCqTyyR87I1LOHfeFPLZgwFGPpOkVrp/LL/o18NI/5I5Gq4/0n8Oo+FncDzXP1AosX1/P137D7BtXyUM2ba/vxqOHBh63N379FAkmwROmdDEzElN5DIJ92/aQ7kcSZLA75xzKnOmNB8cspQJ5JKk8jozfChTMhQ+DT1mKvtzh71+2nFJQiZz8PWvNu9j5RO7uGD+VJbMbT2kailUq2HgYFUSw/YfXu00vILpWO8fI90HTtSxVnbUbRjLiTDskCRJOrnEGNnXV2R7d381vBhgZ08/O/b3s6NngB37+9nZUwkydnYP0N1fPOJ5WvIZpk1oolgq89TeA0Dll4QL5k/hpWdMrwYWmWFBRjWwGHxeDTbG5U48iBjpXzBG+vqq8M8hXf3FwVDkYHXI8IqRXz21l+3dA0PHZ6oVH6UGG8N0pGFdITA0xw5UhnJ96e0jE3yeCMMOSZIkjRqrNu7m54/v4AWzJjFr8rhKULG/n509lbBiezW0GAwvdvb0UzhC5UUIMHV8nmkT8pwy4f9n777D4z7LfP9/nu8UNavLRcWSbLnGsR2XOE4jPRDKclhqYiAEgtklyYZ6KDlny29POCy7y14sm+XgZCHAmkAaNQkhJMGBOI5tuXfLskaSJVtt1Mu05/fHSBM5bpGl0Uij9+u6fM3oO6P53nYujP3xfd9PivKnpahg8HnBNK/yM1JirxVMS1Ga1xW7f6L/RR1A4p3r9wJrh8aS3vwYiY0mRa9FFIrYN12zCoUjb/reYV8Pe+9Lh07FRsqMpOsWTNfV8wpii2HfvIz3zYt433jt3Mt49aaFvcNfr/T5tfV4m6wkl5G+cOtC3XPDvDj+io+9hO/sAAAAwNQRiVg1dw+oob1PDe39auyIPja096mqqUtVzT3n/F6v29H0adGQYmZWqi4pzFJBZoryM7yanplyWoCRm+6R2+WMuL5VZbnaePda/kUdmOLO9XuBGToxxxXf+y+clak/V7XEwpb7bpqf0L0pa+fmj9u9xxudHQAAADgva602HWnWy4eaVZSTqvQUtxra+9Q4GGw0dPTpVGf/GZ0Y6V6XinLSFApHYicwGEnvvaxIH11bNtiZ4dW0FDfHTAKYMhI9ypTo+48WnR0AAACIOdsfbq216hoIRRf9dUbn2oceh5YAnurs18mOfoXeNM/udoxmZaeqKDtNq8tyVZiTpqKcNBVlpw4+pikrLRpivPlfEj92Zfmk/AM2AIyFVWW5Cf09MNH3Hy+EHQAAAElmaLnn0HGOW4+36aGXqxSOWBkTbaPuC4R1qnNAfcHwGd+fmeKOHuGYlarLy/N0or1X2477Y8dlfua6Cn3p1oWxxX4XwggJAGC8EXYAAABMApU+v1471qJFhVkqzE5VU9eAmoeOXBx+/GLXgJq7BjQQipz1c6yVuvpDWlGaq5szo4HGULAxMytVMzJTlJHiPuPewzszbl488y0HHUOmyr8kAgAmBsIOAACAcXCuMZLO/pBauwfU1hNQa09Ard0BtfVEj1pt64n+qGvrla+t95yfnZXq1ozBoGJ1WW7s+fTMFM3ITFVzd7/+5xN7FAxHw4rvfGTFiIIHOjMAAJMNYQcAAEAc9AXCqvf3qratV5urWvToaz6FI1aOkWbnpas/GFZbT+Csx6tK0rQUt/KneZWX4T3t9BEj6S+WF+njV5VpRmaqpmemKNVz4eMDinPSRxVW0JkBAJhMCDsAAAAu4GxdGeGI1cnOftW29qrO36u6tuiP2rZe1fn71Nw1cNbPitjocs/rFkxXXkaKCgYDjfxp0aNW86d5lZvuPS3AePMYycevGvmCT8IKAMBUQtgBAABwDl39Qf1u30l9/Rd7FQpbOY7RpUVZ6ugL6kR732ldGY6RinLSNDs3XTcsnK7SvHTNHvzh7wnonp/uiIUV3/rAcsZIAACII2Pt2VsnJ5LVq1fb7du3J7oMAACQZKy1au4eUG1rr3yt0b0Yta09g4+9au0JnPE9s7JStLo8T7Pz0qOBRm70sTAnVZ5h4yZvdrbuEAAAMDLGmEpr7eoLvY/ODgAAkNT6g2H94eApbTrSrNx0ryTJ19ojX2t05KQ38MbRq46RCrPTVJafrluXzFRZfobC4Yi+81KVwoPLPR9at4qdFwAATHCEHQAAYMI7V1dEOGLV1NWvhvZ+NbT3qbGjL/a8oaNPje39Z3RnuF1G5fkZKstL15UV+SrLS1dZQfTrktx0ed1ndmesrSigKwMAgEmEsAMAAExYgVBEz+9v1Bcf363g4M6Mqyry1R8Mq6G9X6c6+xWKnD6SOy3FraKcVBXlpGlpcY7q23r156oWWUU7Nz5303zde+P8EdVBVwYAAJMLYQcAAEiovkBYtW29sdGSmsFHX1uPTvj7NDzLCEes9tS3a9GsLF0xJ0+Fg6FGUXaainLSVJiTqqxUz2mfX+nza5uvLbYc9MqKgnH+GQIAgPFG2AEAAOLuT0eb9cKBU5o+LUWOY1Q7LNQ42dl/2ntz0j0qy8/Qitm5et9lxbKSvv9KdWxnxg8+sYaTTAAAwHkRdgAAgFGz1srfGzytO2Mo0Khq6lZnf+i090/PTFFZXrqunleg8vw3dmaU5acrZ3CJ6HDXL5wxqrCCMRQAAKYWwg4AAHBB0QWhLVo4M0uZqW75BsdOalp7Y6FG17BAwxipKDtNpXnpKi/I0N76jtjOjL+5cb4+d8uCEd2fsAIAAIwEYQcAADhDR19QBxo6daCxU68cadIrR6ILPodzOUazc9NUmp+hFaU5KsvPiHZp5EdPNUn1uCRFg5J1j2yJ7cy4dsH08f8JAQCAKYWwAwCAKcxaq5Od/dp/Ihps7G/o0IHGTtW19cXek+F1xYIOI+kDq0p0743zVJSTJo/rzGNa34ydGQAAYLwRdgAAMAVU+vx67ViLZuemS0ba39AZ69xo6wnE3jenIEPLSnL0kctLtaQoS5cUZamure+0zoyPrClVWX7GiO7PGAoAABhPhB0AACSpYDiinbXt+vm2Wj2984TssDkUr8vRglnTdMvimbqkKEtLirK0qDBL01LO/KPBjMxUOjMAAMCkQtgBAEASqWvr1StHm/XKkWZtrmpV10BIRjptDOXOq8r1wLsWv6URlCF0ZgAAgMmEsAMAgEmsLxDWlupWbTrSrFeONqu6uUeSVJSdqnctK9TbFkzXNK9b6/97e2wM5T3Li0YUdAAAAEw2hB0AAExw0WNfoyMkK0tzdPhUl1450qxXjrRo6/E2BcIRpbgdrZ2br3VXlOm6BQWqmD5NxpjYZzCGAgAAphLCDgAAJrDKmjbd8cjrCoQicoxRVppb/t6gJGnBzGn6+JVletuC6VozJy921OvZMIYCAACmEsIOAAAmkPbegPbUd2hPfbt21XXotWMtGghFJElhazUjK1Vfu22xrl1QoMLstARXCwAAMDERdgAAkCD9wbD2N3RoV1003Nhd166a1t7Y6xXTM7S6PFevVrUqYq28bkffeN9SOjQAAAAugLADAIA4q/T5tflYi4pz0hQIRbS7vkO769p1+FSXwpHoOSmF2alaVpKtD10+W8tLcrS0JFtZqZ7Y97NvAwAA4K0j7AAAYIx09gdV39anen+v6v19qvf3ad+Jdm2r8ceOfpWkrFS3ls/O0V8vqtCykmwtn52jmVmp5/xc9m0AAACMDGEHAAAXMNRZsawkW/kZKaeFGW8871Vnf+i070v3upTudcWCDsdIn7xmjh545+LTTkoBAADA2CLsAADgLJq6+rXD59dz+07q17sbZO2Z70nzuDQ7L00luelaXZ6rktzo86HH3HSPdtS2a90jWxQMReRxO7rt0kKCDgAAgDgj7AAATHmhcESHT3Vph8+vSp9flbV+1bX1SZJcxsSCDiPpPcuLdPe1c2JhxoWCi1Vludp491p2bgAAAIwjwg4AwJTT0RvUjjp/LNzYVdeu3kBYkjQ9M0Wry3J155XlWlmWq0AorE/8cFusM+POq8q1rCRnRPdj5wYAAMD4IuwAACS1UDii3+5p1O/2nVQoEpGvtVdHm7olSS7HaHFhpj64qkQry3K1sjQ6ivLmbg06MwAAACYXwg4AQNJo6R7QocYuHTrZqYODj4dPdSkUfmPhxqqyXH357Qu1ojRHy0tylJFy4f8rpDMDAABgciHsAABMeEOnoQx1VgyEwjrW1KODjZ06dLJTh0526WBjl1q6B2LfMyMzRYsKs7TS64od/eoy0o2LZuieG+Yl7icDAACAuCPsAABMaK8cbtbdP96mYNjKGKkkJ10NHX0KRaLdGl63owUzp+n6hdO1aFamFhdmadGsTOVPS5EUDUqGn4aydm5+In86AAAAGAeEHQCACSMSsapu6dYOX3vsVJSqwf0akmSt5HEbfea6uVo0K0uLCzNVnp8ht8s552dyGgoAAMDUQ9gBAEiYnoGQdtdFg40dtX7tqG1XR19QkpSd5tHK0hytKc/Vk5UnFI5EOzO+9YHlIw4s2LkBAAAwtRB2AADiKrZvY06epmemakdt9LjXSp9fh052anAaRfNnTNNtl87SytJcrSzL1dyCDDlO9FSU96+aTWcGAAAA3jLCDgBAXLT3BvT0jnp949lDsf0aQzK8Lq0ozdW9N8zTyrJcrZidq+x0zzk/i84MAAAAjARhBwBg1Dr7g9p3okN76zu0Z/Cxtq33jPfdcslMff7mBVo4K1Ouwa4NAAAAYKwRdgAAzuvNx752D4S0/0SH9p7o0J766OPxlp7Y+2fnpWlZcY7uuKJUqW5H//e5QwqFo/s2/uq6Cl1SlJXAnw0AAACmAsIOAMA5ba9p0x2PvK5gKCLHGM3KSVVDe5/s4FRKUXaqlpZk6wOrSrS0OFtLi7OVm+E97TOWluSwbwMAAADjirADABBjrVV1S482V7Vo87FWvXy4SYFQRJIUtlapbkefu2mBlpVk69LibE3PTLngZ7JvAwAAAOONsAMApriG9j69WtWi1461avOxVp3s7JckFeek6aq5+fpTVYvCESvvRR77CgAAAIw3wg4AmGJauwf0WnU02Nhc1aKa1ugi0fwMr66syNdVFQW6el6+SvPSZYw5Y2cHAAAAMNERdgBAktt0uEm/2t2gQDCiquZuHTrZJUnKTHHrirl5+tiV5bp6Xr4WzMiUc5YTUhhDAQAAwGRD2AEASaSps1/7Gzq170SH9jV0aEetX81dgdjrS4uz9OW3L9RVFflaWpwtt8tJYLUAAABAfBB2AMAkZK1Vvb9P+xs6tO9EZ/SxoVPNXQOx98wpyFB+RopaugKyklxGeselhbrnhnmJKxwAAAAYB4QdADDBbatp03P7Tior1a3eQFj7TnRof0OnOvqCkiSXYzR/xjRdO79AlxZFT0lZXJipzFSPKn1+rXtki4KhiDxuR2vn5if4ZwMAAADEH2EHAExQbT0B/cvzh/TTrXWxa26X0SWFWXrn0kJdWpylJUXZWjQrU6ke11k/Y1VZrjbevZYFowAAAJhSCDsAYII5dLJTP/xzjX6564QGQpHYdcdI9980X/fdOH9En8eCUQAAAEw1hB0AMAGEI1YvHjylH75ao9eqW5XqcfT+VSW6ojxPX3l6T2wM5aqKgkSXCgAAAEx4hB0AkEBd/UE9vr1eP9pco9q2XhVmp+or71ik29fMVk66V5JUkpfOGAoAAAAwAoQdAJAAx1t69KPNNXpie516AmGtKsvVV96xSG9fMvOM42AZQwEAAABGhrADAMaJtVavVrXqh68e10uHm+R2jN69rEh3XV2uZSU5iS4PAAAASBqEHQAQZ5urWvSj12p0oKFTdf4+5Wd4dd+N8/XRK0o1Iys10eUBAAAASYewAwDipGcgpG8+d0g/2eKTJBlJ99xQoftunH/Oo2IBAAAAjB5hBwCMsZ6BkH6yxacNr1SrrScQu+4YKd3rJugAAAAA4oywAwDGyJtDjusWTNc7Lp2lf/jN/tjRsWvn5ie6TAAAACDpEXYAwCi9WtWiDa9Ua0etX139IV23YLruv3m+VpZGT1BZMDOTo2MBAACAcUTYAQAjFI5YHWzs1JbqVj2//6S21fglRcdUvvG+pbrjitLT3s/RsQAAAMD4IuwAgAvYVtOm3+xqkDHSifY+vX68TV39IUlSTron9j4jyd8bOMenAAAAABgvhB0AcBbWWu070an/ePmont9/Kna9MDtV71paqLVz83XF3Dw1tPdr3SNb2MkBAAAATCCEHQAwTHtvQL/ceUI/316vg42dcjkm9prLSB9dW6Z7bpgXu1aYnaaNd69lJwcAAAAwgRB2AJjSKn1+vXasRRlet3bUtev5/ScVCEV0aXGW/vG9S1SWn6H1P9l+3s4NdnIAAAAAEwthB4ApKRKx+tm2Wv3vX+1XOGIlSRlel+5YU6oPri7RkqLs2Hvp3AAAAAAmF8IOAEmt0uePBRVLi7O1+ViLnt9/Si8cOKWW7oHY+xwjrX/bXN1/84IzPoPODQAAAGByIewAkLQqfX6te3iLBkIRGSOlul3qDYaV7nXphoUzNH/mNP2/Px5TMBwdUblm/vRElwwAAABgDBB2AEg6NS09evFQk368uUb9oYgkyVqpYkaGPnfzAl09r0CpHpck6dr50xlRAQAAAJIMYQeASa3S59fmYy3KSvWo3t+rFw81qbq5R5JUnJsml2NkrZXX7ejv/+LSMwINRlQAAACA5EPYAWDSer26VeseeV2hwQWjbsfoyop8fXxtmW5cNFOl+emn7ewg1AAAAACmBsIOAJPS7rp23fvTHbGgwzHSvTfM0+duOX3BKJ0bAAAAwNRD2AFgUukLhPXtFw7rv/58XDlpXnlcRpGIlcft6NoFLBgFAAAAQNgBYBLZXNWirz69V7VtvbrjilJ99bZFOnqqmzEVAAAAAKch7AAwoVX6/Np0uEkHGjv1h4NNKs9P18/Wr9XaufmSGFMBAAAAcCbCDgAT1jN7GnT/z3bF9nK897Ii/dP7l8WOjQUAAACAsyHsADBhRCJWu+vb9YeDp/TCgVM6cqo79ppjpAUzMwk6AAAAAFxQ3MIOY8xsST+WNFOSlbTBWvsdY8zfS/q0pObBt37dWvtsvOoAMLG9Xt2qx7fXqbMvpN317WrqGpDLMbq8PFd3XV2un75eq1A4Io/biY2uAAAAAMD5xLOzIyTpi9baHcaYTEmVxpgXBl/7N2vtv8Tx3gAmuHDE6jt/OKLvvlQlO3jtyrl5+upti3TjohnKSfdKkt69rIgFpAAAAABGJG5hh7W2UVLj4PMuY8xBScXxuh+AycFaqz8eadY/PXdIh052xa67jHTN/On6y5Ulp72fBaQAAAAARsoZj5sYY8olrZD0+uCle40xe4wxPzDG8LcYYIrYVdeu2x/eort+uE29gbA+f8sCpXocuYwYUwEAAAAwZoy19sLvGs0NjJkmaZOkB621TxtjZkpqUXSPxz9KKrTWfvIs37de0npJKi0tXeXz+eJaJ4D4qPT59ezeRu1v6NCW6jblZ3h1/83z9ZHLS+V1O6r0+RlTAQAAAPCWGGMqrbWrL/i+eIYdxhiPpN9Ket5a++2zvF4u6bfW2kvP9zmrV6+227dvj0uNAOLnmT0N+pvHdik8+PvMh1aX6G/fs0TTUjgICgAAAMDIvdWwI56nsRhJ/yXp4PCgwxhTOLjPQ5LeJ2lfvGoAkBhVTV166OVj+uXOE7Hloy4jleVnEHQAAAAAiLt4/q3jakkfk7TXGLNr8NrXJd1ujLlM0TGWGkmfiWMNAMbR/oYOPfRylZ7bd1Kpbpfes7xQz+8/xdGxAAAAAMZVPE9j+bMkc5aXno3XPQGMv0qfX0/vqNfhk13a7vMrM8Wte66fp09eM0d5GV52cgAAAAAYd/STA7homw436a5HtykyOKty++Wz9dV3LlZ2mif2Ho6OBQAAADDexuXoWQDJZ9+JDt332M5Y0OEyUkle+mlBBwAAAAAkAmEHgBF7fHud/vJ7m+VxOfK6HbmM2MkBAAAAYMJgjAXAW9YfDOsffrNfj22t09Xz8vXvH1mhmtZednIAAAAAmFAIOwC8JfX+Xn124w7tqe/QZ6+v0BdvXSiXY5Q/LYWQAwAAAMCEQtgB4LwqfX79bGutntvXKCOjDR9bpVuXzEp0WQAAAABwToQdAM5pc1WLPv6DrQpFrIyk796xgqADAAAAwIRH2AHgDKFwRI9vr9c3nj2g0OBxK46RfK29Ca4MAAAAAC6MsANAjLVWz+07qX95/rCqW3q0cFamjjf3KByJcNoKAAAAgEmDsAOAJGnzsRb903OHtLu+Q/NnTNOGj63SLZfM1I7adk5bAQAAADCpEHYAU9yTlXX6j5ePqaalR0XZqfrWB5bp/StL5HKMJGlVWS4hBwAAAIBJhbADmKJOtPfp60/v0aYjLZIkt2P0rx9arisrChJcGQAAAACMDmEHMMV09gf1ny8f0w9ePa7w4CkrVtF9HTtq2wk7AAAAAEx6hB3AFBEIRbTxdZ/+/cWj8vcG9ZcrivX2S2fp/p/tVDDEAlIAAAAAyYOwA0hylTVt+tFrPm093qqTnQO6el6+vnbbYl1anC1J2nj3WhaQAgAAAEgqhB1AEnt6R72++MRuWSsZSQ+8a7HuvmaOjDGx97CAFAAAAECyIewAklB/MKyHXq7SQy9XydroNcdER1mGBx0AAAAAkIwIO4Aks/V4m7769B5VN/fougUF2lLdplCYnRwAAAAApg7CDiBJdPYH9U/PHdLG12tVkpumH39yjd62YLoqfX52cgAAAACYUgg7gEmu0ufXf79Wo01HWtTeF9Dd18zRF25doHRv9H/e7OQAAAAAMNUQdgCT2EuHTunuH21XZHAB6Tffv1Qfvrw00WUBAAAAQEI5iS4AwMV5Zk+j7tm4U5FhC0hbugOJLQoAAAAAJgA6O4BJpq0noL/91T79dk+jKqZnqN7fxwJSAAAAABiGsAOYRJ7ff1IP/GKvOvqC+vLbF+ozb5ur3fUdLCAFAAAAgGEIO4BJoL03oL//9X79cleDLinM0k8+dYUWF2ZJYgEpAAAAALwZYQcwgVX6/Prp6z69dKhJXf0h3X/TfN174zx5XKzbAQAAAIBzIewAJqhXq1r08R9sVThiZSR96wPL9MHVsxNdFgAAAABMeIQdwARS6fNrS3Wr8qd59c3nDik8eNSKY6SmroEEVwcAAAAAkwNhBzBBVPr8WvfIFg0EI7KSslPd8rochSOctAIAAAAAI0HYASTQUCfHqrIcPfLnGvUHI7HX7ryqXNctnMFJKwAAAAAwQoQdQIJU1rTpjkdeVyAU7eSQJGMkI8nrdnTdwhmctAIAAAAAF4GwA4ijoc6NtXPztWhWpvbUd2hXXbt21vr1alWLBkJvdHJ8aHWJPrx6trYcb6OTAwAAAABGgbADiJNKn193PLxFA6GIzOC1oQ6O8vx0rSrL1eZjrYpYK6/b0YcvL412cpTnJapkAAAAAEgKhB1AnDxVWR/r3LCSrqzI1/pr52r57BzlZXglnd75QScHAAAAAIwNwg4gDp7b26jHK+tkFN3D4XU7+tKtC88INNjJAQAAAABjj7ADGEOVPr8eerlKLx1q0srSHN1303wdaOikcwMAAAAAxhFhBzBGKn1+feT7rykYsXKM9OW3L9SVFQW6YeGMRJcGAAAAAFOKk+gCgGSx6XCTgpHoClIjaUdte2ILAgAAAIApirADGCN1/j5JkmMkj9vR2rn5Ca4IAAAAAKYmxliAMdDQ3qdn9zbqugUFWjMnnx0dAAAAAJBAhB3AGPj2C0dkJT34vqUqyU1PdDkAAAAAMKUxxgKM0sHGTj21o153XVVO0AEAAAAAEwBhBzAKlT6/Prtxh9I9Ln32+nmJLq6MeWAAACAASURBVAcAAAAAIMIO4KJV+vz6yIbXdLylRwOhiKqauxNdEgAAAABAhB3ARRkIhfVPvzuoYDh61Ky1VluqWxNcFQAAAABAYkEpMCKVPr9+u7tBLx1ukq+1Vy7HSNZy1CwAAAAATCCEHcBbtLmqRR//wVaFItFujq/dtkiry/O0pbqVo2YBAAAAYAIh7ADOo9Ln12vHWtQXDOtHm32xoMNlpFDEalVZLiEHAAAAAEwwhB3AOVT6/Lp9wxYFwhFJUnFumgKhiMKRCGMrAAAAADCBEXYAZxEMR/TPzx+KBR2Oke5YM1tr5xYwtgIAAAAAExxhBzBMpc+v3+1r1MuHm1XV1C2XMZKGFpAWMLYCAAAAAJMAYQcwqNLn10c2vBY7TvZLty7QlRV0cgAAAADAZEPYAQz6/YGTsaDDMZIxhk4OAAAAAJiEnEQXAEwE1lptOdYqKRp0eFlACgAAAACTFp0dgKSfb6vT7voOffraOcpJ9zK2AgAAAACTGGEHprwT7X36P88c1JVz8/W12xbLcUyiSwIAAAAAjAJhB6a0ypo2ffGJ3QqGI/rWB5YRdAAAAABAEmBnB6asSp9fH96wRTWtvQpHrJq6BhJdEgAAAABgDBB2YEqKRKz+5flDCkWip69Ya7WlujXBVQEAAAAAxgJjLJhSKn1+vXKkSa9WtWq7zy+XMZKsPJy+AgAAAABJg7ADU0alz687Ht6igVBEknT3NXN026WztOV4G6evAAAAAEASIezAlPH7/SdjQYdjpNwMr1aV52lVeV6CKwMAAAAAjCV2dmBKaO8N6Ld7GyVFgw4vYysAAAAAkLTo7EDS6w+Gtf7HlWruHND/994l6uoPMbYCAAAAAEmMsANJbXtNm77+i706cqpb3719hd6zvCjRJQEAAAAA4oywA0mr0ufXhzdsUThi5XaMinLSEl0SAAAAAGAcsLMDSev5fScVjlhJkrVWW6pbE1wRAAAAAGA8EHYgaR1r7pYkuYzkYSEpAAAAAEwZjLEgKdW19WrTkWa9c+ksLSnKZiEpAAAAAEwhhB1ISg+9XCXHGP3tu5doVnZqossBAAAAAIwjxliQdOraevVkZb1uXzOboAMAAAAApiDCDiSd//xjtKvjr66vSHQpAAAAAIAEIOxAUnlub6N+vq1ONy2eocJsjpoFAAAAgKmIsANJo9Ln170/3amIlV461KRKnz/RJQEAAAAAEoCwA0njZ1trFbZWkhQKR7SlujXBFQEAAAAAEoHTWJAUWroH9PsDp2QkOUbyuB2tnZuf6LIAAAAAAAlA2IFJLxKx+uLju9UXDOtfP7RcjR39Wjs3X6vKchNdGgAAAAAgAQg7MOn94NXj2nSkWf/43iX6y5UliS4HAAAAAJBg7OzApPbEtjp949mDurw8Vx9dW5bocgAAAAAAEwBhByYlf09AX396j7781B5FrLSnvkM7atsTXRYAAAAAYAJgjAWTyjN7GvTwn6p1oKFTgbCNXR86fYU9HQAAAACAuHV2GGNmG2NeNsYcMMbsN8bcP3g9zxjzgjHm6OAjfzvFBQXDEX31qT2656c7tauuQ+GIdP+N85XqceTi9BUAAAAAwDDx7OwISfqitXaHMSZTUqUx5gVJn5D0orX2m8aYr0r6qqSvxLEOTGKVPr9+teuENh1plq+1d9grVl6Po413r9WW6lZOXwEAAAAAxMQt7LDWNkpqHHzeZYw5KKlY0nslXT/4th9J+qMIO3AWv951Qp9/fLfCkei4ykevKNWTO+oVDEVinRyrynIJOQAAAAAApxmXnR3GmHJJKyS9LmnmYBAiSSclzRyPGjAxVfr8sc6MpcXZ+t2+Rj1ZWS9fW+9pnRwuIxXmpNHJAQAAAAC4oLiHHcaYaZKekvQ5a22nMSb2mrXWGmPsOb5vvaT1klRaWhrvMpEAfzrarE/8cFusc2M4Y6R3L52lFw42KRSmkwMAAAAA8NbFNewwxngUDTo2WmufHrx8yhhTaK1tNMYUSmo62/daazdI2iBJq1evPmsggsmrrq1Xn/vZrtOCjtK8dNW19coqujl3cVG27rpmLp0cAAAAAIARiedpLEbSf0k6aK399rCXfi3pzsHnd0r6VbxqwMS0raZN733oVfUFw/K6oqeppHoc/dV1FUp50+kqq8pydc8N8wg6AAAAAABvWTw7O66W9DFJe40xuwavfV3SNyU9boz5lCSfpA/FsQYk2PCdHJcWZ+k7fzii7286rhlZKXryr66Uvzd4WufGwlmZdHIAAAAAAEYlnqex/FmSOcfLN8Xrvpg4KmvadPvDrysYjsiY6B6OcCT6WltPQP7e4Bk7ONjJAQAAAAAYrbiNsWBqO9DQqft/vkuBcERWUsRKs7JSY+lXKBzRlurWRJYIAAAAAEhShB0YlT8cOKV/fv6QXjvWImutXj7cpPf+x5/1rn//kzp6A/I4JraT454b5p+xkwMAAAAAgLEW96Nnkbw2vHJM33j2kCTpoZePyZE0OKUil2P00B2rlJHqZicHAAAAAGBcEXbgogyEwvrPPx6LfW0kFeWm6YS/T1aSrNXeho4zTlJhJwcAAAAAIN4YY8FF+eGrNWrvDcaOjk3xOPrs9fMYUwEAAAAAJBydHRixps5+fffFo7p58Qz99fXzGFMBAAAAAEwohB0YsW89f1jBsNX/etclKi/IYEwFAAAAADChMMaCEdlV164nK+v1yWvmqLwgI9HlAAAAAABwBjo78JZtr2nTfY/tVE66R/feOC/R5QAAAAAAcFZ0duAtqfT59ZENW9TY0a+egZAOn+xKdEkAAAAAAJwVYQfeku/9sUqhiJUkRSJWW6pbE1wRAAAAAABnxxgLLujXuxv0h4NNcoxkxLGyAAAAAICJjbAD51Tp8+uxrbX6xc56rSnP0+dvma8dte0cKwsAAAAAmNAIO3BWlT6/bt+wRYFwREbSfTfN05UVBbqyoiDRpQEAAAAAcF7s7MBZPVVZr0A4IklyjLSnviPBFQEAAAAA8NbQ2YEzbD3epqd21MsoGnSwowMAAAAAMJkQdkxBvTt3qnfrNqWvuVzpK1bErlf6/Hpie51+sfOEinPT9PXbFuvwqS52dAAAAAAAJpVzhh3GmCWSKqy1vx78+t8kZQ++/B/W2h3jUB/GWO/Onaq98xOygYBMSopKH/2h0lesOGNHx9ffuVg3L56pmy+ZmeiSAQAAAAAYkfPt7PimpJZhX79d0jOSXpb0t/EsCvHT/uRTsoGAJMkGg+rduk2S9Ojm46ft6Dh8sithNQIAAAAAMBrnG2MptNZuHvZ1p7X2KUkyxnwmvmVhrPXu3Kn2J55Ux69+JRkjGSPj9Sp9zeV69NXj+s3uRhkTTb/Y0QEAAAAAmMzOF3ZkDv/CWrt22Jcz4lMO4mH46IqM0fT/+WUpEFTd7EW6a2u/Xj9+QLdcMlOfvLpcO2rb2dEBAAAAAJjUzhd2NBhjrrDWvj78ojFmraSG+JaFsdS7dVtsdEXGSIGgfO/4oD70/dcUjli5HKNPXztHa+bk68qKgsQWCwAAAADAKJ0v7PiKpJ8bYx6VNLSMdJWkOyV9OM51YQx558yJPhk2uvK9TccUjtjodWu1rcavNXMYXQEAAAAATH7nDDustVuNMVdIulfSJwYv75e01lp7ahxqwxgZOHxYkpT3ybuUefPN2pJWpBcPbJdjJCN2dAAAAAAAksv5OjtkrW0SJ69Mar2VlWr78Y+VunSp6j90t36164R+vm2HlhRn6Wu3LdauOnZ0AAAAAACSy3nDDkxuvTt3qvYTd8kGg+o7eEj/8M2faU92qYykz920QFfPK9DV89jRAQAAAABILk6iC0D89G7dJhsMSpJsOKxFp45Kiu4oPXyqK5GlAQAAAAAQN+cMO4wxdH1McumXXx57HnRc2lNQIcdIXnZ0AAAAAACS2PkCja2SVkqSMea71tr7xqckjJVDA26lSdpatES/X/52ffbOd6rO38eODgAAAABAUjtf2GGGPb863oVgbO187hXt/ufvaq2khy95tx745Nt129LCRJcFAAAAAEDcnS/ssONWBcZU786d8n7pHl0RDslKWtZSpeqWaxJdFgAAAAAA4+J8C0oXGWP2GGP2Dnu+xxiz1xizZ7wKnKw2btyo8vJyOY6j8vJybdy4cdzu3b3pFTnhUKw15693/0JX9TeM2/0BAAAAAEik83V2LB63KpLMxo0btX79el1+W6nu+toyvfhMu9avXy9JWrduXdzvb4uKoo+KziK5jFRYe0jS2+J+bwAAAAAAEu2cnR3WWp+11ifpZkneoa+HXcc5PPDAA1p103Q999NqPXD3Xj3/ZKNW3TRdDzzwwLjc/+W63ugTxyU5jhyvV+lrLj//NwEAAAAAkCTON8YypFTS940x1caYJ4wx9xljLot3YZNZbW2tbrotUx5XSG5XRB5XSDfdlqna2tq437upq187tx6UJJV+/3uafv/9Kv3hD5S+YkXc7w0AAAAAwERwwbDDWvt31tobJS2R9CdJX5ZUGe/CJrPS0lK9+FyXgmG3QmFHwbBbLz7XpdLS0rjet9Ln16d/tF153a1SWroyrrlGBZ9ZT9ABAAAAAJhSzrezQ5JkjPlfih49O03STklfUjT0wDk8+OCDWr9+vT787c9r7fyD+t2PdqvyxWZt2LAhbves9Pl1x8NbNBCK6L29fkVmzpIx5sLfCAAAAABAkrlg2CHpLyWFJD0jaZOk16y1A3GtapIbWkL6wKYOvV6ZqrQ9u7Vhw4a4LifdUt2qgVBEkrS07Kiyr+pR/+FHlbrwE9rcsFnbTm7TdSXX6bIZTCABAAAAAJLbBcMOa+1KY0yWot0dt0jaYIxpstZeE/fqJrF169bpqY5XlZHi1k+e+Pu432/t3HwZSf8j5yWt+ru9Mh4rG/ykjm6v1z0HnlLIhvSTAz/RI7c+QuABAAAAAEhqF9zZYYy5VNI6SXdK+rCkE5JeinNdScHtchQY7LaIt4rpGbKSbq/YJuOxMm7JeKxC7b9UyIYkSaFISNtPbR+XegAAAAAASJS3MsbyTUmvSPp3SdustcH4lpQ8vC5HfcHwuNxrR61fkpTVv0o2/GfJsbJho0OhCkkH5MiRx/Fo9czV41IPAAAAAACJ8lbGWN49HoUkI7fLKNg/Pp0d22r8cjtG+X2NkqwkyThWf3AO6pL8S3RL2S1aPXM1IywAAAAAgKT3Vjo7cJE84zjGUlnj15LibDnOazIuyThSRNL8/CZ9vOhhXVF4xbjUAQAAAABAol1wZwcuntflKBSxcb/PQCisXfXtekeoQV1/MLJBIxuSgmGjxvYyrZm1Ju41AAAAAAAwUdDZEUdul1EwHP/Ojn0nOhUIRbSifq/6dqWp9q5Spa7p1a+DGXqhKKjbm3czvgIAAAAAmDLO2dlhjLnXGFMw+HyeMeYVY0y7MeZ1Y8zS8Stx8vK4HIXC8e/s2F7TJkkqXFwhSerdlaqTP8jX70IZitgIJ7AAAAAAAKaU842x/LW1tmXw+Xck/Zu1NkfSVyT9v7hXlgQ8LqPAOHR2bPf5VZ6fruy8bElS+JI+/ePtLh0tMZzAAgAAAACYcs4XdgwfcZlhrf2FJFlr/ygpM55FJYtoZ0d8ww5rrSp9fq0uz1Po5ElJ0qzl/TpSYnRN0TV6+NaHGWEBAAAAAEwp5ws7njTGPGqMmSvpF8aYzxljyowxd0mqHaf6JjWPy1EwzmMs1S09ausJaHVZroINjXKlu7SvsEyS9OllnyboAAAAAABMOedcUGqtfcAY8wlJj0mqkJQiab2kX0paNy7VTXLucRhjGdrXsbK7Tj1bt8rlCWvPtFy5Q0Etzl8c13sDAAAAADARnfc0Fmvto5IeHZdKkpB3HMZYttf4taanXpHPfV3hQEAyVs0NfVqwaIHS3GlxvTcAAAAAABPR+cZYzmCM+XG8CklGbsdRxErhSPxGWbb7/HpP+0HZQCB6wUqzKtu0rGBZ3O4JAAAAAMBEds7ODmPMr998SdINxpgcSbLW/kU8C0sGHreRJAXDEbkc15h/fkv3gI639Ki8tyV2zUq6dk9Ye3x90toxvyUAAAAAABPe+cZYSiQdkPSIon+HNpJWS/rXcagrKXicaONMMBxRqmfsw47Ht9XpndWblb+/UtLQfyQjV0Q69sdfa9cNH2BBKQAAAABgyjnfGMtqSZWSHpDUMXjkbJ+1dpO1dtN4FDfZeVxDnR1jP8ZS6fPrmcee1z17npYZdj0iKeSS9s+Wtp/aPub3BQAAAABgojvfaSwRSf9mjHli8PHU+d6PM3nc0SwpHktKt1S36Or63bG0ykqyxuqF5Y7+tNRRbWmKVs9cPeb3BQAAAABgortgeGGtrZf0QWPMuyR1xr+k5DE0xhKP42dnZaWpLiVdkhSWZFyO/vumiLasmaaPLP2Urii8ghEWAAAAAMCU9JY7Nay1z0h6Jo61JJ2hBaWhOIyx+Fp75I5EZGXU/KH36Hupz+lgsSNPJEDQAQAAAACY0kZ09CxGxj1sQelYe3bfSa0ItymlrFTHPjhfB4ujgUrEWnZ1AAAAAACmNMKOOPK44jPGUtXUpaqmblW01Uoety5vzoouKbVWHpeXXR0AAAAAgCmNsCOOvHEaY3lu70ld2nxMKW3NChyrVsoX/q+W11stsV49fOvDjLAAAAAAAKY0TleJo3iNsTy776Te33M0+oW1ssGgymutZs8vJegAAAAAAEx5dHbE0dAYS3AMOzt8rT062Nipovll0QuOI7kd7S81KsqtGLP7AAAAAAAwWdHZEUceV3SMZSw7O57bd1KStKisQAOS8j71KR3LPKCjKa+rxJM9ZvcBAAAAAGCyorMjjt7o7BjDsGNvo5aXZCvD3yzj9WrGB65SbffzkqTizd+T6raO2b0AAAAAAJiMCDviaKzHWJ7ff1K76zu0tDhHwRMN8hQVydS+qhMuR96IVX5wQKr505jcCwAAAACAyYqwI47Gcoyl0ufXPRt3SJKeqKxTe3WNPMXFUvm1OuFxqygUkuPySuXXjvpeAAAAAABMZoQdcTTU2RGKjD7s2FLdqlAk2iESCkcUqatVuLNTvTV+1bvdKk7Jke78tTR7zajvBQAAAADAZEbYEUfuoc6O0OjHWNbOzZcZfL6ytUqevl7179un2nu+pNRTjoqLryDoAAAAAABAnMYSV96hnR1j0NmxtDhbxkhr5+Tpa7Y1etFa2WBIZfWOiqcvHfU9AAAAAABIBnR2xFFsQWlo9GFHbVuPIlb68OWlKiwvil50HMkl7S81Ks6aPep7AAAAAACQDAg74ig2xjIGp7FUNfVIkuZOz5Ax0c8t+PRdan5Hl46WGBVPKx71PQAAAAAASAaEHXHkGcMxluqWbknSnIIMBWpq5J4xQ9PfvVybS12SJH+/f9T3AAAAAAAgGRB2xNEbYyyj7+w41tSjmVkpykz1KFBTI295uXYd/a1+lpUpSfrCH7+gXU27Rn0fAAAAAAAmO8KOOHI5Ro4Zm6Nnq1u6NbdgmiRpoKpKkb4+HdrxmsKDZ7QEI0FtP7V91PcBAAAAAGCyI+yIM4/LUSA8urDDWqtjTd2qmJGh5ocfUaS7W/1792rpY52af8LKyMjjeLR65uoxqhoAAAAAgMmLo2fjzONyRj3G0toTUGd/SMv8PrV8+9ux6yYsXVprdcNtn9a1JdfqshmXjbZcAAAAAAAmPcKOOPO4zKjHWI41RZeTzt2/RbJvBCcRR7LLF+q+lfeN6vMBAAAAAEgmjLHEmdvlKDjKMZbqluixs7kls6IXjFHEkR6+1aWcy68ebYkAAAAAACQVwo4487ocBcOjG2M51tStFLej7Mx0SVLoY/9D/7DO0UsrHD12+DFOYQEAAAAAYJi4hR3GmB8YY5qMMfuGXft7Y8wJY8yuwR/vjNf9JwqPy4xJZ8ecggyFTtTLyc7W6zdk6mBx9BSWUCTEKSwAAAAAAAwTz86ORyW94yzX/81ae9ngj2fjeP8JYSzGWI41d6tixjQF6urlLSnRqtZ6SZKROIUFAAAAAIA3iVvYYa19RVJbvD5/svCMcoxlIBRWXVuvKgoyFKw5Lo/vkPJ2Py4Zoxt7B/TwZZ/nFBYAAAAAAIZJxM6Oe40xewbHXHITcP9xNdoxFl9rryJWqihIU6CuXuGBbh31p0iS/trfrsv8jWNVKgAAAAAASWG8w47vSaqQdJmkRkn/eq43GmPWG2O2G2O2Nzc3j1d9Y87jchQaRWdHdfPgsbPvvUmS1BtI1azfTdOSurAqevql8mvHpE4AAAAAAJLFuIYd1tpT1tqwtTYi6WFJa87z3g3W2tXW2tXTp08fvyLHmMdlFBhFZ8fTL7wqSTKuUPSCMVJYurY6LPcHfy7NPucvIQAAAAAAU5J7PG9mjCm01g7NXbxP0r7zvT8ZeFyOugdCF/39aS9u1rVZuXKlpEg22iEScRm50vqky24bqzIBAAAAAEgacQs7jDGPSbpeUoExpl7S30m63hhzmSQrqUbSZ+J1/4litGMsv8gr1teqX4l2dEiy1urlpUZZ6hurEgEAAAAASCpxCzustbef5fJ/xet+E5XbufgFpdZaOQWl6joSHrqgiCNtWupozqmUMawSAAAAAIDkkYjTWKYUj9u56LCjpTsgedM1rS+6pPS3kU793R0uHS2W/rgyV7uado1lqQAAAAAAJAXCjjjzOEbBixhj2bhxo26+7h2SpGPBaNjx/flhHZltJGMUNtL2U9vHtFYAAAAAAJIBYUeceVwj7+zYuHGj1q9fr4VZZZKklaGQwtZq/e1fkGMcyVp5jEurZ66OR8kAAAAAAExqhB1xFh1jGVlnx/s/9jG9klOqysvfJ1mr5vJlcqzR39z5NS3MLFNRKKSHF31Kl824LE5VAwAAAAAweRF2xJnnIhaUzrVW3y9dqrDjkozRtECv2twpmmOtPDKaEwzpsvwlcaoYAAAAAIDJjbAjzqJHz44s7PCWlWlG7V451krWKifQo1BgQCllZeoL9ynFWiklK04VAwAAAAAwuRF2xJnbNfIxlgcffFCXnzyi3NZaOf4GFTfXKL2/Sw8++KD6QwNKtVZKJewAAAAAAOBsCDvizOsyCkYisvatBx7r1q1T949/rFa3W92tdZJj1f+267Ru3ToNRAJKs1ZKyYxj1QAAAAAATF6EHXHmcTmyVgpHRtbdsW7dOs2Zv1BXrrpMWZLSX/i9Lp89W93BfqVGCDsAAAAAADgXwo44c7uiv8QjHWWRpNb2Lh3488tyjNGMlBTd39Ki/khIXmslT/pYlwoAAAAAQFJwJ7qAZOdxGUlSMBJRmlwj+l7T1aOv+k9Iknoypml1eoYqGqU0b0QyZsxrBQAAAAAgGdDZEWeeoc6O0MhOZJGkdk+KUvrbol8YI2uMltRaDQRH/lkAAAAAAEwVhB1xNhR2hEa4syMcsTJur5qNJ3ph8Bja/aVGCvOfDQAAAACAc+FvzXE2NMYSGGFnR38wLEmyJvqf6Pn2dm3qatDREqO8rPyxLRIAAAAAgCRC2BFnsTGW8MjCjr7BsMN11RWSpO+2t+tbJdMlSTPyZo5hhQAAAAAAJBfCjji72DGWvkA07FhSWiJJOuSr0W9+9xtJUqonYwwrBAAAAAAguRB2xJl7lGMsKcEBSZKTnq7+UL8kKdVL2AEAAAAAwLkQdsSZ92I7OwbDDu9Q2JGWNizsyBzDCgEAAAAASC6EHXF2sTs7+gePl/UEB2Q8HhmPR/2BbklSqjd7bIsEAAAAACCJEHbE2dAYS3CEYyxDnR3ugX456emSpP6BdklSaiphBwAAAAAA50LYEWexzo6LXFDqDvTLZAyGHf2DYUcKYQcAAAAAAOdC2BFnnovs7BhaUOoa6JeTNhR2dEiSUtNyx7BCAAAAAACSC2FHnL1x9OzFjbE4A31vjLEM7exIyxvDCgEAAAAASC6EHXE2FHYEwhc3xuL0DQ87uiRJKYQdAAAAAACcE2FHnF3sGMtQZ4f6h4UdwR6lRSIyLCgFAAAAAOCcCDvi7GLHWPqDYTlGsn19ctLSJEl9wR6lWCulZI55nQAAAAAAJAvCjjgbOnr2YsZYUj0u2d5eOYOnsQyE+pRqrZSSNeZ1AgAAAACQLP5/9u48Tq7zrvP95zm19t7ad7XkfV9i2djBWcjqmCROrhMgURyzZMTAsGSGgQsvzWXCHcSdcCfMHbaASQAbmgRIAslkJSEhCYGYSHG877ZWa196UXfX+tw/6nS7ZWtrxVWtLn3er9d51TmnTlU91Xp82vrq+T2PYUeT5SdHdtRmXsbSkctQHxt7voylOtEIO3IdL3k7JUmSJElqF4YdTTZZxlKZYdgxUalTzCbUx8YIk2FHbYIOEgjhJW+nJEmSJEntwrCjySbLWCozLGOZqNTozdQhRpKORtgxXitTIPOSt1GSJEmSpHZi2NFkueTMRnaMV2r0UQUg+ZO7YM8eSvUKxcSwQ5IkSZKkkzHsaLIkCWSSMPOwo1yjN1YAGHtuN2O/9EtM1CsUk1wzmilJkiRJUtvIznYDzgW5TKA609VYvvWvXLPrAQBGursZ/c5mFp8PHV3lZjRRkiRJkqS24ciOFshlEsoznaD0iqsY4GjjIARiCKzenVBYtqoJLZQkSZIkqX0YdrRALpPMfGQHCcO9CxoHMRJi5JHVgWK+qwktlCRJkiSpfVjG0gK5zJnN2VHKFADof/3r6TtymEdW3sfV2WIzmihJkiRJUttwZEcLZJOZl7GMV2oUr7kSgHn/4Wcp/tlHmEgSitnOZjRRkiRJkqS2YdjRAvnszMtYSpU6HbGx9GwoFCmNHwKgYBmLJEmSJEknZdjRAtkZLj1brdUp1+oU07AjKRYoje0HoJjrbkobJUmSJElqF4YdLZDLJFRmMLJjotoIRoq1dGRHschEOrKjo9Dz0jdQkiRJkqQ2YtjRArlsCQxNcwAAIABJREFUMqORHePlGgD5egWApFBgPA07innDDkmSJEmSTsawowVyMyxjmag0wo5CrRF2hGKRiYkjjXOFvpe+gZIkSZIktRHDjhbIZWY2Qel4GnbkahXI5QiZDKU07OgozmtKGyVJkiRJaheGHS2QzYQZLT07VcZSLZPk841zpSEAisX+l76BkiRJkiS1EcOOFshnEqr1GYQd6ciObLVCKBYBmCiPAFDsmP/SN1CSJEmSpDZi2NECuUxCpTrzMpZMtUxSKADTwg7n7JAkSZIk6aQMO1ogm5nhBKVpGUu2Up42suMoAMVcx0vfQEmSJEmS2ohhRwvkMwmVGZSxTFQbYUdSqRCK6ciOShp2ZIsvfQMlSZIkSWojhh0tkM2EmZWxlBvBSFIpkRTSkR3VcQCKGcMOSZIkSZJOxrCjBXJnOEFpKJefH9mRhh2FTOGlb6AkSZIkSW3EsKMFcpmEcnUGZSxTYce0kR21EnkCmSTTlDZKkiRJktQuDDtaIJcJVGozKWOpkUkCQ/v28Y9f/jJfD4H9B/dRKFe5ftUqBgcHm9haSZIkSZLmNsOOFjiTMpYsdQ7v3cviTInHf3ghO7pz1AO8qXCQDRs2GHhIkiRJknQChh0tkM0kVGqRGE9vdMd4pUbP8BGWZQLPXNPN771jCd/rLHI0m/CFX1nLt5ZFbr/jjia3WpIkSZKkucmwowXymQBAtX56YcdEucb+aolKEpjIBwiN1xMClWzgTy7pYu1pBieSJEmSJJ1rDDtaIJdp/JgrtdMrZRmv1AghkqkHKlkgDTaSeiRbjSx47CiFgYFmNVeSJEmSpDktO9sNOBdkp8KO0y9jWbl4AZkQSI5WWXgAfpZRnni8zsTXhrnu2RIX37OpmU2WJEmSJGnOcmRHC0yWsZzuyI6JSo01C/sBOJLLcOBAmXeOHuU73zzIX1QXM3rPPaxfv75p7ZUkSZIkaS5zZEcLZGdcxlJnWagB0L9qCa97xWr4zqf5+89/Bc57VdPaKUmSJElSO3BkRwtMztlRPc0ylolyjR4aYcf48AEKpXLjiUJPU9onSZIkSVI7MexogVxaxlKewQSlXenIjgu2VVl+75ONJwq9TWmfJEmSJEntxDKWFpjpyI7xHbtY8d1PAXDtM4H61qOMvSZH58VXwsHxprVTkiRJkqR24MiOFpjp0rMT8xawtJguNwskdRjbV4D7H21WEyVJkiRJahuGHS2QnWkZSzUy3jsfgFqAmEDnwhLX33Qzg4ODTWunJEmSJEntwDKWFsjPoIylUqtTrUfqZAD48rWB+T2jXN5f4lc5wns3bABw6VlJkiRJkk7AkR1NMjg4yJo1a0iShPXv+lHg9MpYxiuNiUmLr3g5AF+6LoGL6oRc4Pb3dnJ0fonb77ijeQ2XJEmSJGmOM+xogsHBQTZs2MAbrtnBFz6c8KbLGnNt/MNX/vGUr50oN8KOQq0CQDkLeSKEQEzgvjUZ1sbTm+hUkiRJkqRzkWFHE2zcuJF3v26CP/7bOm94X40//JPd/NjAP3D3PX95ytdOVBqjPwrVcuM4D/k6xBihDs9srVEYGGhq+yVJkiRJmssMO5pg+/bt3H5rgARCBsjAm877V/YfOnzK106WsRRqjbCjnIX6aI1n9tf55D1jZJ+LbNq0qZnNlyRJkiRpTjPsaILVq1fzyc83RmLEGlCDLzxzE4sWLznlayfDjlw1LWPJQT2T8I3n6vznzEpG77nHyUklSZIkSToJV2Npgk2bNrFhwwb+y+/WKV5Q479+vJMvDryB23/k6ClfO57O2ZGrlIj5HDFElnUVeOW//0V+4pb/p9lNlyRJkiRpzjPsaILJkReH/+Xn2XNfiS9+bw0MwPU33HjK105MjewoQ7EATFCojEGxv4ktliRJkiSpfVjG0iTr16/nmut+gFte90Ns/s69wMyWns1UStQLOQAKMUKxr3mNlSRJkiSpjRh2NFMmB7UyuaTxYy7XTr1k7GQZS6ZcJhp2SJIkSZI0Y4YdzZTJN8KObACgOoORHUl5gnp+WtjRYRmLJEmSJEmnw7CjmbIFqJbJpiM7TqeMZXLOjqRUolZoTKmSd2SHJEmSJEmnzbCjmSbLWDKNkR2V0yhjmQw7QmmCaj4DWMYiSZIkSdJMGHY0U6YAtTIhBHKZcNoTlGaTQJww7JAkSZIk6UwYdjRTOrIDIJskpxd2lOt05DLE8XGq+cYfTyPscM4OSZIkSZJOh2FHM2ULU2FHY2THaazGUqlRzGeoT0xQyTVGduTJQL6rqU2VJEmSJKldGHY0UyYP1cmw4/RGdkxUanTkGmFHOQ95EkKxD0JodmslSZIkSWoLTQs7Qgh/GkLYF0J4aNq5+SGEL4cQnkwf5zXr888K08pYcpmE6umM7CjXpspYKrmEAsFlZyVJkiRJmoFmjuz4c+CWF5z7VeAfY4wXAv+YHrevTAFqJYiRXPb0JyjtyAZiuUwpBwVwclJJkiRJkmagaWFHjPEbwKEXnL4NuDvdvxt4W7M+/6yQyTce61VySUKlfnpzdvSEKkAj7IgYdkiSJEmSNAMhxlP/BfyM3zyENcBnY4xXpMdHYoz96X4ADk8en0xPT0+87rrrmtbOphnaCYe3wsBNPLBrlGIu4aIlPSd9yUO7hihQZ8WuJxla3MXB4jhXZLph0SWtabMkSZIkSWepr3/961tijOtOdd2sTVAaGynLCZOWEMKGEMLmEMLmSqXSwpa9hEL6442REOB0cqVajFTLJQAqR0ehXme8NEe/vyRJkiRJsyDb4s/bG0JYFmPcHUJYBuw70YUxxruAuwDWrVsX/+mf/qlFTXwJfeej8Ln/BL/0Sd52z1P0duS45ydvOOlLrv2/PkN+8xf482f/iUeXV/nXmwPLN+9m8fp/x/r161vUcEmSJEmSzj7hNFcqbfXIjs8Ad6b7dwKfbvHnt9bknB21EvlMQqV66glKM4eH2TC0F4CLn8twx6cSfvpQ4PY77mhmSyVJkiRJahvNXHr2Y8C/AheHEHaGEH4K+O/A60MITwKvS4/b11TYUSGbCVTrpw479ucKdE0cBCAhkKnB42NF1jZxbhVJkiRJktpJ08pYYozvOsFTr23WZ551smnYUS2RyyQcLddOenmMkZArMJRmUDUi9QwM1cYpDAw0u7WSJEmSJLWFWZug9JwwNbKjTC4TTlnGUqlFSDJk00Ecf3dd5Etvq1ColNi0aVOTGytJkiRJUnsw7GimTKHxWKuQyySnLGMZrzRGfnResJaxGPnkjYGRpXWGfuXXnZxUkiRJkqTTZNjRTJlc47HWKGOp1E4+78ZEGnYM7NxK/+pV9M7vIx8jt9z2I81uqSRJkiRJbcOwo5mykyM7ymQzgUrtFCM70jk98ocPkqlUmKhVKMQIxb5mt1SSJEmSpLZh2NFMkyM7quXG0rOnDDuqAORilezOXZRj1bBDkiRJkqQZMuxopmkTlDZGdpy8jGX8O98FIEudpDRBjUg+ZCBXbHZLJUmSJElqG4YdzZR5vowldxojOyb+5hPkalWSANvLE423qGea3UpJkiRJktqKYUczTU1QepwylttugxCO2b7wnc30l0YAWFQscOHOyOjQUQanX3fbbbPwRSRJkiRJmjsMO5rpBROUVqeXsfzWb8Hq1VB8vkTluiTHtfueAKBc7ObXP1bj4t0Jt0PjuoGBxuskSZIkSdIJGXY00+ScHdVGGUu1HqnX08Dj8svhkUfgrW+Fzk4Afi5X4IpDzzaeD4FsDXJ7MqyFxoiOhx9uvE6SJEmSJJ2QYUczTStjyWUaP+pKfVopS1cX/PVfw4c+BIUC2WyBPR3zAIgxUs3AcHeFwvz58PGPN66XJEmSJEknZdjRTFMTlJbIZQLAsaUsk172MigUeFOuyEihEWh8qjbE//2uDLVimU3vf3+rWixJkiRJ0pxn2NFMU0vPVp4f2XG8FVk2b4ZKhUtzBXrKYwD8v5lhnlwZqJdg/cKFrWqxJEmSJElznmFHMyUJJFmolshOhR3HGdnxzW/C+DjjxU76SkdJCgW+sHoJABcfrTaelyRJkiRJp8Wwo9ky+XTp2UYZy3FHdtx7L2QyjF98KX31EpmFCyn9j/8GQH48fV6SJEmSJJ0Ww45my+ShViGbNH7Ux52z49JL4a67mHjtG+irjpPp66MUxwEovuUdcMklrWyxJEmSJElzmmFHs2XyjQlKs40fdfl4Izs+9zkGCwU+/refJDdyiH958EG+u+VbAORfdQt87nOtbLEkSZIkSXOaYUezpSM7TlbGMjg4yIYNG5gIRXqqJfbXM3z1a18EoNCxoKXNlSRJkiRprjPsaLZsvjFB6UnKWDZu3Ei1fzWFVVfQWy1ROf8G8r3dABQ6DTskSZIkSZoJw45mSycoPVkZy/bt2ymuvhKAnso4o/lOOvt6ACh0LW5dWyVJkiRJagOGHc02GXYkjTKW6nHCjtWrV1Pa9Sgd1RKZWGckWyRTGwYgbxmLJEmSJEkzYtjRbC8Y2VE5ThnLpk2byMQavdVxOq4Z5x0/OMgr5o2Qq0c+9td/2+oWS5IkSZI0pxl2NFu2kC49e+IJStevX0/P6st4W/8/sfrPtnPTf9zPz75/P2+Jo2zcuLHVLZYkSZIkaU4z7Gi2TA6qJXKZyZEdx1l6Fqh0L+HmgS2EXCRkIeQir+obY/v27a1srSRJkiRJc55hR7OlZSz5k5SxAPSsuoS/eewSYiUQqxArgXsPdbAsBAYHB1vZYkmSJEmS5rTsbDeg7aVhx2QZS7X+4pEdtXokt2gtf/PdRxl+U463vTbD3oXz+Xymk59aW2DDhg1Ao9xFkiRJkiSdnCM7mm1ygtK0jKVcfXHY8eyBUSoxcMdbXs0ff73MeXfDH3X0cySf4Qu/spZvLYvcfscdrW65JEmSJElzkmFHs2ULx4Qdxytjefi5xjKz77v9Fs4HPnJJF3WAEKhkA39ySRdr4/HLXyRJkiRJ0rEMO5otk4NqmVzmxGUsjzw3TD6TcMHibvIDAyx8/CgBIEay1ciCx45SGBhobbslSZIkSZqjDDuaLZOO7MieuIzlkd3DXLS0m1wmYdOmTdzwXInl1Sp9h8u86bef5bpnS2zatKnVLZckSZIkaU4y7Gi2yTk7ksaPulo/thwlxsjDzw1z+bI+oDEJaeUPfgcIZPZM8BfVxYzec4+Tk0qSJEmSdJoMO5otk0vn7GiUsVReMLJjz/AEh46WuWx579S5297wKsaSwOtf/Ua2bt1q0CFJkiRJ0gwYdjRbOkFpmnVQqR0bdjySTk56+bSwg4kjHA0JnYVeJEmSJEnSzBh2NFsmB0CoV8lnEiovKGN5+LlhQoBLlj0fbFTGDlFOgmGHJEmSJElnwLCj2TKFxmNayvLCMpZHnhtmzYIuugvZqXPj4wcA6CzOa1kzJUmSJElqF4YdzZbJNx5rZbKZ5EUTlD68e+iY+ToAxsYmw475LWmiJEmSJEntxLCj2dIylsbIjoTytDk7hsYr7Dg0fux8HcDY+GEAuhzZIUmSJEnSjBl2NFs2LWOplo4pYxkcHOTqV74JgN/+1V9gcHBw6vxnPvGXAGz86Z+bOi9JkiRJkk5P9tSX6PsyVcZS4bJlD3P58oe55+9X8DMbPkjhxnfTC+zdv58NGzbwrW99i7vvvpuP/2QRgHeXD7JhwwYAl5+VJEmSJOk0ObKj2dKw45mDX+X33/3LvOfGj/DOWzfx6v/0HnqueysxRha97deo9q/mQx/+MEfnl+hZ0cig3vS6PEfnl7j9jjtm8xtIkiRJkjSnGHY0Wxp2jNb+mVymSjZTJ5ep8sqbxghJQgiBkGQorr6S84DvrclwNAkAdFDnvjUZ1sZ4kg+QJEmSJEnTGXY0W7YRdvSyjkotS7WWUKll+dLHnqReKRFrVWK9xsT2B9mfyfDM1hpjSeOPpbMWeWZrjcLAwGx+A0mSJEmS5hTn7Gi2dGTHmo5reezgZzg89mWefLCXez/1Qar9GymuvpKJ7Q+SPbKdn9qwgfyf/jEH07DjK4NH6XkusumeTbP5DSRJkiRJmlMc2dFsUxOUlrlk2Ru56fz/wXvf9uvcddddLMuNM3LvJ1iWG+euu+7iD//wD4kf/m3G0jKW/1Jfzug99zg5qSRJkiRJM+DIjmabFnZMt379+uOGGG95xTX8zucSCkmOB5/Z2oIGSpIkSZLUXgw7mu0EYccLPXHobobKn6ZvdAljSaAz29GCxkmSJEmS1H4MO5otW2g8Vk8cdjxx6G5W9/4E2SRSXRjIPb2cTnpa1EBJkiRJktqLc3Y0WybXeDzJyI6h8qfJJpFsAtkksmx1hc5cZ4saKEmSJElSezHsaLZMOrLjJGFHd+7NVOqBah2q9cCTe/vozBp2SJIkSZJ0JixjabbTmLOjWr+ef/cPa7lx2QRveLqTZ8bn07XEsEOSJEmSpDPhyI5mO40ylocOPsT9+zv54wfmM/DoEGNJYhmLJEmSJElnyLCj2aYmKC2d8JKHDjw0tX8wVBkP0JXranbLJEmSJElqS4YdzZZMjuyonPCSBw88SEe61OyBTIajsTZ1LEmSJEmSZsawo9mSpBF41I4/smOkPMLWoa3cuOxGAA5mMozVXY1FkiRJkqQzZdjRCpn8CUd2PHLwESKRV696NQB7MxnK9YqrsUiSJEmSdIYMO5pscHCQwyNj/P7/+h3WrFnD4ODgMc8/fOAj/NQV+1nTuxuAHYUigGGHJEmSJElnyKVnm2hwcJANGzaw64OR226ocf/dO9iwYQMA69ev54lDd/OuSz9KLolU6z/PDYvOY0elC4hOUCpJkiRJ0hlyZEcTbdy4kXe/boK+nx5n5W0V7vrbOu9+3QQbN24EYKj8aXJJJJtANoncsGSUHblG/uScHZIkSZIknRnDjibavn07t98aIIGQATJw+62B7du3A9CXv41qPVCtQ7Ue2L6rgx3UAMtYJEmSJEk6U4YdTbR69Wo++fkINYg1CHXo353hR65fBt/8EBcdvZTtw3/GffvezvYjH6G8I6FEHXBkhyRJkiRJZ8o5O5po06ZNjTk63jnBO24NjD+Z8NauAh9701H46m9CpsBFd34GVt0Jh7eysPYbU6817JAkSZIk6cw4sqOJ1q9fz1133cWX71/Fm36mzvs/sZxne28iECHWoVaGrd9sXDy0kwW1+tRrLWORJEmSJOnMGHY02fr169m6dSv1ep2tW7dy/o/8N0jSATWZHKx5RWN/aCcLarWp1xl2SJIkSZJ0Zgw7Wm3VDXDrhxr7N//HxjHA0I5jww7LWCRJkiRJOiOGHbPhZe+FrkWw//Hnzw3tYkGuZ+qwI9sxCw2TJEmSJGnuM+yYDUkCF90CT30FquXGuaGdLOxaCkCxVCebOHesJEmSJElnwrBjtlzyw1Aahm3/3Dge2sn83tUAdJbqJ3mhJEmSJEk6GcOO2bL2VZDtgMe/0Dge3sXTe47C0Tphos71q1YxODg4u22UJEmSJGkOMuyYLflOOP818NjnYfwIlIa559P/yE19w7z75YfYcOM+NmzYYOAhSZIkSdIMOTHEbLrkVnj8c/DEFwH48avqrPrRXeSSSPUHAq96F6y+4w5Yv36WGypJkiRJ0tzhyI7Z8oEPwM3vhRjh994HwNM/mJBLItkEsknk0TdnWRsjhHDs9oEPzGrTJUmSJEk6mxl2zJYPfACO1mH1TbAyA8D+/12lWg9U61CtB/Z9tkphYKARiEzfDDskSZIkSTohy1hm2X1jS7kWqNQi3X9V4p5SnvE3Z+n4bJUln6qy6Z5Ns91ESZIkSZLmFEd2zKLBwUF+4oOfgJVVKi8v8YW3JPz7T1Z4/4+P8VvfWcboPfew3vk6JEmSJEmaEUd2zKKNGzfy+usmiHfW6UjgrtcC70z48mciW7dune3mSZIkSZI0JzmyYxZt376d228NkEDIABm4/dbA9tlumCRJkiRJc5hhxyxavXo1n/x8hBrEGlCDT34+snq2GyZJkiRJ0hxmGcss2rRpExs2bIB3TnD7rYFPfj7yV18pchdjs900SZIkSZLmLMOOWTQ5+ejGjRv56P/ezurVq7nrrk2sf/LJWW6ZJEmSJElzV4gxznYbTmndunVx8+bNs90MSZIkSZI0i0IIW2KM60513ayM7AghbAVGgBpQPZ2GSpIkSZIknY7ZLGP5oRjjgVn8fEmSJEmS1IZcjUWSJEmSJLWV2Qo7IvAPIYQtIYQNs9QGSZIkSZLUhmarjOXmGOOuEMJi4MshhMdijN+YfkEagmwAWL169Wy0UZIkSZIkzUGzMrIjxrgrfdwH/B1ww3GuuSvGuC7GuG7RokWtbqIkSZIkSZqjWh52hBC6Qgg9k/vAG4CHWt0OSZIkSZLUnmajjGUJ8HchhMnP/6sY4xdnoR2SJEmSJKkNtTzsiDE+A1zd6s+VJEmSJEnnBpeelSRJkiRJbcWwQ5IkSZIktRXDDkmSJEmS1FYMOyRJkiRJUlsx7JAkSZIkSW3FsEOSJEmSJLUVww5JkiRJktRWQoxxtttwSiGE/cC2M3z5QuDAS9gcaabsgzob2A91NrAf6mxgP9TZwH6o2TaX++BAjHHRqS6aE2HH9yOEsDnGuG6226Fzl31QZwP7oc4G9kOdDeyHOhvYDzXbzoU+aBmLJEmSJElqK4YdkiRJkiSprZwLYcdds90AnfPsgzob2A91NrAf6mxgP9TZwH6o2db2fbDt5+yQJEmSJEnnlnNhZIckSZIkSTqHGHZIkiRJkqS2MifCjhDCn4YQ9oUQHpp2bn4I4cshhCfTx3np+RBC+N0QwlMhhAdCCC+b9po70+ufDCHcOe38dSGEB9PX/G4IIbT2G2ouOEE//EAIYVcI4Xvpduu0534t7VOPhxDeOO38Lem5p0IIvzrt/NoQwr3p+b8OIeRb9+00F4QQVoUQvhZCeCSE8HAI4RfT894P1TIn6YfeD9UyIYRiCOHfQgj3p/3wN9Lzx+07IYRCevxU+vyaae81o/4pTTpJP/zzEMKz0+6H16Tn/b2spgghZEII94UQPpseey8EiDGe9RvwSuBlwEPTzv028Kvp/q8CH0z3bwW+AATgRuDe9Px84Jn0cV66Py997t/Sa0P62jfN9nd2O/u2E/TDDwD/+TjXXgbcDxSAtcDTQCbdngbOA/LpNZelr/kb4MfS/T8Cfma2v7Pb2bUBy4CXpfs9wBNpX/N+6Nay7ST90PuhW8u29B7Vne7ngHvTe9dx+w7ws8Afpfs/Bvx1uj/j/unmNrmdpB/+OfCO41zv72W3pmzAfwL+Cvhseuy9MMa5MbIjxvgN4NALTt8G3J3u3w28bdr5e2LDt4H+EMIy4I3Al2OMh2KMh4EvA7ekz/XGGL8dG3/S90x7L2nKCfrhidwGfDzGWIoxPgs8BdyQbk/FGJ+JMZaBjwO3pSn9a4BPpK+f3qclAGKMu2OM3033R4BHgRV4P1QLnaQfnoj3Q73k0vvaaHqYS7fIifvO9PvkJ4DXpn1tRv2zyV9Lc8xJ+uGJ+HtZL7kQwkrgh4GPpMcn+z16Tt0L50TYcQJLYoy70/09wJJ0fwWwY9p1O9NzJzu/8zjnpdP1c+lQxD8NafkAM++HC4AjMcbqC85Lx5UOO7yWxr8ieT/UrHhBPwTvh2qhdNj294B9NP5y+DQn7jtT/S19fohGX5tp/5SO8cJ+GGOcvB9uSu+H/zOEUEjP+XtZzfD/Ab8C1NPjk/0ePafuhXM57JiSJp2uoavZ8GHgfOAaYDfwodltjs4FIYRu4JPA+2OMw9Of836oVjlOP/R+qJaKMdZijNcAK2n86+Mls9wknYNe2A9DCFcAv0ajP15PozTl/5zFJqqNhRDeDOyLMW6Z7bacjeZy2LE3HdpF+rgvPb8LWDXtupXpuZOdX3mc89IpxRj3pr/k6sCf0PifLZh5PzxIYyhj9gXnpWOEEHI0/oI5GGP8VHra+6Fa6nj90PuhZkuM8QjwNeAmTtx3pvpb+nwfjb420/4pHde0fnhLWu4XY4wl4M848/uhv5d1Kj8IvDWEsJVGiclrgP+F90JgbocdnwEmZyq+E/j0tPPvTWc7vhEYSod3fwl4QwhhXjq09g3Al9LnhkMIN6b1Su+d9l7SSU3+BTP1dmBypZbPAD+Wzni8FriQxgRT3wEuTGdIztOYGOgz6b/Gfw14R/r66X1aAqZqMD8KPBpj/J1pT3k/VMucqB96P1QrhRAWhRD60/0O4PU05o85Ud+Zfp98B/DVtK/NqH82/5tpLjlBP3xs2j9ABBpzJUy/H/p7WS+ZGOOvxRhXxhjX0LhPfTXGuB7vhQ2nmsH0bNiAj9EYEluhUSf0UzRqi/4ReBL4CjA/vTYAf0CjbvNBYN209/lJGpOtPAX8xLTz62jchJ4Gfh8Is/2d3c6+7QT98C/SfvYAjf/wl027fmPapx5n2szZNGbifiJ9buO08+fRuKk8BfwtUJjt7+x2dm3AzTRKVB4Avpdut3o/dGvldpJ+6P3QrWUbcBVwX9rfHgJ+PT1/3L4DFNPjp9Lnz5v2XjPqn25uk9tJ+uFX0/vhQ8Bf8vyKLf5edmvaBrya51dj8V4YY+M/FkmSJEmSpHYxl8tYJEmSJEmSXsSwQ5IkSZIktRXDDkmSJEmS1FYMOyRJkiRJUlsx7JAkSZIkSW3FsEOSJEmSJLUVww5JkiRJktRWDDskSZIkSVJbMeyQJEmSJEltxbBDkiRJkiS1FcMOSZIkSZLUVgw7JEmSJElSWzHskCRJkiRJbcWwQ5IkSZIktRXDDkmSJEmS1FYMOyRJkiRJUlsx7JAkSZIkSW3FsEOSJEmSJLUVww5JkiRJktRWDDskSZIkSVJbMeyQJEmSJEltxbBDkiRJkiS1FcMOSZIkSZLUVgw7JEmSJElSWzHskCRJkiRJbcWwQ5IkSZIktRXDDkmSJEmS1FbBZ+EtAAAgAElEQVQMOyRJkiRJUlsx7JAkSZIkSW3FsEOSJEmSJLUVww5JkiRJktRWDDskSZIkSVJbMeyQJEmSJEltxbBDkiRJkiS1FcMOSZIkSZLUVgw7JEmSJElSWzHskCRJkiRJbcWwQ5IkSZIktRXDDkmSJEmS1FYMOyRJkiRJUlsx7JAkSZIkSW3FsEOSJEmSJLUVww5JkiRJktRWDDskSZIkSVJbMeyQJEmSJEltxbBDkiRJkiS1FcMOSZIkSZLUVgw7JEmSJElSWzHskCRJkiRJbcWwQ5IkSZIktRXDDkmSJEmS1FYMOyRJkiRJUlsx7JAkSZIkSW3FsEOSJEmSJLUVww5JkiRJktRWDDskSZIkSVJbMeyQJEmSJEltxbBDkiRJkiS1FcMOSZIkSZLUVgw7JEmSJElSWzHskCRJkiRJbcWwQ5IkSZIktRXDDkmSJEmS1FYMOyRJkiRJUlsx7JAkSZIkSW3FsEOSJEmSJLUVww5JkiRJktRWDDskSZIkSVJbMeyQJEmSJEltxbBDkiRJkiS1FcMOSZIkSZLUVgw7JEmSJElSWzHskCRJkiRJbcWwQ5IkSZIktRXDDkmSJEmS1FYMOyRJkiRJUlsx7JAkSZIkSW3FsEOSJEmSJLWVpoUdIYRiCOHfQgj3hxAeDiH8Rnp+bQjh3hDCUyGEvw4h5JvVBkmSJEmSdO5p5siOEvCaGOPVwDXALSGEG4EPAv8zxngBcBj4qSa2QZIkSZIknWOyzXrjGGMERtPDXLpF4DXAu9PzdwMfAD58svdauHBhXLNmTVPaKUmSJEmS5oYtW7YciDEuOtV1TQs7AEIIGWALcAHwB8DTwJEYYzW9ZCew4lTvs2bNGjZv3ty0dkqSJEmSpLNfCGHb6VzX1AlKY4y1GOM1wErgBuCS031tCGFDCGFzCGHz/v37m9ZGSZIkSZLUXlqyGkuM8QjwNeAmoD+EMDmiZCWw6wSvuSvGuC7GuG7RolOOUJEkSZIkSQKauxrLohBCf7rfAbweeJRG6PGO9LI7gU83qw2SJEmSJOnc08w5O5YBd6fzdiTA38QYPxtCeAT4eAjhN4H7gI82sQ2SJEmSJOkc08zVWB4Arj3O+WdozN8hSZIkSZL0kmvJnB2SJEmSJEmtYtghSZIkSZLaimGHJEmSJElqK4YdkiRJkiSprRh2SJIkSZKktmLYIUmSJEmS2ophhyRJkiRJaiuGHZIkSZIkqa0YdkiSJEmSpLZi2CFJkiRJktqKYYckSZIkSWorhh2SJEmSJKmtGHZIkiRJknSO2LLtMH/wtafYsu3wbDelqbKz3QBJkiRJklply7bDfPuZg9x43gKuG5jX9M+LMVKrR6r1SD1Gtmw7zL89e4iXDczjiuV9xBipR6jFSL0eiZP7MaavhfrUMdTS96nH9Hx92v7k+WnX1Opx6jOe2j/K73/1Saq1SCGXMPi+G1vyM5gNhh2SJEmSpDmnXo+MV2qMlWtMpI9j5Srj5XS/UmO8XE3P1xgv19h64ChfeHgPtXokEwIvv2ABvR05arVIbXooUY9U63XqdajW69TqjeertTi1X6s3juux8ZracbZqvU49zvZP6vgq1TrffuagYYckSZIkSWeiVo8cGSvzracO8O1nDnH+4i5W9HcyXqlOBRHPhxLVaWHFCwKMci0NOKpMVOozakMSIJsk1NL0oRYjD+4aYn5XnmwSyCQJmQQySdI4DoFMEijksiQhpNc8v2WTQJIcez6bJI1rM+m5cOy1//bsIb7xxH4iEIDXXrqYH7pkMUkIJIH0MZAk0/Ynn0uOv58JgTC5nxy7n4RAmLb/2O5hfvkTD1Cp1cllE248b8FL/4d9ljDskCRJkiTNSKla49DRMgdHyxw6Wubw2PP7h8bKHEr3Dx4tcXiswuGxMvE0RjjkMoGOXIbOfJbOfIaOfIbOfIa+zjzL+jLHnOtIr+nMZ477mqlrco1zhWzCd7cfYf1Hvk2l2vjL/kfvvL6lIxtuPO8w9z57cOrzf+bVF7T08y9a0sOKeZ0tLeOZLSGeTo+bZevWrYubN2+e7WZIkiRJ0px2vPkqYoyMlKqNgOKYoGJ6iFHi0Fil8Tha5mi5dtz3TwLM68wzvyvPvK48C7oa+/O78jz83DBfe2wfMb3uPTcO8OMvX0NnPjsVUOQyzV9Do9Vzdpxtnz/XhRC2xBjXneo6R3ZIkiRJUovM5C+69XqkXKtTqtYpV+uUa+ljtU6pWnt+f9r5xnN1ytXasdfX6uw8NMYXH95LrR5JAqya18l4pcbhsTKV2vH/EbyQTViQBhfzu/KsXdA5LcQoML8rlz42zvV25Mgk4YTf/V+ePjA1quG2a1Zw3qLu7/tnOlPXDcyb1ZBhtj//XGHYIUmSJEkvkRgjw+NV9o9OsH+kzIHR0tT22O4Rvvb4PuqxMbLh/EXdZDPJi4KJyWDjRAHEmchnE0hX5gCoR8hmAq8+bxHzuwpTgcb0kRjzu/J05jOEcPzwYqauG5jH4PtudFSDWsKwQ5IkSZJOIsbIkbEKB0ZL7B8tcWC0zIGRdH9kMsxoBBsHR8uUay+eODOTBIrZZGpljnqESj0ysKCDQjYhn03IZxqPU8fTzh9zLpM5jWsSCrkM+UxCLtOYtHLLtsPHzFfx2++4uuWBg6Ma1CqGHZIkSZLOCdNLSK5d1c+R8Qr7R54fedHYL7/guBFgVI+zfmg2CSzsLrCwJ8/C7gIXL+1pHHfnWdRTYFF3gYU9BRZ2F+jvyHHfjmMnx/zQO1sbNjiyQucSJyiVJEmSNOeUq3VGS1VGJ6qMlCqMTlQbx6UqIxONbTQ9P1KqsvPQGJu3HZ4aWZEEOE5+QS6TBhhpaLGwu8CiNLBoBBf5RojRXaCvI0dygvkpTsTJKaXvjxOUSpIkSTqrbNl6iH9+6gBXruzjvIXdjJaqDE+8OKiYDDGeP648v5+GF+Xqi0tFXiiTBLoLWboLWcrV2lS4EYAb1s7njZcvnQo2Jkdi9HZkX7I5Ko7HMg6pNQw7JEmSJH3fJio19o+U2DM8wZ6hCfYON7Y9wyX2Dk2w7eBR9o6UTuu9cplATzE3FVR0F7Ms6Sly/qLGcU8xR08xe8zzPenj88c5irlkKrh44XwVv/zGSwwdpDZm2CFJkiTphOr1yKGxMnuGJtg3MsGeoUagsXdogr0jzwcbh8cqL3ptMZewtLfIkt4i87vz7BspEWmMrLj1ymW8/doVUwFFz7SgopDNvOTfw/kqpHOLYYckSZJ0DjjeXBHj5dpxRmKkj0MT7B0usW9k4kVLoIYAC7sLLO0tsnJeJ+vWzGNJT5ElfUWW9hZZ2tcIOHqL2ROOrPjJm9e6EoikpjHskCRJktrMWLnK/pES+0ZK7BsusWXbIe75121U65EkwPL+DobGK4xMVF/02u5ClsW9jSDjB9bOZ0lfkSU9hakAY2lfkUXdBbKZZEZtcmSFpFYy7JAkSZLmgBgjR8YqjQBjZIJ9wyX2jzbCjH0jE+wbKXEgDThGSy8OMSbVI3TkMrz2ksVpkFE8JsjoLjTvrwiOrJDUKoYdkiRJUgucaMnRSq3OgTS0mBqNkYYXk8f7hyfYP1p6UTkJQFc+w6KeAot7ily6vJdX9RSmjhf3FFjcW2D3kXF+ZvC7UyUk//32qwwdJLU1ww5JkiSpSaq1OruHJvjyI3v4rc8/Rq0eSULgihW9lKp19o+UODRWJr44w2B+V57FaXBxwaKFaYDRCC8W9xSnjrtOYyTGJUt7LSGRdE4x7JAkSZK+D+VqnZ2Hx9h2cIxtB4+yNX3cdnCMHYfHXjQaoxYje0dKXLG8j5cNzGsEGNPCi8W9BRZ2F8jNcE6MU7GERNK5xLBDkiRJOoWJSo0dh8amgoytaZix9eBRdh0epz4tz+guZBlY0Mmly3q55YqlrFnQxUS1xqbPPUq11igj+YN3v8zgQZKayLBDkiRJAo6Wqi8anTEZauwZnjim1KS/M8fA/E6uXTWPt1+zgoEFXaxZ2MnAgi4WdOWnllud7vLlfZaRSFKLGHZIkiTpnLBl22G+/vg+Vs7roJjPsu3AUbYdej7c2D9SOub6hd15BhZ0cdP5C1izoIuBBZ1Tj/2d+Rl/vmUkktQ6hh2SJElqC6OlKnuGxtk9NMHuoQn2TD2O88z+RrDxQkt7iwws6OQ1Fy9m9bQwY2BBJz3F3Cx8C0nSS8GwQ5IkSWe1GCND45UXBRi7hybYM9w43js0wUip+qLXLuzOs7SvSHbaZJ9JgDtvWsOv3HIJHflMK7+KJKlFDDskSZLUdFu2HT7ufBX1euTQWPnFIcbk8fAEu4fGmajUj3m/EGBxT4GlfR1csKibmy9YyLK+Ikv7iizr62BZX5HFvQUK2czU56//yLepVBsThL756uUGHZLUxgw7JEmS1FTfeuoAP/Fn36FSq5MkgRvPW0ClWmf38Dh7h0qUa8cGGdkksKS3yLK+Ipcv7+W1lyyeCjEaj41lWmeyNOt1A/MYfN+NThAqSecIww5JkiS9ZCq1Oo/vGeH+nUe4f8cR7t8xxBN7R5hcyKRWjzz83BAXL+nhutXzWJqOwpgMMZb2FVnYVSBJXryayffLCUIl6dxh2CFJkqQzEmNk+6ExvpeGGvfvPMJDu4YoVRsjNeZ15rh6VT9Xr+rj7+/bRa0eyWUTPnrn9YYOkqSmMuyQJEnSKW3ZdpivPraX/o48I6VqY9TGziMcGasAUMgmXLmij/fcOMDVq/q5ZmU/q+Z3EEJjhMaPXr/aEhJJUssYdkiSJJ0Dpk8QesWKXobGKxwZm9zKHBlPH8cqHBmvMDRW4ch4mcNHK+wbmeDAaHnqvQJw8dIe3njZ0qmRGxct6TnpHBqWkEiSWsmwQ5IkqQ1NVGo8vmeER3YP840n9vPFh/cQ46lfl00C/Z05+jpy9HfmWd5fJAQ4OFom0li29RdecyHvf/1FTf8OkiSdKcMOSZKkOW7fyASP7h7hkeeGeWT3MI/uHuaZ/aPU03Ajn0mmgo4A3HzBQt5wxVLmdebo78hPhRvzuvJ05TNTpSeTXrhs6ysuWtTaLyhJ0gwZdkiSJM0BW7Yd5l+ePsDqeZ0Q4JHdwzzy3DCP7h7hwGhp6roV/R1cuqyXW69cxmXLerhsWR/7RiZ4z0fvnQor3v/6i2ZUUuKyrZKkuSbE0xnPOMvWrVsXN2/ePNvNkCRJaonDR8s8c+AoWw8cZevBo3x322H+5emDTP+/tnwm4cIl3Vy6rJfLlvVy2fJeLl3aS19n7rjvOX3ODsMKSdJcFULYEmNcd6rrHNkhSZLUAi8MG4YnKmw9cJRnDxxl64Exnj0wyrMHx9h64ChD45Wp1yUBeoq5qaAjBLjzpjVs/OFLTzoh6As5Qagk6Vxi2CFJktREwxMVPrVlJ7/5uUep1iMhQG8xy9B4deqaEGB5XwdrFnby5quWsXZhF2sXdrFmYRer5nXy4K6hY+bMeMvVy2cUdEiSdK4x7JAkSXqJlKo1Hts9wv07j/C9HUe4f8cRnt5/9JhrYoSB+V3cetUy1ixohBoDCzop5jInfF/nzJAkaWYMOyRJks5AvR555sBR7t9xhPt3NoKNR3ePUK7VAVjYXeCaVf28/doVdOYzfPCLj1OtNUZm/Ne3Xj7jwMIyFEmSTp9hhyRJ0ils2XaYrzy6l55iltGJKvfvPMIDO4YYKTVKUbryGa5c2cdP3LyGa1b2c/Wqfpb1FY9ZwvXqVfMcmSFJUosYdkiSJL3AwdESD+wa4sGdQ3zjif1s3nZ46rlMgEuX9/LWa5Zz9ap+rlnVz/mLuskk4STv6MgMSZJaybBDkiSd04bGKjy4a4gHdjVGazy4a4hdR8aBxsSh86Yt5ZoE+IXXXsgvvu6i2WquJEk6DYYdkiSp7U0u+3rVyj5ymYQHdh7hgZ2NYGPbwbGp6wYWdHLt6n5+/OVruHJlH5cv7+WJvaPHrIRy84WLZvGbSJKk02HYIUmS2k61VmfboTGe3DvCPz2+n7/ZvIN6PPaaFf0dXLWyjx+9fhVXrejnihW99HfmX/ReroQiSdLcY9ghSZLmrHo9svPwOI/vHeGJvSM8uXeEx/eO8vT+UcrV+ouuD8D/cd0Kfu1Nl7Kwu3Dan+N8G5IkzS2GHZIk6ay3Zesh/uHRvSzsLlCvR57YO8qT+0Z4cu8o45Xa1HXL+4pctLSHV1y4kAsXd3Px0h5GJ6r85N3fmSpDefcNAzMKOiRJ0txj2CFJks5K+0dKfOupA/zdfTv5+hMHjnlucU+Bi5b08K4bVnPRkm4uXNLDhUu66S3mjvtelqFIknRuMeyQJElnhYlKjS3bDvONJ/fzzScO8MjuYQCKuWTqmiTAf/ihC/ilN1w8o/e2DEWSpHOLYYckSZoVMTbKUb755H6++eQB7n32IBOVOrlM4LqBefzyGy/mlRcuolSt8Z6P3jtVhvLqixfPdtMlSdJZzrBDkiQ13eTSr5cu62Fkoso3njjAN5/cz76REgDnL+rix65fzSsvWsgPrF1AV+HY/0WxDEWSJM2EYYckSWqKej2y7dAYn/7eLn7vq09Rm7b2a39njh+8YCGvvHAhN1+4iBX9HSd9L8tQJEnSTBh2SJKk71uMkR2Hxnlw1xAP7DrCgzuHeHDXECMT1WOuC8B7bhzgA2+9nEwSZqexkiSp7Rl2SJKkU5osQ7nxvAW8bHU/zw1N8ODOIzyQhhoP7BxiaLwCQC4TuHRZL2+9ejlXrewjmyRs/PsHp+bceNu1Kww6JElSUxl2SJKkE4ox8qWH9/DzH7uPai0SAnQXsgynIzaySeDipT3ceuVSrlzRz5Ur+rhoaTeFbOaY91mzsMs5NyRJUssYdkiSJAAqtTpP7RvlkeeGeWT3MA8/N8Qjzw1PBRsAMcLq+Z386PWruHJlP5cs7aGYy5zkXRucc0OSJLWSYYckSeeA6WUo1w3MY3iiwmO7R6YCjUd2D/Pk3lHKtToAxVzCJUt7efPVy+kuZPnzf9lKrdYoQ/mN264wuJAkSWc1ww5JktrcVx7Zy88MbpkqQ1nUXWBvuuQrwIKuPJct7+Unb17LZct7uWxZL2sXdh0zr8YbL19qGYokSZozDDskSWojQ2MVHtjVmDj0/h2Nxz3DE1PPxwj9XXne+/I1XLa8l8uX9bKop0AIJ58w1DIUSZI0lxh2SJI0R42Vqzz83PBUqPHAziNsPTg29fzahV38wHnzmd+VZ/Db26nVG2Uov/X2Kw0uJElSWzPskCTpLLdl22G+9dQBlvUWKdXqPJAu+frE3hHqsXHNsr4iV63s453rVnH1ysaqKH2duan3ePNVyy1DkSRJ5wzDDkmSzjIxRnYeHud7O47wpYf28LmHdhPj88/P68xx1cp+3nDZEq5a2c9Vq/pY3FM86XtahiJJks4lhh2SJM2y0VKVB3Ye4b7tje17O45wYLQxgWgmCVNBRxLgff8/e3ceX/VZ5/3/dZ0s7BB2KBACFLq3tKBia2u3mdqOtjqto5W77sWZ23Gc2/n5G5V7Rh2H2Rxvx7nnvh2xrbZOXKpWrV3UtlbsRlvSQhf2JQlrCCFAEshyzrnuP05IoUBIKCfnJOf1fDzyOOd8t/Ppw0Llzef6XG+byedvOPukMzYkSZIKmWGHJElZduS2r3OnlbGpvpkXaxu7go0jl6PMHDeMK+aM4+JpZVxcPpqD7Uk+eNdzdCQz8zauO3+SQYckSdJJGHZIkpRFyzfv4YN3Pk9HKk0IMKi4iEMdKQBGDi5mbvlorjtvEheXlzF3WhllQ0uPeUblxxc4b0OSJKkXshZ2hBCmAfcAE4EILI0xfiOE8CXgdqC+89IvxBgfylYdkiT1ta17D/K79fUsW7ebZevr6Uhl2jZihLMmDee2BRXMLS9jxthhJBIn79Jw3oYkSVLvZLOzIwn8VYzxhRDCCKAqhPBI57mvxxj/NYvfLUlSn2lLpnh+SyO/W7ebx9ftZlN9CwBTRw/h6rMn8Nu1u0mnIyXFCf7mnecZXEiSJGVZ1sKOGONOYGfn+6YQwhpgSra+T5KkvnRk98bTmxo42J6itCjBW2aO4dY3l3PlWROYNX4YIYSjZnYYdEiSJGVfiEfuZZetLwmhAvg9cD7wGeDDwAFgBZnuj8bj3LMIWARQXl4+r6amJut1SpJ0PFU1jTy1sZ4Rg0rYvu/QUd0b08YM4co5E7jyrPG8ddZYhpY6DkuSJClbQghVMcb5J70u22FHCGE4sAxYEmO8L4QwEdhDZo7HV4DJMcaPdveM+fPnxxUrVmS1TkmSDosxUnegjVXb9vGbV3fxsxe3d+2WUpwIvHXWWK48KxNwzBw3zN1RJEmS+khPw46s/vVTCKEE+ClQGWO8DyDGWHfE+W8DD2SzBkmSTqahuY2Xtu/npa37eXn7PlZt2099UxsAIWQGiwIkAvz51Wfyl9fOyWG1kiRJOpls7sYSgDuBNTHG/3XE8cmd8zwA3gO8kq0aJEkCjpqZceaE4byyfT8vbdvPS9v28dK2/WzfdwjIBBuzxg/n8tnjuHDKKC6cVkZbR4qPfPd5OpJpSooTXD57fI7/aSRJknQy2ezsuAy4DXg5hLCy89gXgFtDCHPJLGOpBj6RxRokSQUsxsiDL+/kL3+4kmQ6Esj8x+ew6WOHcnF5GR++tIILpo7i/CmjGD7o2P80Vn58gQNGJUmS+pFs7sbyJHC8RcwPZes7JUlqaUvyzKYGlq2vZ9n6emr3Huw6F4HLZ4/j9stncuHUUZQNLe3RM+dNH23IIUmS1I84Ml6S1K/FGFlX18SydZlw4/nqvXSkIkNLi7h01jiuO38S9zxdTTKVWYbyl9fOMbiQJEka4Aw7JEn9zv6DHTy5cQ/L1u9m2fp66g5khomePWkEH33bDN4+Zzzzpo9mUHERAO84b5LLUCRJkgqIYYckKe+tqN7LL1buoCOVZsPuZl6sbSQdYeTgYi6fM563zxnPFbPHM2nU4OPe7zIUSZKkwmLYIUnKS02tHTyxYQ8/er6WZev3dB0/c8Jw/vzq2bx9zngumjqK4qJEDquUJElSPjLskCTlja17D/LomjoeW7ObZ7c00JGKDC55LcwoCvCei6fwyavOzGGVkiRJyneGHZKknEmlIy/WNvLomt38dm0d6+uagUz3xkcvm8E150wEIh+86zk6kpkBowtmjs1t0ZIkScp7hh2SpD7V1NrB79fv4bG1dfxuXT17W9opTgTePGMM73tTOdecPYGKccOOuqfy4wscMCpJkqQeM+yQJGVVVU0jv351F8lUmvV1zV3LU8qGlnDVWRO4+uwJXDFnPKOGlJzwGQ4YlSRJUm8YdkiSTru9Le08s6mBn6/czqOr64idx6eUDe5annJJeZnDRSVJkpQVhh2SpDfsYHuS57bs5elNDTy1cQ+rdx4gRigtSnQFHYkAH3jLdIeLSpIkKesMOyRJvdaRSvPStn08uaGBpzbt4cXaRjpSkdKiBJdML+Mz187h0jPHkUqnHS4qSZKkPmfYIUnqVlVNI8s372HyqCE0Huzg6Y17WL65gZb2FCHAeWeM5KNvm8Fls8bxpooxDCktOup+h4tKkiSprxl2SJKOq6Utyd1Pb+Frv9lAKsau4zPGDeM9l0zhslnjWDBzLKOHlXb7HIeLSpIkqa8ZdkiSuuzcf4hH1+zm0dV1PLOpgfZUuutcAD7x9pl87vpzclegJEmS1AOGHZJUwGKMvLL9AI+uqePRNXW8uuMAABVjh/LBt06nfOxQ/uGhNV0zN/7g3Ek5rliSJEk6OcMOSSowrR0pntnUwCNr6vjtmt3sOtBKIsAl5aP53PVnc+05E5k1fhghBADOO2OUMzckSZLUrxh2SNIAV1XTyG/X1gGwoa6ZJzbs4VBHiqGlRVwxezzXnjuRq84az9jhg457vzM3JEmS1N8YdkjSABVj5K6ntrDkwTWkO+eLjhlays3zpnDtORNZMHMsg0uKun+IJEmS1A8ZdkjSANPakeJnL27nrie3sGF3c9fxRICPXV7BJ6+ancPqJEmSpOwz7JCkAWJ3Uyv/9UwN//VsLXtb2jl38kg+dfWZfPuJzV0DRhfMHJfrMiVJkqSsM+yQpH5u9Y4D3PnkFn65agcd6TTXnD2Rj71tBgtmjiGEwJVnTXDAqCRJkgqKYYck9UPpdOTxdbu588ktPL2pgSElRbz/zdP4yGUzmDFu2FHXOmBUkiRJhcawQ5L6kYPtSX76wna+8+QWNu9pYdLIwXzu+rO59U3ljBpakuvyJEmSpLxg2CFJea6qppFHV9ex60Arv127m/2HOrho6ii+8f653HDBZEqKErkuUZIkScorhh2SlMd+/PxW/vq+l7q2jn3LjDF89rqzmDd9NCGE3BYnSZIk5SnDDknKM6l05JHVddz15Baeq97bdTwR4Io545lfMSaH1UmSJEn5z7BDkvJEc1uSe5/fynefrqZ270Gmjh7Chy+dzg+f20pH6vDWsWNzXaYkSZKU9ww7JCnHtu49yN1PV/Oj57fS1JZk/vTRfP76s/mDcydSXJTgXRdNcetYSZIkqRcMOyQpB2KMvFDbyJ1PbuFXr+wihMANF0zmY2+bwdxpZUdd69axkiRJUu8YdkhSH+pIpXn4lV3c+eQWVm3dx8jBxdx+xUw+9NYKzigbkuvyJEmSpAHBsEOSsqyqppFl63bTeLCDR9fUsXN/KzPGDePvbjqPmy+ZyrBB/lYsSZIknU7+P2xJyqJHXq3jTyurSHXuHXv+GSP5yk3nc/XZE0gk3DpWkiRJygbDDknKgt1NrXzzd5u455marqAjEeD6CyZz7bkTc1ydJEmSNLAZdkjSadTQ3MbS32/m7meq6UhF3j5nHE9tbCDp1rGSJElSnzHskKQ3qKqmkd+t282OfYd4+JVdtHakePfcKXzqmtnMGDeMqppGt46VJEmS+pBhhyS9AY+vreP2e6pIdkugRPkAACAASURBVC5VuezMcXz5xvM4c8LwrmvcOlaSJEnqW4YdknQKNu5u4s4nq7l3xdajZnJcOmvsUUGHJEmSpL5n2CFJPRRj5OlNDdzxxGYeX1fPoOIEV589gd+vr3cmhyRJkpRHDDsk6SSe3dzA3U9X8+rOA9Q0HGTc8FI+8wdzWPiWcsYOH+RMDkmSJCnPGHZI0nHsaW7jqY17+PmL23l8XT0AAfjklbP41DWzGVxS1HWtMzkkSZKk/GLYIamgHe7KuKS8jI5U5MmNe3hiwx7W7DwAwKDiRNe1iQBDBxUfFXRIkiRJyj+GHZIK1pMb9/CR7zxHRyp2HSspCsybPprPXncWbztzHO2pNLfd+SwdSWdySJIkSf2FYYekghJj5Lkte/lx1TZ+sXJ7V9ARgD+eN4Wv3HQ+Q0uP/q2x8uMLnMkhSZIk9SOGHZIGtMPLVM6cMJz1u5r4yQvbqGk4yPBBxbx9znh+v2EPqc6dVD7w5unHBB3gTA5JkiSpvzHskDRgPbGhno9+9/mjlqksmDmGv7h6NtdfMImhpcXupCJJkiQNQIYdkgaUQ+0pfrt2N79ctYNH1tSRSr+2TOX2y2fyhT8656jr7dqQJEmSBh7DDkn9WlVNI09trGdQcRGrdx7gkdV1HGxPMX7EIK47byKPrtndtUzluvMn5bpcSZIkSX3AsENSvxRj5CcrtvG5n73c1b0xfFARN82dwrsumsxbZoylKBFcpiJJkiQVIMMOSf3K/oMd/Hzldn74/FbW7DzQdTwR4BNvn8Wnrp591PUuU5EkSZIKj2GHpLxWVdPIM5v2MHxwMStr9/HQK7toT6Y5f8pIbr9iJvc8XU2yc5nKpbPG5bpcSZIkSXnAsEMqcPm4zCOdjlQ3tPCLlTv4j8c3di1TGVpaxPvmT+N9b5rG+VNGAfCO8yblXf2SJEmScsuwQypg331qC3/3wGrSMbMM5MaLpjBvehlnlA3p+tlY18TyLXuzFiZU1TTy6Oo6RgwuprktyUvb9rNq2z6aWpNHXZcI8IkrZvLpa+ccddxlKpIkSZJez7BDKkDr65r4x4fW8Pi6+q5j6Qj3r9rOz1duP+49RYnAn191Ju++eAoVY4cSQjil7+5IpVmz8wArqht5dE0dT29qeO07Apw9eSTvvPAM5k4bRUlRgi/87GU6kpllKm+bPf6UvlOSJElSYTHskArI7gOt/K9H1nPviq0MG1TMbQum8+MVW+nonHnxXx97C+VjhrJ93yF27Gvlxyu28rv1mUAklY5847ENfOOxDYwaUsJF08qYO3UUwwYVs2PfIS6cWsa5Z4wEIAQIZMKQNTsP8MSGzDO2NR5i1bZ9tHakARg5+LXfghIB/uKa2cd0bkwfO8xlKpIkSZJ6xbBDGuCqahp5Yn092/cf4oFVO0mm03zo0gr+4urZjB5WyrsvnnJMmDBh5GAuLodJowazfEtDV2fFP7znAtqTaVZt28fKrfv5j8c30jlOA6g5aS2zxg/j1jeXdy092bGvlYV3LO+2c8NlKpIkSZJ6K8QYT35Vjs2fPz+uWLEi12VI/U5V9V7e/+3ldKQyv84vnTmWf7z5AqaPHdbzZ3QzwPTfHl3Pvz+24YiZH2dw3XmTOPy7yq9e2cUvV+0gklmi8pk/PItPXnVmj58vSZIkSUcKIVTFGOef7Do7O6QB7GuPrO8KOhIBLps9rldBB3TfWXH57PH857JNXZ0Zt7214qhrJ44czG9W7+o6v2Dm2F49X5IkSZJOhWGHNEB983ebeHpTA0UhAPGEYcMbMW/6aCo/vuCEnRknOy9JkiRJ2WDYIQ1A33lqC//8q7XceNEZ3PbW6TyXxa1jT9aZYeeGJEmSpL5m2CENMD94rpYv/3I11503ka/9yUWUFCV4U8WYXJclSZIkSX0mkesCJJ0+P3txG1/42ctcedZ4/v3Wiykp8pe4JEmSpMLjn4SkAeLBl3byV/eu4q0zx/Kf/20eg4qLcl2SJEmSJOWEYYc0ADy6uo5P//BFLikfzbc/OJ/BJQYdkiRJkgqXMzukfu7OJzfzDw+upWLcUO76yJsYNshf1pIkSZIKm50dUj923wvb+MoDa0jFyLbGQ2yoa851SZIkSZKUc4YdUj/Vlkzxjw+t6fqcTKVZvrkhhxVJkiRJUn4w7JD6qa8/soH65nZKigJFAUqKEyyYOTbXZUmSJElSzrm4X+qHntuyl2/9fhO3vnkat8ybxvLNDSyYOZZ500fnujRJkiRJyjnDDqmfaWrt4DP3rmTa6KH8zz86l2GDig05JEmSJOkIhh1SP/OVB1azY98hfvynb3XnFUmSJEk6Dmd2SP3Ib17dxb0rtvFnV85i3vQxuS5HkiRJkvKSYYfUT9Q3tfH5+17mvDNG8ulr5uS6HEmSJEnKW/bAS/1AjJHP3/cSTW1Jfvi+uZQWm1NKkiRJ0on4JyapH7h3xVYeXbObv37H2cyeOCLX5UiSJElSXrOzQ8pjVTWN/PqVXdzzTDWXzhrLRy6tyHVJkiRJkpT3shZ2hBCmAfcAE4EILI0xfiOEMAb4EVABVAN/EmNszFYdUn9VVdPIwjuW09qRBuBDl1aQSIQcVyVJkiRJ+S+by1iSwF/FGM8FFgCfDCGcC3wOeCzGOBt4rPOzpNdZvrmBts6gIxFg4+7mHFckSZIkSf1D1sKOGOPOGOMLne+bgDXAFOAm4O7Oy+4G3p2tGqT+bM6EEcTO96XFCRbMHJvTeiRJkiSpv+iTmR0hhArgYuBZYGKMcWfnqV1klrlIep37XtxGSVHgI5fO4LrzJzFv+uhclyRJkiRJ/ULWw44QwnDgp8BfxhgPhPDazIEYYwwhxBPctwhYBFBeXp7tMqW88tu1dTz8yi4+e91ZfPKqM3NdjiRJkiT1K1ndejaEUEIm6KiMMd7XebguhDC58/xkYPfx7o0xLo0xzo8xzh8/fnw2y5TyyqH2FH/7i1c5c8Jwbr98Zq7LkSRJkqR+J2thR8i0cNwJrIkx/q8jTt0PfKjz/YeAX2SrBqm/qapp5MPfeY5tjYf4+3efT2lxVvNISZIkSRqQsrmM5TLgNuDlEMLKzmNfAP4JuDeE8DGgBviTLNYg9RtVNY3c+u3ltCfTFIVASZFBhyRJkiSdiqyFHTHGJ4FwgtPXZOt7pf7qN6/uoj2Z7vwUWb65waGkkiRJknQK/KtjKQ/sP9jBAy9nNilKBChxq1lJkiRJOmV9svWspBNr7Uhx+/dWUH+gjS/feB7NbUkWzBxrV4ckSZIknSLDDimHVlTvZfHPX2Hdrib+/daLufGiM3JdkiRJkiT1e4YdUo5U1TTy/qXLSaYjxYnAlLIhuS5JkiRJkgYEZ3ZIOfJfz1STTEcAYswMJJUkSZIkvXF2dkg5sKm+mV+9WkcImcTRgaSSJEmSdPoYdkh9rLktySe+V8WQ0iL+7f1z2bi72YGkkiRJknQaGXZIfSjGyGd/vIrN9c3818fewqVnjuO683JdlSRJkiQNLM7skPrQfy7bzMOv7OLz15/DpWeOy3U5kiRJkjQgGXZIfeSJDfV89ddreeeFk/n45TNyXY4kSZIkDViGHVIf2Lr3IJ/6wYvMnjCCf7nlQkIIuS5JkiRJkgYsww4pyw61p/jE96pIpSPfum0eQ0sdlSNJkiRJ2WTYIWVRVfVebvnm06zeeYBvvH8uFeOG5bokSZIkSRrw/CtmKUue2FDPh+96nlSMFCcCo4aU5rokSZIkSSoIhh3SaVRV08jyzQ0E4P88vpFUjEBmy9nlmxuYN310bguUJEmSpAJg2CGdJlU1jXzg28tpS6YBmDRyEB3pSCqVpqQ4wYKZY3NcoSRJkiQVBsMO6Q043Mkxfngpdz1V3RV0BGDhgulcOmscyzc3sGDmWLs6JEmSJKmPGHZIp6iqppFbv72c9s6AY1BRgqJEgBgpKU5w6axxzJs+2pBDkiRJkvqYYYd0in6xcntX0BGAP71yJlfMmWAnhyRJkiTlmGGHdApW7zjAfS9sIwAhQGlxgivmTLCTQ5IkSZLygGGH1AtVNY08sGoHP3lhGyMGl/AvN1/EloYWOzkkSZIkKY8Ydkg99PrdVv7pjy/ghgsn57gqSZIkSdLrJXJdgNRf/LRqW1fQkQhQ3XAwxxVJkiRJko7Hzg6pB371yi5+XLX1qBkdC2aOzXVZkiRJkqTjMOyQulFV08g3l23isdV1zC0v4y+umc3qHQec0SFJkiRJecywQzqBqppG3vetZ0imI4kAn/3Ds7j0zHFcddaEXJcmSZIkSeqGMzukE/iP324gmY4ABODFrftyW5AkSZIkqUfs7JCO497nt/L4unoSIRN0lDijQ5IkSZL6DcMO6QhVNY3c/XQ1v1y1g8tnj+OTV82iqmafMzokSZIkqR8x7FBBq6ppZPnmBhbMGMOO/Yf4Hz9aRTIdCQH+7O2zWDBzHAtmjst1mZIkSZKkXjDsUMGqqmnk1qXLaU+ljzmXIDOj49IzDTokSZIkqb9xQKkKUnNbki/f/+pRQcebK0YzqDhBUXBGhyRJkiT1Z3Z2qKBU1TTy06ptPLamjrqmNooTgRgjJcUJ/vr6cwAyy1qc0SFJkiRJ/ZZhhwpGVU0j7/vWM5mZHMDf33Q+55wx8phww5BDkiRJkvo3ww4VjO8+vYVkOgKQCLC/tYN500cbbkiSJEnSAGPYoYLw6o79/PqVOkLIDKpxJockSZIkDVyGHRrwGprbWHRPFWOGlfL37zmfdbuanMkhSZIkSQOYYYcGtOe2NPBX965id1MrP/2zS7lwahnXnjMx12VJkiRJkrLIsEP9SlVNY493S1lRvZdbv/0sqXSkpCjQkYp9VKUkSZIkKZcMO5RXXh9mHPm5ubWD2++pIplOU1KU4D9vm8eIQcU8u2XvMeFHa0eKL/zsZVKdA0nT6cjyzQ0uXZEkSZKkAmDYobxRVdPIrUuX05FKU5QIXHP2RB5bW9e1VeyRfRltyTQf+c7zXZ9LiwI/uH0B8yrGsO9gO7ffs4L1dc0UJwIxRgeSSpIkSVIBMexQ3vj+czW0p9IAJNORX6/e1XUuAnOnlrF65wGS6UwYcuHUUbxQs48ItKcii75XxXsumcJ9L2znwKEO/vetF3NG2ZAeL3uRJEmSJA0Mhh3KC3ua23h09W4CEAKUFCX4/PVn80+/WktHMk1JcYK/ede5AF3hBcDCO5bTkUyTSARKigJ3PLEFgNKiBGeUDWHe9NGGHJIkSZJUYE4adoQQnosxvrnz/XtjjD/OflkqJDFGPvfTlzjUkeJrf3IRO/e3dnViXDC17JjOjCPDi8qPL+g6v3zzHr72m/WkI6TSaWd0SJIkSVKBOmHYEUJ4GngZmBBCOBvYAHweMOzQaVX5bC2PrtnN377zXP74kqlHnTtZZ8brz5cWb+zqBHFGhyRJkiQVpu46Oy4DLgBuAP5/YDYwM4TwT8CyGOPDfVCfBrj7V27nS/e/ytxpZXz40oo39Kx500cf1elhV4ckSZIkFabuwo67gN8DB2KMHwUIIawCHgYu73yVTtnz1Xv59A9XEoE1Ow/w4tZ9bzigcEaHJEmSJCnRzbl/7Dw/KYTwVAjht8BEYAzwrb4oTgPbz1/c3rWdbDKVmbEhSZIkSdIbdcKwI8a4PsZ4J1AbY7wMeCewH5gF3NFH9WkAa0+mACgKOGNDkiRJknTa9GTr2U8BxBgPhhDWxhj/FfjX7JalQrB2VzNnTxrBuy46wxkbkiRJkqTT5qRhR4zxySPe35TdclQodje18vL2/Xz2urP45FVn5rocSZIkSdIA0t3Ws1OBisNhRwjhM8DwztPfjzFu7IP6NEAtW1cPwNvnjM9xJZIkSZKkgaa7AaVfBcqO+PwJoAWIwJezWZQGvt+tr2fCiEGcd8bIXJciSZIkSRpgulvGclaM8YEjPh+MMX4NIITwRHbL0kCWTKX5/fp6rj9/EiGEXJcjSZIkSRpguuvsGPy6z9cc8X5cFmpRgXihdh9NrUmuOmtCrkuRJEmSJA1A3YUdTSGEOYc/xBj3AoQQzgaasl2YBq7H1+2mOBG4bLaZmSRJkiTp9OtuGcsXgQdCCEuAFzqPzQO+AHw624Vp4Hp87W7mTR/NyMEluS5FkiRJkjQAnbCzI8b4K+CPySxf+W7nz1XAH8cYH+6L4jTw7NrfytpdTVx1tktYJEmSJEnZ0V1nBzHGV4AP9lEtKgC/W7cbwHkdkiRJkqSs6TbskE63V3b8ir+89hliLAauy3U5kiRJkqQByLBDfebV7b9i8Q2foqQoSUfq+6zdeT9nTzbwkCRJkiSdXt3txiKdVtv3PUxJUZLiojQlRUkaDz6S65IkSZIkSQPQCTs7Qgj/G4gnOh9j/IusVKQBa2vjm+lIFQNJ0jHBBUXLoO5OmPixXJcmSZIkSRpAulvGsqLPqlBBWLX1XJ5Y/y/8zZUPMbP8N5SWr4DUx6EOAw9JkiRJ0mlzwrAjxnh3XxaigW/l1n2cO/ltzEr+PLOAKkGmd+jgTwHDDkmSJEnS6XHCmR0hhHEhhC+GEP4ihDA8hPDNEMIrIYRfhBDO7Msi1f81NLdRu/cgF5eXwb4ZkCLzkwaG3pzj6iRJkiRJA0l3A0q/DwwCZgPPAZuBW4AHgDuyX5oGkpVb9wEwd1oZ1AI/nAS118PeO1zCIkmSJEk6rbqb2TExxviFEEIAamKMX+08vjaE8Mk+qE0DyMqt+yhKBC6YMhJ++gTMfCfM+Hauy5IkSZIkDUDddXakAGKMEdjzunPprFWkAenF2n2cNXEEQ/dvgpbdMOPyXJckSZIkSRqguuvsmBlCuB8IR7yn8/OMrFemASOdjqzauo93zT0Dqp/IHKww7JAkSZIkZUd3YcdNR7z/19ede/1n6YQ272mmqS3JxdPKYNMyGFUOoytyXZYkSZIkaYDqbuvZZX1ZiAauF2ozw0kvnjYSHnsSzroBQshxVZIkSZKkgaq7mR3SabFy6z5GDC5mZqoGDjXCjCtyXZIkSZIkaQAz7FDWrazdx9xpZSRqnNchSZIkSco+ww5l1cH2JGt3HWDutDLY8gSMmQmjpuS6LEmSJEnSAHbCsCOEcF8I4b+FEIb3ZUEaWF7etp90hIunDIeap1zCIkmSJEnKuu46O94CvBuoDSHcG0J4TwihtKcPDiHcFULYHUJ45YhjXwohbA8hrOz8ueEN1K5+YOXWzHDSS0q3QtsBl7BIkiRJkrKuu7Bjd4zxFqAC+CVwO7A9hPCdEMIf9uDZ3wXecZzjX48xzu38eai3Bat/ebF2H+VjhlJWtzxzwLBDkiRJkpRl3YUdESDGeCDG+L0Y4w3A2cCzwOdO9uAY4++BvaelSvVbz23Zy7DSIppX/gyGjYd9NbkuSZIkSZI0wHUXdjS//kCMsSHG+J8xxqvfwHf+eQjhpc5lLqNPdFEIYVEIYUUIYUV9ff0b+Drlyq9f3cXeg+0Mr3uOYfUriS31cPeNsPW5XJcmSZIkSRrAThh2xBizMUnym8AsYC6wE/haN9+/NMY4P8Y4f/z48VkoRdn2o+e3AnBD0XOEAAEg1Q7VT+S0LkmSJEnSwNarrWdDCPe8kS+LMdbFGFMxxjTwbeDNb+R5ym/bGg8SgL2MBCCSgKJS53ZIkiRJkrKq+EQnQgj3v/4QcFUIoQwgxnhjb78shDA5xriz8+N7gFe6u17917bGg6yva+YDbynnsv3joBrClX8Ns66GaWZckiRJkqTsOWHYAUwFVgN3kBlWGoD5dLP05EghhB8AVwLjQgjbgC8CV4YQ5nY+rxr4xKkWrvz24EuZTOtPr5hF+bK9MHIqXHnSubaSJEmSJL1h3YUd84FPA4uBz8YYV4YQDsUYl/XkwTHGW49z+M5TqFH90C9f2sFFU0dRPnYoNGyEcWfmuiRJkiRJUoHobkBpOsb4deAjwOIQwn/QfTgiAbBlTwuvbD/AOy88A2KEPRthrGGHJEmSJKlvnDS8iDFuA94bQvgj4ED2S1J/98CqHQD80YWToaUe2vbD2Nk5rkqSJEmSVCh63KkRY3wQeDCLtWiAeOClncyfPpozyoZAzYuZg3Z2SJIkSZL6SK+2npVOZn1dE+vqmnjXRWdkDuzZkHl1ZockSZIkqY8Ydui0euCp9SRimusnFmUONGyEokEwalpuC5MkSZIkFQzDDp02MUZ+/Mxmpu6rY+u/fTNzsGEjjJkJiaLcFidJkiRJKhiGHTo9hgzh3ov+kJ1FQ9k6aiILS+dTNeUcePpBl7BIkiRJkvqUYYdOj82bufvaD0KMxESCjqJinr1xIYwvdTipJEmSJKlP9Xg3Fqk7dcNGs66kjKJ0GkKkJJXiitIdkO5w21lJkiRJUp+ys0Mn19AA73hH5vUEvvdMDWkC/962is/MHUNlexXn73slc9LODkmSJElSH7KzQyf33e/Cr38Nd98Nn/nMMadbO1JUPlvDH5w3iT/64N9kDn7gcnj6P+A3q2CcnR2SJEmSpL5jZ4e6FyN8/euZ91//eubz6/zsxe00Huzgo2+bcfSJho0wZDQMHdMHhUqSJEmSlGHYoe498QTs3595v28fPPnkUadjjNz15BbOnTySt8x4XajRsNF5HZIkSZKkPmfYoe79279BS0vmfUvLa10enZ58dj0bdjfzsQvGEEI4+t6Gjc7rkCRJkiT1OcMOveammyCEo38efPC1pSsxZj4fcf7r/3E/Q9sOMeVnPzj6WW1N0LQTxhl2SJIkSZL6lmGHXvMP/wDl5TB48GvH2tuPvuaIz/effTkvTD2XQ6WD+HDpJVRNOQeGDMmcbNiUeXUZiyRJkiSpjxl26DXnnQerV8ONN8LQod1fO2QI37r8AxAjMSToKCpm+Y23wZYtmfMNGzOvLmORJEmSJPUxww4dbdgw+NGP4Gtfg0GDjn/NoEFU//O/s3r0VIrSKYrSSUpSSRYUN8OkSZlr9mwAAoyZ2WelS5IkSZIEhh06kUsu6Tbs+L8lMyiNKb7V9iKfmTuGyvYq5m1f+9o1DRuhbBqUDD7+MyRJkiRJypLiXBegPLViBXR0ZN6HkJnFcegQxMjWwWXcV32I//a2M7n2xpu4FuADlx99f8MG53VIkiRJknLCzg4d3xNPZMKNwYMzQ0srK2HaNBg8mG/OfReJmOYTbz/BEpUYoX59ZkeWrc/1bd2SJEmSpIJn2KHje/ZZKCrKbEf76qtUtrTwpmSS+0qG8/0Lr2Xu2mVMHjXk+PeuexiSh2Db83D3jQYekiRJkqQ+Zdih4zvnHFi6FH74Qyp//nMWLVrEx+aV0HLHm7hk+joe/n0llZWVx7/31fs630RItUP1E31WtiRJkiRJzuzQ8T34YNfbm2+7jXnvLGf6T3ZSUrSVW1KPUfObyVTcdhssXHjsvW3NmddQBEWlUHH5sddIkiRJkpQldnbopGbGyOrrR1BSlKS4KE1JUZLV149gRozHXhwj7FwF098GVy+GD90P097c90VLkiRJkgqWYYdOqnT6dHY/3ERHqphkKkFHqpjdDzcxaPr0Yy/evQaadsBF74PL/8qgQ5IkSZLU51zGopNasmQJu77wzyy848+5dPgvGfaTGs54cCtL7rnn2Is3Ppp5nXVN3xYpSZIkSVInww6d1MKFC3nP1qG8uCnFL/73c0w7YyJL7rmHhceb17HxEZhwLoya0veFSpIkSZKEYYd6oLktydqWIdx62Rn849cOnfjCtmaoeQYW/FnfFSdJkiRJ0us4s0Mn9eBLOzjUkeKWedO6v7D6CUh3wJnX9k1hkiRJkiQdh2GHTureFduYNX4Yl5SXdX/hhkegZBiUv7VvCpMkSZIk6TgMO9StTfXNVNU08t750wghnPjCGDPzOma+HYpL+65ASZIkSZJex7BDx1VZWUlFRQXz3/spSKeIW57t/oaGTbCvFs50FxZJkiRJUm4ZdugYlZWVLFq0iJ3JoQy/+AZad6zj//vk7VRWVp7w+q8tvBSAmz74xRNeJ0mSJElSXzDs0DEWL15MsqycSe9fQtGgoQyaNJtkWTmLFy8+5trDwcgHprYQW9J8sLmORYsWGXhIkiRJknLGsEPHqK2tZXD5BVDUuTNxCAwuv4Da2tpjrr35tttoGd/G5KlFhKGBmz84lJYxbdx82219XLUkSZIkSRmGHTpGeXk5rbUvQ4QYIzGdorX2ZcrLy4+5dmaMbDi/BEKAEIgJeLGiiBkx5qBySZIkSZIMO3QcS5YsobhpJ8Q0bdtepe6HiyneV8uSJUuOubZ0+nQa9qcBiOkIadhcnWLQ9Ol9XbYkSZIkSQAU57oA5Z+FCxeypaWIOzYX0/TcfUwuOcSSpUtZuHDhMdcuWbKEId/4KAB3PNnO6A1JSnZEltxzbDAiSZIkSVJfMOzQcZWdOQ82r2fbyicYPaz0hNctXLiQlxoehL0P8t+XtTNlWjlL7lly3GBEkiRJkqS+YNih43q+upE5E4d3G3QcduHMSXBoDB2p/X1QmSRJkiRJ3XNmh46RSkdeqGlkfsWYnt3QUg/Dxme3KEmSJEmSesiwQ8dYu+sATW1J3tzjsGOPYYckSZIkKW8YdugYK6obAZhfMbpnN7TUw3DDDkmSJElSfjDs0DGeq97LGaMGM3X00J7d4DIWSZIkSVIeMezQUWKMrKje2/N5Hcl2aN1n2CFJkiRJyhuGHTrK1r2HqDvQxptm9DDsOLgn8zpsXPaKkiRJkiSpFww7dJTnq/cC8KbezOsAOzskSZIkSXnDsENHeb56LyMHFzNnwoie3WDYIUmSJEnKM4YdAqCyspKKigq+96unObDpRX7wg+/37MaWw8tYDDskSZIkSfnBsENUVlayaNEiKuYN5tM3P8NZY55l0aJFVFZWnvxmOzskSZIkSXkmxBhzXcNJzZ8/P65YsSLXZQxYFRUVlF8Iv/7JTkqKknSkirnulsnUvgTV1dXd3/zI38Ly/4T/MP3nigAAIABJREFUWQch9Em9kiRJkqTCFEKoijHOP9l1dnaI2tparrl+BCVFSYqL0pQUJbnm+hHU1tae/OaWPZmuDoMOSZIkSVKeMOwQ5eXlPPZwEx2pYpKpBB2pYh57uIny8vKT39y8221nJUmSJEl5xbBDLFmyhKrH6nnvV/+cr95/E9fdMpmqx+pZsmTJyW9uqXdehyRJkiQprxTnugDl3sKFCwFY/HwRy5e2M3zNCyxdurTreLda9sCEc7NcoSRJkiRJPWdnhwB4181/AoNHsORzf0l1dXXPgo4YM50dw+3skCRJkiTlD8MOAVC9pwWAinHDen5TWxOk2lzGIkmSJEnKK4YdAmBLZ9gxozdhR0t95tWwQ5IkSZKURww7BED1noOEAOVjhvb8pq6ww91YJEmSJEn5w7BDAGzZ08wZo4YwuKSo5zfZ2SFJkiRJykOGHQJgS8NBKsb1oqsDDDskSZIkSXnJsENAZkBpxdhezOuAzLazAENdxiJJkiRJyh+GHaKxpZ39hzp6N5wUMp0dg8uguDQ7hUmSJEmSdAoMO8SWhs5tZ3vd2VHvEhZJkiRJUt4x7BDVh7edHd/LsKPZsEOSJEmSlH8MO0T1nhYSAaaNPoUBpW47K0mSJEnKM4YdYkvDQaaOHkppcS//dXAZiyRJkiQpDxl2KLMTS2+Hk6aScGgvDJ+QnaIkSZIkSTpFhh0FLsZI9Z4WZozt5RKWgw2ZV5exSJIkSZLyjGFHgWtoaaepLdn7zo6W+syry1gkSZIkSXnGsKPAHd6Jpfdhx+7Mq2GHJEmSJCnPGHYUuM2Ht50d29uwY0/m1bBDkiRJkpRnDDsKXPWeFooTgamjh/Tuxq5lLM7skCRJkiTlF8OOAlfd0MK0MUMpLjqFbWcTJTC4LDuFSZIkSZJ0irIWdoQQ7goh7A4hvHLEsTEhhEdCCBs6X0dn6/vVM1v2HKSitzuxQCbsGDYeQjj9RUmSJEmS9AZks7Pju8A7Xnfsc8BjMcbZwGOdn5UjMUZqGlp6P5wUMjM7XMIiSZIkScpDWQs7Yoy/B/a+7vBNwN2d7+8G3p2t71f3KisrmXHOXA62p/jON/6ZysrK3j3gcGeHJEmSJEl5JsQYs/fwECqAB2KM53d+3hdjLOt8H4DGw5+7M2LEiDhv3rys1Vlo6urqWL9+PSPHD2fMhCHs3X2IA/XNzJkzh4kTJ/bsIdueh8GjYNyc7BYrSZIkSVKnZcuWVcUY55/suuK+KOZ4YowxhHDCpCWEsAhYBDBo0KA+q6sQbNmyhRGjS7jgrCYCB5gyOvBSspQtW7b0POxIdWQGlEqSJEmSlGf6urNjHXBljHFnCGEy8LsY41kne878+fPjihUrslZnoUkkEnzx/5zH4kWrKS5Kk0wlWLL0XL78yVdJp9Mnf0BbM/zjFPiDv4PLPp39giVJkiRJAkIIPers6OutZ+8HPtT5/kPAL/r4+wWUl5fz2MNNdKSKSaYSdKSKeezhJsrLy3v2gJb6zKszOyRJkiRJeSibW8/+AHgGOCuEsC2E8DHgn4A/CCFsAK7t/Kw+tmTJEqoeq+eP//Z9fO1X7+e6WyZT9Vg9S5Ys6dkDWvZkXg07JEmSJEl5KGszO2KMt57g1DXZ+k71zMKFCwFY/Mv1vNQ4jZKXnmLp0qVdx0+qq7PDrWclSZIkSfknZwNKlVsLFy7ktx3Ps+tAKw9+q7p3N7fszrza2SFJkiRJykN9PbNDeaSpNcmIwaeQdx3u7BhqZ4ckSZIkKf8YdhSwA60djBh8CtvHtuyBQaOgZPDpL0qSJEmSpDfIsKOANbclGTHoFDs7nNchSZIkScpThh0F7A0tY3FehyRJkiQpTxl2FKgYY6az41SXsdjZIUmSJEnKU4YdBepQR4pUOjL8VDo7mnfb2SFJkiRJyluGHQWqqTUJ0PtlLOkUHGww7JAkSZIk5S3DjgLV1NoB0PtlLAf3AtGwQ5IkSZKUtww7CtSBU+3saKnPvA437JAkSZIk5SfDjgLVfDjs6O3Ws4fDDjs7JEmSJEl5yrCjQL02s6OXy1gMOyRJkiRJec6wo0C9NrOjt50dezKvhh2SJEmSpDxl2FGgTnk3lpbdEIpgcFkWqpIkSZIk6Y0z7ChQTW1JQoBhpacws2PYOEj4r44kSZIkKT/5J9YC1dTawfDSYhKJ0LsbW/bAsAnZKUqSJEmSpNPAsKNANbUme7+EBV7r7JAkSZIkKU8ZdhSoptaO3u/EAp1hh8NJJUmSJEn5y7CjQDW3JRl+Sp0deww7JEmSJEl5zbCjQJ3SMpb2g9De7DIWSZIkSVJeM+woUJmwo5fLWFrqM692dkiSJEmS8phhR4Fqau1g+KDebju7J/M63N1YJEmSJEn5y7CjQDW1JhnZ22UsXZ0dLmORJEmSJOUvw44C1J5M05ZM935mh8tYJEmSJEn9gGFHAWpq7QA49ZkdQ+3skCRJkiTlL8OOAtTUmgQ4hZkd9VA6HEqHZqEqSZIkSZJOD8OOAtTclgk7TmkZi/M6JEmSJEl5zrCjAB14I8tYhrkTiyRJkiQpvxl2FKDDy1h639mxx+GkkiRJkqS8Z9hRgE497HAZiyRJkiQp/xl2FKDmU1nGkk7b2SFJkiRJ6hcMOwrQKXV2HGqEmDLskCRJkiTlPcOOAtTUlmRwSYKSol78z99Sn3l1GYskSZIkKc8ZdhSgptYkwwedwk4sAMPdjUWSJEmSlN8MOwpQU2sHI09lOCm4jEWSJEmSlPcMOwpQU2vy1LadBcMOSZIkSVLeM+woQE2tHb3biQUynR0hAUNGZ6coSZIkSZJOE8OOAtTclmT4oFNYxjJ0LCSKslOUJEmSJEmniWFHATq1ZSz1LmGRJEmSJPULhh0FKBN29HIZy9oqww5JkiRJUr9g2FFgUumYWcbS286Ohm2GHZIkSZKkfsGwo8C0tCcBer/17LCEYYckSZIkqV8w7CgwTa2ZsKNXMzs6WmFwgGHjslSVJEmSJEmnj2FHgWlq7QDo8cyOyspK3nn+TAD+/stfpbKyMmu1SZIkSZJ0OvRyLYP6u8OdHT3ZerayspJFixbxu5vb4G3F3LjjIG9dtAiAhQsXZrVOSZIkSZJOlWFHgWnuxTKWm2+7jYXvCnBHGopTXHgFtNSlab3tNjDskCRJkiTlKZexFJgD3S1j+dKXIISun5kxsuOGQCwCEhCLYMcNgRkxHnUdIWTulSRJkiQpDxh2FJjDy1iOuxvLl74EMXb9lE6fzvqHIqQgpoAUrHsoMmj69KOuI0bDDkmSJElS3jDsKDBdMzt6sIxlyZIlHHgQUncNZdfPS3j8vQkOPJA5LkmSJElSvjLsKDDNbR0UJQJDSopOeu3ChQsp+dZXKN5VzP/4YuSjq6bRfM89DieVJEmSJOU1B5QWmKbWJCMGFxNC6NH1159bBlvhh7UpOFCd3eIkSZIkSToN7OwoMIfDjh6rfRrKpkNTzF5RkiRJkiSdRoYdBaaptYPhg46zE8vxxAg1z8D0S7NblCRJkiRJp5FhR4HpVWdHwyY4uAfKF2S3KEmSJEmSTiPDjgLT1Jo8/razx1P7dOa1/FL44hezV5QkSZIkSaeRYUeBaWrrYPignoYdy2HoWBg3G770pazWJUmSJEnS6WLYUWCaW5OMGNzDmR01T0P5W6GHO7dIkiRJkpQPDDsKSIyx5zM7mnZB4xbndUiSJEmS+h3DjgLS2pEmmY496+yofSbzWu5OLJIkSZKk/sWwo4A0tXYAMLwnnR01z0DJUJh8YZarkiRJkiTp9DLsKCBNbUmAbndjqayspKKighd+8X95qqadyh/e21flSZIkSZJ0Whh2FJCm1kzYcaKZHZWVlSxatIh3zdvK3Fs62FvWzKJFi6isrOzLMiVJkiRJekMMOwrI4WUsJ5rZsXjxYj5wbSv//oM0iWvaeefft/OBa1tZvHhxX5YpSZIkSdIbYthRICorK7ntI4sAeO9N7zxut0ZtbS033xCgiMy/GUVw8w2B2travi1WkiRJkqQ3wLCjABxenjL7glb++5X3UnHWgeMuTykvL+enD0VIQUwBKfjpQ5Hy8vLcFC5JkiRJ0ikIMcZc13BS8+fPjytWrMh1Gf1WRUUF5RfCr3+yk5KiJB2pYq67ZTK1L0F1dXXXdYdDkQ9c28rNNwR++lDk+48OZunSpSxcuDB3/wCSJEmSJAEhhKoY4/yTXWdnRwGora3lmutHUFKUpLgoTUlRkmuuH3HM8pSFCxeydOlSHlk1jRv+LM0jq6YZdEiSJEmS+h07OwpATzs7JEmSJEnKZ3Z2qMuSJUuoeqyeW5Z8jK8+eDPX3TKZqsfqWbJkSa5LkyRJkiTptCvOdQHKvsPLUBY/vpcV6/Yz5KXnXJ4iSZIkSRqw7OzIkcrKSioqKkgkElRUVBx3K9jTaeHChUybcx63vvuPqK6uNuiQJEmSJA1Yhh05cHjXk/IL4Yv/5zzKL+S4W8Gebg3N7YwdPiir3yFJkiRJUq4ZduTA4sWLmXfNeH79k50sXrSaX/9kJ/OuGc/ixYuz9p0H25McbE8xzrBDkiRJkjTAGXbkQG1tLde+a/xJt4I9nRqa2wEYO7w0a98hSZIkSVI+MOzIgfLycp5eM5OOVDHJVIKOVDGPPdxEeXl51r6zvrkNgPF2dkjS/2PvvqPjvuq8j3/uNNVRr1ZxlWUncXBsJ3FISJw4HZYaWszCLgTDQnZZylmKOZRd/LBweJZln2VhDWyAxXSybEhCCk4hTmwnluPYiassS3KRVUZ1VKfc548ZjSVbdmzH0ki/eb/O+Z2Z+ZWZO3Dzk/XRvd8LAAAAh2M1liT4p6+t1xeeC+nd/+8SXXdpgx77TZPqNr2gDRs2TNpndvTFwg5GdgAAAAAAnC4pYYcxplFSn6SIpLC1dkUy2pEs86+5Te6Xt2nXQ4/qpdb3yrQ+qg0bPjypK6QE+mPTWKjZAQAAAABwumSO7LjRWtuRxM9Pmvt3HJM/zaMXHv2Z3vrdZ1W2+ANas+aqSf1MRnYAAAAAAFIFNTum2MBIWH/c3aI7l5Qr3evWkopc7T7aI2vtpH5uoH9E/nSP0jzuSf0cAAAAAACSLVlhh5X0mDGmzhizdqITjDFrjTHbjTHb29vbp7h5k+fRV06ofySidyyvlCRdXpmrQP+IjvcMTerntgeHKU4KAAAAAEgJyQo7rrPWLpN0h6SPG2OuP/UEa+0Ga+0Ka+2K4uLiqW/hJLl/xzFVFWRoxex8SdKSyjxJ0u6j3ZP6uYHgMFNYAAAAAAApISlhh7X2WPyxTdL/SJrcghXTREvPoDbXd+jtV1TK5TKSpEVlfnlcRruO9kzqZ3cERyhOCgAAAABICVMedhhjsowx/tHnkm6V9PJUtyMZHtj5O/3NDb/WVXP3Jfale92qLfNr97HJDTsY2QEAAAAASBXJGNlRKmmzMeYlSc9Lesha+0gS2jGpNm7cqDlz5sjlcmnOnDn6xq/W6/3XfEifuuVnWlb9Tu1reTRx7uWVudo1iUVKQ5GougZCjOwAAAAAAKSEKQ87rLUN1trXxbdLrbXrp7oNk23jxo1au3atqi+XvvwfS7T4PTfK5B6Q1x2Wxx2V1x1W18DjifOXVOSpZzCkI52Dk9Kezv4RSVIhYQcAAAAAIAV4kt0AJ1q3bp2Wry7Wo79tkdd9RKHIPq37r1sVingkhRWKeJSfeUvi/MsrcyVJu451q7ow86K3pyM4LEkqZhoLAAAAACAFJGs1Fkdrbm7W6jtzx43kyLWNuv2ucr3Q+Ek1BR7QovLbEucvLPXL53Fp9yQVKe0IMrIDAAAAAJA6CDsmQXV1tTY93KNQxKNwxKVQxKNNf+xT0y7pmvnfGhd0SJLP49Li8pzTVmTZ1/Kothz6zLj6HhciEB/ZQc0OAAAAAEAqIOyYBOvXr1fdpnbddle51m+4RLfdVa66Te1av/7M5Ukur8jVy8d6FI3GipTuOf6IZhe+WVfO+bZmF775NQUeHYmwg2ksAAAAAADnI+yYBGvWrNGGDRvUvEv66sdfUfMuacOGDVqzZs0Zr1lSmau+4bAaA/0aCkW05dD946bBNHc+fMHtCQRH5PO4lJ1GiRYAAAAAgPPx2+8kWbNmzVnDjVMdeWmzpBwtvf29Klh6i5YtX6i7rz5Z0HTDn6vU3PkzXTrrReVn3nraVJizaQ8Oqzg7TcaY8/8iAAAAAADMMIQd08DGjRv1pU98VLd8/Qu65mv52lo/qCe//6h+M2udapb0Kt1zk2rLjmrN1R+S1x1WKPLv2tfywDkHHoHgiAqZwgIAAAAASBGEHdPAunXrtPymQv3iI1+JhRmrPbrt8XJ96e8b1NjYKEkaCn86Ma1FCmvnwZ/q9ms+oubmZlVXV2v9+vVnHEnSERxWaU761H0hAAAAAACSiJod00Bzc7NW3+EfV6Nj9R1+NTc3J87Jz7x13Oouv3zxUi1YPUdf/u6lqr5cWrt2rTZu3Djh+3cEh1WYxcgOAAAAAEBqIOyYBqqrq7Xpj32nLVVbXV2dOGdR+W1qCjygFxo/qTX3XqnIQI/+8L0tWrd2jx79bYuWry7WunXrTntva60CwREV+Vl2FgAAAACQGgg7poFzXap2Ufltumb+t/T7Hz6nFfmPnHUkyKiewZDCUcvIDgAAAABAyiDsmAbOd6na6upqbXq456wjQUZ1BEckScWM7AAAAAAApAgKlE4T57NU7fr167V27VrdsWa+7vzQldr0UJfqNm3Shg0bTju3IzgsSSrKJuwAAAAAAKQGwo4ZaDQUWbdunf6taJU8PUe0YcO7JwxLAvGRHSw9CwAAAABIFUxjmaHWrFmjxsZGve36pSpfcu1Zl52VGNkBAAAAAEgdhB0z3LLqPLX0DOl49+CExwPBYbmMlJ/JyA4AAAAAQGog7Jjhls/OlyTtaO6a8Hh7cEQFWT65XWYqmwUAAAAAQNIQdsxwi8tzlO51qa5p4rCjIziswiymsAAAAAAAUgdhxwzndbv0uso87ThD2BEIDqvIzxQWAAAAAEDqIOxwgOWz8/XK8V4NjkROO9YRHGFkBwAAAAAgpRB2OMDy2fkKR612He0+7VggOMxKLAAAAACAlELY4QBXVMeKlNadUqR0cCSi/pGICrOZxgIAAAAASB2EHQ5QkOXTvOKs0+p2dASHJUnFjOwAAAAAAKQQwg6HWF6dr7qmLllrE/tGww4KlAIAAAAAUglhh0Msm52vroGQDnf0S5I2btyot73nLyVJH7z7ndq4cWMymwcAAAAAwJTxJLsBuDhadj8rKUevu+mtSmvZqb6+Pt3wodW6edWv9fChTq1du1aStGbNmuQ2FAAAAACASWbGTnuYrlasWGG3b9+e7GZMWxs3btTatR/RLes/r6tmPadHf3lA3vwK/eF7W+R1hxWKeHTbXeVq3iU1NjYmu7kAAAAAAFwQY0ydtXbFq53HyA4HWLdunZavLtIvPvaP8rrD+uRbPfrdjhp53WF53FFJYa2+w6+vPvhKspsKAAAAAMCko2aHAzQ3N2v1Hf5EuOF1hxXqblUo4lE44lIo4tGmP/apuro62U0FAAAAAGDSEXY4QHV1tTb9sW9cuHHffwR0213lWr/hEt12V7nqNrVr/fr1yW4qAAAAAACTjmksDrB+/XqtXbtWt91VrtV3+LXpj33a+shx5eTkaPODzaqurtaGDRsoTgoAAAAASAmEHQ4wGmKsW7dOX33wFVVXV+u+++4j3AAAAAAApCRWYwEAAAAAADPCua7GQs0OAAAAAADgKIQdAAAAAADAUQg7AAAAAACAoxB2AAAAAAAARyHsAAAAAAAAjkLYAQAAAAAAHIWwAwAAAAAAOAphBwAAAAAAcBTCDgAAAAAA4CiEHQAAAAAAwFEIOwAAAAAAgKMQdgAAAAAAAEch7AAAAAAAAI5C2AEAAAAAAByFsAMAAAAAADgKYQcAAAAAAHAUwg4AAAAAAOAoxlqb7Da8KmNMu6SmC7y8SFLHRWwOcL7og5gO6IeYDuiHmA7oh5gO6IdItpncB2dba4tf7aQZEXa8FsaY7dbaFcluB1IXfRDTAf0Q0wH9ENMB/RDTAf0QyZYKfZBpLAAAAAAAwFEIOwAAAAAAgKOkQtixIdkNQMqjD2I6oB9iOqAfYjqgH2I6oB8i2RzfBx1fswMAAAAAAKSWVBjZAQAAAAAAUsiMCDuMMf9ljGkzxrw8Zl+BMeZxY8zB+GN+fL8xxvybMabeGLPLGLNszDUfiJ9/0BjzgTH7lxtjdsev+TdjjJnab4iZ4Az98CvGmGPGmJ3x7c4xxz4f71P7jTG3jdl/e3xfvTHmc2P2zzXGbIvv/5Uxxjd13w4zgTGmyhjzpDFmjzHmFWPMJ+L7uR9iypylH3I/xJQxxqQbY543xrwU74dfje+fsO8YY9Lir+vjx+eMea/z6p/AqLP0wx8bYw6PuR8uje/n5zImhTHGbYx50RjzYPw190JJstZO+03S9ZKWSXp5zL5vSvpc/PnnJH0j/vxOSX+UZCStlLQtvr9AUkP8MT/+PD9+7Pn4uSZ+7R3J/s5s0287Qz/8iqTPTHDuJZJekpQmaa6kQ5Lc8e2QpHmSfPFzLolf82tJ74k//76kv0n2d2abXpukcknL4s/9kg7E+xr3Q7Yp287SD7kfsk3ZFr9HZcefeyVti9+7Juw7kj4m6fvx5++R9Kv48/Pun2xso9tZ+uGPJd01wfn8XGablE3SpyT9XNKD8dfcC62dGSM7rLV/ltR5yu63SPpJ/PlPJL11zP6f2pitkvKMMeWSbpP0uLW201rbJelxSbfHj+VYa7fa2P/TPx3zXkDCGfrhmbxF0i+ttcPW2sOS6iVdFd/qrbUN1toRSb+U9JZ4Sn+TpN/Grx/bpwFJkrW2xVq7I/68T9JeSRXifogpdJZ+eCbcD3HRxe9rwfhLb3yzOnPfGXuf/K2k1fG+dl79c5K/FmaYs/TDM+HnMi46Y0ylpDdK+mH89dl+jqbUvXBGhB1nUGqtbYk/PyGpNP68QtKRMecdje872/6jE+wHztW98aGI/2Xi0wd0/v2wUFK3tTZ8yn5gQvFhh1co9lck7odIilP6ocT9EFMoPmx7p6Q2xX45PKQz951Ef4sf71Gsr51v/wTGObUfWmtH74fr4/fDbxtj0uL7+LmMyfCvkv5BUjT++mw/R1PqXjiTw46EeNLJsjJIhu9Jmi9pqaQWSf83uc1BKjDGZEv6naS/t9b2jj3G/RBTZYJ+yP0QU8paG7HWLpVUqdhfHxcluUlIQaf2Q2PMZZI+r1h/vFKxqSmfTWIT4WDGmDdJarPW1iW7LdPRTA47WuNDuxR/bIvvPyapasx5lfF9Z9tfOcF+4FVZa1vjP+Sikn6g2D+2pPPvhwHFhjJ6TtkPjGOM8Sr2C+ZGa+398d3cDzGlJuqH3A+RLNbabklPSrpGZ+47if4WP56rWF873/4JTGhMP7w9Pt3PWmuHJd2nC78f8nMZr+ZaSW82xjQqNsXkJknfEfdCSTM77HhA0mil4g9I+t8x+98fr3a8UlJPfHj3o5JuNcbkx4fW3irp0fixXmPMyvh8pfePeS/grEZ/wYx7m6TRlVoekPSeeMXjuZJqFCsw9YKkmniFZJ9ihYEeiP81/klJd8WvH9unAUmJOZg/krTXWvsvYw5xP8SUOVM/5H6IqWSMKTbG5MWfZ0i6RbH6MWfqO2Pvk3dJeiLe186rf07+N8NMcoZ+uG/MHyCMYrUSxt4P+bmMi8Za+3lrbaW1do5i96knrLVrxL0w5tUqmE6HTdIvFBsSG1JsntCHFJtbtEnSQUl/klQQP9dI+q5i8zZ3S1ox5n0+qFixlXpJfz1m/wrFbkKHJP27JJPs78w2/bYz9MP/jvezXYr9h18+5vx18T61X2MqZytWiftA/Ni6MfvnKXZTqZf0G0lpyf7ObNNrk3SdYlNUdknaGd/u5H7INpXbWfoh90O2KdskXS7pxXh/e1nSl+L7J+w7ktLjr+vjx+eNea/z6p9sbKPbWfrhE/H74cuSfqaTK7bwc5lt0jZJq3RyNRbuhdbG/mMBAAAAAABwipk8jQUAAAAAAOA0hB0AAAAAAMBRCDsAAAAAAICjEHYAAAAAAABHIewAAAAAAACOQtgBAAAAAAAchbADAAAAAAA4CmEHAAAAAABwFMIOAAAAAADgKIQdAAAAAADAUQg7AAAAAACAoxB2AAAAAAAARyHsAAAAAAAAjkLYAQAAAAAAHIWwAwAAAAAAOAphBwAAAAAAcBTCDgAAAAAA4CiEHQAAAAAAwFEIOwAAAAAAgKMQdgAAAAAAAEch7AAAAAAAAI5C2AEAAAAAAByFsAMAAAAAADgKYQcAAAAAAHAUwg4AAAAAAOAohB0AAAAAAMBRCDsAAAAAAICjEHYAAAAAAABHIewAAAAAAACOQtgBAAAAAAAchbADAAAAAAA4CmEHAAAAAABwFMIOAAAAAADgKIQdAAAAAADAUQg7AAAAAACAoxB2AAAAAAAARyHsAAAAAAAAjkLYAQAAAAAAHIWwAwAAAAAAOAphBwAAAAAAcBTCDgAAAAAA4CiEHQAAAAAAwFEIOwAAAAAAgKMQdgAAAAAAAEch7AAAAAAAAI5C2AEAAAAAAByFsAMAAAAAADgKYQcAAAAAAHAUwg4AAAAAAOAohB0AAAAAAMBRCDsAAAAAAICjEHYAAAAAAABHIewAAAAAAACOQtgBAAAAAAAchbADAAAAAAA4CmEHAAAAAABwFMIOAAAAAADgKIQdAAAAAADAUQg7AAAAAACAoxB2AAAAAAAARyHsAAAAAAAAjkLYAQAAAAAAHIWwAwAAAAAAOAphBwAAAAAAcBTCDgAAAAAA4CiEHQAAAAAAwFEIOwAAAAAAgKMQdgAAAAAAAEch7AAAAAAAAI5C2AEAAAAAAByFsAMAAABmbcMxAAAgAElEQVQAADgKYQcAAAAAAHAUwg4AAAAAAOAohB0AAAAAAMBRCDsAAAAAAICjEHYAAAAAAABHIewAAAAAAACOQtgBAAAAAAAchbADAAAAAAA4CmEHAAAAAABwFE+yG3AuioqK7Jw5c5LdDAAAAAAAkER1dXUd1triVztvRoQdc+bM0fbt25PdDAAAAAAAkETGmKZzOY9pLAAAAAAAwFEIOwAAAAAAgKMQdgAAAAAAAEch7AAAAAAAAI5C2AEAAAAAAByFsAMAAAAAADgKYQcAAAAAAHAUwg4AAAAAAOAohB0AAAAAAMBRCDsAAAAAAICjEHYAAAAAAABHIewAAAAAAACOQtgBAAAAAAAchbADAAAAAAA4CmEHAAAAAABwFMIOAAAAAADgKIQdAAAAAADAUQg7AAAAAACAoxB2AAAAAAAwReqauvTdJ+tV19SVkp8/VTzJbgAAAAAAAFOlrqlLWxsCWjmvUMtn55/TNdZaDYejGgpFNBSKajgce4y9jmgofmz0nOHQmOPhiIZDUQ2FIzrWNainD7QraiWXkZZV5ys3w6uotYpaKWqtbPxxdJ8dc+zka6to9PTz7ZjzJnqvkXBEPYNhSVKax6Wff3jlOf9vMNMQdgAAAAAAZiRrrUYiUQ2ORDQQ3wZHIuofCY/ZF9ZgKKL+4Yga2vt0/4vHFYlauY3RynkFyvB5NDwmkBgaE1QMjwkxLpTLSOlet9K9boXCUUVtbH/USs2dAyrJSZPLGBlj5DKSK/6YeO1yxY+fPHba+a7R88ceP/38Pcd79NLRHklSOBLV1oYAYQcAAAAAABcqGrX688F2bT7Yodoyv2YXZsWCiDGhRCKwCMVfD8ePhSIaHHN89NzBkYjCo+nBeYpYqz0tvSrLzVC616V0j1uFWT6ledyx1/GAIs3rOrnP447vd51y3uhrt9I8J/ele93yuk9Wj6hr6tKaH25VKByV1+PS9963fErDhlM/f+W8win77KlmrL2wjjGVVqxYYbdv357sZgAAAAAAxhgKRdQRHFYgOKJA/7A6giMnXweHFegfUXtf7DEQHNa55hLpXpeyfB5l+NzK9LmV4fMoa8zzTK9bGT63stLcyvR5lOGNHctMix2LnRc7lhm/LtPn0Z7jPVrzo22JX/Y33jP10zguZBqNkz7/tTLG1FlrV7zqeYQdAAAAAJAaXu0X3WjUqnswpEBwWO2nhBYdwViYMfo6EBxRcDg84edk+twqyk5TYbZPhVlpKsr2qTHQr20NnbKKTe24a3ml3n1ltTJ97vHBhtctl8sk7X8DTG/nGnYwjQUAAAAAHCgUiapvKKy+oZD6hsKqa+rS1x7ao3DEyu0yuv3SMrndRoHgySCja2BEkQmGX7iMVBAPLQqzfVpakKfCrFiYUZTtiwcbaSrMih3P9J3+q+apUyjefWV1UsKG5bPzCTlSACM7AAAAAGCKnMuogtGVP3rjIcVoYBGMPx+7Pzg8/py+obD6hmPPh0JnL6rpdRvNysuIBxTxICMRaIwGGWkqyk5TXob3ooy2YFQFXitGdgAAAABAkkSjVn1DYXUOjKizf0Rd/SN68UiX/vPpBkWiVi6X0XULCuV1u08LLILDYYUir/5H6SyfW/50r/zpHvnTPcrN9KmyIFM56Z7Y/jSPskefp3vU0jOo//PwPoUjUfncLm1MwrKjjKrAVCHsAAAAAICzsNYqOBxWV39InQOx4KKzPzblI/YYiu2LH+saiO2baDrIqEjU6sXmbs3Ky1BOuldlOemqKRkfTvjTvcpJ9yg7zTMu1PCne5Wd5pH7AkZaLKnIY2QFUgJhBwAAAICUMDqF4oqqPM0uyjo9tEgEFqFTwoyRM4608LiM8jJ9KsjyKj/TpwUl2crP8qkg0xd7jO8vyPLpWNegPvmrnQpFYjUr7vvrqxhZAUwSwg4AAAAAU+JC6zWMhKPqHw6rfySs/uFI/DH+fDisgZGwgsOR+GNYA8MRBUfCGhg+eX4gOKwTvcNn/RxjpPxMn/IzvSrI8qm6IFNLq/LOGF7kZ/nkT/PImHMbYXF5ZZ5KctIZWQFMAcIOAAAAAJPGWqtA/4g27W3VF3//cmIlkLuWVyo3w3sywBgbZgyHNTByMtQ4l/oVUmzFkCyfR5lpbmWleZTl8ygrza2ynHRFozYRdhhJt11aqrcvq0yEFgWZPuVkeC9oasj5YGQFMDUIOwAAAABcsHAkqta+YR3rGtSx7oH446COxh+Pdw+etipIOGr1yxeOKM3jioUSae54MBGrSVGem65Mn0fZaW5lpsVqVmT6xgcYWfF9sWOxc9K9rjOOsjh12dMPXz+f0AFwMMIOAAAAAGc0FIroWPdgIsQ49fFE79BphTgLs3yqyM9QbalfN9WWqCI/Q0OhiL79p4MKR6Lyul367w9dpavmFk7Z91g+O18b71nJFBIgRRB2AAAAAClgonoZ1lr1DoZ1ND4i43h3PMgYE2Z0BEfGvY/bZVSWk66KvAxdNbdAFXkZqsjPUEVehmblxR4zfO4J23DV3MKkhg1MIQFSB2EHAAAA4EBDoYgC/SPqDI5o6+GAvvnIPoUjVi6X0dKqPAWHwjrWPajgcHjcdWkeVyK8WFyeMy7MqMjPUFlOujxu1wW1ibABwFQh7AAAAABmgHAkqs6BEQWC8a1/WB3BEXX2DysQHFFHfF9nf+z4qSHGqEjUqrlzQK+rzNM18wtPCzMKs3znvLoIAExXhB0AAADAFDh1Gkk0atUzGEqEFoF4cDEaWsQCjREFgsMK9I+oeyA04fu6XUYFWT4VZvlUlJ2m6oJMFcSfF2b5VJidpva+YX31D6/E6mV4XPr++5YzwgKAoxF2AAAAABdZJGp1ondIRzoHdKRzQC80dup3dccUsVZGUk6GV8Hh8GmFPSXJGCkvw6vCeFixqCwnFmZkx4KLoixf/HWairJ9ykn3ynUOy6XWlvkpzgkgZRB2AAAAAOfJWqtA/0gszOga1JHOAR3tGtCRzkEd6RrQ8e5BhSKnBxmSZCXNLszU9TXFiQCjcDTMyEpTfqb3gmtinA31MgCkEsIOAAAAYAK9Q6H4yIzBeJAxNtgY1GAoMu78wiyfKgsytaQiV3cuKVdVfqaqCjJUmZ+p1t5B/dV9LygUjk0j+fJfXErwAACTiLADAAAAKeHUmhlDoci40RhH40HGkfi+nsHxNTL8aR5VFmRqblGWrl9YrMr8jHigkanK/AxlpZ35n9Zzi7K08Z6VTCMBgClC2AEAAABHGp1q0tjRr6cOtOv7Tx1SOGpljJSb4T2t4Geax6XK/NhIjKVVeYkgY3SERm6G9zWtUsI0EgCYOoQdAAAAmLGstWoPDqspMKDDHf1qCvSrMTCgxo5+NQUGJlx+1VqpKj9DH7p2bizMKIiN0CjKTjunQp8AgOmPsAMAAADTmrVWbX3DiQDjcCAeanQMqCnQr/6Rk7UzPC6jqoJMzS7M1JVzCjSnMFOzi7LUPxzWZ37zUqJmxlfefBmjLADAwQg7AAAAkHTRaCzQOHV0RmMgFnCMLQbqdRtV5WdqTlGWrp5XoDmFWZpTlKU5hZmalZch7xlWMinPzaBmBgCkCMIOAAAATLq6pi5tOdShmlK//GkeNQZiozIOx0drNHX2aygUTZzvc7tUVZChOYVZunZBUWyERmGW5hZlqTw3/YKWZqVmBgCkDsIOAAAAXFTWWrX0DGl/a5/2n+jTlkMd+vOBDtlTzvN5XJpdEAsx3lBTFB+dkaXZ8REabupnAAAuEGEHAAAALlj3wIj2nejTgda+2OOJPu1v7VPf0MnCoNlpnkTQYSS9a0Wl/u7mhSrPSacgKABgUhB2AAAA4FVtOdShh3efUE6GR8OhaGLURlvfcOKcnHSPFpXl6K1LK7SwzK/a0thW3x7Umh9uTRQHfdeV1arIy0jitwEAOB1hBwAAAMax1qopMKAXj3RpZ3O3Ntd36FB7f+K4121UW+bXG2qKVVuWrdqyHNWW+lWakyZjTh+psXx2vjbes5LioACAKUPYAQAAkOJ6BkN66Ui3Xmzu1s4jXdp5pFtdAyFJUqbPrcIsn4wkK8llpE+srtG9N9Wc12dQHBQAMJUIOwAAAFJAXVOXtjYEdOWcfGX6PHrxSLd2xsON0VEbxkg1Jdm65ZJSXVGdr6VVeVpY6tfOI93jpqFcM78oyd8GAICzI+wAAACYAUbDilOngVhr1T8SUd9QSL2DYfUOhdQ7GFLf0MnnB9uCevClFkXs+PVQirJ9WlqVp7cvq9TSqjxdXpkrf7r3tM9mGgoAYKYh7AAAAJjGegZD2ritSf/3sQOKRK1cRppdmKlIVOodioUakeipi7qO53GZRNBhJL3x8nJ99vZFqszPmLDGxkSYhgIAmEkIOwAAAKaR4XBEdU1dera+Q8/WB7TraLfGZhlRK7mM0dLZefKne5ST7lVORuzRP+Z5ToZX/nSP/OkevXysd9w0lL++dq6qCjKT9yUBAJhkhB0AAABJFI1a7Wnp1bP1Hdpc36EXGjs1FIrK7TJaWpWne2+qUUl2mr728J5EWPHNu153XqMsmIYCAEg1hB0AAABTYGzNjeLsNG2u79Czhzr0XH1HYuWTmpJsvefKal23oEhXzysYVz9j8ayc1xRWMA0FAJBKCDsAAAAmUTgS1cO7W/Tp37ykUMQmlnCVpNKcNN20qFTXLijUtQuKVJqTfsb3IawAAODcEXYAAABcBNZaHe8Z0oETfdp3ok8HWmOPh9qCGolET54nafXiEn3+jsWaX5x1zgVCAQDAuSPsAAAAeBWnLvvaPTAyLtA4cKJP+1v71DcUTlxTnpuuhaV+XV9TJJ/Hpf/8c4MikVjNjY+tWqAFJdlJ/EYAADgbYQcAAMBZPPbKCX385zsUjlgZI+VmeBM1NiQpJ92jRWU5esvSWaoty1FtqV+1pX7lZnrHvc+q2hIKhAIAMEUIOwAAAOJCkaj2HO9VXVOXdjR3aUdTl473DCWOWyvNysvQR2+Yr9oyv2rL/CrLST+nqSjU3AAAYOoQdgAAgJTVERzWjqYu1TV36cWmbr10tFvD4Vh9jVm56Vo2O1+3+dO0cVtzYgrKP77lMkILAACmOcIOAADgeHVNXdpyqEPluRkaCEX0YjzgaAoMSJK8bqNLZ+XqfStna1l1vpbNzlN5bkbi+jddPospKAAAzCCEHQAAwFGstWrpGdLBtqAOtvZpy6GAntjfJmtPnlOUnabls/N091XVWj47X5dV5Crd6z7jezIFBQCAmYWwAwAAzEjRqNWx7kEdbOvTwdZgLNxoC6q+tU/9I5HEeZk+dyLocBnpnjfM0+fvWMSSrwAAOBhhBwAAmPb+tKdVD+1uUabPrcGRSCzUaAtqMHQy1Cjxp6mmNFvvXFGlBSXZqinJVk2pX4c7+rXmh1sVCsdqbtx2aRlBBwAADkfYAQAApp3W3iFtbQhoa0NAT+1vV8uYFVEKs3y6ZFaO3ntVtWpKs7WwNFsLik9f6nVUQZZPG+9ZSc0NAABSyKSFHcaYKkk/lVQqyUraYK39jjHmK5I+LKk9fuoXrLUPT1Y7AADA9Dc23Nja0KnDHf2SJH+6RyX+NBnF/jHhNtIHr5urj9+44Lzen5obAACklskc2RGW9Glr7Q5jjF9SnTHm8fixb1trvzWJnw0AAKaxs4UbV88t0Jqrq7VyXqEWl+do55HucdNQVs4rTHLrAQDAdDdpYYe1tkVSS/x5nzFmr6SKyfo8AABwZnVNXUmbxmGt1aOvnNCDu1o0HIqovr3/rOGG2zW+nsby2flMQwEAAOdlSmp2GGPmSLpC0jZJ10q61xjzfknbFRv90TUV7QAAINWEIlF95YFXtHFbs6TYaiRvXVqh62qKVFPi1/ySLGX6Lt4/B7r6R7TvRJ/2n+jV/tag9p/o1d6WvnGFRFfMzj9ruDERpqEAAIDzYezYRecn4wOMyZb0tKT11tr7jTGlkjoUm3r7T5LKrbUfnOC6tZLWSlJ1dfXypqamSW0nAABOs72xU1/4n9060Boct99lpOiYH/8VeRmqKc3WguLs2GOJXwtKspWbcbLg56kjQ2IrovTFg40+HWiNPW/vG05ck5vhVW2ZX6FIVDubuxM1Nz51a+1519wAAACQJGNMnbV2xaudN6kjO4wxXkm/k7TRWnu/JFlrW8cc/4GkBye61lq7QdIGSVqxYsXkJjIAADhI98CIvvHIPv3i+SOqyMvQ5+9YpG//6UCi5sVPP3iVCrLSVN/Wp4OtQdW3B3WwNagthwIaDkcT71PiT0uEHo/vaVUkamVMbH9r37BG/16S5nFpYalf19cUa1GZX7XxrcSfJmOM6pq6qLkBAACm1GSuxmIk/UjSXmvtv4zZXx6v5yFJb5P08mS1AQCAVGKt1e93HtPXHtyr7sGQ1l4/T59YXaOsNI9WzCk4rebFgpJs3X7ZyesjUatjXYM62Nan+ragDrYFVd8W1PbGLoXjQ0GslXIyvHrPVdXxYCNH1QWZZ52KQs0NAAAw1SZtGosx5jpJz0jaLWn0z0RfkPReSUsVm8bSKOkjY8KPCa1YscJu3759UtoJAIATHO7o1xd/v1vP1ge0tCpP/+dtS3TJrJyL8t51jZ26+4fbFI7ERmZsvGclgQUAAEiKpE9jsdZuljTRn3kenqzPBAAg1QyHI/rPpxv070/WK83j0j+99TLdfVX1ORX9PFfL5xTo5x9mZAYAAJg5pmQ1FgAAcPFtORTQut/vVkN7v950ebm+9KZLVJKTPimfxWooAABgJiHsAABghunsH9H6h/bqdzuOqqogQz/+6yu1qrYk2c0CAACYNgg7AACYIay1+k3dUX394b3qGwrrY6vm629vqlGGz53spgEAAEwrhB0AAExzdU1demh3i7Ye6tCelj6tmJ2v9W9botoyf7KbBgAAMC0RdgAAMA1Za1XfFtTPn2/WT55rVHzlV330hnn6h9sWyXURC5ACAAA4DWEHAADTRGf/iDbXd+iZA+165mCHTvQOjTvuNpI/3UvQAQAA8CoIOwAASJLhcEQ7mrr1zMFYuPHy8R5ZK+VmeHXdgiJdV1OkvAyvPvnrnQqFo/J6XFo5rzDZzQYAAJj2CDsAAJhkdU1d2toQ0Mq5BcrN9OrPBzr0zMF2bW3o1GAoIo/LaFl1vj5180K9YWGxllTkyj1m9EZJTnrs+nmFLP8KAABwDgg7AACYRH/a06q/2VinUMSO2z+vKEvvWlGp62qKtXJegfzp3jO+x/LZ+YQcAAAA54GwAwCAi6itd0hbGgLa2tCpbQ0BNXT0jzt+26Wl+uIbL1FVQWaSWggAAOB8hB0AALwGbX1D2tbQqa0NAW1pCKihPRZu+NM8umpuga5fWKSfP39EkUis5sba6+cTdAAAAEwywg4AAF5FoubGvELNLszUtoZObWno0NaGTtW3BSVJ2fFw4z1XVumaeUW6ZFZOou7GX7yugpobAAAAU4iwAwCAs3jmYLs++OMXFIpYGUmjlTeyfG5dObdAdy2v1DXzCnXprBx53K4J34OaGwAAAFOLsAMAgDGiUas9Lb16+kC7nj7Qru2NnYrGEw4r6fqaYn3ylhotqcg9Y7gBAACA5CLsAACkvM7+ET1zMBZu/PlAhzqCw5KkS2fl6K1LK/TgrhZForGaG5+4uUZXVDNKAwAAYDoj7AAApJxI1Oqlo916en+7njrQrl1Hu2WtlJfp1fU1xbphYbHesLBIJf50SdKalbOpuQEAADCDEHYAAByvrqlLm/a2yhipKTCgZw52qGcwJGOkpVV5+sTqGt2wsFiXV+YlioqORc0NAACAmYWwAwDgSNZa7TvRpx8/26hfbz+SKCyam+HVzYtLtaq2WNctKFJ+li+p7QQAAMDFR9gBAHCMSNRqe2OnHtvTqsf2nNCRzsFxx11G+vAb5urem2qS1EIAAABMBcIOAMCMNhSKaPPBDj2254T+tLdNnf0j8rldunZBoT62aoGK/Wm69+c7FArHCoxeM78o2U0GAADAJCPsAADMOD0DIT2xv1WPvtyqpw+0azAUkT/No5sWl+jWS8p0Q22xstNO/ojbeM9KCowCAACkEMIOAMC0V9fUpcf3nFA4YrX3RK+2NnQqErUq8afpHcsrdOslZVo5r1A+j2vC6ykwCgAAkFoIOwAA04q1Vm19w9p/ok8HWvv0XH2HntzfnigwWpGXro9cP0+3Xlqmyyty5Zpg9RQAAACkNsIOAEDS9AyEtL+1T/tb+3TgRPyxtU/dA6HEOVk+dyLocBnp7qtn6+M3LkhOgwEAADAjEHYAACZVXVOXNh9sV3luuowxOtDap/2tQR040acTvUOJ8/xpHtWW+XXnknLVlvq1sNSv2jK/Dnf0a80PtyYKjK6cV5jEbwMAAICZgLADAHDRWGt1vGdIe4/3am9Lr7YcCmhLQyAxMkOSfB6Xakqy9foFhbFQo8yv2lJ/Igw5VUGWjwKjAAAAOC+EHQCACzIUiuhAa5/2tvRqb0vscd+JPvUMnpyCkpvhHTcF5YPXztXn71ws93nW2aDAKAAAAM4HYQcA4Kzqmrr0p72tKsj0KRSNJoKNhvagovEkI9PnVm2ZX2+8vFyLy3N0SblftWU52n+ib9wUlDuWlJ930AEAAACcL8IOAMCEjnQO6HtPH9IvtjWPm4ZSkZehxeU5uvOyMi0uz9Hi8hxVF2ROuCrK8tn5TEEBAADAlCPsAAAktPcN66Fdx/XAS8e1o7l73DGXke69cYE+dWvteb0nU1AAAAAw1Qg7ACDF9Q6F9MjLJ/SHl47r2foORa20qMyvf7i9VnMLs/TJX+9MTEO5obYk2c0FAAAAXhVhBwCkoKFQRJv2tumBl47pyf3tGglHVV2QqY+tWqA3L52lhaX+xLklOelMQwEAAMCMQtgBAA5X19SlrQ0BXTknX/0jEf1h53E9tqdVweGwiv1pWnN1td78ullaWpU34dKvTEMBAADATEPYAQAOtq0hoL/80fMaiUQT+/zpHr1xSbnevHSWVs4rZHUUAAAAOA5hBwA4TFvfkJ7a364n97Vp0962cUHH25bO0j/fdbnSPO4kthAAAACYXIQdADDDRaNWu4716Il9bXpyX5t2H+uRJJXmpOmGhUV66kC7olErr8el910zh6ADAAAAjkfYAQAzUO9QSM8c6NAT+9r09IE2dQRH5DLSFdX5+sytC3XjohJdUp4jY0yiZgcFRgEAAJAqCDsAYJqLhRUdqszL1IneIT25v03bG7sUjlrlZnh1w8Ji3bSoRNcvLFZBlu+06ykwCgAAgFRD2AEA09TgSET/vbVR33hkvyJRm9i/qMyvD18/TzctKtEVVXnyuF1JbCUAAAAw/RB2AMA0Ya3VofZ+PbW/TU8faNe2w50aCZ8sLmokrb1hnj5/x+LkNRIAAACYAQg7ACCJBkbCeq4+oKcOtOmp/e062jUoSVpQkq33r5ytWXnp+uYj+xWKROX1uHTrJWVJbjEAAAAw/RF2AMAUstaqvi2op/a36+kD7Xr+cKdGIlFl+tx6/fwiffSG+bphYbGqCjIT17yuKp8CowAAAMB5IOwAgEn2bH2Hfrv9iIIjEe053qtj3bHRGzUl2frA62drVW2JVszJP+OSsBQYBQAAAM4PYQcATIK23iE9vrdVv607qhebuxP7r5qTr4/fuEA31BarIi8jiS0EAAAAnIuwAwBeo9GlYavyM3Wka1CP72nVziOxgCMv0ysjyUpyG+mG2hLdfXV1UtsLAAAAOB1hBwBcoN6hkH75fPNpS8O+rjJXn7l1oW65pEzBoZDW/GibQuFYgdGV8wqT2GIAAAAgNRB2AMCriI3cCGjJrFwNR6La1hDQtsOdeuV4j8ZkHDKSPnrDfH32jkXjrt94z0oKjAIAAABTiLADACYQjVodDvTrgZ3H9e9P1o8bueHzuHRFVZ7uvalGBVle/fPD+xJLw958Selp70WBUQAAAGBqEXYASGl1TV3acqhDswszFbXS7qM92n2sR68c71VwODzuXCPp3VdW6StvvlTp3pMrpyypyGPkBgAAADCNEHYASEnD4Yh+/GyjvvnIfkXs+FEbl5Tn6G1XVGhJZa48LqMv/M/uRM2Nd66oGhd0SIzcAAAAAKYbwg4AKWMkHNXm+nY9uKtFj7/Sqr4xIzeMpPdfM0dffNNied2ucdfNLsxi5AYAAAAwgxB2AHC05w8H9KvtR9QZHFFdU5d6h8LKSffo9svKVFvm17ce258YtfHmpbNOCzokRm4AAAAAMw1hBwBHOtI5oH/90wH9bsexxL5VC4v1gdfP0bULiuTzxEKNK6rzGbUBAAAAOAxhBwDHGAlH9fieVv3yhWZtru+QxiwL6zbSlXMLdOOiknHXMGoDAAAAcB7CDgAzWl1Tl/64u0XtwWFtPtihQP+IKvIy9PerF2pxuV9/98sXE9NUVs4rTHZzAQAAAEwBwg4AM04karXzSLd+vq1J9+84lhjAcfXcfH1r1et0fU2x3C4jSdp4z0qmqQAAAAAphrADwLRW19SlrQ0BXTYrR92DIT25r01PH2hX10BIxpycqeI20vULS3RjLdNUAAAAgFRH2AEgqUbDjLEjLwZGwqpvC+qxPa363lOHFImeLL6Rn+nVqtoS3bioRHnpXq392XamqQAAAAAYh7ADQNLUNXXp7h9s1Ug4KpfLaGlVnlp7h3S0a/C0c42ku6+u1j++5bLEFBWJaSoAAAAATkfYAWBKWWu170SfHnn5hH6+rUnD4aikWB2O5kC/Vs4v0rtXVKmm1K+RSET/8NtdiZEbb19WOS7okJimAgAAAOB0hB0AJlVdU5e2HOpQQVaamgL9euSVE2oKDMgYaVGpX10DIUWtlc/j0vf/csVpwUVFXiYjNwAAAACcF8IOAK9JoubG3AItKPHrWPegjncP6lj3oHY0d+kPLx3XaMkNt0u6bkGxPnrDfOVq+3QAACAASURBVN28uFTF/rQJa3aMxcgNAAAAAOeLsAPAebPW6lB7UL964Yh+tPmwxtQPHcdtTOKYy0gfX7VAn7q1dtw5hBkAAAAALjbCDgBnFRt50aE5hVnqHQpry6GAtjQE1N43PO48I2lVbbHeuaJKs/IyVJGXoaZAv973o22Jmhs3nLIsLAAAAABMBsIOABPqGwrpJ8816tuPH1TEnhy6UeJP0+vnF+qaeYXyp3v06d+8lAgz7r2pZtwojWJ/GqulAAAAAJhyhB1AihtbM6Mgy6dNe1v1xL42PX+4U+Ex81OMpA9eN1dffONiGXNyRZSy3AxqbgAAAACYVgg7gBQViVo99soJfeKXLyoUiYUao9HGwtJs3fOGearMz9DXHtqTGLlx55LycUGHRJgBAAAAYPoh7AAc7ol9rXr05RPKy/Qpaq0OdwyoMdCv5sCARiLRcefevLhEX/6LS1VVkJnYt7g8h2koAAAAAGYUwg7AoY50DuhL//uyntzfntjndRvNK8rW/OIsrV5cIpekH21uVCQaG7nxN6sWjAs6JEZuAAAAAJh5CDsAhznePaj/90S9frP9iKxitTasYku/fmJ1je69qWbc+TdfUsbIDQAAAACOQtgBOERb75C++2S9fvH8EVlZ3X11ta6vKda9v9iRqLlxzfyi065j5AYAAAAApyHsAGa4J/e16j+eOqSdR7oVtdI7l1fq3psWqDI/Nh2FpV8BAAAApBrCDmAGCkei2lzfof/afFh/PtghSXIbo39771K98fJZ485l5AYAAACAVEPYAcwQ1lq9fKxX9794VH946bg6giNK87jGnqHGwEDS2gcAAAAA0wVhBzCN1TV16dFXTig4FNK2w5061N4vn9ul1YtL9NYrKpSb4dFf3fdCoibHynmFyW4yAAAAACQdYQcwjdQ1duqhl0/I5zba29KrPx/okI0fW1zu19ffvkR3Xlau3Exv4hpqcgAAAADAeIQdQBLVNXVpa0NAV87J13OHAvrOpoOy8XQjzeNKBB0uI73p8ll671XVp70HNTkAAAAAYDzCDiBJ6pq6tOYHWzUcjiZCjVEuI71jeYXu33GMKSoAAAAAcJ4mLewwxlRJ+qmkUklW0gZr7XeMMQWSfiVpjqRGSe+y1nZNVjuA6WrT3lYNhaOJ16sWFmnr4c5EuPGOZVV6x7IqpqgAAAAAwHmazJEdYUmfttbuMMb4JdUZYx6X9FeSNllr/9kY8zlJn5P02UlsBzDt1Lf16Td1RyTFRnH4PC797eqF+lvptHCDkAMAAAAAzs+khR3W2hZJLfHnfcaYvZIqJL1F0qr4aT+R9JQIO5BCthwK6CP/vV0+j0vfeMcSdQRHCDcAAAAA4CKakpodxpg5kq6QtE1SaTwIkaQTik1zAVLC/TuO6rO/26XZhVm676+uVFVBZrKbBAAAAACOM+lhhzEmW9LvJP29tbbXGJM4Zq21xphTazOOXrdW0lpJqq4+fQUKYCax1uo7mw7qX/90UK+fX6jvvW+5cjO8r34hAAAAAOC8TWrYYYzxKhZ0bLTW3h/f3WqMKbfWthhjyiW1TXSttXaDpA2StGLFigkDEWC6q2vq0rP1Hapr6tTTBzr0jmWV+vrbl8jncSW7aQAAAADgWJO5GouR9CNJe621/zLm0AOSPiDpn+OP/ztZbQCSaXRp2dEVV95zZZW+/vYlGju6CQAAAABw8U3myI5rJf2lpN3GmJ3xfV9QLOT4tTHmQ5KaJL1rEtsAJM3WhkAi6HAZqaogk6ADAAAAAKbAZK7GslnSmX6zWz1ZnwtMF9bGZl8ZxZaWXTmvMLkNAgAAAIAUMSWrsQCpJhAc1n3PNmpeUZbetqxCr59fxJKyAAAAADBFCDuASfDlB15R71BIGz98tRaV5SS7OQAAAACQUgg7gIuorqlLP32uUQ/uatGnb1lI0AEAAAAASUDYAVwkdU1duvsHWzUcjsoY6ep5BcluEgAAAACkJFeyGwA4xdaGgEbiq68YSS80diW3QQAAAACQogg7gItkSUWubPw5q68AAAAAQPIwjQW4SPa29EqS3n/NbL1laQWrrwAAAABAkhB2ABdBKBLVj59r1DXzCvWPb7ks2c0BAAAAgJTGNBbgInh4d4taeob04evnJrspAAAAAJDyCDuA18haqx8+c1jzirO0amFJspsDAAAAACmPsAN4jZ4/3Kndx3r0oevmyuUyyW4OAAAAAKQ8wg7gNfrh5sPKz/TqHcsqk90UAAAAAIAIO4DX5MFdx/X4nlbdvLhE6V53spsDAAAAABBhB3DB6ho79Xe/eFGS9MBLLapr6kpyiwAAAAAAEmEHcMH+4+lDitrY83Akqq0NgeQ2CAAAAAAgSfIkuwHATPTysR49vb9dLiOZ/8/encfXddX33v+so8mSLc+Oowyy4kzO5CS2oYYQSHAcEygJlBACaqAMVzxt2t5C0z60aiH0uerlckmhtBQwQyFUIZQEQgq4TnBGIA6xQ3Cc0Y4jK7blIZI8SraGs54/zrEiO5YsOzpnS0ef9+u1XzraZ0vnp7C8xflqrd8CSopTLJw9LemyJEmSJEkYdkjHbO+BHv7s+79l2oRSPveeuTy9ZTcLZ09j/qwpSZcmSZIkScKwQzomqze28+m71tL08j6+X7eQhbOncfnZJyRdliRJkiSpH8MOaYhWb2zn+qWP0N0bKU4FSopseSNJkiRJI5Hv1qQhWrmhle7eTEfSGKMNSSVJkiRphDLskIbowlMnAzYklSRJkqSRzmUs0hDtO9ADwHWvO4XrFlTbkFSSJEmSRijDDmmIHnhuBxPKivn/rrmA0mInRUmSJEnSSOU7NmkIYow8+Nx2LjljmkGHJEmSJI1wvmuThmDd9r1s2bWfy9xmVpIkSZJGPMMOaQgeeG47AJedPSPhSiRJkiRJR2PYIQ3BA8/t4OyZlVRNKk+6FEmSJEnSURh2SEex90APjzW1OatDkiRJkkYJww7pKH69/mW6eyNvMeyQJEmSpFHBsEM6igee38H40iIWzJqadCmSJEmSpCEw7JAGkdlydgeXnDHdLWclSZIkaZTw3Zs0iLuf2MLmnZ3Mnj4+6VIkSZIkSUNk2CENYPXGdv7yh78D4N9/3cTqje0JVyRJkiRJGgrDDmkAKze00pOOAPT0plm5oTXhiiRJkiRJQ2HYIQ2gZloFAAEoKU6xcPa0ZAuSJEmSJA1JcdIFSCPV89v2AvDxt8xm8bknMn/WlIQrkiRJkiQNhWGHdAQxRu56YjOXnDGNT111TtLlSJIkSZKOgctYpCN4vLmdja0dvPviU5IuRZIkSZJ0jAw7pCP40eObGVeS4m3nn5h0KZIkSZKkY2TYIR2mqyfNT9e0cOW5JzKhzJVekiRJkjTaGHZIh7n/ue3s6uzm3fNOTroUSZIkSdJxMOyQDvPjxzczfUIZl54xPelSJEmSJEnHwbBD6ueh53Zw79PbWHjaVIqL/OchSZIkSaOR7+akrNUb2/norY/RGyP3PLON1Rvbky5JkiRJknQcDDukrJUbWunujQD09qZZuaE14YokSZIkScfDsEPKWnjaVAACUFKcYuHsackWJEmSJEk6Lu6rKWVNGV8KwJXnzaTuzaczf9aUhCuSJEmSJB0Pww4p64mXdgLwicVnMefEiQlXI0mSJEk6Xi5jkbJ+27yT8aVFnHlCZdKlSJIkSZJeA8MOKeuJl3Yy95TJFKVC0qVIkiRJkl4Dww4J2N/dyzMtu7m4enLSpUiSJEmSXiPDDglYu3kXPenIxdU2JZUkSZKk0c6wQyLTrwPgolOd2SFJkiRJo51hh0SmX8cpU8qZUVmWdCmSJEmSpNfIsEMCftvc7qwOSZIkSSoQxxx2hBDGhRDem4tipCRs272fLbv2269DkiRJkgrEkMKOEEJRCOHtIYTvARuB9+W2LCl/7NchSZIkSYVl0LAjhPCWEMLXgSbgo8Bi4LQY47V5qE3Kiyde2smNp/2Ii7qvg23fSrocSZIkSdJrVDzQEyGETUAz8FXgphjjnhDCizHGjrxVJ+XBlL23UveRbxOKgN5fwDZg5keTLkuSJEmSdJwGm9lxB3ASmSUr7wwhjAdiXqqS8qSnN835k38BRWT+NaSAjjsTrkqSJEmS9FoMGHbEGP8COA24BbgMeA6YEUK4LoQwIT/lSbn1/La9/G79bEIv0AukgYr3JFyVJEmSJOm1GLRnR8y4P8ZYRyb4eD9wDZkeHtKot6rpZ1x4+jrisjJougLavukSFkmSJEka5Qbs2XG4GGM38FPgpyGE8tyVJOXHsy3Lee+CP2JcURcxHXju5ZuYM3NJ0mVJkiRJkl6jIW09e7gYY+dwFyLlW3vHvZQU9WQak6Yyn0uSJEmSRr/jCjukQjCpYjHp3hT0QndvMVMqFiddkiRJkiRpGBh2aMwaV3wJ9/37G+l+YAJNO37MnCqXsEiSJElSIRgw7AghTA8hfCaE8OchhAkhhK+GENaGEH4SQjgjn0VKufD8tr3M2dxC58YrOfvkdyRdjiRJkiRpmAw2s+M2oAw4E/gNsAG4lkyT0m/mvjQpt7Y1PUNNahvjzl6UdCmSJEmSpGE02G4sM2OMfxtCCMDGGOP/zZ5/NoRwYx5qk3KqtPnBzMez7dUhSZIkSYVksJkdvQAxxgi8fNhz6ZxVJOXJqW2P0Fp0AkxzVZYkSZIkFZLBZnbMDiHcDYR+j8l+flrOK5NyqKuri7nda3hx5mKmhZB0OZIkSZKkYTRY2HFNv8dfOOy5wz+XRpXWX36bqtBBybTqpEuRJEmSJA2zAcOOGOODACGERcCvY4ydeatKyqWXfsPMh+uJEeY8/w146Wo49fVJVyVJkiRJGiaD9ew46IPA70IIK0MI/zeE8M4QwpRcFyblTNPDhNhDCBDS3dD0cNIVSZIkSZKG0WDLWACIMX4IIIRwEpmtZ78CnDSUr5VGpJpLgUyX3VRRad/nkiRJkqTCcNTAIoTwh8ClwAVkdmX5V8A/hWv0mnk+AXi2fD7nfOBzLmGRJEmSpAIzlNkZXwJeAL4G3B9jbMppRVKO7d/+AuOAF6v/gHMMOiRJkiSp4By1Z0eMcTrwEWAc0BBC+E0I4Xs5r0zKkW0vPgXApJPPTrgSSZIkSVIuHDXsCCFMBKqBWUANMIlMuwNpVNq95VkAqk4/P+FKJEmSJEm5MJTdWH4JvBNYA7wvxnj2waalgwkhfDuEsD2EsLbfuZtDCJtDCE9kj7cff+nS8el9eT0vx0lUnzgz6VIkSZIkSTkwlN1Y5h7n9/4OmWamtx52/osxxi8c5/eUXrNxu5vYVnwy04uGkvVJkiRJkkabnL3bizE+BLTl6vtLx2vagU3snVCddBmSJEmSpBxJ4k/bfxpCWJNd5jIlgdfXGLZ7dzszaCdOPT3pUiRJkiRJOZLvsOOrwOnARUALcMtAF4YQ6kIIq0IIq3bs2JGv+lTgNr3wNADjq85KuBJJkiRJUq4MGHaEEGZnZ1/8rxDChBDCN0IIa0MIPwwh1BzPi8UYt8UYe2OMaeAbwOsHuXZpjHFBjHHBjBkzjuflpFdpa34GgBmzzk24EkmSJElSrgw2s+M7wGPAXmAl8CxwFfDfwLeP58VCCFX9Pn03sHaga6VcaM2GHVtSVUe5UpIkSZI0Wg0WdlTGGL8aY/wcMDHGeEuM8aUY47eAo/baCCF8H3gEODuEsCmE8FHg8yGEJ0MIa4DLgU8Mxw8hDcXqje10bV/HtjiZD9y6ltUb25MuSZIkSZKUA4NtPZsOIZwFTAIqQggLYoyrQghnAEVH+8Yxxvcf4fS3jrNO6TVbuaGV14WtNMUT6e5Js3JDK/Nn2SNXkiRJkgrNYGHHXwP/BaSBdwF/E0K4EJgI/I881CYNq4Wzp1H9wFbu672YkuIUC2dPS7okSZIkSVIODBh2xBhXAGf3O/XLEMJ0oD3G2JvzyqRhNn9mEYRd9Ew+jcb3LnRWhyRJkiQVqGPdevafDDo0Wh3Yvh6AqdXnGHRIkiRJUgEbcGZHCOHuw08Bl4cQJgPEGK/OZWHScNu/7XnKgN4ps5MuRZIkSZKUQ4P17DgFeBr4JhDJhB0LgFvyUJc07Lp3ZGZ2pKYZdkiSJElSIRtsGcsCYDVQD+yKMT4AdMYYH4wxPpiP4qThFF9+gZY4lYmVk5IuRZIkSZKUQ4M1KE0DXwwh/DD7cdtg10sjXfGuF1mfPpHJFSVJlyJJkiRJyqGjhhcxxk3Ae0MI7wB2574kKTfK9zTxYryIS8sNOyRJkiSpkA15N5YY489ijH+by2KknOncybiudpqiMzskSZIkqdAd69az0ujU9gIAzVQxoczVWJIkSZJUyAw7NDa0vQhAa9mphBASLkaSJEmSlEuGHRobNj5BOsKe0qqkK5EkSZIk5Zhhh8aGX/2QznQpF7f9JulKJEmSJEk5ZtihwlZeDqcWQ0kLFakubh735czn5eVJVyZJkiRJyhHDDhW2DRvgmvkQIAQoDr3wrvnw4otJVyZJkiRJyhHDDhW2qipInQgh0BsD6XQKQjWceGLSlUmSJEmScsQ9OFX42vbCVLir9xJ695/NdZuakq5IkiRJkpRDzuxQ4fur/wHAV3rfxf73/Dn86EcJFyRJkiRJyiXDDhW+1vXEkOKleAKTykuSrkaSJEmSlGOGHSp8rS9wYMIpdFPM5IrSpKuRJEmSJOWYYYcKX9sL7B0/C4DJzuyQJEmSpIJn2KHCFiO0bqC9vBqAKc7skCRJkqSCZ9ihwrZ3O3TtYUfJyQBMqnBmhyRJkiQVOsMOFba2FwBoKTqZVIDKMndbliRJkqRC5zs/FbbWTNixkSomlQdSqZBwQZIkSZKkXHNmhwpb2wuQKmFj71R3YpEkSZKkMcKwQ4WtdT1MqaGtM80kd2KRJEmSpDHBsEOFrXUDTDudXZ3dTLY5qSRJkiSNCYYdKlzpNLRtgGlnsLOjm8nO7JAkSZKkMcGwQ4VrTwv0dMLU2bR3dNmzQ5IkSZLGCMMOFa7W9QD0TpnNnv09LmORJEmSpDHCsEOFqy2z7eye8TUALmORJEmSpDHCsEOFq/UFKB5HW9E0AJexSJIkSdIYYdihwtW2AabOZuf+XgAmuYxFkiRJksYEww4Vrtb1mW1nO7oBl7FIkiRJ0lhh2KHClO6F9iaYejo7O7sAl7FIkiRJ0lhh2KHCtOsl6O2Caaez05kdkiRJkjSmGHaoMLVmdmJh6ithx0TDDkmSJEkaEww7VJhefDzzMT2RXZ3dTBxXTFEqJFuTJEmSJCkvDDtUmFbcCj0RvvRZdnZ02a9DkiRJksaQ4qQLkIZVeTlM74YPV0AAKu9h6rJpTAnnAJcnXZ0kSZIkKQ+c2aHCsmEDXDM/E3SEACmoqdrLpN+bn3RlkiRJkqQ8MexQYamqgtSpmccxQhpWxvOZPHlCsnVJkiRJkvLGsEOFZ1MvEGDGPNj7Nn6dPovJFe7EIkmSJEljhWGHCs9/fCuzjGXB+0h/8QfsKh7HZLedlSRJkqQxw7BDhaejLfOxYhp79vcQI0xyNxZJkiRJGjMMO1R4OlozHyumsrOzC8CZHZIkSZI0hhh2qPB0vjKzY2dHN4A9OyRJkiRpDDHsUOHpm9kxjZ2dhh2SJEmSNNYYdqjw9A87OjLLWCaV27NDkiRJksYKww4Vno5WKB4HJRXsys7smOLMDkmSJEkaMww7VHg6WqF8KoTQ17Njkg1KJUmSJGnMMOxQ4elog4ppALR3dFFZVkxxkUNdkiRJksYK3wGq8HS0QsVUGhsbue1736ds2yZed+qpNDY2Jl2ZJEmSJCkPDDtypLGxkZqaGlKpFDU1Nb7RzqeONpp27KWuro5ppZNIFZVwZXoCdXV1/u8gSZIkSWOAYUcONDY2UldXR0tPBZULr6Olu9w32vnU0cop9z3CQ5OraTlpDtsnTOXO6xt4aHI177nhhqSrkyRJkiTlmGFHDtTX19MzuZoTaz/P5EtrmXl9Az2Tq6mvr0+6tMKX7oXOdv65I/Ivpy8ghgAh0J0q4mvVF3BajElXKEmSJEnKMcOOHGhubmZc9QUAhJAipIoYV30Bzc3NCVc2BnTuBCK7xk2mM1UEIZBK91KS7uWE5icpmzUr6QolSZIkSTlWnHQBhai6upqW5ieBSIwQ073sb36S6urqpEsrfB2tAFz5rutZ+eAMKndtp+uJZfxB85O8fuvznHvrrQkXKEmSJEnKNWd25EBDQwPFO5vp2t5Ez86tbLu9nuKdzTQ0NCRdWuHLhh0XvOkq1s26kD2bVrPu0Tu4raSTvbfeSm1tbcIFSpIkSZJyzZkdOXDwDXX9PVs40NlNVUknDUuX+kY7H7Jhx8NbIpHA8m/8b84+8V8TLkqSJEmSlE+GHTlSW1vLw+nVvLBjL/fe2pR0OYWvtRVqa+Fvrwbg5+u7OOOESZw1c0LChUmSJEmS8s2wI4cqSovo6OpNuoyx4TvfgeXL4S0VANz/Ug8fX1RFCCHZuiRJkiRJeWfPjhwqLy2is9uwI+dihC9+MfP4sYfpTo2jM5bx+3Orkq1LkiRJkpQIw44cyszs6Em6jML38MOwa1fmceoAO+ME5pxYyRknVCZblyRJkiQpEYYdOVReWsz+7jTpdEy6lML2pS/Bvn0A7C9PsbV3Ar8/26BDkiRJksYqw44cqigtAnApy3C65hoI4dDjZz/LLGUBdsyYSnuspOav//zQa665JuHCJUmSJEn5YtiRQwfDDpuUDqN//EeoroZx414519UFwOqT5tAzoZj2OIGb3vEJVp80J/P8rFmZr5MkSZIkjQmGHTlUUZrZ7KbTsGP4nHcePP00XH01VFQc8tTK6guYGvbQxkS6U0WsnDU3c91TT2W+TpIkSZI0Jhh25FDfzI5um5QOq/Hj4Qc/gFtugbKyvtMLX1rDpNBBe5xASbqXhVNS8JOfZK6XJEmSJI0Zhh05VO4yltyaN++QsGN++/MATGzbQ+Mdn2F+x9akKpMkSZIkJciwI4cqSrINSg07cmPVKujuzjwOgZ7pmRkcJ2/bwfwdL8B11yVYnCRJkiQpKYYdOXSwZ4czO3Lk4YehszPTrLS6mgP/UA9AuiuVOf/wwwkXKEmSJElKgmFHDr2yjMWeHTnx6KNQVJTZVvapp+g670wAwqlnZs4/+mjCBUqSJEmSkmDYkUNuPZtj55wDS5fC7bfD+PF0790BQNEHP545P2dOwgVKkiRJkpJQnHQBhcywI8d+9rNDPo17WwEonjAdPvKRzCFJkiRJGnOc2ZFDB5exdLqMJS/S+15mbxxHeXlF0qVIkiRJkhJk2JFDpUUpilLBmR350tlOe6zsC5kkSZIkSWNTzsKOEMK3QwjbQwhr+52bGkK4N4SwLvtxSq5efyQIIVBRUmTYkSepzlbaqGR8mauzJEmSJGksy+XMju8Abzvs3KeAFTHGM4EV2c8LWkVZEZ2GHXlRfCAzs6PCmR2SJEmSNKblLOyIMT4EtB12+hrgu9nH3wXelavXHykqSovp6DbsyIeSA+20M4Hxpc7skCRJkqSxLN/vCmfGGFuyj7cCM4fyRc899xyXXXZZzorKpSc37eLZ4hRPfr0y6VIKXnrjerand3DCQ4tJhZB0OZIkSZKkhCTWoDTGGIE40PMhhLoQwqoQwqru7u48Vja8UqlAOg74Y2q4xEgq9tJDkUGHJEmSJI1x+Z7ZsS2EUBVjbAkhVAHbB7owxrgUWAqwYMGC+MADD+SpxOF1w7ceZc/+Hu668ZKkSylse7bCLWfzD3yAT998S9LVSJIkSZJyIAzxj9v5ntlxN/Ch7OMPAT/J8+vnXUWpDUrzoiPTHqazeHLChUiSJEmSkpbLrWe/DzwCnB1C2BRC+CjwOWBxCGEdcEX284JWUVrMvq6epMsofB2tAOw37JAkSZKkMS9ny1hijO8f4KlFuXrNkajcmR35kQ07usoMOyRJkiRprEusQelYUVFSRIdhR+71hR1TEy5EkiRJkpQ0w44cqygtorO7l3TaHVlyKtuzI45zZockSZIkjXWGHTlWXppZKbS/x9kdOdXRyt50GWVl5UlXIkmSJElKmGFHjo0vKwJwKUsONTY2sqzxG7THCay46w4aGxuTLkmSJEmSlKCcNShVRnlJJuywSWluNDY2UldXx8b6Xspe18ufd/+aurp/BqC2tjbh6iRJkiRJSXBmR45VZJexOLMjN95zww3su2I/0286wIS37uKP/+FB9l2xn/fccEPSpUmSJEmSEmLYkWMVpQeXsfQkXEmBuPlmCKHvmB0jW94eiEUQioAi2PL2wGkxHnIdIWS+VpIkSZJU8Aw7cqy81GUsw+rmmyHGvqN01iye/3mENMReoBee+3mkbNasQ64jRsMOSZIkSRoj7NmRY6/M7DDsyIWGhgb2fPiDhO9WsGHWDH511wQm/vQZGm5tSLo0SZIkSVJCnNmRY31hR7dhRy7U1tbS/Y0vw6Zilj7wHv5+zVnsvfVWm5NKkiRJ0hjmzI4cKz/YoPSAPTty5Q+WvBm+Bu2xkm8t/SqLzpmZdEmSJEmSpAQ5syPHKkpcxpJzHa0AtMXKvt1vJEmSJEljl2FHjvU1KHUZS+5kw452JjC+rCjhYiRJkiRJSTPsyLGy4hSp4NazOdXRBmSWsRzskSJJkiRJGrsMO3IshMD40mKXseRSdmbHTia4jEWSJEmSZNiRD+WlRXQaduRORysHiifSSxHjDTskSZIkacwz7MiDitIiZ3bkUkcrnSWTgVd6pEiSJEmSxi7DjjwodxlLbnW0sq9oEiVFgdJih7QkSZIkjXW+M8yDitIiOrttUJozHa3sSU20X4ckSZIkCTDsyAuXseRYRxu7U5MY7xIWSZIkSRKGHXlRXmKD0pyJETpa2RUqqShzZockSZIkybAjL5zZkUPdHdCzn7ZYSYUzOyRJkiRJGHbkhQ1Kc6ijR1xApwAAIABJREFUFYC2tGGHJEmSJCnDsCMPMjM7bFCaE9mwY0ecwHgblEqSJEmSMOzIi8xuLL3EGJMupfB0tAGwo2e8PTskSZIkSYBhR15UlBYTI+zvTiddSuHJhh0tPeOpKHEZiyRJkiTJsCMvDvaScClLDmSXsbR0jaeizLBDkiRJkmTYkRflfWGHTUqHXUcrMaTY1l1mzw5JkiRJEmDYkRcHZ3Z0dht2DLuOViifSk86OLNDkiRJkgQYduRFhTM7cqejlfS4KQD27JAkSZIkAYYdeVFeklleYc+OHOhopedg2OFuLJIkSZIkDDvyom8ZizM7hl9HG91lmbDDnh2SJEmSJDDsyAuXseRQRyv7Sw7O7HAZiyRJkiTJsCMvyp3ZkRsxZsOOyYA9OyRJkiRJGYYdeVBRas+OnDiwB9Ld7CuaBMB4e3ZIkiRJkjDsyIuDy1j2ObNjeHW0ArCvOBN2HPzvLEmSJEka2ww78qCsOEUquIxl2HW0AbA7OLNDkiRJkvQKw448CCFQUVpsg9Lhlp3ZsStUAq/0RpEkSZIkjW2GHXlSXlpEZ7c9O4ZVNuxojxMBG5RKkiRJkjIMO/KkorTImR3DLRt2tDGBsuIUxUUOZ0mSJEmSYUfelJcYdgy7jlZIFdPeM87mpJIkSZKkPoYdeVJRWmSD0uHW0QoV09jX3du3va8kSZIkSYYdeZJpUGrPjmGVDTs6DvQyvsyZHZIkSZKkDMOOPCm3Z8fw62jLhB3O7JAkSZIk9WPYkScVpUV0dht2DKuOVqiYSseBHnt2SJIkSZL6GHbkibux5MDBnh1dzuyQJEmSJL3CsCNPykuKbVA6nNJp6MwuY+nqsWeHJEmSJKmPYUeejC8rYl9XDzHGpEspDPt3QkxD+VQ6nNkhSZIkSerHsCNPykuLiBEO9KSTLqUwdLRlPlZMs2eHJEmSJOkQhh15UlGSeTNu345h0tEKQLp8Kh3dvYw37JAkSZIkZRl25MnBZRYdXT0JV1IgsmFHV9lkYoSKMpexSJIkSZIyDDvypDw788AmpcOkM7OMpaN4MoAzOyRJkiRJfQw78uRgTwmXsQyT7MyOfalM2FFug1JJkiRJUpZhR56UG3YMr45WKCpjbywFnNkhSZIkSXqFYUeeHOzZ0dltz45h0dGa2YmlOxMe2bNDkiRJknSQYUeeuIxlmHW0ZcKO7H9PZ3ZIkiRJkg4y7MiTcreeHV6lT8LcF5iy93vAK8uEJEmSJEky7MiTCndjGT7bvgVXPwVv2Mp55/8l18+6h/E2KJUkSZIkZRl25MnBnh3O7BgGHXdCEZnRm4KrZj9CRZkzOyRJkiRJGYYdeTKuJEUI0NFlg9LXrOI90EvmSMOyDW9wZockSZIkqY9hR57cdtttxK79NPyfL1BTU0NjY2PSJY1eMz8Kbd+E5qv4xS//F7dvvLKvJ4okSZIkSYYdedDY2EhdXR0XnryWmz6+heq5UFdXZ+DxWsz8KJz2c37T8W7KS4pIpULSFUmSJEmSRogQY0y6hqNasGBBXLVqVdJlHLeamhqq58LyO1ooKeqhu7eYJddW0bwGmpqaki5vVPvbHz/JPU9tZdXfLU66FEmSJElSjoUQVscYFxztOmd25EFzczOLrqqkpKiH4qI0JUU9LLqqkubm5qRLG/U6u3r7mr9KkiRJkgSGHXlRXV3NimV76O4tpqc3RXdvMSuW7aG6ujrp0ka0xsZGampqSKVSfX1OVm9s5yv3r2f1xnYA9h3o6dvWV5IkSZIkAP8kngcNDQ3U1dXxtuurefvHFvLAg4HVK+5k6dKlSZc2Yh3sczL/ipl85O9fxy9XT+WmHz/LuCcnAYGykhSNH1tIR1evYYckSZIk6RD27MiTxsZG6uvr2Xfh+xg/ex6fndfDh26oTbqsEetIfU7e//XP8sSm8yFkmpG+ZcZ+HnxmC517dlH+6DdpaGigttb/ppIkSZJUqOzZMcLU1tbS1NTE7Z/7JJRN4KT5VyRd0ojW3NzMFe+cfkifk3nj7yLd00Um6ojct7GLC89r539e95g73EiSJEmS+hh25Nmbz5rBtPGl/Pi3m5IuZUSrrq7mocemHNLn5Bd3bSX1wL9w05Kz4ZHvcvGpT3H7jQ389bt+yvI7Wpi/aAb19fVJly5JkiRJSphhR56VFKV454Un8YtntrOrszvpckashoYG1rx4Gh/4+j/QsPQ8llxbxeoVO2j45Me48fIzaH74TuZX/pc73EiSJEmSXsWwIwHvvvhkunrSLHuyJelSRqza2lrOf/Pb+e2aSj5741qa18DSpUv7enJUV1ez4ue73OFGkiRJkvQqhh0JmHvKJKaX9fKpr/3okG1V9YoYIy/3lvP+qy4lnU7T1NR0SPPRhoYGVq/YwZJrq2hYeu4rMz8aGhKsWpIkSZI0Ehh2JOC2225j4wP/ybwFPdz8tYttrnkEm9o72b2/h/NPnnjE52tra1m6dCnNa+CzNz71qpkfkiRJkqSxy61nE1BTU0PN6ytZ9h/P922ruuTaKprXQFNTU9LljQg/f7KFP2l8nLv/9BLmnjI56XIkSZIkSSOAW8+OYM3NzVx+OTbXHMTazbsoTgXOmlmZdCmSJEmSpFHGsCMB1dXVrFi2x+aag1i7ZTdnzqxkXElR0qVIkiRJkkYZw44E9G+u+fm73sn7v/ppHv9V5yHNNRsbG6mpqRkxDUzzWU+MkbWbd3HBAP06JEmSJEkajGFHAg5prvnHT/DE5rm862/+ra+5ZmNjI3V1dVTPhc985bzEG5gebz3HG5C07NpP274uzj950nCUL0mSJEkaY2xQOgL81Q9/x0+e2MJ9N72FU6ZUUFNTw6yLi/jvH2waEQ1Ma2pqqJ4Ly+9oGXI9BwOS+YtmsOiqSlYs28PqFTuGtGPKPU9tpe57q7nzj9/I/FlTcvATSZIkSZJGoxHdoDSE0BRCeDKE8EQIoXBTjCH6xOKzIMAX710HwNauUq768IIR08C0ubmZRVdVHlM99fX1zF80g+V3tFBf9zTL72hh/qIZ1NfXH/X11m7eRSrAuVUuY5EkSZIkHbskl7FcHmO8aCiJTKE7aXI5f/TGGu58fBN/8G+/4sQ//AK/XjdnxDQwPZ6Gqs3NzVxxzczjCmzWbtnNGSdMoLzU5qSSJEmSpGNXnHQByrjk9GksfWgDjzfvJKRSPPSNe1jy0Em8o+4SHvx1KatX/IClS5cmUltDQwN1dXVcd8tfcOnFW3lk/bk8/qt/4utf/qcBv6a6uppfrp5O9w3FQM8xBTZrN+/iTWdMH8afQJIkSZI0liQVdkTgnhBCBL4eY0zmXfwIsnbLblIB0hFSIXDdx/+Se/75Jr7wtRMZf/oCvvb1RUftdZErtbW1HOiFf1hbyaPfeIyKM8/njz79r9TWvnfAr2loaOCT319F7Tcv5/WnruLn31jZ17NjMNt372f7ngM2J5UkSZIkHbeklrG8KcY4D7gKuDGE8ObDLwgh1IUQVoUQVu3YsSP/FebZwtnTKC1OURSgpDjFx/9gEU1NTfx7wydhXCVz3nRVovXNeeMSSBXxg3/8M86tmkhzUdWg19fW1nLG6y7j8eZz+NqvbqD5uQlDak66dssuAMMOSZIkSdJxSyTsiDFuzn7cDvwYeP0RrlkaY1wQY1wwY8aMfJeYd/NnTaHxYwv55JVn0/ixhX27kLzlrBmUFAV+8fS2ROtbvbEdgHmnTuHa+aewZtMunt+2Z8Dru3vT7Ogq7fs5vvHjFUOambJ2825CgHNPsjmpJEmSJOn45D3sCCGMDyFUHnwMXAmszXcdI9H8WVO48fIzDtlutXJcCQtnT+PepMOO5nbOmjmBSRUlXHPRSRSnAneu3jTg9eu27aWrN837XncqJUWhLyw5mm277+eTi+9kU9uK4SpdkiRJkjTGJDGzYybwyxDC74DfAD+LMf53AnWMGovPncmGl/fxwo69ibx+Oh15fGN7XwgzbUIZl519Aj/+7WZ6etNH/JqnsstR5s+awrknTeLx5qOHHc+2LOfv3vFn/PFbvsusaVfzbMvy4fshJEmSJEljRt7DjhjjhhjjhdnjvBhjQ75rGG2uOGcmQGKzO9bv2Mvu/T3Mq35lxsm1809m+54DPLz+5SN+zVNbdjO+tIjTpo1nfvUU1mzaSfcAwchBm9qXHbJVbXvHvcP6c0iSJEmSxoakGpTqGJw0uZzzTpqYWN+OVU2ZWRkLaqb2nXvrnJlMqSjhmw9t4Cv3r3/VMpW1m3dxTtVEUqnAvFmT2d+d5pmW3YO+zmNNc+nuLaanN0V3bzFTKhYP/w8jSZIkSSp4SW09q2N0xTkz+fJ963h57wGmTyjL62uv3tjOtPGl1Eyr6DtXWpxi4expLFu7lUc2tFJanOprrNqbjjzdspvrFpwK0Lf85fGN7cw9ZfIRX2P3/m6+t/IketP/xqJznmFKxWLmVC3J/Q8nSZIkSSo4zuwYJRafO5OLT32Gh9f95ZB6WTQ2NlJTU0MqlaKmpobGxsbjfu3Hm9uZN2sKIYRDzh8MXdIRunvSrNzQCkBT6z46uno5L7ujStWkcqomjWN1884BX+PO1Zvo6Orl6ovewxtO/4JBhyRJkiTpuBl2jBLFqZU0fqyed8796lGbdzY2NlJXV0f1XPjMV86jei7U1dUdV+Dx8t4DvPjyvkN2iDnoXRedxMH4oyQ70wMyS1gAzjtpUt+186qn8PgAO7LEGPneyo1cdOrkAWd+SJIkSZI0VIYdo0R7x71Dbt5ZX1/P/EUzWH5HC/V1T7P8jhbmL5pBfX39Mb/uwYDiSGHH/Jqp/OHCWQB84b0X9l3z1JbdlBalOHPmhL5r582awuadnWzbvf9V3+dX61vZsGMfH3zDrGOuT5IkSZKkwxl2jBJTKhYPuXlnc3Mzi66qPCQcWXRVJc3Nzcf8uqs3tlNSFLjg5ElHfP5P33oGqQDPbd3Td+6pLbuYU1VJSdErw2tedWbGxpFmd9z6SBNTx5fy9guqjrk+SZIkSZIOZ9gxSsypWsLG1rv5+oMf4q/v+KdBe1pUV1dz3z2dh4QjK5btobq6+phfd/XGds4/eRLjSoqO+PzMieN405kz+NHjm0mnIzFG1m7e3dev46DzTppEaXHqkF1bGhsbqTn3Ypav3ULbY//Fnf95+zHXJ0mSJEnS4Qw7RpE5VUsYV/r3/NeamkNmUhyuoaGBNetOovabDdyy/AO893MfZ/WKHTQ0NBzT663dvIzfm72US89YN+h175l3Mpt3drLyxVY2tXeyq7P7kH4dkNm9Ze7Jk3i8ORN2HOwrMudtZ/Enl99Bzbj7jruviCRJkiRJ/YUYY9I1HNWCBQviqlWrki5jRGjde4Df+8cVfPiSGurfce6A17338z/isW2RPU+uoHLuYm6+sIM/uqF2yK/zbMtyZk27mpKiHrp7i9nYeveAs0k6u3p5XcMvWHLeiSw+dyb/z3+s5q4bL+GiUw9tNvq/f/4Mj2/8OZ9YvIUvfH4l+8qmcdcty/teY8m1VTSvgaampiHXKUmSJEkaO0IIq2OMC452nTM7RplpE8p465wT+PFvN9Pdmz7iNTFGtqQnc+WFs7jjX26G4lJOX3jlMb3OsTRELS8t4h0XVLFsbQu/ebGNolRgzomVr7rurJlrufWjf8vrT/sSjf+6ihtqe4alr4gkSZIkSf0ZdoxC711wKi/v7eKB53Yc8fl12/eyeWcnl885gd87bSqlRSkeXvfyMb3GsTREBXjP/FPo6Orl2w8+R+e2F5lz5umvWpIyo/KRQ8KNrrYtw9JXRJIkSZKk/gw7RqHLzp7B9Aml3LH6pSM+f/+z2/uuqygtZkHNFB56/sjByEDmVC3hEz/4Av/+648MuoTloOd/tYzeXVuhuJTY20NLd/mrenCcULnkkHDjtm/vY8m1VTQsPZcl11YdV18RSZIkSZIOZ9gxCpUUpZgzbjfLn9xC8fjJ1NTUHBIq3P/cduacWEnVpHIALj1zBs9u3cP23fuH/BodXT3c8/Rs9uz/q6MGHQB/93f1dDT9DoDSE2Yz8/oGeiZXU19f33fNwR1lHmv6BBtb7+bD776Z5jXw2RufonkNLF26lNraofcVkSRJkiTpSAw7RqHGxkbu/ud65tU8z81L51M9l75ZFHv2d7OqqZ3Lzj6h7/pLz5wOwC/XD30pyzMtu0lHOP+wLWQH0tzcTLpzNzFGQipFSBUxrvqCV/XgmFO1hDec/gXmVC2htraWpqYm0uk0TU1NBh2SJEmSpGFh2DEK1dfXc9HF+2n8WD2fuv4Blt/RwvxFM6ivr+dX61+mJx25/OwZfdefWzWRaeNLj6lvx5ObdgFwwSmTjnJlRnV1NR3rHiX2dBF7e4jpXvY3P2kPDkmSJElS3hl2jELNzc0suqry0J1M3jGZ5uZm7n92B5VlxcybNaXv+lQq8KYzp/PwupdJp4e21fDaLbuZPqGUEyeOG9L1DQ0NFO9sZtvt9ez8ZSPbbq+neGezPTgkSZIkSXln2DEKVVdXs2LZnkOafa5qvYKi8koa73+CPet+w3/e/v1DvubSM2fw8t4DPLt1z5BeY+3mXZx/8iRCCEO6vra2lqVLl1JV0smeR++gqqTTHhySJEmSpEQUJ12Ajl1DQwN1dXUsubaKRVdV8vCqaaybeilXfaaMN81dwb0/2U5d3ecA+sKGg307Hl63g3OP0odjf3cv67bv5YpzZh5TXbW1tYYbkiRJkqTEGXaMQgcDhfr6ej7706dIpVJc9kcpftDwK0qKeviztxazZHMV9fX1fdfOnDiOt523gcBdPNty7aA7rDzdspvedOT8k4fWr0OSJEmSpJHEZSyjVP+dTNLpNJfO33FoD4+rKg/ZCeXZluV88X038ZE3fZtZ067m2ZblA37vpzYfW3NSSZIkSZJGEsOOAnCkHh4rlu05ZCeU9o57DwlD2jvuHfD7Pbl5F1MqSjhp0tCak0qSJEmSNJIYdhSAhoYGVq/YwZJrq2hYei5Lrq1i9Yodh+yEMqVi8SFhSMuu3xvw+z25efcxNSeVJEmSJGkksWdHATi8h0d1dfWrdkKZU7WEZ1vupq3jHv7jkdP47UtTufK8HiaUHToE9nf3sm7bHi4/e3ZefwZJkiRJkoaLMzsKRP8eHk1NTUfcFWVO1RLeePotfOzNtWzd1cn513+KVCpFTU0NjY2NADy3dQ896cgFNieVJEmSJI1SzuwYg555+Od0rFnJG99RzUfe+Xp+cddW6urqAIinvwnAnVgkSZIkSaNWiDEmXcNRLViwIK5atSrpMgpGTU0Ns+aV8N+3N1NS1EN3bzFLrq2ieQ1cf8vdLFu7lSc+vdieHZIkSZKkESWEsDrGuOBo17mMZQxqbm7mrYvHHbI7yxXvnE5zczNPbt7FBTYnlSRJkiSNYoYdY9CRtqpdve8aymddyNqXWvnl3bf19fCQJEmSJGm0sWfHGNTQ0EBdXR1Lrq1i0VWVPPBgiucnnsiVN32AN5z+Y+7ZtYm6um8CHLHRqSRJkiRJI5k9O8aoxsZG6uvraW5uJpVK8aarT2fZ7U2v6uHR1NSUdKmSJEmSJAH27NBR9N+qNp1Oc/ni0kN6eCy6qpLm5uaky5QkSZIk6ZgZduiIPTxWLNtDdXV10qVJkiRJknTM7NmhV/XwWLFsD6tX7GDp0qVJlyZJkiRJ0jEz7FBfE9L6+no++9OnqK6uZunSpTYnlSRJkiSNSjYolSRJkiRJo4INSiVJkiRJ0phk2CFJkiRJkgqKYYckSZIkSSoohh2SJEmSJKmgGHZIkiRJkqSCYtghSZIkSZIKimGHJEmSJEkqKIYdkiRJkiSpoBh2SJIkSZKkgmLYIUmSJEmSCophhyRJkiRJKiiGHZIkSZIkqaAYdkiSJEmSpIJi2CFJkiRJkgqKYYckSZIkSSoohh2SJEmSJKmghBhj0jUcVQhhB7DxOL98OvDyMJYjHSvHoEYCx6FGAsehRgLHoUYCx6GSNprH4KwY44yjXTQqwo7XIoSwKsa4IOk6NHY5BjUSOA41EjgONRI4DjUSOA6VtLEwBl3GIkmSJEmSCophhyRJkiRJKihjIexYmnQBGvMcgxoJHIcaCRyHGgkchxoJHIdKWsGPwYLv2SFJkiRJksaWsTCzQ5IkSZIkjSGGHZIkSZIkqaCMirAjhPDtEML2EMLafuemhhDuDSGsy36ckj0fQghfDiGsDyGsCSHM6/c1H8pevy6E8KF+5+eHEJ7Mfs2XQwghvz+hRoMBxuHNIYTNIYQnssfb+z33N9kx9VwIYUm/82/LnlsfQvhUv/OnhRAezZ7/QQihNH8/nUaDEMKpIYT7QwhPhxCeCiH8z+x574fKm0HGofdD5U0IYVwI4TchhN9lx+Fns+ePOHZCCGXZz9dnn6/p972OaXxKBw0yDr8TQnix3/3woux5fy8rJ0IIRSGE34YQfpr93HshQIxxxB/Am4F5wNp+5z4PfCr7+FPA/8k+fjuwDAjAQuDR7PmpwIbsxynZx1Oyz/0me23Ifu1VSf/MHiPvGGAc3gzcdIRrzwV+B5QBpwEvAEXZ4wVgNlCavebc7Nf8J3B99vHXgD9O+mf2GFkHUAXMyz6uBJ7PjjXvhx55OwYZh94PPfJ2ZO9RE7KPS4BHs/euI44d4E+Ar2UfXw/8IPv4mMenh8fBY5Bx+B3g2iNc7+9lj5wcwCeB24CfZj/3Xhjj6JjZEWN8CGg77PQ1wHezj78LvKvf+VtjxkpgcgihClgC3BtjbIsxtgP3Am/LPjcxxrgyZv6XvrXf95L6DDAOB3INcHuM8UCM8UVgPfD67LE+xrghxtgF3A5ck03p3wrckf36/mNaAiDG2BJjfDz7eA/wDHAy3g+VR4OMw4F4P9Swy97X9mY/LckekYHHTv/75B3AouxYO6bxmeMfS6PMIONwIP5e1rALIZwCvAP4ZvbzwX6Pjql74agIOwYwM8bYkn28FZiZfXwy8FK/6zZlzw12ftMRzktD9afZqYjfDtnlAxz7OJwG7Iwx9hx2Xjqi7LTDi8n8Fcn7oRJx2DgE74fKo+y07SeA7WTeHL7AwGOnb7xln99FZqwd6/iUDnH4OIwxHrwfNmTvh18MIZRlz/l7WbnwJeCvgXT288F+j46pe+FoDjv6ZJNO99BVEr4KnA5cBLQAtyRbjsaCEMIE4E7gL2KMu/s/5/1Q+XKEcej9UHkVY+yNMV4EnELmr49zEi5JY9Dh4zCEcD7wN2TG4+vILE35fxMsUQUshPD7wPYY4+qkaxmJRnPYsS07tYvsx+3Z85uBU/tdd0r23GDnTznCeemoYozbsr/k0sA3yPyfLTj2cdhKZipj8WHnpUOEEErIvMFsjDH+KHva+6Hy6kjj0PuhkhJj3AncD7yBgcdO33jLPj+JzFg71vEpHVG/cfi27HK/GGM8APw7x38/9PeyjuYS4OoQQhOZJSZvBf4Z74XA6A477gYOdir+EPCTfuc/mO12vBDYlZ3evRy4MoQwJTu19kpgefa53SGEhdn1Sh/s972kQR18g5n1buDgTi13A9dnOx6fBpxJpsHUY8CZ2Q7JpWQaA92d/Wv8/cC12a/vP6YloG8N5reAZ2KM/9TvKe+HypuBxqH3Q+VTCGFGCGFy9nE5sJhM/5iBxk7/++S1wH3ZsXZM4zP3P5lGkwHG4bP9/gARyPRK6H8/9Peyhk2M8W9ijKfEGGvI3KfuizHW4r0w42gdTEfCAXyfzJTYbjLrhD5KZm3RCmAd8AtgavbaAHyFzLrNJ4EF/b7PR8g0W1kPfLjf+QVkbkIvAP8KhKR/Zo+RdwwwDr+XHWdryPzDr+p3fX12TD1Hv87ZZDpxP599rr7f+dlkbirrgR8CZUn/zB4j6wDeRGaJyhrgiezxdu+HHvk8BhmH3g898nYAc4HfZsfbWuDT2fNHHDvAuOzn67PPz+73vY5pfHp4HDwGGYf3Ze+Ha4H/4JUdW/y97JGzA7iMV3Zj8V4YY+YfiyRJkiRJUqEYzctYJEmSJEmSXsWwQ5IkSZIkFRTDDkmSJEmSVFAMOyRJkiRJUkEx7JAkSZIkSQXFsEOSJEmSJBUUww5JkiRJklRQDDskSZIkSVJBMeyQJEmSJEkFxbBDkiRJkiQVFMMOSZIkSZJUUAw7JEmSJElSQTHskCRJkiRJBcWwQ5IkSZIkFRTDDkmSJEmSVFAMOyRJkiRJUkEx7JAkSZIkSQXFsEOSJEmSJBUUww5JkiRJklRQDDskSZIkSVJBMeyQJEmSJEkFxbBDkiRJkiQVFMMOSZIkSZJUUAw7JEmSJElSQTHskCRJkiRJBcWwQ5IkSZIkFRTDDkmSJEmSVFAMOyRJkiRJUkEx7JAkSZIkSQXFsEOSJEmSJBUUww5JkiRJklRQDDskSZIkSVJBMeyQJEmSJEkFxbBDkiRJkiQVFMMOSZIkSZJUUAw7JEmSJElSQTHskCRJkiRJBcWwQ5IkSZIkFRTDDkmSJEmSVFAMOyRJkiRJUkEx7JAkSZIkSQXFsEOSJEmSJBUUww5JkiRJklRQDDskSZIkSVJBMeyQJEmSJEkFxbBDkiRJkiQVFMMOSZIkSZJUUAw7JEmSJElSQTHskCRJkiRJBcWwQ5IkSZIkFRTDDkmSJEmSVFAMOyRJkiRJUkEx7JAkSZIkSQXFsEOSJEmSJBUUww5JkvT/s3fn8XGW573/v/ds2q1lJEu2tVneDdgYGyP2JSwJZCMQCHAKKaFJUxLaJCc9KU1P80vaJKfNctK0J6dA0iQNJISTEAiEACFg7IIwkvd91ViyrX20L7M89++PkceSbcmWbWmk0ef9euk1M8/zzDPXKCSxv9z3dQEAACQVwg4AAAAAAJBUCDsAAAAAAEBSIewAAAAAAABJhbADAAAAAAAkFcIOAAAAAACQVAg7AAAAAABAUiHsAAAAAAAASYWwAwDSHRYGAAAgAElEQVQAAAAAJBXCDgAAAAAAkFQIOwAAAAAAQFIh7AAAAAAAAEmFsAMAAAAAACQVwg4AAAAAAJBUCDsAAAAAAEBSIewAAAAAAABJhbADAAAAAAAkFcIOAAAAAACQVAg7AAAAAABAUiHsAAAAAAAASYWwAwAAAAAAJBXCDgAAAAAAkFQIOwAAAAAAQFIh7AAAAAAAAEmFsAMAAAAAACQVT6ILOBP5+fm2vLw80WUAAAAAAIAEqqmpabHWFpzuuikRdpSXl6u6ujrRZQAAAAAAgAQyxgTO5Dq2sQAAAAAAgKRC2AEAAAAAAJIKYQcAAAAAAEgqhB0AAAAAACCpEHYAAAAAAICkQtgBAAAAAACSCmEHAAAAAABIKoQdAAAAAAAgqRB2AAAAAACApELYAQAAAAAAkgphBwAAAAAASCqEHQAAAAAAIKkQdgAAAAAAgKRC2AEAAAAAAJIKYQcAAAAAAEgqhB0AAAAAACCpEHYAAAAAAICkQtgBAAAAAACSCmEHAAAAAGBC1ASC+rfX96kmEEx0KUhynkQXAAAAAACYGDWBoKoOtKqywq+VZbnDzllrFY5aRRwn9hh1FHGswlFHkahVxImdi0QHjw07d/yaoceG3ifQ2qufrz+kqGPldhnds7pU5fkZ8rqN3C4jr8slt8vI4zbyuFyDj0Yetyv2OPT5aNcMHne7jLzu2D3P9HcwEab7508Uwg4AAAAAmOL6w1G19oTU1h1Sa8+A2npCw35ae0I61NarPQ1dsoPvyfC5JUlhJxZIOHbk+59vEcfqP6sCE/JZxigeghhJveFo/Fxmilse9/END3bI78AOeTHsV3PC72noy5Hec+xw1LEKRZ348TSvWx6XkTGSMUauIY/SsdeSyxgZxc7FXw87PuT9OvF+sWMuI/WEotrf3C1rpRSPS0/9WWXSBh6EHQAAAAAwiVhr1dkfUXAwpIgFFgPxMKOtd0iI0R177BvyF/ihPC6j3Ayf/Bk+9Q1E438BN5IWFWVpRWnusJUSXvfxVRJed2yFxNAVF94Tzp34nhOPeY+tunAbbavv0IM/eVfhiCOvx6UfPnCpLpydHVsV4gyuHBlcBXLiapH48RGuiTpWYceJPUaHXxN1HIWd2DU1gTbVBNrjv4MFhVlaNid72O/MmOErQY4fH/JcZpRzIxw3RhsPBVVdG5QdvG7p7BlaVpwta2P/uVtJjrWyVoPhk5XjSFZWjtUI18Ve26Gvh75/yHs6+nvjwUsk6qjqQCthBwAAAABMZROxfD8SdTQQcRSKOApFHQ2EHYWiUQ1EYse31LdrQ6BdhdmpyvR51NYzoLbecCzMGAwugr0hhaOnXmaR6nXJn5GivAyf8jJ8mleQGX/uH3w8/jpFM9I88b+81wSCuu+JqnjY8Le3LZ3Qv+heMT9fTz5UmfAtHEN/B1+e4N/BiZ//6K1LEvr5lRX+CfvsiWaGLrOZrFatWmWrq6sTXQYAAACAKcRxrLoGIuroDavqQIu+/JvtCkcdedxGf3b1XBVlpyk0GELEA4rIYDgRjoUVoRPODURiwcXxIOP48VBk7FtBslI9Q0KKFOVleJWXkXL8WGYsxMhN98mf6VO679z+ffV06dcwmkT/Dqb7558rY0yNtXbVaa8j7AAAAAAwmUUdq67+sNp7w2rvC6u9NxR73hsafB1WR9/x1x29YQV7Q+roC48pfPC5XUrxuOQb/Bn6PHbOfdK5lGPnvG753CO8b/Dcqzsa9OzGw3Ks5DbSX964UI+8Z8H4/eKAJHSmYQfbWAAAAABMiHdr27Rmd7MWFWVqTm76kNAiPBhSHA8vhgYZnf1hjfbvaLNSPcpJ9yonzaecdK+Kc9OVk+ZVTrpX2Wle5aT71No9oG+/ukeRqCOv26V/uWeFVpblDgssRurVcL4UZKXoxa1H41sIrpyfP66fB0xnhB0AAAAAzoq1Vj2hqFq7B9TSHRr22NoTUkv3gFq6Y70oGjr71dUfGfFexkgzUr2DoUUsoCjPz1BOmlfZ6b54eBH78cWvmZHqGTZNYzSryvMSunx/ZVluwntWANMFYQcAAACAuEjUUVtvSC1dsRGmrd3HQovjIcaxUKOle0ADEeeU98lK9Sg/M0X5mbEmmuk+t7bUd8hKchnp9kvm6L9dVqbc9NhqjKxUr9yu8V1ZsbIsN+EBw2SoAZgOCDsAAACAJHZs9cWa3U16a3+r5uSkKTvdq9ZjKzF6QmrpOh5iBHvDp7yP123kz0iRP9Mnf2aK5hVkKj8r1kjTnxk7XjD4mJfhU4rHPez9J06BuHd1mVaU8pd+AOODsAMAAACYYhzHKtgbiq+2aO4+vgLj+EqM06++mBFffZGiBTMzVVmRJ39GbDVGfmZKPMTIP2GE6dlgCweAiUTYAQAAAEyA0417HIhE1dYT2z4yNKxoPSG4aOkOqa1n4JRTRtwuI3/GsaAitn3En+nTnsZuvbmnOb6F5FPXzNPnbloon+fMel2cL2zhADBRCDsAAACAcdIXiqqle0Br97bo75/fpkjUyu0yunFJoYzRsFUYnSM070zzupWfFQswinPTtaI0J776wj+4KqMgyyd/Roqy07xynaLvRU0gqHcOtsa3kNy4tHDCgw4AmEiEHQAAAMAYDESisVUWXQNq7optIWk59tg9eKwrtgKje+DkACPiWL2xp0nFuenyZ/i0ZPaMWK+LDF+8B0Z+VoryM1KUn+VTuu/c/8jOFhIA0w1hBwAAAKaF0baRhKOO2npC8fDieGAx/LG5a+QVGNlpXhVkxVZcXFSco4LMWFhRkJmi9r6w/vnl3YpGYysrnnyocsIDB7aQAJhOCDsAAACQtBzHqrl7QH/Y0aiv/Ha7IlErl8voynl+Ra1VS1dIzd0DausJnfL9mSmeeICxqChLV83PH9w2kjJ4PPbozzx5+siJLinNZWUFAEwQwg4AAABMWdZatfeGVRfsVV1b3+Bjr+qCfapv61V9e59CJ0wiiTpWm+vbNa8gU2X+dK0qzz0pwJg5+JjmGz3AGAtWVgDAxCHsAAAAwKTWMxBRfbBvMMQYHmrUB/tO6ouRneZVSV6aFhVl6calhSrJTVN/xNG3Xt6tyOA2kh99fDXBAwAkMcIOAAAAJFQo4uhw+8lhRv1gmNF6whaTNK9bJXlpKslNV2WFX8W5aSrJS1dJbrqK89I0I9V7ys9hGwkATB+EHQAAABg3jmPV2R/Wm3ub9da+VuVnpchtzGCYEQs1Gjr7Ze3x93jdRrNzYmHGzRfMUHFu+mCYEQs1/Bk+GXPyeNXTYRsJAEwfhB0AAAA4rWOTTFaW5ajcn6m2npDaekJq7RlQcPB5W+/gse6QgoPPg71hRR170v1mZaeqJDddl8/zq2RImFGcl66iGalyu8YeZgAAcAxhBwAAAE7SMxDRroZObT/SqTW7m/XH3U3DVl+cyBgpN92n3HSv/BkpmpufoZVlefJn+LT9aKfe2NUkK8llpL+6cYEeec/CCfsuAIDph7ADAABgmmvtHtD2I52DPx3acbRTB1t64uFGqtcVf24k3bS0UB+5ZI5y033yZ/qUm+5TTrpvxNUYNYGg3t7fonAk1hz0yvkFE/PFAADTFmEHAADANBDbhtKiivxMGSNtP9KpHYMBR0Nnf/y6OTlpumD2DH1o+RxdMHuGls6eoaPtfbrvh+/Ew4pPXTtvTL0vVpbl6smHKmkOCgCYMIQdAAAAScRaq+auAR1q69Whtl4FWnu1qS6oN/e2DNuG4jLS/JmZunyePxZqzIoFGznpvpPuOTsn7ZzDCpqDAgAmEmEHAADAFHCsQWhlRSycqA/GRrUGWnt0qK1Ph9p64gFHf9iJv88YKSvFM2wbyn2VZfrybUuU6nWf8ecTVgAAphLCDgAAgAkwNKw4VWhgrVVvKKq2npBaugcGJ53EJpvsPNqhF7c0KDpCh9A0r1tl/nSV+TN0zYIClfpj003K8tI1JzdN2w536r4nquLbUG5fMWdMQQcAAFMNYQcAAMA4W7u3WZ/4cbXCUUdul9Fty2bJ7TLxMa3HRrgOXZExlMdlhgUdV87L152r5qg0L12leRnKz/TJmJFHtdIzAwAw3RB2AAAAnGf94ahqAkG9tb9Fb+1v1aa69vg2kohj9cKWoyqakaq8jNg0kwWFmcrPTFFehk95GT7lZ/qUl5Ei/+D5nUe7hq3M+PzNC8ccWLANBQAwnRB2AAAAnKNQxNHm+na9vb9Vb+1v0YZAu0KDqziWF2frIyvm6LebjyriOPK5XXryocu0sjzvjO/PygwAAMZm3MIOY0yJpJ9KKpRkJT1mrf2eMeYrkv5MUvPgpY9aa383XnUAAACcb1HHavuRDr21v1Vv7W/Vuwfb1BeOyhhp6awZeuCKMl0xL1+Xzs1TZkrsj1v3XlbGNBMAACbIeK7siEj6grV2gzEmS1KNMebVwXPftdZ+axw/GwAA4Lx5a1+LXtnRKJeR6oJ9qjrQqq7+iCRpwcxM3bWqWJfPy1dlRd4pR7dKhBUAAEykcQs7rLVHJR0dfN5ljNkpac54fR4AAMBIRpuE0heK6mhHnxo6+nWko18NHX062tEf/6lr61H3QDR+fWFWim67aJYun+fX5RV+zZyROtFfBwAAnMaE9OwwxpRLWiHpHUlXSvqMMeZ+SdWKrf4ITkQdAABg+qkJBHXv41UKRWI9NG5YPFMRxw6GGX1q7w2f9J7cdK9mZadpdnaqfG6jLfUdspJcRrr/inI9fP38if8iAADgjI172GGMyZT0K0l/Za3tNMb8QNLXFOvj8TVJ35b04Cne90lJn5Sk0tLS8S4TAAAkEWutdjV06eXtDXrynUMaiMRGukYcq7V7WzQ3P0NzclK1sixHs7LTNCs7VUXZqZqdnaai7FSlet3xe9UEgsMmoVRW+BP1tQAAwBkydsjM9vN+c2O8kl6Q9LK19junOF8u6QVr7YWj3WfVqlW2urp6XGoEAADJIepYbTgU1MvbGvTKjkYdauuVMdLiwiztbeqWY21sEsqfVY65d8Zo22AAAMDEMcbUWGtXne668ZzGYiT9UNLOoUGHMWbWYD8PSbpd0rbxqgEAACS3gUhUb+1v1SvbG/Tqjka1dIfkc7t05Xy//uK6eXrPkkIVZKWcc1hBc1EAAKaW8dzGcqWkP5G01RizafDYo5LuMcZcrNg2llpJnxrHGgAAQJLpHojo9V1Nenl7g97Y3azugYgyUzy6blGBbrmgSNctKlBWqnfYewgrAACYXsZzGss6SeYUp343Xp8JAACSTzjq6PfbjuqFLUfV3DWgbYc7FYo68mf49P5ls3TLBUW6Yr5fKR736W8GAACmhQmZxgIAADCaSNTR4fY+HWzpUW1Lj2pbe2PPW3tU19YrZ7DFmJF027JZuv/ycq0sy5Xbdap/rwIAAKY7wg4AADDuagJBvb2/RfMKMpWZ6lFtS48OtvSqtjUWbtQFexWOHm+anuFzqzw/QxfOydas7FS9c6AtPvp1yawZWj03L3FfBgAATHqEHQAAYFy09YS0/mCrnt98RC9tbdCJ89/SvG6V+dO1qChLt1xYpLn+DJXnZ6g8P10FmSmK9Tpn9CsAABg7wg4AAHBeNHX2652DbXrnYKveOdCmvU3dkiSPy8SDDiPprktL9LkbF6pwxvFAYzQry3L15EOVjH4FAABnjLADAACclSPtffFg452DbTrY0iMptgVlZXmePrxijior8hSJWj3wH+vjKzPuWlWiouzUMX0W01QAAMBYEHYAAIDTqqlt08vbG+X1GDV0DOidg62qD/ZJkrJSPVpdnqd7Vpdo9Vy/Lpw9Qx63a9j7WZkBAAAmEmEHAAA4Sc9ARFsPd2hTXbte39Wkdw62xc9lpbh1xfx8PXjlXK2em6cls2acdioKKzMAAMBEIuwAAGCaizpWe5u6tOlQuzbVxX72NHbFx71mp3nj17qM9Klr5+kzNyxIULUAAACnR9gBAMA0UBMIxreRFOemaWM82Ahqa32HekJRSbFgY3lJjm5eWqiLS3O0vDhHta29w6ahXD4vP8HfBgAAYHSEHQAAJDFrrX694bD+x6+2KOIMH/7qdRstmTVDd6ws1sUlObq4JEdz8zNOmpDiz0yh5wYAAJhSCDsAAEgyHb1hrd3XrDW7m7VmT7OaugaGnb9h8Ux95ob5WjprhlK97jO6Jz03AADAVELYAQDAFOc4VtuOdOiNwXBj46GgHCvNSPXo6oUFKven64m1BxWJxrahPHz9fF1SSnABAACSF2EHAABTUGv3gNbubdGaPc16c0+zWntCMkZaNidbn7l+vq5dNFPLi7PjI2BvWFzINhQAADBtEHYAADDJ1QSCent/i/IyUtTQ0ac1e5q15XCHrJX8GT5ds7BA1y4s0NUL8uXPTDnlPdiGAgAAphPCDgAAJpGO3rACbT2qbe3VodYe1QSCemNPs+xgb1Ej6ZKyXH3uxoW6blGBLpydLZfLjHpPAACA6YawAwCAcTZ07OslpTlq7Qkp0Nqj2pZeBVp7FGjrVW1r7Hl7b3jYezNT3PGgw2Wkh6+fry/cvCgB3wIAAGDqIOwAAGCcOI7VsxuPj301klI8LvVHnPg1LiPNzklTmT9dt140S+X+dJXmZag8P12leenaebRL9z1RpXAk1lz0ukUzE/eFAAAApgjCDgAAzqPGzn6t3duidXubtW5fi1q6Q/FzVtLS2TP0geWzVe7PUKk/XcW5aUrxjDz+dWVZrp58qJLmogAAAGNA2AEAwDnoDUX0zsE2rdvborV7m7WnsVuSlJ/p05Xz81WSl67H3zwQH/v6t7ctHXNgQXNRAACAsSHsAABgDBzHavuRTq3d16y1e1pUEwgqFHXk87i0ujxPd1xSrKsW5GtJ0Yx449DrF81kZQYAAMAEIuwAAGAU1lq9tLVBz28+oq7+sHYc7VRwsIno4qIsffzKcl01P1+r5+Yp1Xvq7SiszAAAAJhYhB0AAAzR0j2gLfXt2lTXoc117doQaFPXQDR+/tqF+frwijm6cn6+ZmalJrBSAAAAjISwAwAwbfUMRLT1cIe21Ldrc12HNtW163B7n6TYlJSFhVkqz8/QtsOdspLcRlo916/bVxQntnAAAACMirADAJD0agJBvbW/RUUzUjUQceLhxt6mLjk2dk1xbpouLs3Rx68o17LibF04J1sZKR7VBILDRr9WVvgT+2UAAABwWoQdAICk1NUfVnUgqOc3HdFvNh2WtcfP5WX4tLw4W++9sEgXl+RoWXG2/Jkpp7wPo18BAACmHsIOAEBSCPaEtL62TesPxn62H+mQY2PbUY4FHS4jPXR1hf7mfYtljDnje9NgFAAAYGoh7AAATElNnf165+DxcGN3Y5ckKcXj0orSHH3mhgWqnJsnSXrwJ+/Gt6HcckHRmIIOAAAATD2EHQCASa+mtk0v72hUiselps4Bra9t08GWHklShs+tleV5+uDFs7V6bp6WFWcrxTN8BCzbUAAAAKYXwg4AwKTU0RvWf+1v0a831Ou1nU061nIjw+fW5fPyde/qUq2em6cLZs+Qx+0a9V5sQwEAAJheCDsAAJNC1LHaXN+uN/c06809zdpU1y7HSj63Kx50uIz06evm6TM3LEhorQAAAJjcCDsAAAlztKNPa/e0aM3eZq3b26KOvrCMkZbNydbD18/XNQsLZK3V/T9aH++5cfm8/ESXDQAAgEmOsAMAMK5qAsF4v4wLZs/Q+oNtsdUbe5u1p7FbkjQzK0U3LS3UNQsLdNX8fOVl+Ibdg54bAAAAGAvCDgDAuKkJBHXv41UKRRwZI7ldRuGolc/j0uryPN25sljXLCzQosKsUSek0HMDAAAAY0HYAQA478JRR3/c1aR/+v0uDUQcSZK10ori7MGRsH6l+dynuQsAAABwdgg7AADnzb6mbj1TXadfbTislu4B5aZ75XEZOTa2muPRW5eyQgMAAADjjrADAHBOegYienHLUT1dXaeaQFAel9ENi2fq7ktLdO3CAm2u76DfBgAAACYUYQcAYMystdpwKKin363TC1uOqjcUVUVBhv7mfYv1kUuKVZCVEr+WfhsAAACYaIQdAIAz1tw1oF9vqNcvq+u0v7lH6T633r9slu6+tESXlOaO2mQUAAAAmCiEHQCAUb29v0XP1NSrvq1XGw61K+JYrSzL1T/dMU+3LpulzBT+rwQAAACTC39CBQDEWWt1qK1XGw+1a+OhoNbta9H+5p74+Q9dPFufvWG+5s/MSmCVAAAAwOgIOwBgGuvsD2tLXYc2HgpqY127NtW1q60nJElK97nlz/DJSLKS3EZaWJhF0AEAAIBJj7ADAJJcTSCoqgOtWj03T1mpnviqjY2H2rWvuVvWxq5bMDNTNy6ZqYtLcrWiNEcLC7O0qa5d9z1RpXDEkdfjUmWFP7FfBgAAADgDhB0AkMRe3t6gh5/coIhjhx3PTfdqRWmuPrh8ti4uzdGy4hxlp3lPev/Kslw9+VAlo2MBAAAwpRB2AECS6ewP6/dbG/TsxsN6+0Br/LiRdOtFs/TFWxapzJ9+xpNTGB0LAACAqYawAwCSQDjqaM3uZj276bD+sKNRAxFHc/Mz9LFLS/TsxsOKRGPbUB68aq7K8zMSXS4AAAAwrgg7AGCKstZqU127nt14WC9sOaq2npDyMnz62KUluv2SYi0vzpYxRh9dVcI2FAAAAEwrhB0AMMUEWnv0m41H9JtNh3WwpUcpHpduWlqo21fM0TULC+R1u4ZdzzYUAAAATDeEHQAwydUEgnp9V5MGoo42BIKqCQRljHR5hV+fvm6e3ndhkbJST24uCgAAAExXhB0AMEn1haJ6fO0B/e8/7NGxYSqluen60vsW64PLZ2t2TlpiCwQAAAAmKcIOAJhEwlFH6/a16PlNR/TK9gb1hKLxcy4j3b26WH9+7bwEVggAAABMfoQdAJBgjmNVcyio5zcd0YtbY41Gs9O8+uDFs7W4aIa+8dJOhSOxaSqVFfmJLhcAAACY9Ag7ACABrLXa1dCl5zYd0W83H9Hh9j6lel26aWmRPrh8tq5ZmK8Uj1uSdOGcbKapAAAAAGNA2AEAE6iurVfPbz6i5zYd1p7GbrldRtcsyNcXb1mkm5YWKiPl5P9ZZpoKAAAAMDaEHQAwzl7b2ain3jmkumCv9jR2S5JWl+fpax++ULdeWCR/ZkqCKwQAAACSC2EHAIyDcNTRG7ub9e9r9qs6EJQkGUl/UlmmP79unuYwSQUAAAAYN4QdAHAe7Wvq1jPVdfrVhsNq6R5Qhs8tI8kqNk2lKDuVoAMAAAAYZ4QdAHCO1u1r0c/eDuhga492N3TJ7TK6YfFM3b2qRDPSPLr/R+uHTFPxJ7pcAAAAIOkRdgDAWeoNRfS13+7Qz9+tk3R8m8pn3zNfM7NS49c9+VAl01QAAACACUTYAQBjFI46evrdOn3vtb1q7hqIHz+2TWVo0CExTQUAAACYaK5EFwAAU4W1Vi9tPapbvvumvvybbSrLS9fXb79QqV6X3EZsUwEAAAAmCVZ2AMBp1ASCeqa6TtWBoPY1dWvBzEw9cf8qvWfJTBljtKhoBttUAAAAgEmEsAMARuA4Vj9+66D+4cWdcmzs2MPXzdPnblooj/v4wji2qQAAAACTC2EHAJyguWtAz9TU6Rfr63SorTd+3G2k9BTPsKADAAAAwORD2AFgWqsJBFV1oFWXzc1Tf9jRU+sDemV7oyKO1WVz8/SRS+bo/76xX+Eoo2MBAACAqYKwA8C0VRMI6t7HqxSKOJIkKykn3asHrijXPatLNX9mpiTp6gUF9OQAAAAAphDCDgDT0r6mLn31t9s1MBh0SNJtF83St+9arlSve9i19OQAAAAAphbCDgDThrVWb+5t0Y/WHdSaPc3yuI3cxsjKyudx6cGr5p4UdAAAAACYegg7ACS1mkBQ6/Y2qy8U1Wu7mrS3qVsFWSn6wk0Lde9lpapt7WWLCgAAAJBkCDsAJKWBSFQ/fTugb760S9HBubFz89P1nbuW67Zls5Tiia3g8GemEHIAAAAASYawA8CUdmyaSmWFXwsLM/X67ma9sr1Bb+xuVvdAJH6dy0h3rizWRy4pTmC1AAAAACYCYQeAKasmENR9j1dpIOLIGMkYKepI/gyf3r9slioKMvSdV/YMGRubn+iSAQAAAEwAwg4AU9ZT7wTUf2xsrJUuLcvVX793sS4pzZXbZSRJK8vy6MkBAAAATDOEHQCmnJbuAf1/v92h324+IqPYig6fx6UvvW/JSYEGY2MBAACA6YewA8CUYa3VrzYc1j+8uEO9A1F97saFuqwiVzWBdlZuAAAAAIgj7AAwJQRae/S3z27Tun0tWlWWq2/ecZHmz8ySJHpxAAAAABiGsAPApLb+YKv+z+v79db+Fvk8bn3twxfqvtWlcg325AAAAACAExF2AJi0nlh7QP/44k5ZxUbH/utdy3XzBUWJLgsAAADAJEfYAWDS2dXQqX98cafW7m2JHzOS9jZ16+YLElcXAAAAgKmBsAPApNHU1a/vvrpHT79bp8wUjz5+RZl+8W6dwhFHXo9LlRX+RJcIAAAAYAog7ACQUDWBoNbtbVZjZ7+e23REAxFHD1xRrkduWKDcDJ8+sHyOqg60Mm0FAAAAwBkj7ACQMNW1bbrn8SqFo1aStLo8V9+8Y5kqCjLj16wsyyXkAAAAADAmrkQXAGB6qjrQqoef2hAPOlxGunbRzGFBBwAAAACcDVZ2AJhQB5q79c2XdumVHY3yZ/jkdRs5jqUnBwAAAIDzZtzCDmNMiaSfSiqUZCU9Zq39njEmT9LTksol1Uq6y1obHK86AEwOwZ6QvvfaXv2sKqAUj0v//eaF+sRVFdpxtJOeHAAAAADOq/Fc2RGR9AVr7QZjTJakGmPMq5I+Luk1a+03jTFfkvQlSf9jHOsAkEBVB1r0f984oPW1beoPR3X3paX63E0LNAU9FhYAACAASURBVDMrVRI9OQAAAACcf+MWdlhrj0o6Ovi8yxizU9IcSR+SdN3gZT+R9IYIO4Ck9PttR/Xpn22QVawnx7c/erFuv2ROossCAAAAkOQmpEGpMaZc0gpJ70gqHAxCJKlBsW0uAJJMdW2bPv/0ZtnB10bSkY6+RJYEAAAAYJoY97DDGJMp6VeS/spa2zn0nLXWSvG/C534vk8aY6qNMdXNzc3jXSaA8+iX79bpnserlJ3uVYrHJbcRDUgBAAAATJhxncZijPEqFnQ8aa399eDhRmPMLGvtUWPMLElNp3qvtfYxSY9J0qpVq04ZiACYXKKO1Td+t1NPrDuoq+bn69/uvUT7mrtpQAoAAABgQo3nNBYj6YeSdlprvzPk1POSHpD0zcHH58arBgATp7M/rM8+tVFr9jTr41eU68u3LZHH7aIBKQAAAIAJN54rO66U9CeSthpjNg0ee1SxkOOXxphPSApIumscawAwzmoCQb207ahe2npUjZ0D+vrtF+ney0oTXRYAAACAaWw8p7GsU6wn4am8Z7w+F8DEqQkEdc9jVQpFHUnSVz90AUEHAAAAgISbkGksAJLTE2sPxIMOl5G6+iMJrggAAAAAxrlBKYDkZK3Vv7y2Ty9ta5DLxJZwMW0FAAAAwGRB2AFgTMJRR19+dpuerq7TRy6Zo7tXlag6EGTaCgAAAIBJg7ADwBnrHojo4Sc3aM2eZn32hvn6/E0LZYzRZazoAAAAADCJEHYAOCNNnf360x+/q10NXfrGRy7SPatpRAoAAABgciLsADCqmkBQL249ouc3HVFvKKon7l+l6xfPTHRZAAAAADAiwg4AIzpxtOw/37GMoAMAAADApMfoWQAj+s+3a4eNlm3qHkhsQQAAAABwBljZAeCUnqmu03ObjsiYWCrKaFkAAAAAUwVhB4CTPLH2gP7hxZ26an6+Pn3dPG2qa2e0LAAAAIApg7ADQJy1Vt96Zbf+7fX9uvWiIn337ouV4nHryvn5iS4NAAAAAM4YYQcASVLUsfq757bpqXcO6Z7VJfqHD18kt8skuiwAAAAAGDPCDgAKRRx97peb9OKWo/r0dfP017cskjEEHQAAAACmJsIOIIFqAkFVHWgdsR/G6c6fD/+1r0V/++xW1bb26tFbF+uT18wbl88BAAAAgIlC2AGMwYnhw7mEEW/ubtZDP61WOOooxevSkw9VDrtHTSCoex6vUijiyOMy+pePrdCty2adl+8xEIlqc12H/l9NnZ6prpeV5HUbrSzLOy/3BwAAAIBEIuwAztCbe5r14I/fVcSxcruMblg8U2/sblLEsfK6XfrWncuU7vNo6+EOVVbkafVcvzbVtWvd3mbNzkmTyxjtbuzS7obYT0Nnf/ze/WFHz206HA87HMfq+6/tVSjiSJIijtVfPLVBi/+YpZuWFuqmpYW6aE72GW01qQkE9db+FvkzUhTsDent/a2qDrSpP+wMu85xrKoOtDJxBQAAAMCUZ6y1ia7htFatWmWrq6sTXQamoZpAUK/saNDhYJ9e3t6gcPTc/vvi87g0vyBTi4uylJHi0dPvHlLEsXKs5DLSB5bPVuGMVL1zoFWb6zvkMpKR5HG7dM/qEu082qV3a9vkWGlWdqpuXFKokrw07W3qVkluuvIzU9TRF1Znf1gdfWEFWnr09oFWOUPKXlyUpcvn+XV5hV+pHrc++bNqhSOOvJ6TV5cAAAAAwGRijKmx1q463XWs7ACGqAkE9YedjcpK9WhvY7ee23Q4HhRcXJytHQ1dikZjwcCX3rtY33hpl8LR2DaTS+f69da+FlnFAorSvHQdauuVVSzI+PiVc/Xo+xbL43bFP+/DK+ao6kCrLpqTrf98u1bPbToSP/epayp089JCVR1sG7ZNpq0npD/uatKrOxr09Lt1CkWHr9CQYltSstO8ig4GKRqs4dPXzdMXb1k87NonH6oc974gAAAAADCRCDuAQa/vbtInfvxuPBwwko4tiHAZ6aYLivR3H7hgWDBwUXFO/LUk1QTa4qskPnXtPH31he3x17ddNGtY0CFJK8ty4wHD1sMdem1XU3yVx4w0r1aW52ll+fA+GnkZPt25slh3rizW9/6wR997bW/8PZ+6Zp4eec8CpXpdMsaoJhDUfU9UxWu4YXHhSd97aA0AAAAAkAwIOwBJm+va9Zc/3zhsFcRHVxbruc1H4kHBsYBjaDBw4usTV0ksKso641UTlRV++TyuYZ93OlctKNAP1uyPv+fGpYVK87mH1cfKDQAAAADTDT07MK3V1Lbp3988oD/ualJOuled/ZH4NpUnH6qUpAkNCs5mustEjKcFAAAAgMngTHt2EHZg2np9V6M+8ZPq+BaQH338UmWlegkOAAAAAGCSokEpcAqxVRAt6h2I6of/dXBYf47tRzr18PXzCTkAAAAAYIoj7MC0URMI6t7HqzQQiU0vKctLV0NnvyLRM++RAQAAAACY/Ag7MC1Ya/X4mwfiQYeR9NFVxbp8Xj7bVgAAAAAgyRB2IKnVBIJ6c0+TNhxq19q9LXKZWNDh9bh0+bx8xq4CAAAAQBIi7EDSqgkEdc/jVQoNrub42KUlumNlsdYfbGMlBwAAAAAkMcIOJK2n1gfiQYfLSCV56bq0PE+XlucluDIAAAAAwHgi7EBS+lVNvX6z4bCMYkEHDUgBAAAAYPog7EBSqQkE9f3X9uqNPc26cr5ff37tPG2p72DbCgAAAABMI4QdSBo1tW2667EqRR0rl5E+e8N8VVbk6+oFBYkuDQAAAAAwgVyJLgA4H6y1+sff7VTUsZJiE1dqAu2JLQoAAAAAkBCs7MCU5zhW//P5bdpwqF1ul5GspUcHAAAAAExjhB2Y0qpr2/TVF3ZoS32HPnVthW5eUqgqRssCAAAAwLRG2IEpq7q2TXf/e5Wi1srjMrp5SaFWludpJaNlAQAAAGBao2cHpiRrrb76wg5FrY2/rjrYluCqAAAAAACTASs7MOVYa/X3z2/XlvoOeVxGlh4dAAAAAIAhCDswpdTUtunrL+1STSCoT15ToVuW0qMDAAAAADAcYQemjJpAUHc/VqWIY+V2Gd2ylB4dAAAAAICT0bMDU8ZvNx9RxIn16BA9OgAAAAAAIyDswJSx40iHJMltRI8OAAAAAMCI2MaCKWFrfYfW1wZ196oSlfrT6dEBAAAAABgRYQemhO/+YY+y07z68vuXKCvVm+hyAAAAAACTGNtYMOltOBTUH3c16ZPXVBB0AAAAAABOi7ADk953X90jf4ZPH7+iPNGlAAAAAACmAMIOTGo/qwpo7d4WvX/ZLGWksOsKAAAAAHB6hB2YtGpq2/Q/n9smSXr63TrVBIIJrggAAAAAMBUQdmDS+sGbB+TY2PNw1FHVgdbEFgQAAAAAmBLYF4BJaW9jl9bsbpLLSEaS1+NSZYU/0WUBAAAAAKYAwg5MOgORqB75xSbNSPXqf925TLsbulRZ4dfKstxElwYAAAAAmAIIOzDp/PPvd2vn0U798IFVes+SQt24pDDRJQEAAAAAphB6dmBS+eG6A3pi3UG994IivYeQAwAAAABwFgg7MGm8vb9FX3thpyTpjd1NTF8BAAAAAJwVwg5MGk++cyj+nOkrAAAAAICzRc8OTBqB1h4ZSS7D9BUAAAAAwNkj7MCkUNfWq62HO3X3qhKV+tOZvgIAAAAAOGuEHZgUnqmukzHSIzcu0JyctESXAwAAAACYwujZgYSLOlbP1NTr6gUFBB0AAAAAgHNG2IGEW7u3WUc7+nX3qpJElwIAAAAASAKEHUi4X1bXKTfdqxuXzkx0KQAAAACAJEDYgYRq7R7QqzsadfuKYqV43IkuBwAAAACQBAg7kFDf/+NehaNWF83JTnQpAAAAAIAkQdiBhKmpbdNP3gpIkv7m2S2qCQQTXBEAAAAAIBkQdiBhfrvlqOzg83DEUdWB1oTWAwAAAABIDoQdSJjeUESS5DaS1+NSZYU/wRUBAAAAAJKBJ9EFYPraUt+hJUVZev/y2aqs8GtlWW6iSwIAAAAAJAHCDiTEodZe7Wro0pdvW6KHrq5IdDkAAAAAgCTCNhYkxMvbGyRJt1xQlOBKAAAAAADJ5rRhhzEmfyIKwfTy8vYGLZ01QyV56YkuBQAAAACQZEYMO4wxx869MuTYX457RUh6TV39qjkUZFUHAAAAAGBcjLayY40x5veSiowx7zXGzJH0wATVhST26o5Gfcz8QfcMPC3VrU90OQAAAACAJDNi2GGtvVrSxyT1SbpU0vckLTTG/MIY8+kJqg9JqG39M/q670cqePdb0k8+SOABAAAAADivRtvG8qqkz0lyJP2rtfZOSXsl/bWkrokpD8mmoy+sy5t/IUkyslI0JNWuTXBVAAAAAIBkMto2lg9JelNSpqSfGmPWSyqTdIekXRNQG5LQ2q0HtMQEJOOSjFty+6TyqxNdFgAAAAAgiXhGOmGt7ZX0mjGmwVr7AUkyxmyVVCfpfknVE1Mikknruh8pw4R08Ir/pbmpPbGgo2R1ossCAAAAACSR046eVWwlxzHrrLX/z1r7yHgVhOT1X3sadW37s6p2Fup9b5appvRBgg4AAAAAwHl32rDDWntgyPNPS5Ix5tLxLArJ6e3f/1zlrkb9R+S9CkccVR1oTXRJAAAAAIAkNOI2lhMZY5ZKumfwp13SqvEqCsmnsbNfV7Q8oyMmT3+wq+T1uFRZ4U90WQAAAACAJDRq2GGMKdfxgCOsWIPSVdba2vEuDMnlyed/p8+7tmnnBZ/XI/kXqLLCr5VluYkuCwAAAACQhEYMO4wxb0uaIekXku6w1u41xhwk6MBY7TzaqYt2f19Rj1tLLr5SSxbMT3RJAAAAAIAkNlrPjkZJWZIKJRUMHrPjXhGSirVWz//qZ7rRvUEuG5We/m9S3fpElwUAAAAASGIjhh3W2g9LukhSjaSvGGMOSso1xjA+A2fsiXUHVd7wexlJRpKiIal2bYKrAgAAAAAks1GnsVhrO6y1/2GtvVnSZZL+TtJ3jTF1E1IdprR3a9v09Rd3akA+SZI1bsntk8qvTnBlAAAAAIBkdtrRs8dYa5ustf9qrb1S0lXjWBOSxG82HpaVlGO61WyzVVX+59IDz0slLA4CAAAAAIyfMw47hrLWBk53jTHmR8aYJmPMtiHHvmKMOWyM2TT4c+vZfD6mBp8n9o/XBaZWm7VAvuu+SNABAAAAABh3ZxV2nKEfS3rvKY5/11p78eDP78bx85FgwZ6QZqc5qnA1aOmKqxg1CwAAAACYEOMWdlhr35TUNl73x+S3ub5DH5zVJiOr2YtZ0QEAAAAAmBiekU4YY76vUUbNWmsfOcvP/Iwx5n5J1ZK+YK0NjvD5n5T0SUkqLS09y49ConT0hnWwpUeXFx2OHShaltiCAAAAAADTxohhh2JhxPn2A0lfUyxE+Zqkb0t68FQXWmsfk/SYJK1atWrE0AWT05bD7ZKkRfaglJYrZRcnuCIAAAAAwHQxYthhrf3J+f4wa23jsefGmMclvXC+PwOTw+a6WNiR37M7tqrDmARXBAAAAACYLkbs2WGMyTfG/L0x5hFjTKYx5gfGmG3GmOeMMfPP5sOMMbOGvLxd0raRrsXUtrm+Qwv8KfI075JmsYUFAAAAADBxRmtQ+pSkFEkLJK2XdEDSnYqtxnjidDc2xvxc0tuSFhlj6o0xn5D0T8aYrcaYLZKul/S5c6wfk9TmunbdNLNDig7QrwMAAAAAMKFG69lRaK191BhjJAWstf88eHyXMebh093YWnvPKQ7/8GyKxNTS0NGvpq4BVabTnBQAAAAAMPFGW9kRlSRrrZXUcsI5Z9wqwpS3abBfxyIdlDxpUv6CBFcEAAAAAJhORlvZUWGMeV6SGfJcg6/njntlmLK21LfL4zIq6NotFV4gudyJLgkAAAAAMI2MFnZ8aMjzb51w7sTXQNzm+nYtLsqUq3GbdOFHEl0OAAAAAGCaGW307JqJLATJwXGsttR36P7FknZ1MIkFAAAAADDhRlvZAYzZwdYedfVHdEV6Y+xA0fLEFgQAAAAAmHZGa1AKjNmW+mPNSWsl45YKlya2IAAAAADAtEPYgfNqc12H0n1u+bt2SfkLJW9aoksCAAAAAEwzI4YdxhiXMeZBY8yLxpjNxpgNxphfGGOum8D6MMVsrm/XhXOyZQ5XSy6PVLc+0SUBAAAAAKaZ0VZ2/FBSqaRvSHpd0guDx75sjPnsBNSGKSYUcbT1cIcu7quSelulxm3STz5I4AEAAAAAmFCjhR0rrbVfsdaus9b+laSbrbWvSrpN0l9MTHmYSp7bdFiRqNX1rb8cPGKlaEiqXZvQugAAAAAA08toYUfYGDNPkowxl0gKSZK1dkCSnYDaMMWs2dOsWWrVJa7dilqXHLklt08qvzrRpQEAAAAAppHRRs9+UdLrxpiBwes+JknGmALFtrQAw6T53Prv3l9Kcukvnc/qb1a7Nefim6WS1YkuDQAAAAAwjYwYdlhr/2iMKZPkt9a2DDneLOmvJ6I4TC3+zp26w71WNSUP6E9vfERzynITXRIAAAAAYBoadfSsjYkHHcaYn45/SZiSrNX7jvyrulzZWnnf17SSoAMAAAAAkCAjruwwxjx/4iFJ1xtjciTJWvvB8SwMU4uz7ntaHtmqtwvv0eWp2YkuBwAAAAAwjY3Ws6NY0g5JTyjWkNRIWiXp2xNQF6aSwFsyr31F1kqXNv9aqnuQPh0AAAAAgIQZbRvLKkk1kv5WUoe19g1JfdbaNdbaNRNRHKaILU/LyMoYyW0jjJoFAAAAACTUaA1KHUnfNcY8M/jYONr1mMYyCiVJEWvk9ngZNQsAAAAASKhRG5RKkrW23lr7UUkvSfrZ+JeEKcebIkl6zNwp3f88W1gAAAAAAAl12rDjGGvti9baR8ezGExRnUfUbTL16sw/lSm9LNHVAAAAAACmuTMOO4ARdRzWUflVkZ+Z6EoAAAAAACDswLmLdtTrUCRP82ZmJLoUAAAAAAAIO3DubMdhNdg8VnYAAAAAACYFwg6cm3CfPP1tOmL9ms/KDgAAAADAJEDYgXPTeUSS1Gj8Ks0j7AAAAAAAJB5hB85N52FJkpM5Wz4P/zgBAAAAABKPv53i3HTEwo7U/JIEFwIAAAAAQAxhB86JMxh25BSVJ7YQAAAAAAAGeRJdAKa2nuaAwjZTZYX+RJcCAAAAAIAkwg6co4G2Q2q0flUUMHYWAAAAADA5sI0F58R0HtFRm6d5hB0AAAAAgEmCsAPnJK2vQW3uAuVl+BJdCgAAAAAAkgg7cC5CvUqPdiqUOTvRlQAAAAAAEEfYgbPXeUSS5M6ek+BCAAAAAAA4jrADZ627OSBJqg3nqiYQTHA1AAAAAADEEHbgrG3buUOS9Ps6t+57oorAAwAAAAAwKRB24KwdPbRPktRgcxWOOKo60JrgigAAAAAAIOzAOciONKnFzlDE+OT1uFRZ4U90SQAAAAAAyJPoAjB1pfU1qtNboM9ft0iVFX6tLMtNdEkAAAAAABB24OwEe0LKCTfJFFTo4evnJ7ocAAAAAADi2MaCs7Kprl2zTavS8ksTXQoAAAAAAMMQduCsbKs9omzTq7xZ5YkuBQAAAACAYQg7cFbqavdKknx5rOwAAAAAAEwuhB0YM8exCjbUxl7MmJPQWgAAAAAAOBFhB8bsQEuPcsJNsRczZie2GAAAAAAATkDYgTHbeCioWWqLvSDsAAAAAABMMoQdGLNNde0q9QRlMwokT0qiywEAAAAAYBjCDozZxkPtWpDaIUO/DgAAAADAJETYgTHpDUW0u7FLc1xtUnZxossBAAAAAOAkhB0Yk631HYo6VtmRZvp1AAAAAAAmJcIOjMmmunZlqE/ecBdjZwEAAAAAkxJhB8Zk46F23TVje+xFpD+xxQAAAAAAcAqEHThjNYGguva9pUdD/xI7sPY7Ut36xBYFAAAAAMAJCDtwRmoCQd37eJWWR7bIYyOxg05Eql2b2MIAAAAAADgBYQfOSNWB/5+9O4+Pq77v/f/+ziZptI1kSZa8yPIC2BAMxoaYQAjgJAaSBhrII4uahSRVmpLe3tsmaRL1NtBbtTe5vzTpvc1t4pukkFQJSSFtVkLAWQh7MAYbMMaykcc2trXNaBsts3x/f5yjkWRLsgTWjGb0ej4e5zFnzpyZ+Qz6cuR567t0azSRUkJeGSOlZCRvQGp4Y7ZLAwAAAABgEl+2C0Bu2Lpmibwe6QbvkzppK5TY/GEt33SdtPKybJcGAAAAAMAkhB2Ylc2rKvRf17yii48e1OHLW7Rq+yeyXRIAAAAAAFNiGAtm7a3d31GnWaJV2/4426UAAAAAADAtwg7MTvhxnTv0rO4vf5fkK8h2NQAAAAAATIuwA2d25EnpP29Tn4Lav/yd2a4GAAAAAIAZEXZgZkeelO56u9TTpiI7oo2+o9muCAAAAACAGRF2YGbtv5MSo5Iko5Q2jO7JckEAAAAAAMyMsAMza3ij5HEW7UnIJ9NwZXbrAQAAAADgDAg7MLOVl0kXvUeS9Eejn1XZOVdkuSAAAAAAAGZG2IEzCxRrxFusp7VeteWF2a4GAAAAAIAZEXbgzIaiGvCUqrasUH4vTQYAAAAAsLDxzRVnNhRRry3R8oqibFcCAAAAAMAZEXbgzIYi6kkFtSxE2AEAAAAAWPgIO3BGdiiijniRlhN2AAAAAAByAGEHzig1FFGEYSwAAAAAgBxB2IGZWSszFFWviunZAQAAAADICYQdmNnogDw2oagt1gp6dgAAAAAAcgBhB2Y2FJUkRVXCBKUAAAAAgJxA2IGZDUUkSclAuYIBX5aLAQAAAADgzAg7MDM37AiUVma5EAAAAAAAZoewAzMbdoaxFJVVZbkQAAAAAABmh7ADM7Ixp2dHSUVNlisBAAAAAGB2CDswo6G+LklS5RLCDgAAAABAbmDGScxoMNopr/WpdklFtksBAAAAAGBWCDswo+H+HlmVaHlFcbZLAQAAAABgVgg7MKPEYI+GbbGWVxRluxQAAAAAAGaFOTsws6GI+kyJKoL+bFcCAAAAAMCsEHZgRr6RXo34ymSMyXYpAAAAAADMyryFHcaYbxljOowxz004VmmMecAYc8C9ZdbLBa4g0atkYSjbZQAAAAAAMGvz2bPjTknXnXLsM5J2WmvPkbTTvY8FrDjVL1NEJgUAAAAAyB3zFnZYax+S1HPK4Rsl3eXu3yXppvl6f7x2Q+3tKtawfP6SbJcCAAAAAMCsZXo1lqXW2uPu/glJS2fzpP379+vqq6+et6IwtZ62Q6r0DSqaalXoe7uzXQ4AAAAAALOStaVnrbXWGGOne9wY0ySpSZIKCgoyVhckPfSQ+v2FOlqzXJWSulUo72NPqjQ+LF11VbarAwAAAABgRpkOO04aY+qstceNMXWSOqY70Vq7Q9IOSdqyZYv9zW9+k6ESoePH9dU7vqVfVRTq3oK/1a3DTdrS69Ftn/+wVFub7eoAAAAAAIvUbFcKzfTSsz+W9EF3/4OSfpTh98ds1NVpq29AITsoSRpIFmqrb4CgAwAAAACQE+Zz6dnvSXpM0nnGmKPGmI9I+p+S3mKMOSDpze59LECbX9mv5aZPkvT50Ze1+diLWa4IAAAAAIDZmbdhLNba907z0Lb5ek+cPSf+9bvyfvGTkqTX/cP/kIKVWa4IAAAAAIDZyfQwFuSIZ45EVG6cYSwqLM9uMQAAAAAAzAFhB6a0OxxVpYnJFpZLHm+2ywEAAAAAYNYIOzCl3eGoVgVHZApD2S4FAAAAAIA5IezAaeLJlPYci2pZwYhUVJHtcgAAAAAAmBPCDpxm/4l+DcdTWuIdJOwAAAAAAOQcwg6cZnc4IkkqtQNSEcNYAAAAAAC5hbADp9kdjqq6tEC+0Sg9OwAAAAAAOYewA6fZfSSqTSvKZYYIOwAAAAAAuYewA5NEBkf1ctegLlsekGySsAMAAAAAkHMIOzDJM0eikqTNNe4Blp4FAAAAAOQYwg5MsjsckcdI60NJ5wA9OwAAAAAAOYawA5PsPhLV+toyFSX6nAOEHQAAAACAHEPYAUlSa2urtqxYqaeeO6xDv/2JfvfLnzgPsPQsAAAAACDHEHZAra2tampq0tayNRoqKNamzlf0/bu+7jxIzw4AAAAAQI4h7IBufv/79VCoXve/7b9Jkp5+/c36TIXbo4OwAwAAAACQYwg7oDXW6uv1Fyrh8UqSEsaj56qXaDhhJX9RlqsDAAAAAGBuCDugwKpVqgnvlbFWslb+VFJVIx3qHaV5AAAAAAByD99moZaWFl164iUVDUTk6WzXO+9u1jLbp4JQbbZLAwAAAABgzgg7oMbGRkXu/LYGSyvV89Kj+q5/SJ5LNihUuzrbpQEAAAAAMGeEHZAkXbrt7ZLxqPX/fknt7e2qLStg2VkAAAAAQE4i7IAkqa1jQJK0rqbEOTAUZSUWAAAAAEBOIuyAJCfs8BipoSroHBiKEHYAAAAAAHISYQckOWFHw5JiFfi8UmJEig9KhQxjAQAAAADkHsIOSJIOdAxo7cQhLBJzdgAAAAAAchJhBxRPptTeNah1NSVqbW3Vuy6/WJL0uU/9d7W2tma5OgAAAAAA5oawAzrcHVMiZdXZtkdNTU26raBbknTDcI+ampoIPAAAAAAAOYWwA2rr6Jckvfvv/1qDlSO6+vpCSdKVbynUYOWIbn7/+7NZHgAAAAAAc0LYgfSyszd2HdEzDV5Zt1VYj7S7wavV1maxOgAAAAAA5oawAzrQMaDloSIFli3VofakJMlaKyWlQ+1JFaxaleUKAQAAAACYPcIOqM1diaWlpUXeV6xGhq1ePJHUvd+OyfeKVUtLS7ZLBAAAAABg1gg7FrlUyupg54DOqSlRY2OjPN/4ggqDHn3p9wl90rtCA9/+thobG7NdJgAAAAAAs+bLdgHIrmPRIQ3HU1pXUyJJ+oMLQ9uS2QAAIABJREFUyqXD0jcefFGqXJ3l6gAAAAAAmDt6dixyY5OTjoUdan9YKlshVTRkrygAAAAAAF4Dwo7FqLtbuu46qbt7POyoLpGsdcKO1W+UjMlykQAAAAAAvDqEHYvRnXdK998v3XWXDnT0q6okoIrigNT5ohTrkhquzHaFAAAAAAC8aoQdi4210pe/7Ox/+cvOSizVE4awSIQdAAAAAICcRtix2Pzud1JvryTJRqM68EpU5yx1w46XH5LK65mvAwAAAACQ0wg7FpuvfEUaHFSrpM3Wr/6E9J//54tq/bfvSIcfoVcHAAAAACDnEXbksxtvdCYanbj97GdqtVZNkjad+wZJ0uujUX3lLz4kxbqlO77pPA8AAAAAgBxF2JHP/v7vpfp6qbBw/NjoqG6W9NCy9frtto9Kkh6++lbde/Ey5/H4Uud5AAAAAADkKMKOfHbBBdILL0jveIcUDKYPr5H09foLlfR4JUkJj1dDawt1NJKSnnzReR4AAAAAADmKsCPfFRdL3/++9KUvSQUFkqSApJrwXnlSVrJWl2mf1lV2Sj3GOR8AAAAAgBzmy3YByJBLLnHCjpERtUgqeeVFtR9+RmaFV3cFvyiPT1qxStJKn9Tll4aGsl0xAAAAAACvCj07FounnpLicUlSozEa8Pv1hKyuSOyS8VjnHI+kmzZLL7+cvToBAAAAAHiNCDsWi9/9zumtUVgo1der8Qc/0PnlVeroWyojSdZKSUmmXqqtzXKxAAAAAAC8eoQdi8UTT0her7Os7PPPSzfdpOi69eoaqpEGrBTxSgPXSUeT2a4UAAAAAIDXhLBjsdiwQdqxQ7r77vQkpJGhhFa8a5tU5pEG6qV/+oH0wx9muVAAAAAAAF4bJihdLH72s0l3kymrvuGEzkvsdw7c/vUsFAUAAAAAwNlHz45FqnfImax09fALkscv1V2U5YoAAAAAADg7CDsWqUhsVJJUN/CcVHuh5C/KckUAAAAAAJwdhB2LVDQWl1dJVUb2SisuzXY5AAAAAACcNYQdi1Q0NqrzzBF5k0PSysuyXQ4AAAAAAGcNYcciFYnFtcnT5txZsSW7xQAAAAAAcBYRdixS0dioLvEcUKq4RgqtynY5AAAAAACcNYQdi1Q0Ftcm0yazYotkTLbLAQAAAADgrCHsWKRGHnpAazzHZZicFAAAAACQZwg7FqmK8MPODpOTAgAAAADyDGHHIlVbHlVSHmnZpmyXAgAAAADAWUXYsUitLj6po4HVUqA426UAAAAAAHBWEXYsRseO6tyCYzpasCHblQAAAAAAcNYRdixG/36Liq/qU7AonO1KAAAAAAA463zZLgAZVFQkvXVU9t9TMj7p4qselm70Sr8MSEND2a4OAAAAAICzgp4d+ez22yVjxrfhYekGI3nl/OS9cu4PD08+zxjnuQAAAAAA5CDCjnx2++2StZO3oUtlUpJNSkpKGrzq9HOsJewAAAAAAOQswo550traqoaGBnk8HjU0NKi1tTXbJTleGpS9M6jHH7xYbf/yB9LDoWxXBAAAAADAWUXYMQ9aW1vV1NSk+o3S5796geo3Sk1NTdkPPJJxaXVMHXa73vvrv9PILd+RfvjD7NYEAAAAAMBZRtgxD5qbm7V5W7Xuv+e4mpte0P33HNfmbdVqbm7ObmEv3S8Ndmr/sj+UJFUUB7JbDwAAAAAA84CwYx6Ew2Ftu75Ufm9CPm9Kfm9C264vVTic5aVen/62VFKrfcWXSZJCRf7s1gMAAAAAwDwg7JgH9fX12nlfv+JJnxJJj+JJn3be16/6+vrsFdX3itT2gLSpUT3DKQUScQUD3uzVAwAAAADAPCHsmActLS3atbNTt/zdh/W/fnaztt9Sp107O9XS0pLxWsYmSv3rt6+RbEo/CpepNxZX+XC/jDEZrwcAAAAAgPnmy3YB+aixsVGS1Pyfz2tPzxvk3fOkduzYkT6eKWMTpTa+eVif+xOf9j07ovd9ollvav43VZQWZrQWAAAAAAAyhbBjnjQ2NupI5Yv65sOH9NLLL2elF0Vzc7Pe9+Zhff3fUzK+Ua3fJr3vMY8eaGvXZa/fmvF6AAAAAADIBIaxzKOKoF/xpNXgaDIr7x8Oh3XzDUbyyvlJe6WbbzAaNQEmJwUAAAAA5C3CjnlUEXSWdo0Mjmbl/evr63Xvz62UlGxSUlK69+dWgZJQujYAAAAAAPINYcc8qih2w45YdsKOlpYWfffBQjW9y6P7v+FV07s8+u6DhfIFyxUqpmcHAAAAACA/EXbMo4qgEyhEYvGsvH9jY6N27NihB55dqRs+ntIDz67UP39thxLWKFREzw4AAAAAQH4i7JhHIXeoSDRLPTskJ/Bob29XKpVSe3u73voH75Q0HsQAAAAAAJBvCDvmUbpnR5bm7JjKWPASYs4OAAAAAECeIuyYR+VF2R3GMpWoW0uInh0AAAAAgDxF2DGPfF6Pygp9WR3GcqqxsIPVWAAAAAAA+YqwY55VFgfUs4B6dkTSw1jo2QEAAAAAyE+EHfMsFAwssJ4dhB0AAAAAgPxG2DHPKoL+dG+KhSAaiysY8KrA5812KQAAAAAAzAtfNt7UGNMuqV9SUlLCWrslG3VkQkUwoJdODmS7jLRILK5QEb06AAAAAAD5Kythh+saa21XFt8/IxbiMBaWnQUAAAAA5DOGscyziqBfg6NJjSSS2S5FkhQdiquimJ4dAAAAAID8la2ww0r6pTFmlzGmKUs1ZERFsdOLIrpAVmSJxEYVKqJnBwAAAAAgf2VrGMuV1tpjxpgaSQ8YY1601j408QQ3BGmSpPr6+mzUeFZUuENGIrFRLS0rzHI1Um8szkosAAAAAIC8lpWeHdbaY+5th6T/kHTZFOfssNZusdZuqa6uznSJZ02FGyxEBmfu2dHa2qqGhgZ5PB41NDSotbX1rNdirVV0iLADAAAAAJDfMh52GGOKjTGlY/uS3irpuUzXkSljk4HONElpa2urmpqaVL9R+vxXL1D9RqmpqemsBx59wwklUzbd2wQAAAAAgHyUjZ4dSyU9bIx5VtKTkn5mrf1FFurIiLHJQCMzzNnR3Nyszduqdf89x9Xc9ILuv+e4Nm+rVnNz86zfZzY9Q3rdGliNBQAAAACQzzIedlhrD1lrL3K3C6y1LZmuIZMmztkxnXA4rG3Xl8rvTcjnTcnvTWjb9aUKh8Ozeo/Z9gwZqyFUxDAWAAAAAED+YunZeVbo96rI71VkcPqwo76+Xjvv61c86VMi6VE86dPO+/pnPTHrbHqGtLa26sZ3vU+S9NH3v2de5gQBAAAAAGAhIOzIgIqgf8ZhLC0tLXr6oX41fqNF//jAH+mGD12gXTs71dIyu04vZ+oZMtbzY93GhP706h9o9bmReZkTBAAAAACAhSBbS88uKqFgYMYJShsbG3ViyKP/01amp8MbpGMx7djxl2psbJzV64/1DPn0R3ySEoonfXr0wAZ5PPvk8Xjk8Xj0hhtW6Cf//Fv5vQn92bU+bb+lTs3NzbN+DwAAAAAAcgVhRwZUFPtnnLNDkl53+TVS2y5J0sf+6m/VeMOGWb9+S0uLPv7Z/6HGb7ToktKf6dF9q7U/cLPe/OceXb7ueT30eInefFOd/N4fyedNSXJ6ftzx0+dfy8cCAAAAAGBBIuzIgFAwoOPRvhnPOdITkyQtDxVp34n+Ob1+Y2OjHukq0M/DRfrJv/wv2cGH9ZZPpvTDf/gP+b0JffojPv3Nf3xQ8eR4z4+5zAkCAAAAAEAuIezIAGfOjpl7doR7Yior9On1ayr18IGuOb/HcPkqNYwOqL33pDwej7au2pWew0NKqCTyhLbfUqdt15dq53392rWzUzt27HiVnwgAAAAAgIWLCUozoDIYUHQormTKTnvOkZ6YVlYGtaG2TB39I+oeGJn168eTKT1xqFtXrKuSNM3qLj/v1aM/P6o7bnte4T3Sjh07mK8DAAAAAJCXCDsyIBQMyFqpb2j6FVnCPTHVVwa1vq5UkrR/DkNZ9hyNanA0mQ47WlpatGtnp7bfUqeWHedr+y112rWzU3fddZdSqZTa29sJOgAAAAAAeYuwIwMqiv2SNO1QllTK6khkSPWVQW2oK5OkOc3b8Uhbt4yRLl+zRJIzh8eOHTsU3iN6cgAAAAAAFh3m7MiAUDAgSYrEpu7Z0TkwotFESisqg6oqKVBVSYFePD7zhKYTPdzWpQuWlamiOJA+1tjYSLgBAAAAAFiU6NmRARVu2BGdpmdH2F2Jpb4yKEnaUFeqF6fo2bHrcERf/XWbdh2OpI/FRhPaHY7oirVVZ7tsAAAAAAByEj07MqAiODaMZeqeHeHuyWHH+tpSffuxw0okU/J5nTxq1+GI3vf/Hlc8mVLA51HrR7dq86oK/b49onjSpufrAAAAAABgsaNnRwaMDS+JDE7fs8MYaVmoUJK0vrZMI4mU2t0QRJIeP9SlkURKKSuNJlJ6/FC3JOnRti4FvB5d2lA5z58CAAAAAIDcQNiRAaUFPvk8ZtoJSo9EYqorK1SBzytJ6RVZXjwxPm9HeeH4fBwpKwX9zrkPt3VpU31IRQHvfJUPAAAAAEBOIezIAGOMQkH/tMNYjvTEtNIdwiJJ62pK5PUYvXh8fN6ORw91qTjg1cfftFarKoP6h58/r4bLb9Bzx6J64kd3qbW1dd4/BwAAAAAAuYCwI0NCwcCME5RODDsKfF6trS5O9+w4Fh3S/c+f1B9dvkp/df16vafmuIYiJ7Wp8Wrdds09WrPkGTU1NRF4AAAAAAAgJijNmIqgf8phLMPxpE72jaQnJx2zoa5MT7U7q65857HDstbq/VtXSZK+cPvntO71Zfpu0375vQn92bU+be+tU3NzM8vNAgAAAAAWPXp2ZIjTs+P0YSxHI0OSdFrYsb62TMeiQ+roG9bdvw/rrefXakWFc044HNbVV1v5vQn5vCn5vQltu75U4XB4/j8IAAAAAAALHGFHhlQGA+qZYjWWIz3OiisrTw073ElKv/CL/YrG4rr1iob0Y/X19dp5X7/iSZ8SSY/iSZ923tev+vr6+fsAAAAAAADkCMKODAkV+xWNxWWtnXQ8nA47iiYd3/fYg5Kke58+KkWO6sCjv0g/1tLSol07O7X9ljq17Dhf22+p066dnWppaZnnTwEAAAAAwMJH2JEhFcGARpMpxUaTk44f6Ymp0O9RdUlB+lhra6s+ddsfKzkyKEmK7ntEH/vY+ASkjY2N2rFjh8J7pDtue17hPdKOHTuYrwMAAAAAABF2ZExF0C9Jp01SGu6Jqb4yKGNM+lhzc7MSoXp5/EWy1qrs0puUCNWrubk5fU5jY6Pa29uVSqXU3t5O0AEAAAAAgIuwI0NCwYAknTZJabgnppUVk+frCIfDKqy/UJKVMUbG41Vh/YVMQAoAAAAAwCwQdmRIhRt2TOzZYa3VkZ7YaZOT1tfXazi8VzaZcLZUUsPhvUxACgAAAADALPiyXcBiUVnsDGOZuCJLJBbX4GjytGVnW1pa1NTUpJN3N6uw/kINh/fKFw2rZceOjNYMAAAAAEAuomdHhkw1jCU8zbKzYxOQ1vmH1P/EParzDzEBKQAAAAAAs0TYkSE//897JEl//unPqaGhQa2tremw49SeHRITkAIAAAAA8GoRdmRAa2urPv6xJl1c+4w+9WcR1W+Ubr31Vn3sLz4nSdp+xeb0srIAAAAAAOC1MdbabNdwRlu2bLFPPfVUtst41RoaGlS/Ubr/nuPyexOKJ316e9MWFSxfrze9YVg/+/oj2rWzk6EqAAAAAADMwBizy1q75Uzn0bMjA8LhsLZdXyq/NyGfNyW/N6Fb/6Rc937+3/SX192t++85rs3bqtXc3JztUgEAAAAAyHmEHRlQX1+vnff1K570KZH0OLe9nZPCj23XlyocDme7VAAAAAAAch5Lz2bA2FKy22+p07brS7Xzvn5JnXr3NT5JzrCWnff1q76+PtulAgAAAACQ8wg7MmBsHo7m5mbd8dPnVVlZqf7+/knhx9icHQAAAAAA4LVhGEuGTFxKtqurS9/61rcU3iPdcdvzCu8Rk5MCAAAAAHCWsBoLAAAAAADICazGAgAAAAAAFiXCDgAAAAAAkFcIOwAAAAAAQF4h7AAAAAAAAHmFsAMAAAAAAOQVwg4AAAAAAJBXCDsAAAAAAEBeIewAAAAAAAB5hbADAAAAAADkFcIOAAAAAACQVwg7AAAAAABAXiHsAAAAAAAAeYWwAwAAAAAA5BXCDgAAAAAAkFcIOwAAAAAAQF4h7AAAAAAAAHmFsAMAAAAAAOQVY63Ndg1nZIzplHT4VT69SlLXWSwHmCvaIBYC2iEWAtohFgLaIRYC2iGyLZfb4CprbfWZTsqJsOO1MMY8Za3dku06sHjRBrEQ0A6xENAOsRDQDrEQ0A6RbYuhDTKMBQAAAAAA5BXCDgAAAAAAkFcWQ9ixI9sFYNGjDWIhoB1iIaAdYiGgHWIhoB0i2/K+Deb9nB0AAAAAAGBxWQw9OwAAAAAAwCKSE2GHMeZbxpgOY8xzE45VGmMeMMYccG8r3OPGGPO/jTFtxpg9xphLJjzng+75B4wxH5xwfLMxZq/7nP9tjDGZ/YTIBdO0w9uNMceMMc+42w0THvus26b2G2O2Tzh+nXuszRjzmQnHVxtjnnCPf98YE8jcp0MuMMasNMb82hjzgjHmeWPMn7vHuR4iY2Zoh1wPkTHGmEJjzJPGmGfddniHe3zKtmOMKXDvt7mPN0x4rTm1T2DMDO3wTmPMyxOuhxe7x/m9jHlhjPEaY3YbY37q3udaKEnW2gW/SbpK0iWSnptw7IuSPuPuf0bSF9z9GyTdJ8lI2irpCfd4paRD7m2Fu1/hPvake65xn3t9tj8z28LbpmmHt0v65BTnni/pWUkFklZLOijJ624HJa2RFHDPOd99zg8kvcfd/5qkj2f7M7MtrE1SnaRL3P1SSS+5bY3rIVvGthnaIddDtoxt7jWqxN33S3rCvXZN2XYk/amkr7n775H0fXd/zu2TjW1sm6Ed3inplinO5/cy27xskv5C0ncl/dS9z7XQ2tzo2WGtfUhSzymHb5R0l7t/l6SbJhz/tnU8LilkjKmTtF3SA9baHmttRNIDkq5zHyuz1j5unZ/0tye8FpA2TTuczo2S7rbWjlhrX5bUJukyd2uz1h6y1o5KulvSjW5Kf62ke9znT2zTgCTJWnvcWvu0u98vaZ+k5eJ6iAyaoR1Oh+shzjr3ujbg3vW7m9X0bWfidfIeSdvctjan9jnPHws5ZoZ2OB1+L+OsM8askPQ2Sd9w78/0e3RRXQtzIuyYxlJr7XF3/4Skpe7+cklHJpx31D020/GjUxwHZusTblfEbxl3+IDm3g6XSIpaaxOnHAem5HY73CTnr0hcD5EVp7RDieshMsjttv2MpA45Xw4Pavq2k25v7uO9ctraXNsnMMmp7dBaO3Y9bHGvh182xhS4x/i9jPnwFUmflpRy78/0e3RRXQtzOexIc5NOlpVBNvyLpLWSLpZ0XNKXslsOFgNjTImkeyX9V2tt38THuB4iU6Zoh1wPkVHW2qS19mJJK+T89XF9lkvCInRqOzTGvE7SZ+W0x0vlDE35qyyWiDxmjHm7pA5r7a5s17IQ5XLYcdLt2iX3tsM9fkzSygnnrXCPzXR8xRTHgTOy1p50f8mlJP0/Of/YkubeDrvldGX0nXIcmMQY45fzBbPVWvtD9zDXQ2TUVO2Q6yGyxVoblfRrSZdr+raTbm/u4+Vy2tpc2ycwpQnt8Dp3uJ+11o5I+le9+ushv5dxJldIeocxpl3OEJNrJf2TuBZKyu2w48eSxmYq/qCkH004/gF3tuOtknrd7t33S3qrMabC7Vr7Vkn3u4/1GWO2uuOVPjDhtYAZjX3BdP2hpLGVWn4s6T3ujMerJZ0jZ4Kp30s6x50hOSBnYqAfu3+N/7WkW9znT2zTgKT0GMxvStpnrf3HCQ9xPUTGTNcOuR4ik4wx1caYkLtfJOktcuaPma7tTLxO3iLpV25bm1P7nP9PhlwyTTt8ccIfIIycuRImXg/5vYyzxlr7WWvtCmttg5zr1K+stY3iWug40wymC2GT9D05XWLjcsYJfUTO2KKdkg5IelBSpXuukfRVOeM290raMuF1PixnspU2SbdOOL5FzkXooKR/lmSy/ZnZFt42TTv8jtvO9sj5H79uwvnNbpvarwkzZ8uZifsl97HmCcfXyLmotEn6d0kF2f7MbAtrk3SlnCEqeyQ94243cD1ky+Q2QzvkesiWsU3SRkm73fb2nKS/cY9P2XYkFbr329zH10x4rTm1Tza2sW2Gdvgr93r4nKR/0/iKLfxeZpu3TdLVGl+NhWuhtc7/LAAAAAAAAPkil4exAAAAAAAAnIawAwAAAAAA5BXCDgAAAAAAkFcIOwAAAAAAQF4h7AAAAAAAAHmFsAMAAAAAAOQVwg4AAAAAAJBXCDsAAAAAAEBeIewAAAAAAAB5hbADAAAAAADkFcIOAAAAAACQVwg7AAAAAABAXiHsAAAAAAAAeYWwAwAAAAAA5BXCDgAAAAAAkFcIOwAAAAAAQF4h7AAAAAAAAHmFsAMAAAAAAOQVwg4AAAAAAJBXCDsAAAAAAEBeIewAAAAAAAB5hbADAAAAAADkFcIOAAAAAACQVwg7AAAAAABAXiHsAAAAAAAAeYWwAwAAAAAA5BXCDgAAAAAAkFcIOwAAAAAAQF4h7AAAAAAAAHmFsAMAAAAAAOQVwg4AAAAAAJBXCDsAAAAAAEBeIewAAAAAAAB5hbADAAAAAADkFcIOAAAAAACQVwg7AAAAAABAXiHsAAAAAAAAeYWwAwAAAAAA5BXCDgAAAAAAkFcIOwAAAAAAQF4h7AAAAAAAAHmFsAMAAAAAAOQVwg4AAAAAAJBXCDsAAAAAAEBeIewAAAAAAAB5hbADAAAAAADkFcIOAAAAAACQVwg7AAAAAABAXiHsAAAAAAAAeYWwAwAAAAAA5BXCDgAAAAAAkFcIOwAAAAAAQF4h7AAAAAAAAHmFsAMAAAAAAOQVwg4AAAAAAJBXCDsAAAAAAEBeIewAAAAAAAB5hbADAAAAAADkFcIOAAAAAACQVwg7AAAAAABAXiHsAAAAAAAAeYWwAwAAAAAA5BXCDgAAAAAAkFcIOwAAAAAAQF4h7AAAAAAAAHmFsAMAAAAAAOQVwg4AAAAAAJBXCDsAAAAAAEBeIewAAAAAAAB5hbADAAAAAADkFcIOAAAAAACQVwg7AAAAAABAXiHsAAAAAAAAeYWwAwAAAAAA5BXCDgAAAAAAkFcIOwAAAAAAQF4h7AAAAAAAAHmFsAMAAAAAAOQVwg4AAAAAAJBXCDsAAAAAAEBe8WW7gNmoqqqyDQ0N2S4DAAAAAABk0a5du7qstdVnOi8nwo6GhgY99dRT2S4DAAAAAABkkTHm8GzOYxgLAAAAAADIK4QdAAAAAAAgrxB2AAAAAACAvELYAQAAAAAA8gphBwAAAAAAyCuEHQAAAAAAIK/MW9hhjCk0xjxpjHnWGPO8MeYO9/hqY8wTxpg2Y8z3jTGB+aoBAAAAAAAsPvPZs2NE0rXW2oskXSzpOmPMVklfkPRla+06SRFJH5nHGgAAAAAAwCIzb2GHdQy4d/3uZiVdK+ke9/hdkm6arxoAAAAAAMDiM69zdhhjvMaYZyR1SHpA0kFJUWttwj3lqKTl81kDAAAAAABYXOY17LDWJq21F0taIekySetn+1xjTJMx5iljzFOdnZ3zViMAAAAAAMgvGVmNxVoblfRrSZdLChljfO5DKyQdm+Y5O6y1W6y1W6qrqzNRJgAAAAAAyAPzuRpLtTEm5O4XSXqLpH1yQo9b3NM+KOlH81UDAAAAAABYfHxnPuVVq5N0lzHGKydU+YG19qfGmBck3W2M+TtJuyV9cx5rAAAAAAAAi8y8hR3W2j2SNk1x/JCc+TsAAAAAAADOuozM2QEAAAAAAJAphB0AAAAAACCvEHYAAAAAAIC8Mp8TlAIAAAAAkLbrcESPH+rW1jVLtHlVxby8h7VW1kopa5Vyb8fvW+0OR/V0OKI3rF2iSxsqZYyZlzoWqkz8DBYCwg4AAAAAi0Imv+QlkinFk1ajyZRGEynFk8727JGonj3aq0vqQ7pweUgej+T1GHmNkcdj5DFj+85xj3GPeYw8Rq/5i/lM/w0SyZRGkymNxFMaSaQ0kkg6t3FnfzQx9fGR9HH3/oTnj054rKt/WPtO9MtayUiqrwyqwO9JBxKp1NThRMo6AcbE804NM04NNmbjKw8ekCQV+DwKeD0K+Dzyp2+NAj6vAj6PAl4z/pjXI7/PowLv+LkTnzfpXPe2YMJzAz6PXu4a1L7jfVpfW6qGqmIlU1aJlFUyZRVPptL3E0mrZCo14bHx+4nk2HOmuJ8cf73EKfd7BkfSP4NCn0etf7w1bwMPwg4AAAAAeSmeTCkSG1U0FtcTh7r1tz99QYmklc9r9IGtq1RbXqRRN4QYDySsRiaEE2PHR5NW8URq0vlj+/GEE2pMfDx1hi/c33yVn8lj5AQgbkDi9RgZMzkw8RonGPF4TPq4MdJoIqWjkSFZOWFDRTAgK5sOI5JnKnoWCnzOl/uAz+vs+z0qcPf7hhPpIMJKCvg8WltdIo9bn2dC3el9Y2Qm7I8FPhPPHXuu9wyPe4z02MFu/WZ/Z/q/wdY1ldq4MjT+c06M/czH28GoG+z0Dycm/dwnnjt2PFM8RvJ5PfK5P2Ofx0y67/d60se9Ex6b+DOIJ1N6/FA3YQcAAAAAZMtwPKlIbFSRwbhzGxtVJBZXZHA0HWj0DI4qGhtVT2xU0cG4+kcSU75WPGn1zUfaJx3zuV8Qx/+CP/4X+vG/2ntU6PeorNDnHB/rEeD1yO8zk86b6rV++1Kn7tt7QlbOl9XtF9TqmvNqlBzrmeD+9T1p5fZysM5jKauwFQcbAAAgAElEQVRkSkpaK2vHzhnvCZEcOzc19joaf95Yj4eU1Usn+zUWZ1hJyyuKtKk+5IYT46GEE1J4Zzw+6TG/J907YqaeJ7sOR9T4jccVT6Tk93n0P2/emPEv2ptXVeqxQ93pGj65ff1Zq8Fap/fFxJBs5JRw5Pu/P6LvPRlWyjpt4L2X1evdl650gwmPG1SY9H2fd0Jg4d4fC7VejVN/BlvXLDkrn30hIuwAAAAAkBHOEIouXbSyQqsqg+nAIhobVc/g5P1ozA013OND8eS0r1tS4FMo6FdlcUChYEANVcWqCAZUEQyostivUDCgrv4R/cMvXlQimZLf69HX3r9ZW1ZVpIcXvNovj3OxrqZUv3qxI/1F86NvXJPRL/unftG9/R0XZPT9N6+qUOtHt2Z1voj5rMEYo4DPCbaKC6Y+J560uvfpo+mfwTsvWaGNK0JnrYYzWQg/g0wxdrYDmrJoy5Yt9qmnnsp2GQAAAABcqZRV/0hCfUNxRWNxRYdG3du4emMT9ofi6o3Fdbx3SEciQzO+pjFSWeFYaOFXZdAJLyqCflUUB9wAY/J+KBhQwDe7RSYXwsSM2a4h2+8PfgavlTFml7V2yxnPI+wAAAAA8t90X7ASyZR6h5xgIhqLq3cstIi5QcWQ09ti/HHnfu9QfMZ5KYIBr0JFfpUV+RUK+tU9MKoDHQOSnLkStl9Qq5s3r0gHFpXFAZUX+eXNQA8LALlrtmEHw1gAAACAPGKt0+Oio29YJ/tGdLJvWE8fjup7vw8rmbLyGGnVkqDiSave2PTzWkjjPS3K3cCivMivlZVBhSbcDwUD6cdDRX6Vu8cLfN5Jr3XqEIo/viqzQzgALC6EHQAAAECOGJgQYnT0D+vkhECjo29EJ91jw/HpV4VwJkY0umx1hUJFznCRseBiLLwYCzNKC89eT4vFNFcAgOwj7AAAAAAyYKZx+kOjSTe4GFZH/8ik23SQ0TeswdHTJ+ks8ntVW16omtICXbQipKVlBVpaVqiaskItLXX2X4kO6cN3/T7dq+KLt1yUtckhCTkAZAJhBwAAADBPEsmUOgdG9Jv9nfqbHz2nRNLK4zG6ct0SJVI23Sujf/j0oSQFPo+WlhVqaVmBNiwr09Xn1UwIMgpUU+o8VlLgm3G5T0lqqCqmVwWARYWwAwAAAHgVhuNOb4zjvcM60TusE33O7fHeIZ3oG9GJ3iF19o+cNolnMmW1OxzVupoSnVNToivXVammrEBLSwvTQcbS0kKVFZ05xJgLelUAWEwIOwAAAIBT9A/H3eBiYogxPCHcGFIkFj/teaUFPtWWF6q2vFDn1lSrrrxQteVFGhiJ6//75UtKJp1hJP9662UEDwAwjwg7AAAAsCg4c2Z06fy6MlWXFk7qlTEeZAzpRO/Uc2MsKQ6otrxQy0OFuqQ+lA4yassK0wFHScH0/7zevKqSYSQAkCGEHQAAAMh5iWRK3YOj6ux3Vinp7B9RR9+IOvpH1Nk/okNdAzpwckB2iud6PUY1pQVOb4ylpbrqXKdHxtKyQtWVF6mu3BlacupSqnPFMBIAyBzCDgAAACxYgyMJN8AYSQcZ4/vObWf/sLoHR2WnSDLKi/yqKS3QSCKVDjqMpBsvXqYPXbFadeWFqiopOGvLqwIAFgbCDgAAAMy7icuubloZUk9sVB19I+ocGFFH37B7OxZejPfOmGo4ic9jVF1aoOrSAi0PFerileWqLnWWXq0uLUjfVpeO98bYdTiixm88nl569f2XN+jilaFM/2cAAGQIYQcAAADOupFEUi93DaqtY0APvdSpe3YdTa9K4jE6bYUSyZnccyykeN3yctWUFqbDi5qysSCjUKEivzxz7ImxeVUFS68CwCJC2AEAAIBXrX84rraOAWfrHNBBdz/cE5sy0DCSLltdqetfVzceZJQWqqo0oGBgfv9pypwZALB4EHYAAABgRtZa7dzXoQf2nVBZoV+jiZTaOp1Q42TfSPo8v9dodVWxzl9WpndctExra0q0rqZEvbG4PnzX79NDSD61fT2hAwBgXhF2AAAAQJLUNxzXy52DerlrUIe6nNuXuwbUdnJAw4lU+rwiv1fnLi3RFeuqtK6mROuqnVCjvjIon9cz5WszhAQAkEmEHQAAAIvA2AShm1eFtKS4YDzMmBBudA2M99LwGGlFRVCrq4oVWObR7nBU1j3+iWvX6rZrzpnT+zOEBACQSYQdAAAAOWDiaianhgZDo0n1xEYVGRxVz+CoIrFRdQ84tz2DozrUOaAnXu6Zcg6NqpICrakq1rb1NVpdXazVVcVaW12slZXBaVcy2bqmKhMfGQCAV42wAwAAYIGKJ1MK98R0//Mn9I+/fEmJlJXHSBcuL1fSWvUMjKonNqrheGrK5xsjVQQDkmw66DCS3raxTk1XrVFDVbHKCv1nrIOVTAAAuYawAwAAIMsGRhI65E74eTB9O6jD3YOKJyd3x0hZqaN/RBvqynTe0jJVFvtVURxQZTCgymJnG7tfVuSX12NO65lx6xWrtXFFaE41MgwFAJBLCDsAAAAyYFd7j3a+2KGasgJ5jdHBzsF0uHG8dzh9ntdjtGpJUOuqS/SW85dqXXWJ4qmUbv/R84onnbDin993yZyCB3pmAAAWG8IOAACAs8xaqyM9Q9pzLKq9x3r1aFuX9h7rm3ROccCrdTUlunzNEq2tKdHa6hKtqylWfWWxAr7TVzQ5p6b0NYUV9MwAACwmhB0AAACvgbVWRyND2nus19mOOre9Q3FJkt9rtKQ4kD7fY6SPXbVWn77uPBljZv0+hBUAAMweYQcAAMAZpFdCWV2p2lCR9h6Nao8bauw91qtobDzYOK+2VDdcWKsLl4e0cUW5zl1aqr3HeifNmfHm85fOKegAAABzQ9gBAABwitFESkcjMR3ujunhA52687HDSp6ybqvPY3Tu0lJtP79WF64o18YV5TqvtjS9XOtEzJkBAEBmEXYAAIC8l+6ZMSFoiI0mFO6Jqb0rpnDPoNq7YzrcPajD3TG9Eh3SKdlG2ps31OgT156j9bWlKvSfHmxMh2EoAABkDmEHAADIWyOJpH6+54Q+fe+zSiStPMbo3KUl6h4cVUf/yKRzK4J+1S8p1uZVFXrnpuVataRYDVVBRWNx3fbdp9NDUD5+9TpdvHJuy7YCAIDMIuwAAAA5r3conl7G9WDHQHo/3BOb1EMjaa36hxN607nVWrUk6AQaS4pVvySo8iL/tK/PEBQAAHILYQcAAFjwnGEoXVpXU6oiv1cHO8cDjbaOQXUNjPfSCHg9Wl1VrAuWlesdFy2Tx2P0f39zUMmk0zPjn967ac6BBUNQAADILYQdAABgQeoeGNGuwxH9bO9x/fjZV2RPmUOjrNCndTUlunZ9tdZWl2hdTYnWVpdoZWVQXs/klU7eeE41PTMAAFhECDsAAEDWpVJWbZ0D2nU4oqfaI3o6HNHLXYOSJK8x6aDDSHr3pSv1l289T1UlgVkv30rPDAAAFhfCDgAAkHGx0YSeORLV04cjeupwRE8fjqhvOCFJqiwOaPOqCr370pXasqpC8WRKt975+/QEoe/aslLVpQVZ/gQAAGAhI+wAAADzaiSR1IMvnNQvnj+hZMrqaGRIz7/Sp6Q7c+g5NSW64cI6bV5VoS0NlWpYEjytxwYThAIAgLkg7AAAAK/JwEhCxyJDOhaN6VhkSEejQ+595/bUJV4vWFaqP3nTGm1ZValN9SGFgoEzvgfDUAAAwFwQdgAAgBklkin96JlX9NBLnaoo9ksy6SDjWHRIvUPxSecHvB7VhQq1PFSkN51brWPRIT12sFtWktdIN1y4TLddsy4rnwUAACwOhB0AAGCS471DeiYc1e4jUT0TjuqZIxGNJseXQinye1VfGdTyiiJtXlWh5RVFWh4qSt9WlxTIM2E1lF2HI2r8xuPpOTe2rlmSjY8FAAAWEcIOAAAWsdhoQnuP9uqZI1HtDkf1zJGoTvQNS3J6aFywvEwXrgjp6cORdM+MT1y7Vrddc86s32Pzqgrm3AAAABlF2AEAwCKw63BEjx3sUn1lUCOJVDrc2H+yPz1RaH1lUK9fU6mLV4a0qb5CG+pKVeDzTtEzo2rO78+cGwAAIJMIOwAAyCP9w3Gd6B3WK73DOtE7pOO9w3ruWK9+9WKHUuMjUVRa4NNFK0P606vX6uKVIV28MqQlJVMv50rPDAAAkGsIOwAAWOB2HY7o8UNdunBZSDXlBTreO6wTvcPurRNojB0bGEmc9vxgwJsOOoykW69o0F+/7fxJ82qcCT0zAABALiHsAABggUmlrA51DWrP0age3HdS9z13Qtaefp4xUk1pgWrLi7SuukRXrqtSXXmh6kJFqisvVG1ZoZaWFWrvsd5Jw1DetnHZnIIOAACAXEPYAQBAFllrdTQypGePRrXnaK/2HI3quWN96R4aPo9JBx1G0tsvqtOH3tCg2vIi1ZQWyO/1nPE9GIYCAAAWG8IOAADmmTMMxQkaloeKtGcs2DjWq71Ho4rE4pKc1U821JXqDzct14UrynXRipB6h0b1gW89me6V8aE3rH5VYQXDUAAAwGJC2AEAwDxJpazuffqoPvvDvUqkJo9D8XqMzl1aqreeX6uNK8u1cXlI59WWKuA7vacGvTIAAADmhrADAICzxFqrw90xPdzWpUcPdunRg92Kur02xly7vka3XbNO59eVqSjgndXr0isDAABgbgg7AAB4DTr6h/XYwW490talR9q6dSw6JEmqKy/Umzcs1fJQob7220NKJJ1hKLdds47gAgAAYJ4RdgAAcAYT59w4d2mJnny5x+m90dat/Sf7JUnlRX5dvmaJ/uTqtbpi7RKtriqWMc6KJ1edW8MwFAAAgAwi7AAAYAZPHOrW+7/5pOLJlGScFVFSVirweXTZ6krdtGm5rlxXpfOXlck7zXKuDEMBAADILMIOAAAmSKWs9p/s1yNtXXq4rUsPH+gan1zUSq9fU6n/su0cXVJfoUL/7ObcAAAAQGYRdgAAFr2jkZgebetOTyzaNTAqSVpbXay3nL9UD+47qVTKyu/z6FPb19NLAwAAYIEj7AAALDrR2KgeO+iEG4+0dam9OyZJqi4t0BvPqdYV66p0xbolqisvkjR5zg6CDgAAgIWPsAMAsOC9lrAhlbJ69FC3fvLMMcWTVm2dA9p7rFfWSsUBr7auWaIPXN6gK8+p0jk1JelJRSdizg0AAIDcQtgBAFiwrLX6xXMn9F/u3q1E0srrMXrvZfWqKA4oNpJQLJ50bkeT7jb1/kQbakv159vO0ZXrqnTRypD8Xk+WPh0AAADmC2EHAGBBGI4ndeDkgF443qt9x/v1wit92ne8T/0jifQ5iZTVdx4/LEkKBrzu5pu0X1VS4OwX+BT0e/X88T49frBbVpLXSG+/aJluu2Zdlj4lAPz/7N15dNxnfe/x9zNabMuWbFneV8XOHgjEdoJpSAgQIKQ0ARpKExfSspjeXsrpLaVluZdS2pzSsrUULrdOoITWKRRIIGULECBxCIpjZV+8x5J37ZYsa5nluX+MrNiJ7cS2Zn7S6P06x0czv5n5zcfHBx/8yfN8H0lSMVh2SJIK6lhbUNoODvD03u7hQuOpvd1sa+0lO3TqSVVlGefNreEtF81ncmUZX7t/B5lsjoqyFP/2hxezckkdqeMc83qs7191SwPpTI6K8hQrl9QV7PcqSZKk0cGyQ5JUMA/u6OAPbnmAwUyOslTgJfOnsqerj5aegeH3zJ06kfPn1vCG8+dw/rwazp9bw6LpVUeVGa+/YM4pz+xYvriWte9d6YBRSZKkccSyQ5I0Ig4NZti4r+eo1RqP7zpAZmi1RiYX2d15iMvOnsn5c/Olxnlza6idXPmC9z7dAaEOGJUkSRpfLDskSSd0rG0oLT39PLUnX2gc/vlMWy8x32tQPbGc8+fW8MYLZvPTp/aTzUUqy1P8v3eusHSQJElSwVl2SJKO676tbbz76w+SzuRIpQIvnT+VXZ19tB18dhvKgtpJnD+3hmteNm94tcaC2knDR7iezrGxkiRJ0qmw7JCkce7AoTQ72nvZ0d5LU/uh4Z9N7b20HRwcfl82F9nT1ccV5wxtQ5lXw3lzaphaVXHC+7uFRJIkScVm2SFJJa5xRwe/2NTC/GmTmFBeRlN7LzuGyoymjkN0HUof9f65UyeyuK6KK8+bTXkqxbc2NA9vQ/nKHyy3uJAkSdKoZ9khSSWoo3eQ+7a28b2Hd/GLja1HvZYKML92EvV1k3nzhXOpr5vM4rrJLK6rYtH0KiZWlB31/rcum+82FEmSJI0plh2SVAIGMlkad3Sybmsb67a08uSebmKECeWp4fekArz70jP4y6vOpfKI6y/EbSiSJEkaayw7JGkMijGyef9B1m1pZd2WNh54pp3+dI7yVGDZ4lr+/MqzuezsmaSzOd751QdIZ3JUlKd400vnnlTRIUmSJI1Flh2SNModPs3k3DnV9PRnuHdLK/dtaaOlJ38iytKZk/n9ixdx2VkzeMWSOqZMOPqv9rXvXek2FEmSJI0rlh2SNEr1DmS4bX0zn/7xRrK5OHy9tqqCS8+cweVnzeRVZ81g3rRJJ7yP21AkSZI03lh2SNIokc7meGRnF7/e2sb9W9t5eGcn6eyzJUcA3rlyMZ+85gJSqZBcUEmSJGmUs+yQpITkcpGN+3q4f1sbv97axvpnOugdzBICvGTeVN79qjOYXT2Bf/zJJtLZ/MyNay+ab9EhSZIkvQDLDkkqsMMzN1YuqWPmlAn8eqjc+M22dtp7BwFYMmMyb102n1edOYOVS+qYVlU5/PmXLax15oYkSZJ0Eiw7JKmAfrWphfd9YwPpbCQAhzelzKqewOVnz+TSM2fwW0vrTjh3w5kbkiRJ0smx7JCkEZTNRR7b1cU9m1u5Z3MrjzR3DRccEXjdebP46JvOZenMKYTgdhRJkiSpEApWdoQQFgLfAGaT///4a2KM/xxC+CTwPqB16K0fizH+qFA5JKnQfv70fr7buIvu/gxP7jlA16E0IcDLFkzj7SsW8L1H9pAdmrnxJ1ecyZmzqpOOLEmSJJW0Qq7syAAfijE+FEKoBhpDCD8beu0LMcbPFvC7JalgMtkcD+/s4lebWvjR43t5pu3Q8GtXnD2Tty1fwGVnzqB2cn7uxjsuXuTMDUmSJKmIClZ2xBj3AnuHHveEEJ4G5hfq+ySpUBqbOrn76f2EADvaDrFuSyvd/RnKUoG5NROHZ3GUBbj4jOlc87J5R33emRuSJElScRVlZkcIoR64CHgAuBT4QAjhXcAG8qs/OouRQ5JerHQ2x0NNnXzrwZ3c8fDu4bkbtVUVXPWSOVxxziwuPXMGW1sOsuqWBtKZ/DaVlUvqEs0tSZIkCUKM8YXfdTpfEMIU4B7gphjj7SGE2UAb+f8Q+rfA3Bjju4/xudXAaoBFixYtb2pqKmhOSePTkcfCzp82iXs2t/CrTa3ct7WNnv4MqQC5ob8mUwE+9Iaz+Z+vOeu493AFhyRJklQ4IYTGGOOKF3pfQVd2hBAqgO8Ca2OMtwPEGPcf8frNwA+O9dkY4xpgDcCKFSsK28hIGpcamzq54eYGBjM54NljYefUTOS3XzqXK86ZyeQJ5fmjY4dXbsx43n3cpiJJkiSNLoU8jSUAXwWejjF+/ojrc4fmeQC8FXiiUBkk6VgODmT470f38MW7tzAwVHQAvPrsmXz06nM5Z3b1UcfCrn3vSlduSJIkSWNIIVd2XAq8E3g8hPDI0LWPAdeHEF5O/j+i7gDeX8AMksa54S0mZ0yHAN96cCc/eGwvhwazLKidRHkqEGOkojzFB193FufOqXnePVy5IUmSJI0thTyN5T4gHOOlHxXqOyXpSMfaplJVWcbvXDiPd1yykIsWTuOh5i5XbUiSJEklpiinsUhSsbUdHOAff7LxqG0qV10wm8/+3suZMuHZv/pctSFJkiSVHssOSSVlT1cfa+7dzjcfbKY/nSM1tL6ssjzF+y5felTRIUmSJKk0+f/6JY1ph2dy1NdVce/mNm5/eBcxwlsums//uGIpXYfSblORJEmSxhnLDklj1vpn2vmDW9YzmM1vVSkvC9xwySJWX76EBbVVw++z5JAkSZLGF8sOSWNKfzrLvZtbuevJ/fzw8T3DRUcAVl+2hL+86txkA0qSJElKnGWHpFGtsamTeza1ALBpfw/3bm6jL52lZmI5l5wxnd9sayeXyx8d+7rzZiecVpIkSdJoYNkhaVTK5iJfvW87n/7xRnIxf622qoLrli/gjRfM4RVLplNRlhqe2eFMDkmSJEmHWXZIGlX2d/fzrQd38q0Hd7K7q2/4eirAe151Bh947VlHvd+jYyVJkiQ9l2WHpEQ1NnXym21tTKgo48FnOrh7YwvZXOSys2Zw/SUL+dIvt5LO5KgoT/HKpTOSjitJkiRpDLDskJSY32xr451fXU9maJ/K1EnlvO+yJVx/yUIW100G4JVLZ7hNRZIkSdJJseyQVHTpbI7/2rCTv//RxuGiI79NZQkffJ3bVCRJkiSdHssOSUWTzUW+/8hu/unnW2juOMQ5c6p5prWXbC6/TeXSM92mIkmSJOn0WXZIKqj8aSltEOF7j+xhS8tBLphXw7/94cVccc5MHmrucpuKJEmSpBFl2SGpYBp3dHD9zQ0MZvNbVeZPm8j/XbWMqy6YQyoVALepSJIkSRp5lh2SCuL+bW38xbcfHS46AnD9JYu4+qVzkw0mSZIkqeRZdkgaUY1NHXz2rs38Zns706sqqSgL5HLRo2MlSZIkFY1lh6TTkp/J0c6sKRP44RN7+dWmVmZMmcAn3nw+N7xiEU/u6XYmhyRJkqSisuyQdMoamzq54eYGBjI5AKZMKOMjbzqXd71yMVWV+b9enMkhSZIkqdgsOySdki37e/jYHY8PFx0BeM+rzuCPX7002WCSJEmSxj3LDkknZVvrQf7551v478f2MKEsRXkqEGN+JsflZ89KOp4kSZIkWXZIenF2tPXyxbu38L1HdjOhvIw/fvVS3nfZEp5p63UmhyRJkqRRxbJD0gn9+PG9fPmXW3lqbzeV5Snee9kSVl++hBlTJgAwfXKlJYckSZKkUcWyQ9Ix7TvQzye+/wQ/fWo/AGWpwJduWMaV581OOJkkSZIknZhlh6SjtB8c4Cu/2sa/NzSRzuaefSFGNu3rseyQJEmSNOpZdkgC4EBfmlvWbedr9z1DXzrLWy9awJXnzeJ//dcjpDM5KspTrFxSl3RMSZIkSXpBlh3SOHf/1ja+cs82HmrqpHcwy2+/dC7/6/VnceasagBm1Ux0AKkkSZKkMcWyQxqnYox86Rdb+dzPNgOQCvCZ6y7k7SsWHvW+5YtrLTkkSZIkjSmWHdI4tLPjEJ/4/hP8clPr8LUAtPQMJBdKkiRJkkZIKukAkoonnc3xr/ds4/VfuIcHnungjy6tZ2JFirKAMzkkSZIklQxXdkjjxMPNnXzsjid4em83V543m09dewHzpk3izRfOcyaHJEmSpJJi2SGVuHVbWvn8zzbzcHMXc2om8q/vXM4bL5gz/LozOSRJkiSVGssOqYR9e8NOPvydxwAoSwU+8/YLueysmQmnkiRJkqTCcmaHVKJ+ubGFj93x+LMXYuSxXQeSCyRJkiRJRWLZIZWg2x5o5r3f2MCC2klMKHcAqSRJkqTxxW0sUgmJMfLZn27iy7/cxqvPnsmXVy1j074eB5BKkiRJGlcsO6QSMZDJ8lffeYzvPbKH3794IX/3lpdQXpZyAKkkSZKkcceyQyoBB/rSvP/fN9CwvYMPv/Ec/uSKpYQQko4lSZIkSYmw7JDGuLue3MfHbn+crr5BvvCOl/HWixYkHUmSJEmSEmXZIY1hdz6ymw9+8xEAKstSLJo+OeFEkiRJkpQ8T2ORxqjtrQf56O3PHi2bzeVo2N6eYCJJkiRJGh0sO6QxqKm9lxtufoCyVPBoWUmSJEl6DrexSGPMzo5DXL+mgYFMlv/641fSO5D1aFlJkiRJOoJlhzSG7O7q4/qbG+gdzHLb+17BuXNqACw5JEmSJOkIbmORxoh9B/q54eYGDvSl+ff3XMIF86YmHUmSJEmSRiXLDmkMaOnu5/qbG2g/OMg33n0JFy6YlnQkSZIkSRq13MYijWKNTZ3c/fR+vv/IbjoPpfnGuy/hokVuWZEkSZKkE7HskEapxqZObri5gYFMDoC/vfYCVtRPTziVJEmSJI1+bmORRql7N7cMFx2pAN39mYQTSZIkSdLYYNkhjUL96Sw/f3o/kC86KstTrFxSl3AqSZIkSRob3MYijTLpbI4P3PYQT+3t4c+uPIuKsnzR4fGykiRJkvTiWHZIo8iGHR184vtP8tTebv72LS/hnSsXJx1JkiRJksYcyw5plGhs6uQdaxrI5iLlqcD5c2uSjiRJkiRJY5IzO6RR4uZ7t5HNRQBijDRsb084kSRJkiSNTa7skEaB+7e18bOn9pMKEIAKB5JKkiRJ0imz7JAS1NjUyY8f38t/rm/mjJlT+MSbz+fx3QccSCpJkiRJp8GyQ0pIY1MnN9zcwEAmB8CfX3k2l589k8vPnplwMkmSJEka25zZISWkYXv7cNGRCvBMe2/CiSRJkiSpNFh2SAmZOaUSyM/oqHRGhyRJkiSNGLexSAnI5SLffHAnUyeVc+Nv1fPqs2c5o0OSJEmSRohlh8aVxqZOGra3Dw8Afe7zYrnj4d081NzFP153Ib+3YmHRvleSJEmSxgPLDo0bD+7oYNUtD5DO5CgvC7zx/Nn85Mn9ZHOR8rLA31xzAXVTJrBlfw+vXDqjYOVHT3+aT/9kIy9bOI3rli0oyHdIkiRJ0nhm2aGS0rijg3u3tHHBvBrqZ0xmw44OfrGxhZ7+NI/sPMDg0EDQdDbyg8f3DX8unY187I4nhp9PKN/Kbe9bWZDC419+sZXWngFuftcKUqkw4veXJKErT+EAACAASURBVEmSpPHOskMl47YHmvj4HU8Qj/FaAJYtnsZjuw6QzUUqylJ8+I3n8Nmfbhpa6ZHilUvquGdzKxEYyOS4Z3PLiJcdW1sO8rX7nuH3Vizg5Qunjei9JUmSJEl5lh0a0xqbOrlvSyvb23r5/iN7hq8H4Jw51Wza30OM+aNdX3vubD529flHzei4aFHt8HOAhmfaGczkyEX46ZP7+eNXL6WqcmT+ZxJj5FM/eIpJFWX85VXnjsg9JUmSJEnPZ9mhMauxqZPrb24Y3ppy8eJaHt99gHQ2R0V5ine9sp5P/eBJ0pn888MFx5GrNZ77fO17V9KwvZ1cLvKFn2/m+jUNvO68WVx65szTXuXxs6f2c+/mVv7Pm89nxpQJp3UvSZIkSdLxWXZozPrm+ubhoiMV4IpzZ/GRq887auXGOXOqT+q0lSPLj/5Mli//chuP7jrA//3VNta+99RnePSns/ztD5/irFlTeNcrF5/SPSRJkiRJL45lh8akX25q4Y5HdhPIFx0vduXGyaiqLCcAEehP5/j11tZTvtfN925nZ0cfa9/7CirKUqd0D0mSJEnSi2PZoTGlsamTtQ1N3PnoHs6dW82H33AOT+zpftErN07GyiV1TKhIMZDOEYFfbmpl9eVLmVhRdlL32dPVx5d/tZU3vWQOl545Y0QzSpIkSZKez7JDY0ZjUye/v+Y3pLOREOAv33Aul58zk1efM6sg37d8ce3wDI+D/Wn+373bece//obXnjuLV5314mZ4NDZ18rE7Hiebi3z8t88rSE5JkiRJ0tEsOzRm3PZAE+ls/mDZFPD4ngNcfs7Mgn7nkdtgyspSfOkXW4dneNz2vhPP8Pjlphbed+sGMrlIeSqwv3uABbVVBc0rSZIkSbLs0BjRsL2dOx/dQwj5ouPwjI5imlRRNjzDYyCT43M/3cQHX3cmjU1dw9toGnd08N2HdrOr6xC/3tpONpcvZ2KMNGxvH/GtNpIkSZKk57Ps0Kj3yM4u3vP1B6mvm8zHfvs8nirQjI4XcniGRzqTn+Fx/7Z2frOtHYBUKrCwdhI72g8d8f7pPNzcRSabS6SckSRJkqTxyrJDo9rtD+3io7c/zrRJFfzHe1/B7JqJvKZAMzpeyJEzPFYuqeM/1zfzncZdAGRzkfaDg8PvLQtw2Vkz+fAbzz2po28lSZIkSafPskOJatjexvpnOrh06QyW10+nsamTnzyxF4CHm7vY0NQJQFdfml2dfcyumZhk3OcdZfuDx/YwmMlRWZ7io1efx6d+8CTpTO64R+FKkiRJkgrPskNF1djUScP2NqZPnsCPn9jLvZvbAPj8z7YwoSzFQDY3/N7Jlc8e8ZrJ5kbdzIvnrvRYvriWc+ZUu5JDkiRJkhJm2aGiuX9rGzf+2/rhE1XKU2H4tQDUVVeyp6sfgFSAay+ax+0P7T5qpcRo89yVG67kkCRJkqTkWXaooBqbOrnriX3s7+nnJ0/sGy46AvC2ZfO589E9w2XGB15z1lHbQH532UJ+d9lCV0pIkiRJkk6KZYcK5pcb9/OeWzcwdPoqL51Xw6b9B8nm8mXGOy5exDsuXvSC20AsOSRJkiRJJ8OyQwWx70A/H/r2o8NFR1mAq146l09eW3fCMsNtIJIkSZKk02XZoRG3s+MQN9zSQN9gjsqy1PBKDk8nkSRJkiQVQ8HKjhDCQuAbwGwgAmtijP8cQpgOfAuoB3YAvxdj7CxUDhXXnY/u5mO3P0GMkW+uXkkmF525IUmSJEkqqkKu7MgAH4oxPhRCqAYaQwg/A/4QuDvG+OkQwkeAjwB/VcAcKpK7ntzHB//zEQAmlKfI5KIrOSRJkiRJRZcq1I1jjHtjjA8NPe4BngbmA9cCtw697VbgLYXKoOL6zF2bhh9nsjkatrcnmEaSJEmSNF4VrOw4UgihHrgIeACYHWPcO/TSPvLbXI71mdUhhA0hhA2tra3FiKnT8NMn97G15SDlqUBZYHhGhyRJkiRJxVbwAaUhhCnAd4E/izF2hxCGX4sxxhBCPNbnYoxrgDUAK1asOOZ7NDr0DmT45J1Pcs7sav72LRfw4I5OZ3RIkiRJkhJT0LIjhFBBvuhYG2O8fejy/hDC3Bjj3hDCXKClkBlUeF+8ewt7DvTznesvYkX9dC45wxUdkiRJkqTkFGwbS8gv4fgq8HSM8fNHvHQncOPQ4xuB7xcqgwrv9od2sWbddq48bxYr6qcnHUeSJEmSpILO7LgUeCfw2hDCI0O/rgY+Dbw+hLAFuHLoucagDTs6+NC3HyVGWLeljcYmTxCWJEmSJCWvYNtYYoz3AeE4L7+uUN+r4vnKPduIQ9NUDp++4pwOSZIkSVLSCj6gVKVpe+tB1m1uJRXyjZanr0iSJEmSRgvLDp20bC7yoW8/yqTKcj739pexaX+Pp69IkiRJkkYNyw6dtH+9dxsPN3fxz7//cq48fzZXnj876UiSJEmSJA2z7NCL1tjUyX8/uod/b9jB1S+dwzUvm5d0JEmSJEmSnseyQy9KY1Mnq25poD+dA+DtKxaSP11YkiRJkqTRpZBHz6qE3LOpZbjoSAV4ak93wokkSZIkSTo2yw69oF2dh7jj4d1Avuio9OQVSZIkSdIo5jYWHVdjUyfff3g3dz62h2wu8slrzqd3IOvJK5IkSZKkUc2yQ8fU2NTJ9Tc3MJjJEYB/esfLufai+UnHkiRJkiTpBbmNRcfUsL2dwcyzMzp2dfUlnEiSJEmSpBfHskPHdNHCacOPK5zRIUmSJEkaQ9zGomPa190PwO9fvJC3r1jojA5JkiRJ0phh2aFj+k7jLhZNr+Lv3/ZSQghJx5EkSZIk6UVzG4ueZ1fnIe7f1s51yxdYdEiSJEmSxhzLDj3Pdxt3EwK8bZmnr0iSJEmSxh7LDh0ll4t856Gd/NbSOhbUViUdR5IkSZKkk2bZoaM8uKODnR19XLd8QdJRJEmSJEk6JZYdOsq3G3cxZUI5V10wN+kokiRJkiSdEssODfv11ja+/8huVi6ZzqTKsqTjSJIkSZJ0Siw7BEBjUyd/+G/rSWcj925uo7GpM+lIkiRJkiSdEssOAdCwvZ10NgKQzeVo2N6ecCJJkiRJkk6NZYcAOKNuMgABqChPsXJJXbKBJEmSJEk6ReVJB9DosHFfNwF4/6uX8Prz57B8cW3SkSRJkiRJOiWWHSKXi3z3od1cdvZMPvKm85KOI0mSJEnSaXEbi7h/Wzu7u/p4+/IFSUeRJEmSJOm0WXaI7zTupGZiOa8/f3bSUSRJkiRJOm2WHeNcd3+aHz+xj2tePo+JFWVJx5EkSZIk6bRZdoxzP3h0LwOZHG9fvvDZizvXw7rP5X9KkiRJkjTGHHdAaQhhBvA/gU7ga8BngMuAbcCHYoxbi5JQBdPY1Mm//GILC2snceGCqfmLO9fDrb8DmQEonwA3/jcsvCTZoJIkSZIknYQTrey4DZgAnAWsB7YD1wE/AG4pfDQVUmNTJzfc3MDeA/3sPdDPQ81d+Rd2rMsXHUTIpvPPJUmSJEkaQ05UdsyOMX4M+CAwJcb4mRjjxhjjzcC04sRToTRsb2cwkwMgxkjD9vb8C/WXQRh6U1ll/rkkSZIkSWPIicqOLECMMQJtz3ktV7BEKoqVS+pIpfKtRkV5ipVL6vIvTJkFMcLS18GNd7qFRZIkSZI05hx3ZgewJIRwJ/n/zn/4MUPPzyh4MhXU8sW1vHJJHU/sOcBXb7yY5Ytr8y88eUf+55s/D7X1ieWTJEmSJOlUnajsuPaIx599zmvPfa4xKJ3Ncfas6meLDoAnbof5yy06JEmSJElj1nHLjhjjPcUMouJr6Rnggnk1z15o3wb7HoM33JRcKEmSJEmSTtOJZnaoxO3v7md2zcRnLzxxe/7nBW9JJpAkSZIkSSPAsmOcOjiQ4dBgltk1E569+OTtsHAlTF2QXDBJkiRJkk7TccuOEMKJ5nlojNvf3Q/w7MqOlo3Q8hS85G0JppIkSZIk6fSdaGXH+sMPQgj/UoQsKqLDZces6qGy48nbgQDnX3v8D0mSJEmSNAacqOwIRzy+tNBBVFwt3QMA+W0szQ/Ag7fAnAuhek7CySRJkiRJOj0nKjti0VKo6A6v7JjT/Tjc+jtwqD2/jWXn+hf4pCRJkiRJo9uJ5nKcG0J4jPwKj6VDjxl6HmOMFxY8nQpmf/cAUyaUU7XnfsgO5i/GHOxYBwsvSTacJEmSJEmn4URlx3lFS6Gi29/Tz6zqCVB/GYQUxCyUVeafS5IkSZI0hh237IgxNgGEEN4D3Btj3FK0VCq4lu5+ZtVMyK/imH0+9HXCdf/mqg5JkiRJ0ph3opkdhy0C/jWEsD2E8O0Qwp+GEF5e6GAqrP3dA88eO3uwBc64wqJDkiRJklQSXrDsiDH+dYzxtcAFwDrgw0BjoYOpcGKM7O/uz5cd/d1wcD/MODPpWJIkSZIkjYgTzewAIITwv8kfPTsFeBj4C/Klh8ao7r4MA5lcfmZH+9DupLqzkg0lSZIkSdIIecGyA3gbkAF+CNwD/CbGOFDQVCqo/T35Y2dn10yEtq35izMsOyRJkiRJpeHFbGNZBlwJrAdeDzweQriv0MFUOPu7jyg72rdAKIPaMxJOJUmSJEnSyHgx21heAlwGvBpYAezEbSxjWkt3fmHO7JoJ0LYFahdDeWXCqSRJkiRJGhkvZhvLp4F7gS8CD8YY04WNpEI7vI1lVvVEaN/qvA5JkiRJUkl5wbIjxvjmYgRR8bR0D1AzsZxJ5QHat8GSK5KOJEmSJEnSiHnBmR0qPcPHznbvgkwf1C1NOpIkSZIkSSPGsmMcGi472jx2VpIkSZJUeiw7xqH93QPMqpmQ38ICHjsrSZIkSSopxy07QghTQwifDiFsDCF0hBDaQwhPD12bVsyQGjkxRlp6+oeGk26BymqYMjvpWJIkSZIkjZgTrez4L6ATuCLGOD3GWAe8ZujafxUjnEZe56E06Wx89tjZGWdCCEnHkiRJkiRpxJyo7KiPMf5DjHHf4Qsxxn0xxn8AFhc+mgphf3f+2NnZNR47K0mSJEkqTScqO5pCCH8ZQhje4xBCmB1C+CtgZ+GjqRAOlx1zqnJwYKfzOiRJkiRJJedEZcc7gDrgnqGZHR3Ar4DpwO8VIZsKoKV7AIB5mT35C3VnJphGkiRJkqSRV368F2KMncBfDf1SiTi8sqNuoCl/wZUdkiRJkqQSc9yy47lCCK8CLgGeiDH+tHCRVEj7e/qpraqgovPJ/IXpS5INJEmSJEnSCDvR0bPrj3j8PuBLQDXw1yGEjxQhmwqgpXsgP5y0bQvULIDKyUlHkiRJkiRpRJ1oZkfFEY9XA6+PMf4N8AZgVUFTqWD29www6/BJLDOc1yFJkiRJKj0nKjtSIYTaEEIdEGKMrQAxxl4gU5R0GnEt3f3MnlLpsbOSJEmSpJJ1opkdU4FGIAAxhDA3xrg3hDBl6JrGmFwu0tIzwBmTemGg2+GkkiRJkqSSdKLTWOqP81IOeGtB0qig2nsHyeYiyw6ty1/IZZMNJEmSJElSAZxoG8sxxRgPxRifKUQYFdb+7n6Whc1csvEz+Qt3/w3sXH/iD0mSJEmSNMacdNmhsev+bW2sTD1NiEMrOrJp2LEu2VCSJEmSJI2wE83sUAlpbOrkM3dt4qW588hFSAUIZZVQf1nS0SRJkiRJGlGu7BgnGra3k8lGHopnszPOonNSPdx4Jyy8JOlokiRJkiSNKMuOcWLlkjpSqQBEZoYu0me81qJDkiRJklSSLDvGieWLa3nlkjqWTuplchhg9uLzko4kSZIkSVJBWHaMIyHAK6YeyD+ZviTZMJIkSZIkFYhlxzjS0TvI0vLW/JPpZyQbRpIkSZKkArHsGEc6egdZzD4IZTB1YdJxJEmSJEkqCMuOcSLGSEfvIHNz+2DqAiivTDqSJEmSJEkFYdkxTvSlswxkcsxM73ZehyRJkiSppFl2jBMdvYMATO3f5bwOSZIkSVJJK1jZEUL4WgihJYTwxBHXPhlC2B1CeGTo19WF+n4drbM3TQ0HmZA+4MoOSZIkSVJJK+TKjq8DVx3j+hdijC8f+vWjAn6/jtDeO8Di0JJ/UuvKDkmSJElS6SpY2RFjvBfoKNT9dXI6Dw1SH/bln7iNRZIkSZJUwpKY2fGBEMJjQ9tcahP4/nGpozfNouGVHfWJZpEkSZIkqZCKXXZ8BVgKvBzYC3zueG8MIawOIWwIIWxobW0tVr6S1dk7yBmp/cQpc6ByctJxJEmSJEkqmKKWHTHG/THGbIwxB9wMXHKC966JMa6IMa6YOXNm8UKWqI5DgywpayE4nFSSJEmSVOKKWnaEEOYe8fStwBPHe69GVsfBQRaH/c7rkCRJkiSVvPJC3TiE8J/AFcCMEMIu4K+BK0IILwcisAN4f6G+X0frPdhNXeyw7JAkSZIklbyClR0xxuuPcfmrhfo+ndjEg835Bx47K0mSJEkqcUmcxqIE1PTtyj9wZockSZIkqcRZdowDuVxkxuDu/BO3sUiSJEmSSpxlxzjQ3Z9mIfvor5gKk2qTjiNJkiRJUkFZdowDHb35k1j6Ji9KOookSZIkSQVn2TEOdB7Klx2DU+uTjiJJkiRJUsFZdowDnd29zA9tBE9ikSRJkiSNA5Yd48BA+w7KQqR85tKko0iSJEmSVHCWHePAtOZfADClLJNwEkmSJEmSCs+yo9TtXM/KZ74IQOXPPw471yccSJIkSZKkwrLsKHU71pGKQys6smnYsS7ZPJIkSZIkFZhlR6mrv4wcKSJAWSXUX5Z0IkmSJEmSCqo86QAqsIWXsKdsHuUhx9wbb4WFlySdSJIkSZKkgnJlxzgwOdvDM5OXWXRIkiRJksYFy45Sl+5jOgfor5qbdBJJkiRJkorCsqPEpTuaAchUL0g4iSRJkiRJxWHZUeJ6W54BIE5bmHASSZIkSZKKw7KjxPW1NQFQUbso4SSSJEmSJBWHZUeJy3Q0kY2Bqhmu7JAkSZIkjQ+WHSUuHNjFPqZTWz056SiSJEmSJBWFZUeJK+/Zze44g9rJFUlHkSRJkiSpKCw7StykQ3vYE+uorapMOookSZIkSUVh2VHKclmmDOyntWwWFWX+UUuSJEmSxgf/BVzKevZSRpbuyrlJJ5EkSZIkqWgsO0rZgV0AHJo0J+EgkiRJkiQVj2VHKevaCcDA5AUJB5EkSZIkqXgsO0rZgWYAclMtOyRJkiRJ40d50gFUOLFrF12xminVU5OOIkmSJElS0biyo4TluprZHeuYPtljZyVJkiRJ44dlRwnLdTazO85gepVlhyRJkiRp/LDsKFUxkurexe44g1pXdkiSJEmSxhHLjlLV10lZ5tDQNpaKpNNIkiRJklQ0lh2l6kD+2NndcSa1bmORJEmSJI0jlh2lqutw2TGDXR19CYeRJEmSJKl4LDtK1M5nNgH5smP1f2ygsakz4USSJEmSJBWHZUeJat+zjb5YSQfVpDM5Gra3Jx1JkiRJkqSisOwoUYvLOtgT64BARXmKlUvqko4kSZIkSVJRlCcdQIUxpX8vj8cZvOacmXzgtWexfHFt0pEkSZIkSSoKV3aUqHhgZ35ex+VLLTokSZIkSeOKZUcpSvdR2d/O7jiD8+fWJJ1GkiRJkqSisuwoRQd2AdBXNY+pVRUJh5EkSZIkqbgsO0pRVzMAE2fUJ5tDkiRJkqQEWHaUoMGt9wBw7tR0wkkkSZIkSSo+y45Ss3M95Q98mRjh6i2fgJ3rk04kSZIkSVJRWXaUmh3rCDFDCJDKpWHHuqQTSZIkSZJUVJYdpab+MiKBCFBWCfWXJZ1IkiRJkqSisuwoNQsvoT3U0VxeT7jxTlh4SdKJJEmSJEkqKsuOEpPJZKnJHWDPjN+y6JAkSZIkjUuWHSWmaWczE0KaqhmLk44iSZIkSVIiLDtKTPOOzQDMmL8k4SSSJEmSJCXDsqPEtO3eDsDshWcmnESSJEmSpGRYdpSYvtYmAMqnLUw4iSRJkiRJybDsKCExRuKBXaRDJUyekXQcSZIkSZISYdlRQvYe6Gd6tpW+ibMhhKTjSJIkSZKUCMuOEnLno3uYGzo4NGlO0lEkSZIkSUqMZUeJaGzq5LN3bWJeaKOhbRKNTZ1JR5IkSZIkKRGWHSWiYXs7MZdhNp3szk2nYXt70pEkSZIkSUqEZUeJWLmkjjmhi7IQaUnNYOWSuqQjSZIkSZKUiPKkA2hkLF9cy7JpvdAHf/DGSzlrcW3SkSRJkiRJSoQrO0rItHQLAGedeW7CSSRJkiRJSo5lR4mIMTJlYH/+ydT5yYaRJEmSJClBlh0lorsvw6zYxmDZFJg4Nek4kiRJkiQlxrKjRLQeHGB+aKO/ak7SUSRJkiRJSpRlR4loOzjA3NBOZsq8pKNIkiRJkpQoy44SkS87OkhNW5B0FEmSJEmSEmXZUSI6uw4wI3RTMX1R0lEkSZIkSUqUZUeJGOjYBcCkGZYdkiRJkqTxzbKjRMQD+bIjNdVtLJIkSZKk8c2yo0SU9ezJP7DskCRJkiSNc5YdJaLy0N78gxpPY5EkSZIkjW+WHSWiemAfPWXToGJS0lEkSZIkSUqUZUcJiDFSm2nh4ITZSUeRJEmSJClxlh0loHcwy+zYTn+VW1gkSZIkSbLsKAFtPQPMC+1kqy07JEmSJEmy7CgBnR2tVIc+giexSJIkSZJk2VEKelubAKicvjDhJJIkSZIkJc+yowQMdOwEYPKs+mSDSJIkSZI0Clh2lICafQ35n9nOhJNIkiRJkpQ8y46xbud6lu2+jQiU37Eadq5POpEkSZIkSYmy7BjrdqwjRZYAkB2EHeuSTiRJkiRJUqIKVnaEEL4WQmgJITxxxLXpIYSfhRC2DP2sLdT3jxv1lxEJRICySqi/LOlEkiRJkiQlqpArO74OXPWcax8B7o4xngXcPfRcp2P+cjKUsX3iS+HGO2HhJUknkiRJkiQpUQUrO2KM9wIdz7l8LXDr0ONbgbcU6vvHja5mKsnw5OzftuiQJEmSJAkoL/L3zY4x7h16vA+Y/WI+tGnTJq644oqChRrLcr0dpFp7aZ3yH3z+1ruSjiNJkiRJUuISG1AaY4yQHzVxLCGE1SGEDSGEDel0uojJxpbcYC8AobIq4SSSJEmSJI0OxV7ZsT+EMDfGuDeEMBdoOd4bY4xrgDUAK1asiL/61a+KFHFsaV/7HnKbf8bj1/+A1577ohbKSJIkSZI0JoUQXtT7ir2y407gxqHHNwLfL/L3l5yy9i1syc1nxpQJSUeRJEmSJGlUKOTRs/8J/AY4J4SwK4TwHuDTwOtDCFuAK4ee61TFSFX3NrZGyw5JkiRJkg4r2DaWGOP1x3npdYX6znGnZy+VmYNsifN5x5TKpNNIkiRJkjQqJDagVCOgdRMAeysWMaG8LOEwkiRJkiSNDpYdY1nbZgC6Jp+RcBBJkiRJkkYPy46xrHUjB8MUUtVzkk4iSZIkSdKoYdkxlrVupinMZ2b1xKSTSJIkSZI0alh2jGVtm9iUm8cMh5NKkiRJkjTMsmOsOtQBva08lZ7nsbOSJEmSJB3BsmOsGjqJZWucx4xqyw5JkiRJkg6z7BirWjcCsDUucGWHJEmSJElHsOwYS9rb4aqr8j/bNpMtm8TuWOfMDkmSJEmSjmDZMZZ8/etw111w663QuonuiQuJpJjR1510MkmSJEmSRg3LjrEiRvjCF/KPv/AFaN3Ejs4qAHZ+6eYEg0mSJEmSNLpYdowV69bBgQP5x/t3QfcufsGZECPvrlxG4/zzYNKkZDNKkiRJkjQKWHYUyNq1a6mvryeVSlFfX8/atWtP74b/9E/Q28ta4E9n5P/YNsf5EALpsnIarnknPPPM6QeXJEmSJGmMs+wogLVr17J69WrqV0zir7/yMhZdCKtXr37xhce110IIR//64Q9ZGyOrgXedUwFAJWmIkYpshpV3/ju8//2F+01JkiRJkjRGhBhj0hle0IoVK+KGDRuSjvGi1dfXs+hCuOs7e6koy5DOlvPG6+bS/Bjs2LHjhW/w5JNw9dXQ0gL9/cOX+4GJC8rgD6sgBQOxgg92/gnvuf07XNLZBA8+CBdcULDflyRJkiRJSQohNMYYV7zQ+1zZUQDNzc287k3VVJRlKC/LUVGW4XVvqqa5ufnF3eCCC+Cpp+Caa6CqavjyEuCR+jJiCgiBspBlZfpBrt2zEVpbLTokSZIkScKyoyAWLVrE3T/uIZ0tJ5NNkc6Wc/ePe1i0aNGLv8nkyfCtb8HnPgcTJgBQCWzfkQUgxkiGcp7onMGExYvz75ckSZIkSZYdhXDTTTfReHcr1/3du/nMD6/jjdfNpfHuVm666aaTv9myZcNlx01A9cEcIQR+uTHDjQf/nJbO6lO7ryRJkiRJJao86QClaNWqVQB8/I4neKzjUsoee4A1a9YMXz8pGzZAOp2/bwjctzhffPzFvQN0vPMlXHF25andV5IkSZKkEmXZUSCrVq1iV91Gbr53O1ueeYYQwqndaN066OuDiRNh9mxe9b5LYO9d3NtXzUtSZbwy3TeywSVJkiRJGuPcxlJAtVUVZHKRgwOZU7/JAw9AWVn+ONonn4SJB2DRCnqufisA1ds2j1BaSZIkSZJKg2VHAU2rqgSg61D61G9y3nmwZg1885swcQLsfRQWXULPF74IQPWs6SMRVZIkSZKkkuE2lgKqPaLsWHiqncQPf/js49anIdMH85fT058vUGo++b9PM6UkSZIkSaXFlR0FNK2qAoDOQ4Mjc8Pdjfmf85fR3Z/fGlM90b5KkiRJkqQjWXYUUG0hyo5JtVB7Bj1DZUeNZYckSZIkSUex7CigEZnZcaTdD8H85RDC8DaW6okVI3NvSZIkSZJKhGVHAU2dlC8iRqTsGOyFlqfyZQfQ3ec2FkmSJEmSjsWyo4AqylJUTygfmW0sex+FmBsuO3r605SlApMqoEG6vwAAIABJREFUyk7/3pIkSZIklRDLjgKbNrmCrpEoOw4PJ523DICe/gzVE8sJIZz+vSVJkiRJKiGWHQVWW1VJV98IbGPZ3QhTF8GUmUB+ZYdbWCRJkiRJej7LjgKbOqmCzpGY2bG7EeYvG37a05+heoLDSSVJkiRJei7LjgKrrao8rW0sa9euZfm5i6CrmZtuvYu1a9cCz25jkSRJkiRJR/NfywVWW1VBZ++plR1r165l9erV/P2qQXhVGRVNvaxevRqA7v6FLJxeNZJRJUmSJEkqCZYdBTatqpLu/gzZXKQsdXLDRD/+8Y9zw5X9/OmXcsSyDB++HLZ09PPxj3+c+X/8NVd2SJIkSZJ0DG5jKbBpVfm5GgdOYUhpc3Mzv3t1gDIIZUAZ/O7VgebmZnr609RMdGaHJEmSJEnPZdlRYLVVlQB0nsLcjkWLFvHdH0XIQswCWfjujyKLFi2mZ8CZHZIkSZIkHYtlR4EdXtlxKkNKb7rpJm77+URWvz3FXbeUsfrtKW77+UT+z6f+jhix7JAkSZIk6RgsOwrs8MqOrlM4fnbVqlWsWbOGnz26kKv/R46fPbqQNWvW8KZr3gZAtdtYJEmSJEl6HpcGFNjhlR2dp1B2QL7wWLVq1VHXNu3rAVzZIUmSJEnSsbiyo8CmDa/sOLXjZ4+lpz9fnLiyQ5IkSZKk57PsKLCaieWUpcIpDSg9np7+DODKDkmSJEmSjsWyo8BCCEybVHFKMzuOp3toZUeNZYckSZIkSc9j2VEEU6tGtuw4vLKjxm0skiRJkiQ9j2VHEdRWVRZoG4tlhyRJkiRJz2XZUQS1VRWnfBrLsXT3pylPBSZW+McnSZIkSdJz+a/lIphWVcmBET6NpXpiOSGEEbunJEmSJEmlwrKjCKZNGtmVHT39GbewSJIkSZJ0HJYdRVA7uZK+dJb+dHZE7pcvOzyJRZIkSZKkY7HsKIJpVflVGCN1IsvhbSySJEmSJOn5LDuKYNqkSgC6+kZmbofbWCRJkiRJOj7LjiKoHVrZ0dk7Uis73MYiSZIkSdLxWHYUwbSqoZUdI3QiS3d/mhpXdkiSJEmSdEyWHUVQO3loZccIzOzI5SIHBzLUuLJDkiRJkqRjsuwogpGc2XFwMEOMOLNDkiRJkqTjsOwogkmVZUwoT43IaSw9/RkAZ3ZIkiRJknQclh1FUltVSWfv6a/s6OnPFyau7JAkSZIk6dgsO4pkWlUFXX2u7JAkSZIkqdAsO4pkWlXFiJzG8uzKDssOSZIkSZKOxbKjSGqrKkfkNJZnV3a4jUWSJEmSpGOx7CiSaVWVI7Kyo3uo7PDoWUmSJEmSjs2yo0hqqyroOpQmxnha93FAqSRJkiRJJ2bZUSTTqirI5CIHBzKndZ+e/gzlqcDECv/oJEmSJEk6Fv/FXCTTqioB6DrNuR3dfWlqJlUQQhiJWJIkSZIklRzLjiKpHSo7Ok9zbkdPf8aTWCRJkiRJOgHLjiKprcrP2DjdlR09/WnLDkmSJEmSTsCyo0imDZUdI7KyY4LDSSVJkiRJOh7LjiIZqZkdbmORJEmSJOnELDuKZNqkkVrZkfbYWUmSJEmSTsCyo0jKy1JUVZZx7+ZWGps6T/k+ruyQJEmSJOnELDuKpLGpk77BLA81d7HqloZTKjxyucjBwQw1lh2SJEmSJB2XZUeRNGxvJw49TmdyNGxvP+l7HBzMECNuY5EkSZIk6QQsO4pk5ZI6ylMBgIqyFCuX1J30PXr6MwBuY5EkSZIk6QQsO4pk+eJaPnr1uQB85E3nsnxx7Unfo7svf5JLzSRXdkiSJEmSdDyWHUV03bKFAPQOZk/p867skCRJkiTphVl2FNHUqgqWzpzMw82ndhpLT39+ZYczOyRJkiRJOj7LjiK7aFEtDzd3EWN84Tc/hys7JEmSJEl6YZYdRXbRomm09w6ys6PvpD/77MoOyw5JkiRJko7HsqPILlqYH0z68M4Tb2VZu3Yt9fX1pFIp6uvrWbt2Ld1DKztq3MYiSZIkSdJxWXYU2dmzp1BVWcbDzV3Pe23j3rv4zba/4Bvf+xSrV69mb3oS1a+4jr3pSfzRH/0R//QPn6Usm+ZVS/LlhyRJkiRJer5E9kOEEHYAPUAWyMQYVySRIwnlZSkuXDD1eUNKN+69i8V113DmrAwvX1jOt//3n/FY16uAADFHT+N/85qV5Zx78bep2lTG6tWrAVi1alUCvwtJkiTp/7N35/F1lQX+x7/PXbKnzZ6mzdZ0o7TQ0gYIq7IvIi4gjiCibI7LOI46I4rzGzccnd/vpz9mxtEpqIAUlVFQRNllK5JCQkt32jRN0jV72uy5957n98c9uU26l/bmJief9+t1Xuee5zz35rnwcEK/fRYAGL8SObLjImvt4skUdAw7ozRb63ft00Bo/xa07b3PKugPK+B3FPSHdd7CRklGxhgZ49N7r5une79+n75w5a91y293q/aSfF13882J+xIAAAAAAIxTTGNJgDNKshR2rNbv2hsr27DrDIUiAYUjPoUiAT37aINseEg2EpYND+lDaY+PCkM2XJWpmdZKxow+vvnNxH0xAAAAAADGgURt62ElPWuMsZL+21q7LEHtSIjFpVmSpFVNXVpalqO+obD++5VCbWm5Vx86o05b1k7Rysd+oHDW3UopPU0DTWvVt6VfoRsDksIKRQJqeapbyWVlUkNDQr8LAAAAAADjTaLCjvOttTuNMQWSnjPGbLLWvjKygjHmTkl3SlJpaWki2hg3BZkpKs5OjS1Sury6SW09Q7qh8gZVlufonFmSf9ks3X333Wpa+Vvl5OSo8MkOPXB9qfquylTaU92a/qftuuehhxL8TQAAAAAAGH8SMo3FWrvTPbdIelzSWYeos8xaW2mtrczPzx/rJsbd4pIsrWrqVP9QRP/9yladPztPleU5sfs33XSTGhoa5DiO2tra1PvLX+oHa6R//Ow6/WCN1PPQQyxOCgAAAADAIYx52GGMSTfGZA6/lnS5pHVj3Y5Ec1rrtWvvgGZc+Wm19QxpvrPtiPVj4YekhoYGgg4AAAAAAA4jESM7CiWtMMa8LekNSX+y1j6dgHYkzPLly7X83u9qSelG3fVPIS1Me1bf+4fbtHz58kQ3DQAAAACACc9YaxPdhqOqrKy0NTU1iW7GSVNeXq7SRT498z87FfRHFxy94voiNa2Jjto4ImOkCfDvDAAAAACAk80YU2utrTxaPbaeTYCmpiZdcmX6qK1kL7kqU01NTYluGgAAAAAAEx5hRwKUlpbqhae6FYoEFI74FIoE9MJT3ce268y//Ev8GwgAAAAAwASWqK1nJ7V77rlHd955p664vkiXXJWpF57qVu0LrVq2bNnR3/zNb8a9fQAAAAAATGSEHQkwvJPK3XffrW89uV6lpaVatmwZO6wAAAAAAHASsEApAAAAAACYEFigFAAAAAAATEqEHQAAAAAAwFMIOwAAAAAAgKcQdgAAAAAAAE8h7AAAAAAAAJ5C2AEAAAAAADyFsAMAAAAAAHgKYQcAAAAAAPAUwg4AAAAAAOAphB0AAAAAAMBTCDsAAAAAAICnEHYAAAAAAABPIewAAAAAAACeQtgBAAAAAAA8hbADAAAAAAB4CmEHAAAAAADwFMIOAAAAAADgKcZam+g2HJUxplVS47t8e56ktpPYHOB40QcxHtAPMR7QDzEe0A8xHtAPkWgTuQ+WWWvzj1ZpQoQdJ8IYU2OtrUx0OzB50QcxHtAPMR7QDzEe0A8xHtAPkWiToQ8yjQUAAAAAAHgKYQcAAAAAAPCUyRB2LEt0AzDp0QcxHtAPMR7QDzEe0A8xHtAPkWie74OeX7MDAAAAAABMLpNhZAcAAAAAAJhEJkTYYYz5uTGmxRizbkRZjjHmOWPMFvec7ZYbY8y/G2PqjDFrjDFLRrznFrf+FmPMLSPKlxpj1rrv+XdjjBnbb4iJ4DD98JvGmJ3GmNXucfWIe19z+9Q7xpgrRpRf6ZbVGWPuGlE+0xiz0i3/jTEmaey+HSYCY0yJMeZFY8wGY8x6Y8zfu+U8DzFmjtAPeR5izBhjUowxbxhj3nb74bfc8kP2HWNMsntd594vH/FZx9U/gWFH6IcPGGO2jXgeLnbL+b2MuDDG+I0xq4wxT7rXPAslyVo77g9JF0paImndiLJ/k3SX+/ouST9wX18t6SlJRlKVpJVueY6kevec7b7Odu+94dY17nuvSvR35hh/x2H64TclfeUQdU+V9LakZEkzJW2V5HePrZIqJCW5dU513/OopL9xX/9U0mcS/Z05xtchqUjSEvd1pqTNbl/jecgxZscR+iHPQ44xO9xnVIb7OihppfvsOmTfkfRZST91X/+NpN+4r4+7f3JwDB9H6IcPSLr+EPX5vcwRl0PSlyQ9IulJ95pnobUTY2SHtfYVSR0HFH9A0oPu6wclfXBE+UM2qlpSljGmSNIVkp6z1nZYazslPSfpSvfeFGtttY3+m35oxGcBMYfph4fzAUm/ttYOWmu3SaqTdJZ71Flr6621Q5J+LekDbkp/saTfuu8f2acBSZK1dre19i33dbekjZJmiOchxtAR+uHh8DzESec+13rcy6B7WB2+74x8Tv5W0iVuXzuu/hnnr4UJ5gj98HD4vYyTzhhTLOl9ku53r4/0e3RSPQsnRNhxGIXW2t3u6z2SCt3XMyRtH1Fvh1t2pPIdhygHjtXn3aGIPzfu9AEdfz/MldRlrQ0fUA4ckjvs8AxF/xaJ5yES4oB+KPE8xBhyh22vltSi6B8Ot+rwfSfW39z7exXta8fbP4FRDuyH1trh5+E97vPwR8aYZLeM38uIh/8n6Z8kOe71kX6PTqpn4UQOO2LcpJNtZZAIP5E0S9JiSbsl/d/ENgeTgTEmQ9LvJH3RWrtv5D2ehxgrh+iHPA8xpqy1EWvtYknFiv7t4ykJbhImoQP7oTFmoaSvKdofz1R0aspXE9hEeJgx5hpJLdba2kS3ZTyayGFHszu0S+65xS3fKalkRL1it+xI5cWHKAeOylrb7P6ScyTdp+j/bEnH3w/bFR3KGDigHBjFGBNU9A+Yy621j7nFPA8xpg7VD3keIlGstV2SXpR0jg7fd2L9zb0/VdG+drz9EzikEf3wSne6n7XWDkr6hd7985Dfyzia8yRda4xpUHSKycWS7hXPQkkTO+x4QtLwSsW3SPrDiPJPuKsdV0na6w7vfkbS5caYbHdo7eWSnnHv7TPGVLnzlT4x4rOAIxr+A6brQ5KGd2p5QtLfuCsez5Q0R9EFpt6UNMddITlJ0YWBnnD/Nv5FSde77x/ZpwFJsTmYP5O00Vr7wxG3eB5izByuH/I8xFgyxuQbY7Lc16mSLlN0/ZjD9Z2Rz8nrJf3F7WvH1T/j/80wkRymH24a8RcQRtG1EkY+D/m9jJPGWvs1a22xtbZc0efUX6y1N4lnYdTRVjAdD4ekXyk6JDak6Dyh2xSdW/SCpC2SnpeU49Y1kn6s6LzNtZIqR3zOrYoutlIn6VMjyisVfQhtlfSfkkyivzPH+DsO0w9/6fazNYr+h180ov7dbp96RyNWzlZ0Je7N7r27R5RXKPpQqZP0P5KSE/2dOcbXIel8RaeorJG02j2u5nnIMZbHEfohz0OOMTsknS5pldvf1kn6X275IfuOpBT3us69XzHis46rf3JwDB9H6Id/cZ+H6yQ9rP07tvB7mSNuh6T3av9uLDwLrY3+xwIAAAAAAOAVE3kaCwAAAAAAwEEIOwAAAAAAgKcQdgAAAAAAAE8h7AAAAAAAAJ5C2AEAAAAAADyFsAMAAAAAAHgKYQcAAAAAAPAUwg4AAAAAAOAphB0AAAAAAMBTCDsAAAAAAICnEHYAAAAAAABPIewAAAAAAACeQtgBAAAAAAA8hbADAAAAAAB4CmEHAAAAAADwFMIOAAAAAADgKYQdAAAAAADAUwg7AAAAAACApxB2AAAAAAAATyHsAAAAAAAAnkLYAQAAAAAAPIWwAwAAAAAAeAphBwAAAAAA8BTCDgAAAAAA4CmEHQAAAAAAwFMIOwAAAAAAgKcQdgAAAAAAAE8h7AAAAAAAAJ5C2AEAAAAAADyFsAMAAAAAAHgKYQcAAAAAAPAUwg4AAAAAAOAphB0AAAAAAMBTCDsAAAAAAICnEHYAAAAAAABPIewAAAAAAACeQtgBAAAAAAA8hbADAAAAAAB4CmEHAAAAAADwFMIOAAAAAADgKYQdAAAAAADAUwg7AAAAAACApxB2AAAAAAAATyHsAAAAAAAAnkLYAQAAAAAAPIWwAwAAAAAAeAphBwAAAAAA8BTCDgAAAAAA4CmEHQAAAAAAwFMIOwAAAAAAgKcQdgAAAAAAAE8h7AAAAAAAAJ5C2AEAAAAAADyFsAMAAAAAAHgKYQcAAAAAAPAUwg4AAAAAAOAphB0AAAAAAMBTCDsAAAAAAICnEHYAAAAAAABPIewAAAAAAACeQtgBAAAAAAA8hbADAAAAAAB4CmEHAAAAAADwFMIOAAAAAADgKYQdAAAAAADAUwg7AAAAAACApxB2AAAAAAAATyHsAAAAAAAAnkLYAQAAAAAAPIWwAwAAAAAAeAphBwAAAAAA8BTCDgAAAAAA4CmEHQAAAAAAwFMIOwAAAAAAgKcQdgAAAAAAAE8h7AAAAAAAAJ5C2AEAAAAAADyFsAMAAAAAAHgKYQcAAAAAAPAUwg4AAAAAAOApgUQ34Fjk5eXZ8vLyRDcDAAAAAAAkUG1tbZu1Nv9o9SZE2FFeXq6amppENwMAAAAAACSQMabxWOoxjQUAAAAAAHgKYQcAAAAAAPAUwg4AAAAAAOAphB0AAAAAAMBTCDsAAAAAAICnEHYAAAAAAABPIewAAAAAAACeQtgBAAAAAAA8hbADAAAAAAB4CmEHAAAAAADwFMIOAAAAAADgKYQdAAAAAADAUwg7AAAAAACApxB2AAAAAAAATyHsAAAAAAAAnkLYAQAAAAAAPIWwAwAAAAAAeAphBwAAAAAA8BTCDgAAAAAAxkhtY6d+/GKdahs7J+XPHyuBRDcAAAAAAICxUtvYqer6dlVV5GppWfYxvcdxrEKOo1DEKhR2FIo4Goq41xFHQ25Z2IneH3lv/32r+tYePfDXBkUcK7/P6KNnlmh6VqqstXKsZK1kFX2t4TKNvmetRtV3rJU0omxEfcnKcfaXtXUP6tUtbYpYq5SAT8vvqDrmfwYTDWEHAAAAACAuHMdqKOJoMORoMBLRW42dqmno1GkzpmpOYaYibogQcaLBQMSxCkeswo5VxA0XRt4LOVYRN1SI1hlxLzL6PWHHiX3W8Oe1dg+qtrFTjpV8RppdkKHkgH9EeBF9z8iAYjjEONnCjtXylU2HvW+MZCT5jHFfu2fjlrn3NFzPZ0bVl4x8B9TvGQwr4oYjoYij6vp2wg4AAAAAwMRhrdVg2NFAKKL+UER9Q9GwYfX2Ls0pzFB5broGw9E/1A+fh8KR0WURR4OhSPQ8ot6gW3fooDJHg2758OiGseAzUsDvU8Bn5PcZBf2+6Nln5PcbBX3R666+IQ3nFo6VhsKOZmSlKuj3KRjwKcnvU9AffX/Q71NS4IDr4fsBn1t24L3990ddu5+1Yfc+feaXtQpFHAX9Pv3iU2dqSVl2LIwwZjigMHH551Tb2Kmb7q9WKOwoGPCpqiI3Lj9nPDDWjk3nOxGVlZW2pqYm0c0AAAAAgBMSm0IxM0cLi6eqfygaRBz1PPz6wGv3POCGGf2h6OvheycyIMFnpOSAX0mB6B/Uk2Nnf+w6+cBy/+Hrvl7fruc3NMu6n33toul6/6Lp8vuMAj6fAn6jgM/EQovha79v5LUbaIwIMAI+I5/v2MKBA/+wv/z2sZ/G8W6m0Xjp558oY0yttbbyqPUIOwAAAAB41fDohu6BsKrr2/RmQ6dOnT5Fs/IzYmsrxKYtuCMRwsPrLAxPYRjxOhSOTmkYcl+HIo5Czv51HEau03Dg697BsNp7h971dzFGSg36o0fS/nNK0K+04eugXylJfqWNuJfq3l9R16Y/rdkdCxs+dlapPnZWqRtY+A8IKXwK+E/ufhbjIWgYbsdE/sP+ZHesYQfTWAAAAACMieP9Q2bEseoZCKt7MKTugbB6BsPqHoi+Hj56hu8NhLVvIHo/Wm9//ZM1lWLklIXRUxjMQWXpyQEF3OkUw1MatjR3x8IOI+n8OXm6aF7BqODikGf3dXLAd0LTG+YUZur5jc2xsOHDS4q1cMbUk/LP5lgsLcvW8turEh40LC3LJuSYBBjZAQAAACCu9g2E9Nz6Zt312BqFI9FdKD68ZIYyU4KjwowDA42+ochRP9vvM8pIDigzJaDMlKAy3dcZKe45OajMlIBWNXXqhY0tsVEN1y8t1oeXFO9fayEQnSIx/Dro9yno2/864DMnvI7CeBjZwKgGTHRMYwEAAAAwJnoGw9rR2acdHf3Rc2e/trvnHZ392tsfOuT70pL8biDhBhVuQJGZHBwRVgQ0JWX/dWZK0C2LBhqpQf8xhRDjIWgYbgdhA/DuEXYAAAAAOCn6hsLaeUCAsaOzT9vdcKOzb3SYkRL0qTg7TcXZqSpxz0NhR//xYp3C7i4Uv7ztLJ01c2x3giBoACY+1uwAAAAAEHOkP+gPhCKxAOPAURk7OvoOWlQzKeBTcXaqirPTdFrx1FigUZydqpKcNOWmJx1ytMW5s/MSGjawVgMweRB2AAAAAB5X09Chm+5fqVDEkd9n9P7Tpyvk2Fi40do9OKp+kt+nGW54cfmCwtgojeLsNJVkpyovI/mYt/ocibABwFgh7AAAAAA8oncwrG1tvdra2qOtrdFzfWuvtjR3K+xEp687Eavfr96pkpxogHHxvILYiIzhQKMg892FGQAwXhB2AAAAABOItVZ79g1oa8twmLE/2Ni9dyBWz2ekkpw0zcrP0Oz8dD29fo8ijlXQ79PDt5+tM8tzEvgtACC+4hZ2GGNSJL0iKdn9Ob+11v6LMWampF9LypVUK+lma+3Q4T8JAAAAmHwGQhHVt/aqvq1nf7DRFh2pMXJL1szkgCry03VORa5mFWSoIi9dswoyVJabpuSAP1aPxTkBTCbxHNkxKOlia22PMSYoaYUx5ilJX5L0I2vtr40xP5V0m6SfxLEdAAAAQMIdKmyw1qq1e1B17uiM+hHnnV39Gt440RhpRlaqKvIzdGZ5jmblZ6giP12z8zOUn5l8TFuvsl4GgMkkbmGHje5p2+NeBt3DSrpY0o1u+YOSvinCDgAAAHiItVYDIUe9Q2H1DUZU09ihux5bq1A4ukDoebNz1dUX0tbWXvUMhmPvS0vyqyI/XUvLsvWRpSWaVZCuWfkZmpmXrpSg/wg/EQAwUlzX7DDG+BWdqjJb0o8lbZXUZa0dfqLvkDQjnm0AAAAApMNP4whHHPWFIuobjMTCid6hsPqGwuodjMTO/aGIegfD6hsacR5Vf3T58KiMA4Udq7cau7SoJEvXLZmhivwMzcrP0KyCdE2bknJMozQAAEcW17DDWhuRtNgYkyXpcUmnHOt7jTF3SrpTkkpLS+PTQAAAAHjCQCiirr6QOnqH1Nk3FDt39obU2TekupYe/XVrmxwrGUl5mUmKONHdSwbDzjH/nIDPKD05oPQkv9KGz0kBFU1NUVpSQOnJ0es0t3z4unlvv+59oU5hx1GS36cHbj2LKSUAEEdjshuLtbbLGPOipHMkZRljAu7ojmJJOw/znmWSlklSZWXlYXJxAAAAeE0o4sSCilHhRe+QOvqGzyF1jSjvHbFg54GmpATk8xm5O6/KSirITNGS0mylJfuV7oYT6cnuOSmgNDekODDUSAr43vX3qpqVxwKhADBG4rkbS76kkBt0pEq6TNIPJL0o6XpFd2S5RdIf4tUGAAAAJF7vYFgvvtOi1+raVZKdquz0pEOGF51uWfeINSwOlJkcUHZ6krLTk5SbnqTZ+RnKTk9STnqSstOSlJMedM/ROlmpQQX8PtU2duqm+6sVCjsKBnz69gcWjnngwAKhADB24jmyo0jSg+66HT5Jj1prnzTGbJD0a2PMdyWtkvSzOLYBAAAAJ8Gh1rvoH4qoed+AWroH1bxvIPa6Zd+AmvcNqrl7QC37BkctwDlSWpJ/VDAxMzctGlykRa+z05KUnR5UjluWlZb0rkdWLC3L1vLbqxhZAQCThLGHWzlpHKmsrLQ1NTWJbgYAAMCk0zsY1m9rd+g7T25Q2LHyGakoK1X7+kPqHjg4xEgO+FQ4JUUFmcnR85Rk1bf26pXNrbKSfEb69IWz9PeXzmF3EQDAcTPG1FprK49Wb0zW7AAAAMD45zhW9W29WtXUqVXbu7SqqUvv7NkXW+tCkhwrpSf5ddn8QhVMSVZhZjTQKJySosLMFE1JDRy0m0htY6dWbmuPTSG59NRCgg4AQFwRdgAAAExSXX1DWrW9S6ubutxzp/a5ozUyUwJaXJKlyy6eo8yUgP7PM+8oHImGFf/64dOPaxoIU0gAAGONsAMAAGASeGNbu55cs1vJQb/aewa1uqlL9W29kqJTS+ZNm6JrFk3XGSVZOqM0SxV5GfL59o/QWFKafUJhBYtzAgDGEmEHAACAh3T1DWlra6+2tvao3j2v37VXu7oGYnWmpgZ11swcXV9ZrDNKsnV68VSlJx/5fwsJKwAAEwlhBwAAwAQwcjeUxSVZ2tHZp62tPdra0qv6tuh5a2uP2nuHYu9J8vtUnpem9KSAjBRbIPTOC2fqcxfNSdh3AQAg3gg7AAAAxqmBUET1rb16dsMe/edf6hR2rIwkv88oPGLV0Nz0JFXkp+uyUws1Kz9DswrSVZGXoeLsVAX8PtU2duqm+6tjC4RWVeQl7ksBADAGCDsAAAASbDAcDTU2N3drS3OPtrREzw3tvaN2QpGiozOWlGXp+qUlmpUfDTWy05OO+PksEAoAmGwIOwAAAMZAbWOnXqtrVXETaDSaAAAgAElEQVR2mgJ+n7Y0d0fDjZYeNbb3KeKmGn6fUVlumuYWZuqa04s0pzBToYijrz++NjYy46tXzj/uwII1NwAAkwlhBwAAwEnUOxjW9s4+NbX3qamjT9s7+rR2516taurSyEEaPiOV56ZrTmGG3ndaNNSYW5ihmXnpSg74D/rcstx0RmYAAHCMCDsAAACOYuTioGeUZKmle1BNHX1qbO/V9o5oqBE9+tXWMzjqvZnJAaUm+WNBh89InzinXF+7+pRDhhqHw8gMAACOHWEHAADAARzHqrl7QPWtvXppc6t+vmKbIsOLg/qNwpH9YzR8RiqamqrSnDRdckqBSnPTVJqz/8hKC+qtpq5RC4S+f9H04wo6AADA8SHsAAAAnjdyZMbI0RF7+0Kqb+vRtrZe1bf2Rs9tvWpo61V/KHLQ51hJZ5Rk6drFM2JhxoysVCUFfEf8+SwQCgDA2CLsAAAAnmWt1SubW3XHL2sVCjvy+4wunJOnfQNh1bf1qqN3KFbX7zMqyU7VzLx0nVORq5n56arIS1fvYFhf+PWq2KiMu646/sVBJaahAAAwlgg7AABA3B1uZMWJvj8ccdTcPahdXf3a2dmvnV3u0dkfLevqV9/Q/hEaYcdq5bYOLZwxVVcsKNTMvHTNzIsuClqak3bYERqMygAAYGIh7AAAAHH1+1U79aVHV8ux0fUtTpsxVXkZyUoK+KKHP3pODvhjZclueXLQp91d/bp/xTaFI1Z+n9G5s3M1MORoZ1e/9uwbiG3ZOiwnPUnTs1JUkZ+u8+fkyVqr5SubFHGskvw+PXTb2WzbCgCAxxF2AACAuGho69W9L2zR46t2xsocK7V2DypirQZDjoYijobC+4/BcLTscMKO1eqmLp1SNEVnzczRjKxUTc9K1YzsVM3IStH0rFSlJR38vzfvXzSDkRkAAEwihB0AAOCk2tXVr//4yxY9WrNDQb/RBxZP19Pr9igcia558R83Ljli4GCtHRWC1DR26gu/WqVQxFFSwKdffOosRmYAAIAjIuwAAAAnRVvPoP7rxa16eGWjrLX6+Nml+txFs1UwJeW41uwwxig54I9tzXrFgml65A7WzAAAAMeOsAMAAJyQvX0hLXt1q37xWoMGw46uWzJDX7hkjoqz02J1TnRkBSMzAADA8SDsAABgEjjR3VAOpWcwrF+s2KZlr9areyCs9y+arn+4dI4q8jNOyucDAAC8W4QdAAB43BOrd+rLj76tsGMVDPj0048v0UXzCmSMeVefNxCK6OHqRv3XS1vV0TukS+cX6suXz9X8oiknueUAAADvDmEHAAAeY63Vmh179cz6PXpm/R5tbe2N3RsKO7r1gRqlBv0qzk5VSU5a9JydppKcVBVnp6kkO01T04KjPrO2sVOv1bWpZzCsJ1bv0p59Azp/dp6+fPlcnVHK9BIAADC+EHYAAOAB4YijN7Z16Jn1e/Tshmbt3jsgv8+oqiJHF51SoF++3qhQxJHfZ/SJqjLJGG3v6NOOzn692dCh7oHwqM/LTAm4wUeqkvw+Pb1+j8KOlSTNm5apH310sc6ZlZuIrwoAAHBUhB0AAExQA6GIXtncqmfWN+uFTc3q6gspJejThXPy9ZXL5+mS+QXKSkuSJF21sOiIa3bs7Q+54Uc0ABkOQhrae1Xf2hsLOnxGunZREUEHAAAY1wg7AAAY50YuLjo7P0N/eadZz6xr1subW9UfimhKSkCXzi/U5Qum6cK5eUpLOvjX+9F2M5maGtTUGVO1cMbUg39+Q4duvH+lwhFHwYBPVRV5J/X7AQAAnGyEHQAAjGO1jZ268b5qDYUdGSMZSRErFWQm67qlM3TFgmmqqshV0O+LWxuWlufokTuqTvpuLgAAAPFC2AEAwDi0q6tfT6/bo5+tqNdg2JEkWSudNTNbd101X4uLs+TzvbvdVN6No40MAQAAGE8IOwAAGCe2d/TpqXW79dS6PVrV1CVJKstJU8Bn5FirpIBPX71yvpaw+wkAAMAREXYAAJBA29p69ee1u/X0uj1au3OvJGnB9Cn6xyvm6cqF0zQrP2PUmh2MrgAAADg6wg4AAMbYluZuPbVuj/68drc27emWJC0qydLXrjpFVy0sUmlu2qj6TCEBAAA4PoQdAADEWW1Dh/64Zrd6B0NatX2v6lp6JEmVZdn652tO1ZULp2lGVmqCWwkAAOAdhB0AAJxkHb1DentHl97e3qVXt7SptrEzdm/B9Ex969oFumLBNE2bmpLAVgIAAHgXYQcAACegdzCsdTv3as2OvVq9o0trdnRpe0e/JMkYKSctKVbXb6SrT5uuW84tT1BrAQAAJgfCDgAAjmJ4gdAzy7OVlhSIjdp4e/tebWnplmOj9WZkpWpRyVR9/OwynV6cpdOKp+qdPd266f5qhcKOggGfqipyE/tlAAAAJgHCDgAADsFxrLa19+qJ1Tv1ny9uVWQ40XBlpwW1qCRLVyycpsUlU3V6cZbyMpIP+pylZdlafnsVu6kAAACMIcIOAMCkZ63V7r0DWrOjS2/v2Ks1O7q0ZsdedQ+ER9Uzkq45vUj/dOUpKs5OlTHmmD6f3VQAAADGFmEHAMDzhqehDI+s6HQXEF3jBhtv79ir1u5BSVLAZ3RKUaauXTRdi4qzFPAbff3xtbFpKJ88b6ZKctKO8hMBAACQSIQdAABPq2no0I33r1Qo7MgYKT8jWc1usCFJs/LTdcHsPJ1ePFWLSrI0v2iKUoL+UZ9RlpvONBQAAIAJhLADAOA5/UMRrahr0/MbmvXHNbs0FHYkSdZKU1KD+uR5M7WoeKoWFk/VlJTgUT+PaSgAAAATC2EHAMATWrsH9ZdNzXpuQ4tW1LVqIOQoMzmgM0qy9EZDhxzHKhjw6fvXnU5wAQAA4HGEHQCACclaq62tPXp2Q7Oe39CsVdu7ZG10+9ePVpbo0lMLdfbMXCUFfAet2QEAAABvI+wAAIx7w2HFmeXZslZ6fmOzntvQrIb2PknSaTOm6ouXzNWlpxbo1KIpB+2SwjQUAACAyYWwAwAwbvUOhvX0uj2667E1CkVsrDzJ79M5s3J12wUVunR+gYqmpiawlQAAABhvCDsAAAm1ty+khvZeNbT3qrG9zz161dDep7aewYPqX7touu750EJlHsPCogAAAJicCDsAAHFV29ChFza1aEZWqpKDfjW5QcZwoLG3PzSqfuGUZJXlpuviU/JVlpuuiGP1ny/WKRJxFAz4dMu55QQdAAAAOCLCDgDACbPWqrMvpG1tvWpoi47S2NbWq/W79mpbW9+ouj4jTc9KVXluuq45vUjluekqzU2LnnPSlJrkP+jzz5udxwKjAAAAOGaEHQCAIxq5k8nsgoxRYcZwuLGtrVf7BsKx9/iMVJydJp/PjCq79byZ+qcrT1FSwHdcbWCBUQAAABwPwg4AwCjWWu3aO6DNzd16aVOLHq5uUsTag+oZI02fmqqZeem6dvF0leema2Zeusrz0lWSnRbb8vWm+6sVCkenoFx1WtFxBx0AAADA8SLsAIBJynGsdnT2a0tLt7a09GhLc4/qWrpV19Kj3qHIQfWNpAvn5uvGs0s1My865SQlePCUk5GWlmVr+e1VTEEBAADAmCLsAACPq2no0NPr9yg3PUmOlepaerTFDTUGQk6sXuGUZM0pyNRHKks0pzBDcwsz1TsY1t8+XBsbmfGFS+Ycd2DBFBQAAACMNcIOAPCgobCj1+vb9XB1o57b0Dzq3vSpKZpdmKmbzs7VnIIMzSnM0OyCTE1NPfQOJ4zMAAAAwERD2AEAHtE/FNHLm1v1zPo9en5js7oHwgr6Ry8Q+ncXz9Y/XDbvuD6XkRkAAACYaAg7AGAC29sf0l82NevpdXv08uZWDYQcZaUFdcWCabpywTSlJ/v1qQfejE1DuXBuQaKbDAAAAMQdYQcATDAt3QN6bkM04Hh9a7vCjlXhlGTdUFmiKxdM01kzcxTw79/xhGkoAAAAmGwIOwBgnKtt7NQz6/doKBzR+l37VNPYKWul8tw03XbBTF25YJoWFWfJ5zOHfD/TUAAAADDZEHYAwDjUPxTRGw0d+l3tdv3x7d2ybnlZbpq+eMlcXblwmuYWZsiYQwccAAAAwGRG2AEA44DjWK3ftU+v1rVqxZY21TR0aijiyG9MLOjwGemGyhJ97qLZCW0rAAAAMN4RdgBAguzs6teKLa16dUub/rq1XR29Q5KkU6Zl6pZzy3T+nHwFfUa3Prh/gdGqitwEtxoAAAAY/wg7ACDOahs7VV3frtOLp6p/KKIVdW1asaVN9W29kqSCzGS9d16+LpiTp/Nm56kgM2XU+1lgFAAAADg+hB0AECcDoYgerdmub/9xg8KOjZWnBv06uyJHN55dqgvn5mtOwZHX3mCBUQAAAOD4EHYAwAkaHrmxtCxLRkav17erur5dbzV1aSjsxOoZSTecWaJvf2CBkgP+xDUYAAAA8DjCDgA4AU+s3qkvPfr2qJEbxkinFk3RzVVlKshM1g+f26xwJLrmxg2VJQQdAAAAQJwRdgDAcdrW1qsn396lP63drU17umPlRtIHz5ihb75/gaamBWPlleU5rLkBAAAAjCHCDgA4itrGTj2zbo96h8Javb1L63ftkyRVlmXr1vPKtXxlU2zkxserykYFHRJrbgAAAABjjbADAA7DWqtlr9Tr+09vknVnqcwpyNA33jdfV59WpOlZqZKk950+nZEbAAAAwDhC2AEAh7B6e5e+9+eNemNbR6zMZ6LTVG6/oGJUXUZuAAAAAOOLL9ENAIDxpKGtV59b/pY++OPXtLWlR7dfMFMpQZ/8RkoK+FRVkZvoJgIAAAA4iriN7DDGlEh6SFKhJCtpmbX2XmPMNyXdIanVrfp1a+2f49UOADiS4W1j5xdl6uV3WrV8ZZOCfp++cMkc3XlhhTKSA7pqYRHTVAAAAIAJJJ7TWMKSvmytfcsYkymp1hjznHvvR9ba/xPHnw0AR1Xb2Kmb7qvWYNiRVXSayt+cVaovXjJHBVNSYvWYpgIAAABMLHELO6y1uyXtdl93G2M2SpoRr58HAMfrN282aSDsxK4/ed5M/a9rTk1giwAAAACcDGOyZocxplzSGZJWukWfN8asMcb83BhzyL8uNcbcaYypMcbUtLa2HqoKALwrHb1D+tKjq/VozQ4ZRUd0pAR9et9pRYluGgAAAICTwNjh/RTj9QOMyZD0sqR7rLWPGWMKJbUpuo7HdyQVWWtvPdJnVFZW2pqamri2E4D3WWv12Fs79d0/bVD3QFiffk+Fzp+dp7eauliPAwAAAJgAjDG11trKo9WL69azxpigpN9JWm6tfUySrLXNI+7fJ+nJeLYBwOQ2vABpWW6afvVGk16ra9eS0iz964dP17xpmZKkc2blJbiVAAAAAE6meO7GYiT9TNJGa+0PR5QXuet5SNKHJK2LVxsATG61jZ266f5qDYaiC5CmBf36zgcX6qazSuXzmUQ3DwAAAECcxHNkx3mSbpa01hiz2i37uqSPGWMWKzqNpUHSp+PYBgCT1EAoop+8VKeB0P4FSG85r1w3V5UlsFUAAAAAxkI8d2NZIelQf3X653j9TAAYCEX0mze3679eqlPzvkEZE30QJQV8unR+YaKbBwAAAGAMxHXNDgAYKwOhiH79RpN+8vJWNe8b1FnlOfrRDYuVHPCpelsHC5ACAAAAkwhhB4AJ7ZV3WvXA6w1a1dSpzr6QzpqZox99dLHOqchVdOkgaWl5TmIbCQAAAGBMEXYAmFBCEUert3fp1S1tenrdbm1u7pEk+Yz0rWsX6JZzyxPbQAAAAAAJR9gBYFyrbejQ0+v3SJIa2vv0+tZ29QyG5TNS4ZQUGUVXOzaSegbDiWwqAAAAgHGCsAPAuOM4Vqu2d+mh1xv0xOpdsm55fmaSrl08XRfOydM5FXmqa+3RTfdXKxR2FAz4VFWRm8hmAwAAABgnCDsAJFRtY6eq69u1tCxLAyFHz25o1nMbmtXaPSifUSzo8Bnpk+eW63MXzYm9d2lZtpbfXqXq+nYWIAUAAAAQQ9gBIGFqGzv1sfuqNRR2YmXpSX69d16BLl9QqOy0JN35y5oRIzfyDvqMpWXZhBwAAAAARiHsAJAwy6sbY0GHkfThJTN0z4dOU0rQv78OIzcAAAAAHCfCDgAJ8WjNdv1+9U4ZI/kkBQM+3Xh22aigQ2LkBgAAAIDjR9gBYMz99OWt+v5Tm3TBnDz97XtmafX2LkZuAAAAADhpCDsAjBnHsfrXpzbqvle36f2Lpuv/fmSRkgI+nTf74LU4AAAAAODdIuwAMCZCEUdf/d0aPfbWTt1yTpn+5f0L5POZRDcLAAAAgAcRdgCIu/6hiD73yFv6y6YWffmyufr8xbNlDEEHAAAAgPgg7AAQVy+/06KvPb5Wu7sGdM+HFuqms8sS3SQAAAAAHkfYASAu9g2E9P2nNumRlU2SpKDf6JRpUxLcKgAAAACTAWEHgJOqtXtQP39tmx5+vVHdg+FYueNYVde3s+MKAAAAgLgj7ABwQmobO1Vd366KvHT9dWu7Hq3ZrqGIo6tPK9J75+brn/+wTqGwo2DAp6qK3EQ3FwAAAMAkQNgB4F2rbezUjfdVazDsSJL8PukjS0v06ffM0sy8dElSRX6GquvbVVWRy6gOAAAAAGOCsAPAu2Kt1X2vbI0FHUbSHRdU6K6r5o+qt7Qsm5ADAAAAwJgi7ABw3PqGwvrG79fp6fXN8plo0BEM+HTZqdMS3TQAAAAAIOwAcHzqWrr12eVvaUtLj7546RydNztPb2zrYJoKAAAAgHGDsAPAMfvD6p362mNrlRr066Fbz9IFc/IlSWeW5yS4ZQAAAACwH2EHgKMaCEX07Sc36JGVTTqzPFv/8bElmjY1JdHNAgAAAIBDIuwAcERPvL1T331yo1q6B/W375mlr1w+VwG/L9HNAgAAAIDDIuwAEGOt1faOfq3c1q43Gzr06pY27d47IEkK+o0uO7WQoAMAAADAuEfYAUxyf1qzS4+v2qn+oYjqWnvUvG9QkjQlJaD8zGQZSVaS41hV17ezCCkAAACAcY+wA5jEfraiXt95cmPs+rzZefr8RbN15swczS3I1KrtXbrp/mqFwo6CAZ+qKnIT2FoAAAAAODaEHcAk9Vpdm773502xa7+Rzp2Vq5vPKY+VLS3L1vLbq1Rd387WsgAAAAAmDMIOYBKqrm/XbQ++qeKsVO3ZN6Bw5PAjN5aWZRNyAAAAAJhQCDuASaamoUO3PvCmirPT9Os7q9TY3sfIDQAAAACeQtgBTCKrt3fpk794U9OmpOiR289WXkay8jKSCTkAAAAAeAp7SAKTxLqde3Xzz1YqNyNJj9xRpYIpKYluEgAAAADEBWEHMAls2LVPH//ZSk1NDeqRO6o0bSpBBwAAAADvIuwAPO73q3bqup/8VX5j9Ks7qjQjKzXRTQIAAACAuGLNDsCjIo7VD599Rz9+aaskybFWLd2DKslJS3DLAAAAACC+CDuAcaS2sfOk7Izy6pZW3fOnjdq0pztWFo44qq5vZzFSAAAAAJ5H2AGME7WNnbrpvmoNhh0lB31afnvVcQcTm5u7dc+fNurlza0qyUnVly6bq/96qU6hsKNgwKeqitw4tR4AAAAAxg/CDmCceK2uVQNhR5I0GHJUXd92TGFHbWOnXtjYrC3NPXphU7MykgO6++r5+sS5ZUoO+HXe7LyTMloEAAAAACYKwg7gOBxtmklNQ4de2dKq98wt0NKy7GOelhJxrKq3dsSuraTmfYNHbc+z6/fos8vfUtixkqT3nTZN3/3gacpOT4rVWVqWTcgBAAAAYFIh7ACOUW1jp268r1pDYUdJAZ8euaNKklRd365FJVl6aVOLfrZim6ykf3+hTvOmZWprS48ijlVSwKcHbz1TVRV5B32utVbf+P1a/bW+XZ88t0x5Gcn669Z2PfR6o86pyNVVpxWNqr+rq19/Xrtbf167W281dcXKfUY6dfrUUUEHAAAAAExGxlqb6DYcVWVlpa2pqUl0MzCJDYQi+tQv3tDr9ftHX6Qn+TUQdhRxDv3fUFqSX31Dkdi1kVSWm6ZZ+RmaVZChirx0hR2rP6zeqTcbOvX5i2brK1fMi/28G++r1tqde/XRyhJdMDdf2zv6RgUcpxZN0eLSLP2udofCkeiaHO9mnQ8AAAAAmCiMMbXW2sqj1WNkBya1moYOrahr07mzcnXWzNyDpp3UNnbqt7U79PLmFu3qGpDfGFlZ+YxRVlpQO7sGYp91xYJpenlzS2wx0G+871R9+4/rNRRx5PcZffCMGeobimhrS49erWvTkLs+hyT5fUYXzcuPXacE/fq7i2fr1gdq9PDKJj28sklSNOD4xyvm6erTijQzL12SdN2SYtbkAAAAAIARCDswqdQ2durld1oU8PtU29ihlze3SZL+3/NbDqqbmexXz2BEVtFRGf98zXwtLsmOBQuSdNP91bFw484LK3TnhRWjgod50zIPGUREHKsfPL1J971aL2slWavqbR1aWp4Tq7Nhd7eMkayN/vzbLpipb7zv1IPayZocAAAAADAaYQc87cVNzXpi9S6lJge0s7NPr2xp0/DMrSS/idUzkoqzU7Wjsz8WbqQlB9Q9GJ2G4jPSQMg5KFhYfnvVQWHGyPuHCyL8PqMrFkzTQ683HHZb2KqKXCUFfLH7Vy0sOuhzAAAAAAAHI+yAZ937whb96LnNsevUoD8WdPiMdP3SYj22amcsTPjMe2fr20+uj13//SVzR10fGEZIJzaqYmlZ9iHDkmO9DwAAAAA4NMIOeEptY6de2dyi1du7YlNUJMlvpA8tmaHH3toRCy+uW1qi65aWHHHayeGmoZwsRwtLmKICAAAAAMeP3VjgGbWNnfrYsmoNRaILf158Sr7+urU9Fm4sv33/VrGMlAAAAACAiYfdWDApDO+eUpCRrJ+8sjUWdPiMtLQsR5+7aM4R19QAAAAAAHgPYQfGtZFbwZ5RkqXnNjbrr3Xtmj89U6Gwo28/uUGhSHR0UkrAp4DPyFobW2ODaSAAAAAAMPkQdmDcevmdFt32YI3CjpUxkt8YhZ1DT7sykj79ngpdOLeAaSoAAAAAMMkRdmBcqW3s1BOrd2lHZ59e2tyqiBtuWCsVTE3W7q4BWUWnqVw0L1+vbmlXxImuyXHh3AJGcgAAAAAACDuQWLWNnXp+Y7Myk/16p7lHT7y9K7Y97Jll2Vqzc6/CkWiY8fmL5ozaCvazF83RZw+xJgcAAAAAYHIj7EDCPLKyUXc/vk7DE1N8RrGgw2+k955SoLuunn/UrWAJOQAAAAAAIxF2YMw5jtWyV+v1g6c3jQo6bqgs1u9X74qN3DjUAqNMUwEAAAAAHA1hB8bUi++06Nt/3KBtbb06tyJXbzV1KuROU/lIZak+UlnKtBQAAAAAwAkh7MCY+cWKbfrWkxskSQGf0ZcvnysZw7QUAAAAAMBJRdiBuOsfiuj7T23Ug683xsqstare1qHPXTSbcAMAAAAAcFIRdiCufvVGk/7t6U3q7AvpmtOK9PzG5ti0laqK3EQ3DwAAAADgQYQdiJv/fnmr/vWpTZKkJL9Pnzp/pj51/kzW5AAAAAAAxBVhB+KipqFD//bMO7HriOOour6daSsAAAAAgLjzJboB8J539nTr1gfeVGFmspIDPvmNmLYCAAAAABgzjOzASfX0ut36yv+8raDfp998+hy1dA8ybQUAAAAAMKYIO3DSvLK5VZ95+C1ZSckBq5buQS0tyybkAAAAAACMKaax4KT5389sknVfhyPRNToAAAAAABhrjOzASfHSOy1au3OfAj4jay1rdAAAAAAAEoawAyeseyCkrz22VrMLMvSdDyzQW01drNEBAAAAAEiYuIUdxpgSSQ9JKpRkJS2z1t5rjMmR9BtJ5ZIaJN1gre2MVzsQf9/78yY17xvQbz9zrpaUZuucWXmJbhIAAAAAYBKL55odYUlfttaeKqlK0ueMMadKukvSC9baOZJecK8xQf1ixTb96o0m/d3cTi1p/Lm0/Y1ENwkAAAAAMMnFbWSHtXa3pN3u625jzEZJMyR9QNJ73WoPSnpJ0lfj1Q7Ez4q6Nn37yQ1aat7R5xu+K9toZQLJ0i1PSCVnJbp5AAAAAIBJakx2YzHGlEs6Q9JKSYVuECJJexSd5oIJxlqr7/1pg6ykrwQeVdBEZORIkSGp4dVENw8AAAAAMInFPewwxmRI+p2kL1pr9428Z621Umy30gPfd6cxpsYYU9Pa2hrvZuI4/e6tndqwu1vv96/UOf6NClufrPFL/iSp/IJENw8AAAAAMInFdTcWY0xQ0aBjubX2Mbe42RhTZK3dbYwpktRyqPdaa5dJWiZJlZWVhwxEkBh1LT3659+v00dK9ur7ncu0O+107Tvv65o3tCEadDCFBQAAAACQQPHcjcVI+pmkjdbaH4649YSkWyR93z3/IV5twMk3EIroxw89on8IVOvWvtfkT5mqotsfVdGUIklXJbp5AAAAAADEdWTHeZJulrTWGLPaLfu6oiHHo8aY2yQ1Srohjm3ASVTb2KlHH/+dvtd9t1LMkEyvpGvulaYUJbppAAAAAADExHM3lhWSzGFuXxKvn4v4qG3s1MeWVet2vaGkQMj9F2uk/vYEtwwAAAAAgNHGZDcWTHzV9e0aijiqdubLykRXlQ0ksxgpAAAAAGDcIezAMSmamiJJWmXnaofyNZhZJt3yRxYjBQAAAACMO4QdOCYrtrQpOeDTP16Qp3LTrJQzbyboAAAAAPD/2bv3OLnO+j78n2d3VlpJlny/COy1bJwCBszFAkwgxGCMMaUFfnGai0hoSLIkJG3aJL+E1GkDaZU0aSn55fJrqiYp0Gy4hJBAuRliTCAJNkhcjLn7Iq9tbEuWZV13VzOzp3/M7Gol62prd7Rn3u/X67zOzHPOzHwXPR6xHz0XOCkJOziq+ynVv3YAACAASURBVHdM5ENf+W5+9PkjedNFD3YaTV8BAADgJCXs4Kje8Q+bM11VecMLL0o2fzYZWp484Tm9LgsAAAAOSdjBEe2abOYvbhnPK5+xOhecsTzZ/PfJyBVJY0mvSwMAAIBDEnZwRO/5/D3ZNdXK6IsvTvY8lGz5erLmRb0uCwAAAA5L2MFhff6ubfn9G7+Tpz1hZS47/7TOqI4kWfPi3hYGAAAARyDs4JA23b096/7kluyaauXbD+7Opru3d9frWJE84Vm9Lg8AAAAOS9jBId1857a02lWSZHq6ys13buuM7LjwBcngUI+rAwAAgMMTdnBIV1x8ZlI6j4caA3nR6ulk6zet1wEAAMBJT9jBIV26elUGkjz/ojMy9lNX5Jmtr3YuWK8DAACAk5ywg0O69d5H0q6S0RdfnMsvPL0zhWXJymT1M3tdGgAAAByRsIND2nj39iTJc0ZOT+75fPL1DybnPDUZbPS4MgAAADgyYQeHtOnu7XnS2Sty+sNfTt75z5K925LvfrETfAAAAMBJTNjBo0xPV/ni+PasvfCMznazranOhWq68xwAAABOYuYk8Ch3PrQ7j+xtdtbqOO/7koHBZLqVDC5J1nxfr8sDAACAIxJ28Cibuut1XL7m9OTsC5LVz0p23JP80J8nFzyvx9UBAADAkZnGwqNs3Lw9py8fysVnreg0PDKePOkqQQcAAACLgrCDZNu25BWv6JyTbBrfnssvPD2llGTXg8meLcnqy3pcJAAAABwbYQfJO96R3HBD8s535uE9+3Ln1j15zoWnd649cGvnfJ6wAwAAgMVB2NHvqip5+9s7j9/+9nzx7oeTpLMTS5Lc/5XO+byn96A4AAAAOH7Cjn732c8mO3Z0Hj/ySDb+w1czNFhy2fmndtoe+Gpy+ppk+NSelQgAAADHQ9jR737v95I9ezKW5Lm7d+dTn/5iqgfvyF+97z2d6w/cmpz3jJ6WCAAAAMdD2NFPXv3qpJQDj498JGNVldEkLzv/abnjCU/JJVvuyejrXpf3Li3Jw3cmN36115UDAADAMRN29JPf+q1kZCQZHt7ftm9ffiDJZ57wlPzVD/3HtAcbueOffG8+84Sn5DXnDnbu+cGf60m5AAAA8FgIO/rJ056WfP3ryT//58ny5bPNFyf5HyPPSHOgkSRpDwzkj0eekd9c3e0ez39VD4oFAACAx+awYUcp5ZJSygsP0f7CUsqT5rcs5s2KFcl735u87W3J0qVJkiVJzhn/agZSJVWVJe1Wzhn/ai570qnJ8rOSlat7WzMAAAAchyON7Pi9JDsP0b6ze43F7DnPmQ071id57ne/mbMevDNl59b8P++5Ps974Nu5+hnndhYnLaW3tQIAAMBxOFLYcW5VVY9ambLbtmbeKmJhbNyYNJtJknWlZPfQUB5ceWZ23f2V/MX938reH39dzmg+kKy+rMeFAgAAwPE5Uthx2hGuLTvRhbDAPvvZZGKis1jpyEhe9RfvS045I+t33J/NVZUfqbYl083kPGEHAAAAi8uRwo6NpZSfPrixlPJTSTbNX0ksiFtuSQYHO9vRfu1ruf25358kueR7nthpv+9LnfuEHQAAACwyjSNc+zdJ/rqUsi77w4216axn+dr5Lox59tSnJr/+68kb3pAkuePrDydJLnnbf0xe/PTk8/8lGZpOzrQWLQAAAIvLYcOOqqoeTPK9pZSXJHl6t/kjVVV9akEqY3595CMHPL196+4saQzk/NOXdwKQ8v6kvS8ZGOxRgQAAAPDYHGlkR5Kkqqqbkty0ALXQQ7dv2Z2Lz1qRwYGSfPe+5I7PJZf9UK/LAgAAgON2pDU76CO3b9mdS845pfPkd0eTxnTyhS/3tigAAAB4DIQdZLLZzj3b9+aSDb+XXNBITvls58LSr3eeL7P5DgAAAIvHcYUdpZSzSillvoqhN+7cuidVlVzy1jcnr758f68YSPKay5O77upleQAAAHBcDht2lFKuKKV8upTygVLKs0sptyW5LcmDpZRXLFyJzLfbt+5Oklzy5POTgQuSqnuhnaSMJOed17PaAAAA4HgdaYHSP0zy75KcmuRTSa6tqurmUspTkrw7yccXoD4WwO1bdmegJBedtSK5dzpZviYZui/ZfVVyb6vX5QEAAMBxOVLY0aiq6hNJUkr5zaqqbk6Sqqq+aSZLvdyxZXdGzliepY3B5AMfSP76Z5PNn03+w/t6XRoAAAActyOt2TE95/HEQdeqUBsH7MSSJBPbk2Wn964gAAAAeByONLLjmaWUnUlKkmXdx+k+H573ylgQrfZ07npoT658ytn7GyceFnYAAACwaB027KiqanAhC6E37tk+kX3t6Vxy9kEjO865tHdFAQAAwONw1K1nSyn/sZRydSllxUIUxMK6fUt3JxbTWAAAAKiJo4YdSe5M8iNJNpZSPl9KeVsp5dXzXBcLZCbseNJM2FFVwg4AAAAWtaOGHVVV/a+qqt6Q5CVJ/jzJD3bP1MDtW3bn3FVLs2p4qNOwb3cy3RJ2AAAAsGgdaYHSJEkp5U+SXJrkwSSfTXJdki/Oc10skNu3HmInliRZfkZvCgIAAIDH6VimsZyZZDDJI0keTvJQVVWtea2KBVFVVe7YsvvAxUn3Ptw5G9kBAADAInUs01heW1XV85P8bpLTktxUSrl33itjXo2NjeWiS5+V3VOtvPMPfidjY2OdCzMjO4QdAAAALFLHMo3lVUm+L8mL0wk7PpXOdBYWqbGxsYyOjuYFP/jsvPzK9+WGB+7M6OhokmTdM5d1bhJ2AAAAsEiVqqqOfEMpf5hOuPHZqqq+uyBVHWTt2rXVxo0be/HRtbRmzZqMXJbc8P77MzTYSrPdyDXXrc74rcnmv/z3yUd+MfmlbyUrz+t1qQAAADCrlLKpqqq1R7vvWKax/HxVVe/tVdDBiTc+Pp6rrl2ZocFWGoPTGRps5aprV2Z8fNw0FgAAABa9Y1mglJoZGRnJjR/blWa7kVZ7IM12Izd+bFdGRkY6YcfQiqSxtNdlAgAAwGMi7OhD69evz6Ybt+a1v/bavO2GdbnmutXZdOPWrF+/vhN2GNUBAADAInbUBUqpn3Xr1iVJrn//F/P16edn4NbPZMOGDZ32d39Y2AEAAMCi9pjCjlLKx6qquvZEF8PCWbduXb62/LJ84msPZuPmzfsvTGxPlp3Ws7oAAADg8Tps2FFKec7hLiV51vyUw0KabLYzPHTQTKaJ7cnZT+5NQQAAAHACHGlkxxeS/F064cbB/NN/DUw1p7O0cVDYsfdh01gAAABY1I4UdnwjyRurqvrOwRdKKffMX0kslKlWO8NDg/sbqsoCpQAAACx6R9qN5S1HuP6vTnwpLLTJg0d27NuTTDeFHQAAACxqhx3ZUVXV+49w7W/mpxwWUmfNjjkjOya2d87CDgAAABaxY96NpZTyoiTPS3JbVVWfmL+SWChTremsWja0v0HYAQAAQA0cdhpLKeXzcx7/dJI/TLIyyW+UUt68ALUxzyab7QOnscyGHWf0piAAAAA4AY60Zsecf/LPaJKrq6p6a5KXJ1k3r1WxIKZa0wdNY3m4czayAwAAgEXsSNNYBkopp6cTiJSqqrYmSVVVe0oprQWpjnnVWbPjUCM7hB0AAAAsXkcKO05NsilJSVKVUlZXVXV/KeWUbhuLXGcay6EWKD2tNwUBAADACXDYaSxVVa2pquriqqou6p7v716aTvLao71xKeXPSilbSim3zWl7SynlvlLKl7vHKx//j8BjNdWaztKDR3Y0liVDy3pXFAAAADxOR1qz45CqqtpbVdVdx3DrO5K84hDtb6+q6lnd46PH+/mcGFVVdcKOg0d2LLc4KQAAAIvbcYcdx6qqqs8keXi+3p/HZ6o1nSQHrtmxd7v1OgAAAFj05i3sOIKfL6Xc2p3mctjfrEspo6WUjaWUjVu3bl3I+vrCVLMbdhw8skPYAQAAwCK30GHHf0/ypCTPSnJ/krcd7saqqjZUVbW2qqq1Z5999kLV1zcmW+0kefSaHRYnBQAAYJFb0LCjqqoHq6pqV1U1neR/JnneQn4++xnZAQAAQF0taNhRSlk95+lrk9x2uHuZXzMjO4aHumFHVXXDDguUAgAAsLg15uuNSynvTnJlkrNKKfcm+Y0kV5ZSnpWkSrI5yRvn6/M5sslmdxpLo5t3NSeS9pSRHQAAACx68xZ2VFX1I4do/tP5+jyOz/7dWLojOya6G+cIOwAAAFjkerEbCyeB2ZEdMwuUTmzvnIUdAAAALHLCjj41efACpcIOAAAAakLY0aemZhcoNbIDAACAehF29KmZkR1LDx7ZsdxuLAAAACxuwo4+NbNmx+zIjr0WKAUAAKAehB19amY3lqVDc0Z2NIaToWU9rAoAAAAeP2FHn5rdjaUxZ80OozoAAACoAWFHn5od2SHsAAAAoGaEHX1qqtnO0sZASimdholHkmUWJwUAAGDxE3b0qclmO8Mz63Uk3ZEdp/WuIAAAADhBhB19aqo1vX8nliSZeNg0FgAAAGpB2NGnJpvtLG3MGdmxa4uwAwAAgFoQdvSpyeackR3NiSRtYQcAAAC1IOzoU1OtOSM7JrZ3zsstUAoAAMDiJ+zoUweM7JgJO4zsAAAAoAaEHX1qqtXZjWVsbCxvfNVVSZKf+Zc/k7GxsR5XBgAAAI9Po9cF0BuTzens3X5/Rn9rNLe8bl/yosH85B17cuXoaJJk3bp1Pa4QAAAAHhthR5+abLXz5C/cnI+/bDL5g+mk0cpzX5zs2TmZyR/7sUTYAQAAwCJlGks/ectbklKSUjJ1+535cHMq331lSTWYZCCpBpPvvrLkoqqavW/2eMtbelw8AAAAHBthRz95y1uSqkqqKlNPvCCDy5bm2x+tknZmj299tMrSCy+cvW/2EHYAAACwSAg7+tRkczrf+/znZseHk82/viTTNy3JTT84kJ0fTtavX9/r8gAAAOAxE3b0qalWO898xtOy+13vyifuPDUTn1qaN3zlgux+17ssTgoAAMCiZoHSPtSertJsVxluDHaCjdO+mPzdhmzevLnXpQEAAMDjZmRHH5pqtZMkw0PdP/7mZNLsYUEAAABwAgk7+tBkczpJsrQxE3bsTZpVDysCAACAE0fY0YcmmzMjOwY7DS0jOwAAAKgPYUcfmmp1RnbMhh3NiWT1+T2sCAAAAE4cYUcfmhnZsX8ay0Ry0ff0sCIAAAA4cYQdfejR01gmkqHlPawIAAAAThxhRx+amcayf2THZNIY7mFFAAAAcOIIO/rQ7DSWuWt2DC3rYUUAAABw4gg7+tDM1rPDQ90//pawAwAAgPoQdvShqdbMAqVzRnY0hB0AAADUg7CjD00dPLKjOZEMWbMDAACAehB29KGZkR3DQ4NJu5lUbdNYAAAAqA1hRx+aWbNjaWMgae7tNJrGAgAAQE0IO/rQzG4sw0ODnW1nEyM7AAAAqA1hRx+aak1noCSNgdLZiSURdgAAAFAbwo4+NNlsZ3hoMKWUzuKkSdKwQCkAAAD1IOzoQ5OtTtiRZH/YMbS8dwUBAADACSTs6ENTzenO4qTJnLDDyA4AAADqQdjRhyZb0/tHdsys2WE3FgAAAGpC2NGHpprtOSM77MYCAABAvQg7+tBkazpLH7Vmh7ADAACAehB29KHJZjvDMyM7bD0LAABAzQg7+tDUASM7utNYrNkBAABATQg7+tDU3JEdzb2ds91YAAAAqAlhRx+abLbn7MZiZAcAAAD1IuzoQ1Ot6Tm7sexNBpcmA7oCAAAA9eA33D50wMiO5qQpLAAAANSKsKMPTbWmMzw0ZzeWoeW9LQgAAABOIGFHn6mqKpPNdpY2ZkZ2TCQNIzsAAACoD2FHn2m2q0xX2T+yozmRDFmcFAAAgPoQdvSZqVY7SfaP7GhNCjsAAACoFWFHn5lsTic5aGSHbWcBAACoEWFHn5lsdkd2DM1Zs8PIDgAAAGpE2NFnplqdkR1LG3PX7LBAKQAAAPUh7OgzMyM7hmdGdrRMYwEAAKBehB19ZmaB0tmwo2mBUgAAAOpF2NFnppqHmsYi7AAAAKA+hB19ZvLgkR2tiaRhzQ4AAADqQ9jRZw4Y2THdTtr7kqHlPa4KAAAAThxhR585YGRHc6LTaDcWAAAAakTY0WcmuyM7hocGktZkp9HIDgAAAGpE2NFnprpbzy5tzBnZYc0OAAAAakTY0WcmW3NGdsxOY7EbCwAAAPUxb2FHKeXPSilbSim3zWk7o5TyyVLKd7rn0+fr8zm0ybkjO1rCDgAAAOpnPkd2vCPJKw5qe3OSG6uq+p4kN3afs4CmWtMZGiwZHCimsQAAAFBL8xZ2VFX1mSQPH9T86iTv7D5+Z5LXzNfnc2iTzXaGG4OdJ6axAAAAUEONBf68c6uqur/7+IEk5x7Li771rW/lyiuvnLei+sldD+3Jw3v25cq/++1k78PJlj3JJ/51suSUXpcGAAAAJ0TPFiitqqpKUh3ueilltJSysZSysdlsLmBl9TZdVRkopfOk6qzfkWKdWgAAAOpjoUd2PFhKWV1V1f2llNVJthzuxqqqNiTZkCRr166tPv3pTy9QifX2c2NfzDcf2Jkbf+nK5EtjyQfflPzCXyanX9jr0gAAAOCIysw/3h/FQv+T/oeSvL77+PVJPrjAn9/3plrtzk4sid1YAAAAqKX53Hr23Uk+l+TJpZR7Syk/meQ/J7m6lPKdJC/rPmcBTTanMzzU/WO3GwsAAAA1NG/TWKqq+pHDXLpqvj6To5tszhnZ0ZzsnI3sAAAAoEasTNlnplpzR3bsTQYayeBQb4sCAACAE0jY0Wcmm+0MD82s2TGZNIzqAAAAoF6EHX1mqjWdpY05a3aYwgIAAEDNCDv6zAEjO5oTyZDFSQEAAKgXYUefOXAay4RpLAAAANSOsKPPHDiNZdI0FgAAAGpH2NFHqqrqhB2z01j2CjsAAACoHWFHH5lqTSfJ/pEdLSM7AAAAqB9hRx+ZanbCjgMWKLVmBwAAADUj7Ogjk612kmR4aO7Ws3ZjAQAAoF6EHX1kstkJO5Y2ZnZjMY0FAACA+hF29JGZNTv2j+zYaxoLAAAAtSPs6CMzIzuGZ0Z2NCdNYwEAAKB2hB19ZHY3lqGBpKqS1kQytLzHVQEAAMCJJezoI7MjO4YGO+t1JEnDyA4AAADqRdjRRya7W88ubQx0dmJJjOwAAACgdoQdfWSqNWdkx2zYYWQHAAAA9SLs6CMzIzuGG3OnsdiNBQAAgHoRdvSJsbGx/PKvvDlJ8uIXviAf+eD7OxeGhB0AAADUi7CjD4yNjWV0dDRPvnRn3nTl+7Lm0on8l9/6zc5FYQcAAAA10+h1Acy/66+/PpdfdXb+5m03ZGiwlX/10kbe/MYzk+yxGwsAAAC1Y2RHHxgfH89V167M0GArjcHpDA228rwruyGH3VgAAACoGWFHHxgZGcmNH9uVZruRVnsgzXYj3/xHu7EAAABQT8KOPrB+/fpsunFrrvvN1+e/fvS6XHPd6tz/xV2di6axAAAAUDPW7OgD69atS5Jcf8N9+eI9Q1l66y35L7/yumTLu01jAQAAoHaM7OgT69aty7OveGFe9uLvzebNm/P8Z1/WuWAaCwAAADUj7OgjOyeaWTU81HnSmlmzw8gOAAAA6kXY0Ud2Trayall35lJzIklJBpf0tCYAAAA40YQdfeSAkR3NiWRoWVJKb4sCAACAE0zY0Scmm+1MtaazatnMNJbJTtgBAAAANSPs6BO7JltJklXDc6axNIQdAAAA1I+wo0/snGwmyf6RHc0JO7EAAABQS8KOPrFzohN2rJw7ssM0FgAAAGpI2NEnds5OY5mz9axpLAAAANSQsKNPzIzs2D+NxQKlAAAA1JOwo0/sOnhkR3OvsAMAAIBaEnb0if0LlHbX7GhNJg0LlAIAAFA/wo4+sXOimcZAybKhwU5DczIZWt7bogAAAGAeCDv6xM7JZlYtG0oppdPQ3GvrWQAAAGpJ2NEndk60smpm29mkO43Fmh0AAADUj7CjT8yM7EiSVJUFSgEAAKgtYUef2DnR3L8TS7uZVNOmsQAAAFBLwo4+sXOyNWcnlonO2TQWAAAAakjY0ScOGNnR7IYdprEAAABQQ8KOPnHAmh3CDgAAAGpM2NEH9rWmM9mczsqlM9NYJjtnYQcAAAA1JOzoA7smm0kyZ2TH3s7Zmh0AAADUkLCjD+ycbCXJ/gVKmzMjO+zGAgAAQP0IO/rAzonuyI5HLVC6vEcVAQAAwPwRdvSBnQdPY5ndetbIDgAAAOpH2NEHdk50p7EMD2VsbCz/+k1vTJK89Jp/mrGxsV6WBgAAACecsKMPzIzsuPHj/yejo6O5/OkPJS+aytpLv5vR0VGBBwAAALUi7OgDM2t2/O5/emt+9GWT+fG3NZOXTuV33jWdH33ZZK6//voeVwgAAAAnjrCjD+ycbGZwoGT8zu/kB15ZksF0/uQHkx94Zcn4+HivSwQAAIATRtjRB3ZOtLJquJGRkZH81UerpJ1U7STt5K8+WmVkZKTXJQIAAMAJI+zoAzsnm1m1bCjr16/PBz49nPY7lueuDwxl9AcH8hd/O5z169f3ukQAAAA4YRq9LoD5t3OimVXDQ1m3bl3O2fvtNO77vfzC2/blq1MXZMOG9Vm3bl2vSwQAAIATRtjRB3ZOtrJqWeeP+uonn5Lcl/yfLz2YLD+jx5UBAADAiWcaSx/YNdnMyqVDnSfjNyfnXCroAAAAoLaEHX1g50R3ZMd0O7nn88nIFb0uCQAAAOaNsKMP7JzsrNmRB7+WTO1MRl7Q65IAAABg3gg7aq7Zns7efe2sWjbUmcKSCDsAAACoNWFHze2abCVJVg03kvF/TFadn5x2QY+rAgAAgPkj7Ki5nRPNJDNhx83W6wAAAKD2hB01t3OyE3ac034w2XV/cqEpLAAAANSbsKPmdk50prGs3vnlToP1OgAAAKi5Ri8+tJSyOcmuJO0kraqq1vaijn4wM7LjzG2bkuFTk7Of2uOKAAAAYH71JOzoeklVVQ/18PP7wsyaHSse/EJywRXJgME8AAAA1JvffGtu52Qzb7jwQxm69LbkwtLrcgAAAGDe9SrsqJJ8opSyqZQy2qMa+sKFrffk3//UhuSlU8nz35c8+Ke9LgkAAADmVa/CjhdVVfWcJNcm+blSyosPvqGUMlpK2VhK2bh169aFr7AmnrTihmQwnT/pgSR7/6rHFQEAAMD86knYUVXVfd3zliR/neR5h7hnQ1VVa6uqWnv22WcvdIm1sWnrSzrLwLaTTCdZ/gM9rggAAADm14KHHaWUFaWUlTOPk7w8yW0LXcfJbmxsLGvWrMnAwEDWrFmTsbGxx/Q+n3joVfmDv/yVZPza5OE/Sc79yRNcKQAAAJxcejGy49wkf19K+UqSzyf5SFVVH+9BHSetsbGxjI6OZuSZA/mN//8ZGbksGR0dfUyBx87JZj63+7XJRR8VdAAAANAXSlVVva7hqNauXVtt3Lix12UsmDVr1mTksuSG99+focFWmu1GrrludcZvTTZv3nxc73XN2z+TNWctz//4sbXzUywAAAAskFLKpqqqjvoLrq1nT0Lj4+O56pWnZmiwlcbgdIYGW7nq2lUZHx8/7vfaOdnMquGheagSAAAATk7CjpPQyMhIPvv5U9NsN9JqD6TZbuRzdzw9IyMjs/cc65oeOyeaWbVM2AEAAED/aPS6AB5t/fr1+bf/+x/zI//jlXn20Ltz813PzDcbP5R/8f++Jsn+NT3Wvvy8/MSbn5EbP7ojo6OjSZJ169bNvk+rPZ09+9pGdgAAANBXjOw4Ca1bty4XPO+afPkLJW9901fzjff9fdasaOWuwXvywS//fP7q65/IS/7dG/Px996b63/6ttzw/vtz+VVn5/rrrz/gfXZNtpIkq5bJtAAAAOgffgs+Cd310J5s2zeYt/7MD+X17/rVJMnGzR/J057w7zI02MrLL23kL2950eyaHkkrV127Mm/98NcOeJ+dk80kMbIDAACAviLsOAnd9M0tSZKXPPmc2bZm+6YDwo3WjgfTbDeSdHZrufFjuw5Y0yNJdk7MjOwQdgAAANA/hB0noU9/e2suPntFRs5cPtt2+vKr02z/QWbCjb94x1TesWF1rv2J5+Rz335yNt34+9mwYcMB77N/ZIc/ZgAAAPqHNTtOMnv3tXLzndsOGNWRJE9ZfU3u3vahfGHzv83d2z6Un3jtWzJ+a/Kff6udW7e/KL/9B39ywOKkSbJrJuwwsgMAAIA+Iuw4yXzujm3Z15rOlU8++1HXnrL6mrzgSf81T1l9TdatW5fNmzfnthvenSRZdsnzD7h3bGwsP/OvfjFJcu1V33/YrWkBAACgboQdJ5mbvrUly4YG87yLzjim+y84Y3meunpVPvn1B2fbZramffLTJ/KmK9+XC5+yO6OjowIPAAAA+oKw4yRSVVU+/a2teeElZ2VpY/CYX3f1pedm490PZ9vuqSTJ9ddfn8uvOjt/87aP5Rev/vN8/D3jh9yaFgAAAOpI2HESuWPr7ty7fSIvecqjp7AcycsvPTfTVXJjdxeX8fHxXP2a82Z3bxka7GxNOz4+Ph9lAwAAwElF2HESuembH8ybrnxfnnT2V4/rdU97wqo84dTh2aksIxddki9se1ma7UZa7YHDbk0LAAAAdWRP0pPEN++/Ia+74iczNNhKs/2efPP+D+Upq685pteWUnL1pefmvRvvycS+dp7/xv+cmx8ayqtGL8+Ln78rN35sVzbduPVRW9MCAABAHRnZcZL47iMfP2Dayfa9nzyu1w888LVMNqdz/j/9udzy8NJctG9z7vj0d/PWn/taxm9NNmzY8KitaQEAAKCOhB0nia/c+8wDpp2cvvzqY37t2NhYfveXfzrPOu/L+dVfmshlZ/xDvvCn/z7r16/P9PR0Nm/eLOgAAACgb5SqVoYxlAAAIABJREFUqnpdw1GtXbu22rhxY6/LOC5jY2O5/vrrMz4+npGRkaxfv/6wgcO+1nRe8Ns35hVPvyuvuuzbOX351cc8hSVJ1qxZk5HLkhvef393Gkwj11y3OuO3Jps3bz5BPxEAAAD0VillU1VVa492n5Ed82BsbCyjo6MZuSz5jT96WkYuS0ZHRzM2NnbI+//2Gw9m2559edlTX5MXPOm/HlfQkXR2X7nq2pV2XwEAAIAY2TEvjnekxY/96S25Y8vufPZXX5rBgTLvnwcAAACLkZEdPXQ8Iy3ueXhv/v72h/IvnnvBYwo6kmT9+vXZdOPWXHPd6qzfcGmuuW51Nt24NevXr3+8PwoAAAAsOsKOeTAyMpIbP7brgAVHb/zYroyMjDzq3vdtvCclyb9Ye8Fj/rx169Zlw4YNGb81dl8BAACg7wk75sHMSIvX/NIr8t8++bpcu+7iR420GBsby5qLLs7bP3hLpu+7LTd95AOP6zPXrVuXzZs3230FAACAvtfodQF1NBM0XP/2P8u3Vowm923Lhg2/Pts+s4DpC374uXn5P7sxn3j/eEZHP3/AawEAAIDHxgKl82jvvlae/hs35Odfckl+8eVPnm23oCgAAAAcPwuUngSWL2nkn5y7Ml+5d8cB7Z0FTFfZKhYAAADmgbBjnl12/qm59d5HMncEzcjISD57y8pjWsAUAAAAOD7Cjnl22fmnZfveZu7dPjHbtn79+tx671Pzoxt+M+v/59NtFQsAAAAnkLBjnj3z/NOSJF++55HZtnXr1uWSF/2zfOmLw3nrm75qq1gAAAA4gYQd8+zJ563MksGB3Hrv/rDj4T37cv9UI7+07pW2igUAAIATTNgxz5Y0BnLpE1YdsEjpP9z+UKoqedH3nNXDygAAAKCehB0L4Jnnn5rb7tuR9nRnkdLPfmdrVg03cll3igsAAABw4gg7FsBl55+WvfvauWPr7lRVlb//zkN54SVnZXCg9Lo0AAAAqB1hxwJ45gWnJkm+cs8jufOhPfnujklTWAAAAGCeNHpdQD+4+KxTcsrSRm69d0f2TLWSJN93ydk9rgoAAADqSdixAAYGSp7+xFW59d5Hcv+OiVx45vKMnLm812UBAABALZnGskCeef5p+fr9O/O5O7blRZeYwgIAAADzRdixQHZs/mqa7Sp79rUz9rZfz9jYWK9LAgAAgFoSdiyAsbGx/NFv/kqeM/KN/Oz3vzcXnvONjI6OCjwAAABgHpSqqnpdw1GtXbu22rhxY6/LeMzWrFmTkcuSG95/f4YGW2m2G7nmutUZvzXZvHlzr8sDAACARaGUsqmqqrVHu8/IjgUwPj6eq65dmaHBVhqD0xkabOWqa1dmfHy816UBAABA7Qg7FsDIyEhu/NiuNNuNtNoDabYbufFjuzIyMtLr0gAAAKB2bD27ANavX5/R0dFcc93qXHXtytz4sV3ZdOPWbNiwodelAQAAQO0IOxbAunXrkiTXX3993vrhr2VkZCQbNmyYbQcAAABOHAuUAgAAAIuCBUoBAACAviTsAAAAAGpF2AEAAADUirADAAAAqBVhBwAAAFArwg4AAACgVoQdAAAAQK0IOwAAAIBaEXYAAAAAtSLsAAAAAGpF2AEAAADUirADAAAAqBVhBwAAAFArwg4AAACgVoQdAAAAQK0IOwAAAIBaEXYAAAAAtVKqqup1DUdVStma5O7H+PKzkjx0AsuB46UPcjLQDzkZ6IecDPRDTgb6Ib22mPvghVVVnX20mxZF2PF4lFI2VlW1ttd10L/0QU4G+iEnA/2Qk4F+yMlAP6TX+qEPmsYCAAAA1IqwAwAAAKiVfgg7NvS6APqePsjJQD/kZKAfcjLQDzkZ6If0Wu37YO3X7AAAAAD6Sz+M7AAAAAD6yKIIO0opf1ZK2VJKuW1O2xmllE+WUr7TPZ/ebS+llN8vpdxeSrm1lPKcOa95fff+75RSXj+n/fJSyle7r/n9UkpZ2J+QxeAw/fAtpZT7Silf7h6vnHPt17p96lullGvmtL+i23Z7KeXNc9ovKqXc0m1/byllycL9dCwGpZQLSik3lVK+Xkr5WinlF7rtvg9ZMEfoh74PWTCllOFSyudLKV/p9sO3dtsP2XdKKUu7z2/vXl8z572Oq3/CjCP0w3eUUu6a8334rG67v5eZF6WUwVLKl0opH+4+912YJFVVnfRHkhcneU6S2+a0/W6SN3cfvznJ73QfvzLJx5KUJFckuaXbfkaSO7vn07uPT+9e+3z33tJ97bW9/pkdJ99xmH74liS/fIh7L03ylSRLk1yU5I4kg93jjiQXJ1nSvefS7mvel+SHu4//OMnP9vpndpxcR5LVSZ7Tfbwyybe7fc33oWPBjiP0Q9+HjgU7ut9Rp3QfDyW5pfvddci+k+RNSf64+/iHk7y3+/i4+6fDMXMcoR++I8l1h7jf38uOeTmS/GKSv0jy4e5z34VVtThGdlRV9ZkkDx/U/Ook7+w+fmeS18xpf1fVcXOS00opq5Nck+STVVU9XFXV9iSfTPKK7rVVVVXdXHX+pN81571g1mH64eG8Osl7qqqaqqrqriS3J3le97i9qqo7q6ral+Q9SV7dTelfmuT93dfP7dOQJKmq6v6qqr7YfbwryTeSPDG+D1lAR+iHh+P7kBOu+722u/t0qHtUOXzfmfs9+f4kV3X72nH1z3n+sVhkjtAPD8ffy5xwpZTzk/zTJH/SfX6kv0f76rtwUYQdh3FuVVX3dx8/kOTc7uMnJrlnzn33dtuO1H7vIdrhWP18dyjin5Xu9IEcfz88M8kjVVW1DmqHQ+oOO3x2Ov+K5PuQnjioHya+D1lA3WHbX06yJZ1fDu/I4fvObH/rXt+RTl873v4JBzi4H1ZVNfN9uL77ffj2UsrSbpu/l5kPv5fkV5JMd58f6e/RvvouXMxhx6xu0mlbGXrhvyd5UpJnJbk/ydt6Ww79oJRySpK/SvJvqqraOfea70MWyiH6oe9DFlRVVe2qqp6V5Px0/vXxKT0uiT50cD8spTw9ya+l0x+fm87UlF/tYYnUWCnlVUm2VFW1qde1nIwWc9jxYHdoV7rnLd32+5JcMOe+87ttR2o//xDtcFRVVT3Y/UtuOsn/TOf/bCXH3w+3pTOUsXFQOxyglDKUzi+YY1VVfaDb7PuQBXWofuj7kF6pquqRJDcleUEO33dm+1v3+qnp9LXj7Z9wSHP64Su60/2qqqqmkvyvPPbvQ38vczQvTPLPSymb05li8tIk/198FyZZ3GHHh5LMrFT8+iQfnNP+493Vjq9IsqM7vPuGJC8vpZzeHVr78iQ3dK/tLKVc0Z2v9ONz3guOaOYXzK7XJpnZqeVDSX64u+LxRUm+J50Fpr6Q5Hu6KyQvSWdhoA91/zX+piTXdV8/t09Dktk5mH+a5BtVVf23OZd8H7JgDtcPfR+ykEopZ5dSTus+Xpbk6nTWjzlc35n7PXldkk91+9px9c/5/8lYTA7TD7855x8gSjprJcz9PvT3MidMVVW/VlXV+VVVrUnne+pTVVWti+/CjqOtYHoyHEnenc6Q2GY684R+Mp25RTcm+U6Sv01yRvfekuSP0pm3+dUka+e8zxvSWWzl9iQ/Mad9bTpfQnck+cMkpdc/s+PkOw7TD/93t5/dms5/+Kvn3H99t099K3NWzk5nJe5vd69dP6f94nS+VG5P8pdJlvb6Z3acXEeSF6UzReXWJF/uHq/0fehYyOMI/dD3oWPBjiSXJflSt7/dluQ/dNsP2XeSDHef3969fvGc9zqu/ulwzBxH6Ief6n4f3pbkz7N/xxZ/Lzvm7UhyZfbvxuK7sKo6/7EAAAAA1MVinsYCAAAA8CjCDgAAAKBWhB0AAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAACoFWEHAAAAUCvCDgAAAKBWhB0AAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAACoFWEHAAAAUCvCDgAAAKBWhB0AAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAACoFWEHAAAAUCvCDgAAAKBWhB0AAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAACoFWEHAAAAUCvCDgAAAKBWhB0AAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAACoFWEHAAAAUCvCDgAAAKBWhB0AAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAACoFWEHAAAAUCvCDgAAAKBWhB0AAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAACoFWEHAAAAUCvCDgAAAKBWhB0AAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAACoFWEHAAAAUCvCDgAAAKBWhB0AAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAACoFWEHAAAAUCvCDgAAAKBWhB0AAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAAColUavCzgWZ511VrVmzZpelwEAAAD00KZNmx6qqurso923KMKONWvWZOPGjb0uAwAAAOihUsrdx3KfaSwAAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAACoFWEHAAAAUCvCDgAAAKBWhB0AAABArQg7AAAAgFoRdgAAAAC1IuwAAAAAakXYAQAAANSKsAMAAACoFWEHAAAAUCvCDgAAAKBWhB0AAABArQg7AAAAgFpp9LoAAAAAqLOqqjLRbGfHRDM33/FwvnTP9jz7gtNz2QWnZmhgII3BksZgmX08NDiQxkDJ4EBJKeWE1rLp7u25+c5tueLiM3P5haef0Pc+mQg7AAAA4Cia7ensmmxl50QzOyaa2TnZPU+0Dno+c71z78zz1nR1wPu963N3H9PnDg2WNA4KQYYGuwHJAY8HjnLvQHZM7MtN39qa9nSV4cZAxn76itoGHsIOAAAAaq/Zns7eqXZuvmtbPnfHtjzp7BU579RlBwUU+wOMnQcFGHv2tY/4/kODJacuG8qq4aGsWjaUU5cNZeSM5Vk13Oi0LxvKl8a35xNfezBVkoGSvPIZq3Plk89Jqz2d5nSVVns6rXaV5nTnPLe92a7S6rYf+Hg6renuuds+0Xz09Va7yiN796XdDV2a7encfOc2YQcAAAA8HscyhaKqquxrT2fPVDt7plrZu6+dPfta2TvVPe9rZc9U+8Dzvnb2TnXPB12fee2+9vRR61u5tJFVy2bCikZGzlg+G1R0goxGTl3eCTQObB/K8NDAUaecbLp7e/7u21vTbE1nqDGQn3jhRQsaNmy6e3vW/cnNs59/xcVnLthnL7RSVdXR7+qxtWvXVhs3bux1GQAAAI9Lr9dLeCyf356usq81nalWu3ueOQ58fvA9M8+nmtPZ157O+MN78+Fb7097uspASZ4zcnoag6UTZsyEGt3zwVM+jmT5ksEsX9LIiqXd85LBLF/aPc9pP2XpYL44/khu+uaW2ZEVr3v+hfmp77s4q5Y1snJ4KIMDJ3Z9jENZjH3gZFJK2VRV1dqj3WdkBwAAwAlWVVUmm9N5ZGJfdkw0s2NvM5vGt+ftn/x2Wu0qjcGSN7zwopx/xvJUVZXp6SrTVTJdVam65/3P9z+ertJ9ftD90wfe355773SnfeuuqXz2Ow+lXXXChsvOPy3LhgY7AUV7ejaUmGoeGFocT/BwOKUkg6XMTqGYrpLxh/dmzZkrcuaKJbngjOWPCif2hxaNLF862DkvGcyKpZ17VixpZNnQYAaOI6DYdPf2/OMdD82ObHj1s5+YkTOXP+6f73hcfuHpPQ0Zev35C2XeRnaUUoaTfCbJ0nRClfdXVfUbpZSLkrwnyZlJNiX5saqq9h3pvYzsAAAAemGq1Z4NK3Z013V4ZM7jg49H9u7Lju56D8cybeKxGCjJQCkZKCVl9nH2Px8oB7TNPN491crOydbs+5y3amlGzliRJY2BLG0MHHQePODxwfcsHRrMksGBLB0ayNLuecngYPfcbZ/zusZAyRfHHzlgCsXYT/VmcczFPrKh3x3ryI75DDtKkhVVVe0upQwl+fskv5DkF5N8oKqq95RS/jjJV6qq+u9Hei9hBwAA8FhUVZW9+9rZPdXKLXduyy13PZw1Z63IOSuXPiq4eGTv/oUqd0w088jEvkw2jxxYrOwuPnnqsqGctnxo9vGqZUM5bdmSA65995GJ/Prf3JZmezpDgwP5ox99Tp55wWkHhhcDhwgv5gQWj2cb0oPXa+hF2CBo4PHq+TSWqpOi7O4+HeoeVZKXJvnRbvs7k7wlyRHDDgAAYPE7nl90m+3p7JlqZddkK7unusdkK7umWtkz5/HuyVZ2TzWze+69c18z1crR/n13xZLBAxabXHPW8jkhxZLZ9lOXDeW0ZQcGGse7xsPFZ5/Ss1/2L7/w9Iz91BU9DRv6ZQoFvTeva3aUUgbTmapySZI/SnJHkkeqqpoZO3VvkifOZw0AAEDvTE9XeWDnZD7xtQey/qPfSKtdZXCg5GVPPTfLlgx2A4rmnJCind1TzaOOqEg660CsWNLIKUsbOWW4c1453Mh5q4Zn21Z2zxs3b88nv75/y8+feOFF+dkrn5RVw0NZ0hiY//8hunr9y36vPx8WyryGHVVVtZM8q5RyWpK/TvKUY31tKWU0yWiSjIyMzE+BAADA4zYTaGx+aE82b9ubzdv25K6H9uTubXty97a9mWodGFy0pqt8+ttbcvbKpTll6VBWLm3knJXDufisRlZ0A4tTljYeFVicMnttKKcMN7L8OBanvPzC7fnMd/Zv+fnKZ6zOWacsnY//OYCTwILsxlJV1SOllJuSvCDJaaWURnd0x/lJ7jvMazYk2ZB01uxYiDoBAIBDO55AY0ljIBeesTwXnrki3/9Pzs6FZ65Iqz2d3/7YN9Nq92a9iJNhCgewcOYt7CilnJ2k2Q06liW5OsnvJLkpyXXp7Mjy+iQfnK8aAACAY/d4Ao01Z63ImjNXZM1ZK3LequFDrmXxjPNPs14EsCDmc2TH6iTv7K7bMZDkfVVVfbiU8vUk7yml/KckX0ryp/NYAwAAkP2Lgz7/ojPyhNOWHVegseasRwcaq1cNH/MUkhnCBmChzOduLLcmefYh2u9M8rz5+lwAAOhXVVVl52QrD+yYzP07JvLAjsk8sHMyt923I5/65pZMH2Jy+IkONABOBguyZgcAAPD4TE9X2bZnXx7cOZn7d0zmgR0TnfPOyU6osaPTPtFsH/C6UpLlQ4OzQUdJcvWl5+Zffu+aXCjQAGpK2AEAAAtgZhrJodaraLWns2XX1GxwMRNmPLBzajbUeHDnZJrtA4dmNAZKzl01nPNOHc5Tn7AqL3nKOVl9auf56lOHc+6q4ZyzcjhfvW9H1v3JzbM7kbzx+59kOglQa8IOAACYJ1VVZcdEM5/59tb88l/emmZ7OoMDJS9/2rlpT1ezYcbWXVOPmmKytDEwG1w8d80ZOXfV8AFBxnmnDuesFUuPaVSGnUiAfiPsAACA4zCzLsZDu6eydddUHto9lYd2TWXr7qk8tGtf5zzn2sGjMVrTVf7261ty4ZnLc96pw3nyuWfnvFOX5byDwoxTlw2llBM3vcTioEA/EXYAANAXjjSNpKqq7NnXng0oDnX+v+zdeZicZ3nn++9TVb1vakmt3ZKsXd4tCVvGNtgYsM0a4MQBhCEDxglDcsiEhCHkzMBMDoGZE0ISJpAYs5koYYkJBgwYG7xj2VZ7lS1LsmS11FKr1a1e1K3eannOH9VuS7bU2txd1dL3c1191Vvv+1bXXb6EUf38PPfd1js0EmoMHTSx5EXJRGBKVSkNNWVMrS5jyfQaplaX0VBTRs9Amq/evZVMLkdpMsHaj642eJCkMWTYIUmSpFNW31CG9p4hHni+jc/+5Bky2UgyEbhy2TQCHLIKYyD9ygAjEWByVdlwgFHKwoYqGqrLRgKNgx8nVZSMuqXk8sUNbiORpHFi2CFJkqQJZSCdzW8d6R06dOXFYVZjHBjKvuL1mVzkwS3tnDG5koaaMubNrTxseDG1uozJVaUkX6VJJW4jkaTxY9ghSZKkMTfaFhKAdDbHvpeHFwc9th/0uH8gc9j3mFRZkg8qqss4b86kg0KLUrr70/zvOzaRzeankXz3hosNHiTpFGbYIUmSpDH1yAv7+MA3HiGdyU8iueacGSQT4ZBgo7MvfdjX1pSl8oFFTRnLZ9TSsDgfXjTUHLoKY0pVGaWpxKh1XDi33m0kknSaCDHGo99VYKtWrYrr168vdBmSJEk6imwusq2tlyebu3m6uSv/uKub7EFzVUuSgVmTKkZWYUytKaWhunxkFcbBIUZ5SbKAn0aSVGxCCI0xxlVHu8+VHZIkSTohMUZ2dPTxVHM3Tw0HG8/s6h7pk1FZmuSc2XW89dwZ/GLDHrK56CQSSdK4MOyQJEnSUTVu7+CujXupqUjRN5jlyeYunt7VTdfw9pPSVIKzZtbynpVzOG/OJM6fU8eChuqR5p5H69khSdKrybBDkiRJh+gZSLO5tZdNe3rY3NrD+u0dbNi9f+R6IsDSGbVcc/YMzp1Tx/lzJrFkes2oPTOcRCJJGk+GHZIkSRPAWKyMGMxk2br3AJta97NpTy+bW3vYtKeHXV39I/dUliapqygZeZ4I8ImrFvOJNy55VWqQJGksGHZIkiQVsYF0ll89u4c/+8FTpLM5UsnAn715KYunVxNCIACJEAhh+BHgoONEIv+4ubWHR17ooCyVpHcww3N79rN9X99I49CSZGBhQzUr59Xz/ovnsnR6DUtn1DB7UgWP7+xizc3rSGfyY1svW9xQuH8gkiQdA6exSJIkjYMjrcwYSGfZ1dVPc2c/zZ19w48vHbf1DL7qtcyoLeO8OZNYOqOGJdNrWDajhvlTqyhJHnkbij03JEnFwGkskiRJReLhbfu4/huPkM7mSCYCqxdMoW8oQ3NnP3tfFmakEvmxrHPqK3jD0mnMqa8gk8vxtXu2kcnlSCUT/NU7z2bpjFpijOQXZuQfY4RcjMQIkeHHCLc9sYt/f6yZGCEZ4PpL5vPxKxcd12ew54YkaSIx7JAkSRoDA+ks925u444Ne7j96RaGsjkAMrnI07u6OXtWLVcsbWBOfSVz6itGHqfXlo9MMDnY65ZMO+GVFRWlSX761O6RbSirF0x5VT6jJEnFym0skiRJr5KegTR3b2rjlxtauPu5NvrTWeoqSlgxdxIPPN9ONhcpTSVYe8PqcV8l4TYUSdKpwG0skiRJ46DzwBB3bmzljg17uH9LO0PZHFOry3j3itlce85MLl4wmZJkouBhg9tQJEmnE8MOSZKk47R3/wB3PNvKLze0sG5bB9lcZPakCj6weh7XnjuDFXPrX7EVxbBBkqTxY9ghSZJOeSezqiLGyMMv7OPXG/eSzubYsGs/jTs6iREWTK3iD163gGvOmcG5s+sI4ZW9NiRJ0vgz7JAkSae0R17Yxwe+8QjpTI5UIvD+i+dSX1VK/1CWA0MZ+oayw8dZ+oef538y9A3m78kd1OJs3pRK/uSqJVx77gwWT6s24JAkqQgZdkiSpFNKW88gj+3o5PEdXTy2o5PHmjrJDKcV6VzkOw81AVCWSlBZmqSyNDX8mD+eUVtCRWmSqtIUFaVJntuzn4e3dRCBRIDrVp1x3GNbJUnS+DLskCRJE1Y6m2Njy/6Xgo0dnezs6AegJBk4a1YdV589nV8920o2FylJJrj5Q6t47cKphx3vejiNTZ2suXmdY1slSZpADDskSVLRe7HnxtIZNWRzMb9yo6mLp3Z1MZDOATC9towVc+v54Or5XDh3EufMrqO8JHnI60+kZ8fKefWsvWG1Y1slSZpAQozx6HcV2KpVq+L69esLXYYkSRonBwYzbG3rZWtbLw9saec/Ht91SN+MkmTg7Fl1rJhbz4p5k7hwbj2z6srtnyFJ0ikuhNAYY1x1tPtc2SFJkgoixkhb7yDP7+1la9sBtu7NhxvP7+2lpXtg5L4Q4MX/NhOA9188l//2trNGVm1IkiS9nGGHJEkac3c8s4dfbthDVWmKgUx2JNToGciM3FNVmmTRtGouWTCFhdOqWdhQzaJp1ezrHeRD33pkpGfGu1fMMeiQJEmjMuyQJEmvur6hDOu27eO+ze386tk97O56aaVGfWUJy2fW8jsXzGbRQaHG9Nqyw25DWTSt2p4ZkiTpuBh2SJKkk5bLRZ5t2c/9W9q5b3Mb65s6SGcj5SUJZtZVEIAIJAPccPmC4x7dunJevSGHJEk6ZoYdkiTphLT1DHL/ljbu39LO/VvaaO8dAmDZjBr+06Vn8rrFDayaX88zu/c7ulWSJI0rww5JknRUjU2dPPh8G7XlJbTsH+C+ze1sbNkPwOSqUi5fPJXXLW7g8sVTmVZbfshrHd0qSZLGm2GHJEmngcamzlHDhlwu0tk3RFvvIO09Q7T1Dgw/DvLcnv08sKV9ZPRrMgGvmT+ZP796Ka9f0sBZM2tJJEYf+eo2FEmSNJ4MOyRJOsX95rlW/vC7j5HO5kgmAm8/fxbJRKCtZ5D23kHaegbZd2CI7ItpxkHKUgnKUomRoCMR4I+uXMx/edOScf4UkiRJx86wQ5KkU0R3f5otrT1sau1hS2svm/b0sLm1h30HhkbuyeQitz2xi+m15TTUlDG9tpxzZtUxtaaUhuoyGmrKmVpdSkNNGVNryqgpS/HYjq5Dem68bklDAT+lJEnS0Rl2SJJU5F6+BaVvKMPze18KMza19rKltYeW7pfGu1aVJlk8vYY3Lp9OZVmStet2kMnlKEkm+NcbLmbl/MnH/P723JAkSRONYYcK8wAtAAAgAElEQVQkSUVs3bZ2PviNR0lnc4QADdVl7O0dJA5vKylNJVg8rZpLFkxh8fQals6oZsn0GmbVVRzSR+Nt5806qbDCnhuSJGkiMeyQJKnI7Orq555Ne7n7uTbu3byXdDafbMQIk6pKWbN6Hkum50ONeVOqSB6lOSgYVkiSpNOLYYckSQWWzuZYv70zH3Bs2svm1l4A5tRXcNWy6fz6uVZyuUhJKsFfv+tcQwtJkqSjMOyQJKkA9nQPcO/m/OqNB55vp3cwQ0kycNGZk7lu1RlcsbSBhQ3VhBCOOjZWkiRJhzLskCRpjDU2dfLbre3UV5Syu7ufuze1sbFlPwAz68p5+/mzuHJpA69dNJXqslf+X7NbUCRJko6PYYckSUdxpJUV6WyOrr40nX1DdB4Yyj/2pek48OLzNNv3HeCxHZ0jDUWTAVbNn8ynr13GlUunsWR6fvWGJEmSXj2GHZIkjeKuja384XcbyeQiiQALGqpJZ3N0HBiiZyBzxNdVliaprywlk8uNBB2JAB9/wyL+9E1Lx6l6SZKk05NhhyRJLzOQznLXxlZubWzmns1tI2FFLkImm+OCMyZRX1lKfWUpk6tKmFRZyuSq/PP6qhLqK0spL0kC+VUha25eRzqToySV4PVLphXwk0mSJJ0eDDskSQJijDy+s4tbG5v56ZO72T+QYUZtOe+6YDa3P91CJpsPK7503QXH1T9j5bx61t6w2gajkiRJ48iwQ5J0Wtvd1c9/PL6LWxub2dZ+gPKSBNecPYP3rJzDaxdOJZkIrFk976TCChuMSpIkjS/DDknSaadvKMMvN+zh1sea+e3WfcQIF505mT98/UKuPXcGNeUlh9xvWCFJkjSxGHZIkk55jU2dPLS1nZryEp7e1c0vnm7hwFCWuZMr+cRVi3n3hXOYO6Wy0GVKkiTpVWLYIUk6JQ1lcmxr7+UXT+/h/9z9PNlcvstoRUmSd5w/i/esnMNr5tc79lWSJOkUZNghSZrQYoy07h9k4579bNrTw3Mt+3luTw9b23pJZ+Mh9yYC/OHrF/CJNy4pULWSJEkaD4YdkqSi19jUybpt+7jwjElUlCbzocaeHja27GdTaw9dfemRe2fVlbN0Rg1XLpvGshk15HLwF//x1Mjo18sWNxTwk0iSJGk8GHZIkopWe+8g33rwBb52z1Zyhy7SoKo0yZIZNVx7zkyWz6xh6fQals2opa6y5BW/Z+6USke/SpIknUYMOyRJRSPGyObWXu7a2MpdG1t5YmcX8aCQIwDvvGAWf/qmpcypryCROLZ+G05TkSRJOr0YdkiSCmook+ORFzpGAo7mzn4AzptTx59ctYRZk8r5b7dtGNmGcv0l852cIkmSpFEZdkiSxl3ngSHu2byXu57dy32b2+gZzFCWSnDZoqn85ysWcdXyaUyvLR+5f0FDtdtQJEmSdMwMOyRJY+rF5qJnTK5gT/cAdz27l/VNHeQiNNSU8dbzZvLG5dO5dNFUKkqTh/0dbkORJEnS8TDskCS96gYzWTa29PCzp3bzrQe2kz2o8cbymbV8/MpFvHH5dM6dXXfMfTckSZKkY2XYIUk6Kdlc5Pm9vTzZ3MVTzV081dzNxpb9pLOHjk8JwI2vX8BfXLu8MIVKkiTptGHYIUka1YvbUFYvmMKKuZPY0dHHk83dPLUzH2xs2N1N31AWgJqyFOfOqeMjly3g/Dn5VRuf+N7jI81F33zWjAJ/GkmSJJ0ODDskSUf00NZ2PvTNR0lnc4QAlaVJegfzwUZpKsHZs2q5btUZnDenjvPmTGLB1KpXbEtZe8Nqm4tKkiRpXBl2SJJGxBjZ1NrDA1vauW9LOw8+3042F4evwZlTq3nvRWdw/pxJLJleQ2kqcdTfaXNRSZIkjTfDDkk6ze3tGeDB59u5f0s7D2xpZ2/PIAALG6q4+uzp3PlsK7lcpCSV4HPvONvgQpIkSUXPsEOSTjMD6SyPbu/g/i3t3Le5jef29ABQX1nCZYsbuHzRVC5bPJVZkyqAQ3t2GHRIkiRpIjDskKRT3KPbO7j9qRZyMfJC+wEeeaGDwUyO0mSClfPq+dQ1S7l8UQNnz6o97BhYt6FIkiRpohmzsCOEcAZwCzAdiMBNMca/DyF8Dvgo0DZ862dijD8fqzokaaJ7+cqKgXSWjgNDdBwYYt+BITqHHzsODNJxID38mL++d/8APcMNRQHOqK9gzcXzuHzJVC4+czKVpWbekiRJOvWM5d9yM8AnY4yPhRBqgMYQwp3D174cY/ybMXxvSZrwMtkc3/7tdr7w8+fIxkggPwFlMJM77P3JRKC+spTJVSVMripl2YxaaspTPLmzmwgkA7z3orl8/MpF4/o5JEmSpPE2ZmFHjLEFaBk+7gkhbARmj9X7SdKpIMbI4zu7uO3xXfzsqRb2HRh66Rpw7uw6rlw2jclVpUyuKmXK8OPkqlJqy0tesQ2lsamTNTevI53JUZJKsHrBlHH+RJIkSdL4G5f1yyGE+cCFwMPApcAfhRA+CKwnv/qjczzqkKRi9fzeXm57Yhe3PbGbHR19lKYSvHH5NM6ZXcc//HrLSFjxF29Zflz9M1bOq2ftDattMCpJkqTTSogxju0bhFAN3At8Psb4oxDCdKCd/H+k/CtgZozxw4d53Y3AjQBz585d2dTUNKZ1StJ429M9wE+f3M2Pn9jFM7v3kwhw6aKpvOP8WVxzzgxqyksAp6FIkiRJLwohNMYYVx31vrEMO0IIJcDPgDtijH97mOvzgZ/FGM8Z7fesWrUqrl+/fkxqlKTx1N2f5pcbWvjx47tZ98I+YoTz59Txzgtm87bzZjKttrzQJUqSJElF61jDjrGcxhKAbwAbDw46Qggzh/t5ALwL2DBWNUhSMXhoazv/9shOWvf38/iOboayOc6cWsUnrlrMO86fxYKG6kKXKEmSJJ1SxrJnx6XA9cDTIYQnhs99BnhfCOEC8ttYtgN/MIY1SFJBDKSz3Le5jX9Z18R9W9pHzr/t3Jl89HULOG9OHflMWJIkSdKrbSynsTwAHO5v8j8fq/eUpEJ4safGirmT6BnI8POnW7hr4156BzOUlyRG7ksGWD6rlvPPmFTAaiVJkqRT37hMY5GkU9UjL+xjzc0Pk86+1P9oUmUJbz13Jm85byYVJQk++M1HHP0qSZIkjSPDDkk6AXt7Bvj+Izu56b5tI0FHAN6zcg5fePe5lCRfWtHh6FdJkiRpfBl2SNIxijGyvqmTWx5q4pcbWkhnI+fPqePZlv3kcpGSVIL3XTT3kKADYOW8ekMOSZIkaRwZdkjSUTz4fDvf+e12Nu3poamjj5ryFNevns8HVs9lQUP1SM8OV25IkiRJxcGwQ5IOI8bIk83d/OPdz3Pns61AfpvKx16/gD++ajGVpS/969OVG5IkSVJxMeyQpIO09w7yH4/t4gfrd7Jlby+pxEtDpRIBqstLDgk6JEmSJBUf/8Yu6bTW2NTJb7e2U5pM0NjUyW+e20smF1kxdxJffPe5zK6v4KO3rHeaiiRJkjSBGHZIOm39emMrf/DdRjK5/DSVuooUH77sTH535RwWT68Zuc9pKpIkSdLEYtgh6bSzYVc333pwOz9+fBfZmA86EgFuuHwBf/yGxa+4354ckiRJ0sRi2CHplPbipJSLzpzMvt5Bvvngdh55oYPK0iRvPnt6fttKNr9F5bULpxa6XEmSJEmvAsMOSaesxqZO1nx9HYOZHAARmD2pgr98y3Kue80Z1FWUODZWkiRJOgUZdkg6JXX1DfGlX21iYDjoAPidC2bxN797PqlkYuScW1QkSZKkU49hh6RTSnvvIDff/wLffWg7B4ayvDg5tjSV4PpL5h8SdEiSJEk6NRl2SJrQXtyGsmRaDb/d1s6/PbKDwUyOt503i49fuZADg1m3qUiSJEmnGcMOSRNWY1Mn7z+oJ0ciwLtXzOFjVyxkYUP1yH2GHJIkSdLpxbBD0oT1642tI0FHID869jNvWV7YoiRJkiQVnGGHpAlpT/cAP358F5Bf0VGaSnD12TMKXJUkSZKkYmDYIWnC2dXVz/u/vo79Axn++l3n0NmXtieHJEmSpBGGHZImlJ0dfbzv6+vo7k/z3Y9cxIVzDTgkSZIkHcqwQ9KE0bTvAO//+sP0DmZYe8PFnDdnUqFLkiRJklSEDDskTQgvtB/gfTetYzCTZe0NF3PO7LpClyRJkiSpSBl2SCpqjU2d/PzpFn70WDMhBP71o6tZPrO20GVJkiRJKmKGHZKK1iMv7OMDNz/MUDYC8He/d4FBhyRJkqSjMuyQVFRijDzZ3M2PH9/FD9bvHAk6EiE/hUWSJEmSjsawQ1JBNTZ1sm7bPs6or+D5vb3c9uRumvb1UZpKsGLuJBqbOsnlIiWpBKsXTCl0uZIkSZImAMMOSQXTuL2D9359Henh1RsAly6awsevXMTVZ8+grqJkJAxZvWAKK+c5ZlaSJEnS0Rl2SCqI5/bs5//+3uMjQUcAPnbFQj51zbJD7ls5r96QQ5IkSdJxMeyQNK56BzP8/V2b+eaD26koSVCSDCPbVK5aPr3Q5UmSJEk6BRh2SBoXMUZ+/vQe/upnz7Jn/wDvfc0ZfOqaZbzQfsBtKpIkSZJeVYYdksZUY1Mnv9jQwqMvdPBkczdnzazlH9esGAk2JleVGnJIkiRJelUZdkgaM41NnfzePz9EJpfvy/HhS+fzmbcsJ5VMFLgySZIkSacyv3FIGjP/8OstI0FHMsCU6jKDDkmSJEljzpUdksbEzfdv497NbSRCftJKSSrB6gVTCl2WJEmSpNOAYYekV923HnyB//f2jbz13Jl86LXzeHR7pw1IJUmSJI0bww5Jr6pbHtrO//jps1x99nT+7r0XUJJMcNGZruiQJEmSNH7cPC/pVbP24Sb++23P8Mbl0/nK+1ZQYn8OSZIkSQXgNxFJr4rvP7qDv/yPDbxh2TT+cc2FlKb814skSZKkwnAbi6ST0tjUyc33b+MXG/bwuiUNfHXNCspSyUKXJUmSJOk0Ztgh6YQ9ur2D9920jkwukgjwsdcvoLzEoEOSJElSYbnOXNJxy2Rz/HtjMzfesp5MLgL58bKP7egqbGGSJEmShCs7JB2HoUyOWx9r5qv3PM/Ojn7mTamkdzBDLhcpSSVYvcCpK5IkSZIKz7BDOs01NnWybts+Vi+Ywsp59Ye9/sCWNnoGMtz+dAst3QOcP6eOz77tbK5aPo3HdnSN+npJkiRJGm+GHVIROVrwcDK/8zXz65lRW0FzZx/NXf00d/bz5M5O7t/STi5CIsCKufVMry2nLJWgNJWguz/Nr55tJTu8VWXZjBq++J7zeN3iqYQQAFg5r96QQ5IkSVJRMeyQikRjUydrvr6OwUyOVDLwqauXMamyhK1tvbx24VQuXjCZ0mRiJGQ4+HXrtu1jxdxJNNSUs6urn12d/ezq6uPp5m7uf76dGF/5fiFAdWmK4RyDXIQdHX109acZzGQZTOfYP5AeCToSAd5+/kxev6RhrP9RSJIkSdJJMeyQisRDW9sZyOQASGcjn//5xpFr/3TvNiAfOFSUJKkoTebHuwbY3dnPYbIMkolAVWlyJOgIwNXnzOCDq+cxp76SGXXlPL2rmzU3ryOdyVGSSvC1D6w8ZJVGY1PnIddXL5g6Vh9fkiRJkl41hh1SkXiupQfIhxKlqQRXLG3gV8+0EofPXbZoKuefMYn+dJb+dJaBoSwbdnePBB0BeMu5M/jQa89kdn0F02vKeLL50DDjo5cvOCTMWDmvnrU3rD7i1pmjXZckSZKkYmTYIRWBf314Bz97uoW3njuDs2bVjUw1uXdz20hQ8SdvWvKKsOHlKy8+fNnxhRkv3jNaiGFPDkmSJEkTTYiH28xfZFatWhXXr19f6DKkV11jUyc/eHQH/97YzGWLG/jGh1aRSiYOuX60VRVj0dRUkiRJkopRCKExxrjqaPe5skMqgMFMllsbm/nvtz1DJhcJwA2Xn3lI0AHHtqrClReSJEmSdCjDDmkMvbjq4tzZdWRzkUe3d7B+eydPNHcxNNyMFPKTUZ5q7ubyxU46kSRJkqSTZdghnYSXbyFZv72DO57Zw5TqMnZ29PG9R3aSPWirWCoROHt2HR9cPY/JVaX8/a+3kMm+OOlkSgE/iSRJkiSdOgw7pBPU2NTJ+7++jqFMjkQiMKuunJ2d/Ye9NwDXvWYOn3372VSWvvQ/u4sXTLHfhiRJkiS9ygw7pBN03+a9DA5vRcnmIt396ZFriQDvWTmbnz7ZMjIp5bpVcw8JOsB+G5IkSZI0Fgw7pBMwmMnym+f2AvlgozSV4NPXLud//uyZkXDjva+Zx3tfM8+VG5IkSZI0zgw7pOOUy0X+7IdP8fSu/fzxGxZRXpIcCTOWzqh5RbhhyCFJkiRJ48uwQzoOjU2dfOHnG1nf1Ml/vWYZH7ti4SHX3ZYiSZIkSYVn2CEdo8amTn7vnx8ik4skE4GL5htqSJIkSVIxShS6AGmiuOW328nkhsfIxsi6FzoKW5AkSZIk6bBc2SEdg8d3dPLzDS2EkE8IS1IJVi+YUuiyJEmSJEmHYdghHcXOjj5u+M56ZtZV8Ll3nMXGlh6nq0iSJElSETPskEZx36Y2/uQHjzOYzvGDP7yEhQ3VvGHZ9EKXJUmSJEkahWGHdBgxRr7ym+f58p2biUBpMkFXX7rQZUmSJEmSjoFhh05Pu78Ggz+FyvfA9I+MnG5s6uRHjzXz6PYONrf2jpzP5nKs27bPrSuSJEmSNAEYduj00/oNaPjPkASyv4BWYPpHuGfTXj7y7fVkY37iynsunM3tG1pIZ3I2JJUkSZKkCcSwQ6ef7n+BBvJjVSLEvlu5/alr+dQPnxoJOpIBFkyrZu0Nq1m3bZ8NSSVJkiRpAjHs0OmnqQTOJB905OBvHzyXr2x4nIUNVTR39pPJvrSSY+W8ekMOSZIkSZpgxizsCCGcAdwCTAcicFOM8e9DCJOB7wPzge3AdTHGzrGqQzpE7154+EmIV9E2M/KlB87he02vI5UIfOHd55JMJFzJIUmSJEkT3Fiu7MgAn4wxPhZCqAEaQwh3Ar8P/DrG+MUQwqeBTwP/dQzrkF7y8D9BZpCWhV/m6u/uZv9ABshPX3l0eycfv3KRIYckSZIkTXCJsfrFMcaWGONjw8c9wEZgNvBO4DvDt30H+J2xqkE6xMB+ePRm+ha9hd/99zayuUhpKkEyYANSSZIkSTqFjEvPjhDCfOBC4GFgeoyxZfjSHvLbXKSx1/htmLqPn8zo5Yz+J/namg8zlM25bUWSJEmSTjEhDk+fGLM3CKEauBf4fIzxRyGErhjjpIOud8YYX/EtM4RwI3AjwNy5c1c2NTWNaZ06xW1/gMw97yLx/n3kkoF0NkXTvp+wbObVha5MkiRJknSMQgiNMcZVR7tvzLaxDBdRAtwKrI0x/mj4dGsIYebw9ZnA3sO9NsZ4U4xxVYxxVUNDw1iWqVPdzkfglt8hNaeHkIykkjlKkhk6++4sdGWSJEmSpDEwZmFHCCEA3wA2xhj/9qBLPwE+NHz8IeC2sapBAmDzHZBLw/Yk5CCbza/sqK98U6ErkyRJkiSNgbHs2XEpcD3wdAjhieFznwG+CPwghPARoAm4bgxr0Okul4WtvwYg21xK5jslbL7kbZRMvt4tLJIkSZJ0ihqzsCPG+AAQjnD5qrF6X+kQ93wRdj/OgYs/wVcf3MOc+jfxvrN/t9BVSZIkSZLG0LhMY5EKYsudcN//hgs+wG2Tb+AfM0/z80suL3RVkiRJkqQxNqYNSqWCefYn8P0PQP0CeMv/xy82tDB/SiXLZ9YUujJJkiRJ0hgz7NCpp+kh+OGHIDMAPbvYv/1xfrt1H9ecM5N831xJkiRJ0qnMsEOnngf+DmIuf5zNsP2xO8jmIm85d0Zh65IkSZIkjQt7dujU0rUTtt0DIQEESJby066FzJ5Uwbmz6wpdnSRJkiRpHBh26NQRI9z+p5BIwnu+A/u2cGDWJXz7m1186JIZbmGRJEmSpNOEYYdOHRtuhS2/gmu+CGe9A4Cb7txEOtvJgobqAhcnSZIkSRov9uzQqWHznfCTP4apS+GiGwFo3N7BV37zPAD/82fP0NjUWcgKJUmSJEnjxLBDE9/OR+Dffg/SfdC5HXY1AvB3d20hF/O3pDM51m3bV7gaJUmSJEnjxm0smvi23g0xmz/OZWD7/fyscw73P99OIkAASlIJVi+YUtAyJUmSJEnjw7BDE19ZTf4xJCBZyqaK8/nkD55k1bx6PvnmJTy2o4vVC6awcl59YeuUJEmSJI0Lww5NfPt3QSIFr/tz1oXz+PBPMkyqKOGfr1/JlOoyLlk4tdAVSpIkSZLGkT07NPFtuwfmvZbG+Tfyvl9G+oaydPWn2b6vr9CVSZIkSZIKwLBDE1vPHmjdAAvfwA8bm4nDDUkzWRuSSpIkSdLpyrBDE9u2e/KPC67khfYDACSDDUklSZIk6XRmzw5NbFvvhsop7CxbxKPb7+VdF85m0bRqG5JKkiRJ0mnMsEMTV4yw7W5YcAW3rNtBCIE/v3opsyZVFLoySZIkSVIBuY1FE9feZ6G3lcF5r+d7j+7k2nNmGHRIkiRJkgw7NIFt/Q0AP+1dRs9Ahv906ZkFLkiSJEmSVAwMOzRxbb2bOHUpX23s5/w5dayYO6nQFUmSJEmSioBhhyam9AA0Pcgz5SvY1n6AK5ZOI4RQ6KokSZIkSUXAsEMT0851kBngyy/MAeCf79tKY1NngYuSJEmSJBUDww5NTI+vJUeCvlwJAOlMjnXb9hW4KEmSJElSMTDs0MSz8xF4+ocEcnyz9G9YmdhMSSrB6gVTCl2ZJEmSJKkIpApdgHTcnr8LiASghAwfP3MPdW/+fVbOqy90ZZIkSZKkImDYoYmncjIAORKkSXHFm99NwqBDkiRJkjTMsEMTz0APALdWvZfHS1fx1/MuLnBBkiRJkqRiYs8OTTzNjxKnLuVzPe+kZL5BhyRJkiTpUIYdmlhihOZH6Wm4kANDWc6eXVfoiiRJkiRJRcawQxNLxzbo72Bb2XIAzp5VW+CCJEmSJEnFxrBDE0vzowCszy6kNJlg8bSaAhckSZIkSSo2NijVxNL8KJTWcG/HFJbMyFKaMq+TJEmSJB3Kb4qaWHY+Qpy9gg0tvZwzy34dkiRJkqRXMuzQxDF0AFqfoadhBZ19aft1SJIkSZIOy7BDE8fuxyFmeb50GYCTWCRJkiRJh3XUsCOEcN54FCId1XBz0nVDC0gEWD7DlR2SJEmSpFc6YtgRQpg+fPjtg879r7EuSDqi5vUweSGPtQUWNlRTUZosdEWSJEmSpCI02sqOr4UQ1gFzQwgfCyFcClwzTnVJh4oRdj4Cc17Dhl377dchSZIkSTqiI4YdMcZ3xxhXA21AL/AuYH4I4V5XeGjcde2AA3vpbbiAPfsHOMd+HZIkSZKkI0gd6UII4bfAFqAS2AD8AHgD8Ebg4nGpTnrRhjsB2NQ/G4CzXNkhSZIkSTqC0VZ2vBb4q+GnHwZ+BSwC/gaYMfalSQe5/e8hG2m649cAnD3LlR2SJEmSpMMbdRpLjPF5oCPG+McxxtcD24DvAvPGoziJigo4IwWlTZCAt1b9C5cPPcHzZ60qdGWSJEmSpCJ11NGzwCUHHd8aY1wfY/zSWBUkHWLbNnjnCghACCRDjnMrtrNmzRdobOosdHWSJEmSpCI02ujZ8hBCQ4xx4MVzMca/CiE0hBDKx6c8nfZmzoTEbAiBXIQ0KdblziKdjazbtq/Q1UmSJEmSitBoKzv+Abj8MOcvA748NuVIh9Gaz9vaJ1/KmqHP8HhuMSWpBKsXTClwYZIkSZKkYjRa2LEyxvijl5+MMf4H8LqxK0l6mS9/AYChi36fx+IS3n7BbNbesJqV8+oLXJgkSZIkqRiNFnZUnuDrpFdXX367yr5cDQDXXzLPoEOSJEmSdESjhRZ7QwgXvfxkCOE1QNvYlSS9TH++EWlrOp+/NVSXFbIaSZIkSVKRS41y7c+BH4QQvg00Dp9bBXwQeO8Y1yW9pK8DgN3pSqCXhhrDDkmSJEnSkR1xZUeM8RHgIvJDP39/+CcAF8cYHx6P4iQA+vNhR/NAGVWlSarKRsvoJEmSJEmnu1G/NcYY9wKfHadapMPr2wfldbT2Zl3VIUmSJEk6KhuNqvj1dUDFZNp6Bgw7JEmSJElHZdih4tffAZWTaesZNOyQJEmSJB2VYYeK3/DKjr09g0yrKS90NZIkSZKkInfEnh0hhJ8C8UjXY4zvGJOKpJfr7yA7dSk9AxlXdkiSJEmSjmq0BqV/M25VSKPp66AvWQtAQ7VhhyRJkiRpdEcMO2KM945nIdJhZYZgqJf9YTjsqDXskCRJkiSN7og9O0IIi0MI3woh/G0IYU4I4RchhN4QwpMhhFXjWaROY/0dAHRRDbiyQ5IkSZJ0dKM1KP0W8BCwG3gY+CYwFfgz4B/HvjSJfHNSoD3WADDNnh2SJEmSpKMYLeyojjHeFGP8G6A/xvjDGONAjPFOwG+cGh99+wDYm64gEWCKKzskSZIkSUcxWtiRO+h4/yjXpLEzvI1l91Alk6vKSCZCgQuSJEmSJBW70aaxLAshPAUEYOHwMcPPF4x5ZRKMbGNpHih37KwkSZIk6ZiMFnYsH7cqpCMZXtnxQl+Z/TokSZIkScdktNGzTeNZiHRYfR1QUsmuXrh0hmGHJEmSJOnoRuvZIRVeXwexYjLtvYNuY5EkSZIkHZMxCztCCN8MIewNIWw46NznQgi7QghPDP+8ZazeX6eI/g6y5ZNIZ6PbWCRJkiRJx2QsV3Z8G7jmMOe/HGO8YPjn52P4/joV9HUwWFIP4MoOSZIkSdIxOWLYEUKoDSF8IYTw3RDC+1927atH+8UxxvuAjlehRp3O+vbRl6oFoKHasEOSJEmSdHSjrez4Fvkxs7cC7w0h3Pc8kcEAACAASURBVBpCePHb5uqTeM8/CiE8NbzNpf4kfo9OB/0d7A81AEyrLS9wMZIkSZKkiWC0sGNhjPHTMcYfxxjfATwG/CaEMOUk3u9rwELgAqAF+NKRbgwh3BhCWB9CWN/W1nYSb6kJK5eF/i66Yj7scBuLJEmSJOlYjBZ2lIUQRq7HGD8PfB24DzihwCPG2BpjzMYYc8O/66JR7r0pxrgqxriqoaHhRN5OE91ANxBpz1VTUZKkqjRZ6IokSZIkSRPAaGHHT4E3HHwixvht4JPA0Im8WQhh5kFP3wVsONK9En37AGjNVDKttowQQoELkiRJkiRNBKkjXYgxfuoI538JLD7aLw4h/BtwBTA1hNAMfBa4IoRwARCB7cAfHH/JOm305fvb7h6ssDmpJEmSJOmYHTHseLkQwmXkt51siDH+6mj3xxjfd5jT3ziO2nS668+HHTsHK2iYbNghSZIkSTo2o42efeSg448C/weoAT4bQvj0ONSm093wyo5tB8qYZnNSSZIkSdIxGq1nR8lBxzcCb4ox/g/gzcCaMa1KgpGeHTsHyp3EIkmSJEk6ZqNtY0mEEOrJByIhxtgGEGM8EELIjEt1Or31dxATKXqpMOyQJEmSJB2z0cKOOqARCEAMIcyMMbaEEKqHz0ljq6+DTNkk6AuGHZIkSZKkYzbaNJb5R7iUIz82Vhpb/R0MlkwCYFpNeYGLkSRJkiRNFMc8jeVFMcY+4IUxqEU6VF8HB5J1AK7skCRJkiQds9EalEqF1dfB/lBDCDClqrTQ1UiSJEmSJgjDDhWv/g46qWFKVSmppH9UJUmSJEnHxm+QKk4xQl8H+7JVTK12C4skSZIk6dgZdqg4DfZALs0TTV2kHrqX15xxBmvXri10VZIkSZKkCcCwQ0Xpx9/7FgC9qSnEilrenKvmxhtvNPCQJEmSJB2VYYeK0rV/+UkAWkum8+z0Bdz63s9z36S5vOf66wtcmSRJkiSp2Bl2qCj9fkX+sZMaYkiQTiT5p7nncmaMhS1MkiRJklT0DDtUlKbNbQDyYUfI5SjJZZm242nK5s0rcGWSJEmSpGKXKnQB0uFc/563QtsP6YzVpDbex7sf+xkX7dnMWbfcUujSJEmSJElFzpUdKi779sE117Bq/gwigW6qaX76Tv61pJ/eW25hzZo1ha5QkiRJklTkXNmh4vLtb8Mdd8DlGTIlteQGEjz64L2cM7uu0JVJkiRJkiYIV3aoeMQIX/5y/vi5xxkonQRAXUVJAYuSJEmSJE00hh0qHvffD93d+eNUmr5MGQC1hh2SJEmSpONg2KHi8Xd/BwcO5I9Lc/Tu6SERoKbM3VaSJEmSpGNn2KHCeOc7IYRDf26/Pb+VBaA6UFEywGWDT5BIJl66553vLGzdkiRJkqSiZ9ihwvjrv4a5c6G8/KVzQ0P5xzlJqA7MqOrkpuov558DzJuXf50kSZIkSaMw7FBhnH02PPssvOMdUFl56LUzkxACiQCpkIEzS/L3PfNM/nWSJEmSJI3CsEOFU1UF3/8+fOlLUFb20vmWLAC5CNmYhLqz4bbb8vdLkiRJknQUhh0qvBUrDg07OvN9O+7pP4+vbH0H9NYUqDBJkiRJ0kTkmAsV3vr1kE7nj0OA+nwfjx9lLqe26wBcd10Bi5MkSZIkTTSu7FDh3X8/9Pfnm5XOnQv/7VMAtJRMZVJvV/66JEmSJEnHyLBDhffww5BM5sfKPvMMXLAcgM5EDXVDffnrkiRJkiQdI8MOFd7y5XDTTfC97+WbkPZ3AdAdq6i77t2wbFmBC5QkSZIkTST27FDh3X77oc8HhsMOqqh740XwX95XgKIkSZIkSROVKztUfPq7yKYqyZCirqKk0NVIkiRJkiYYww4Vn4EuhkpqAag17JAkSZIkHSfDDhWfgW4GUzUATKo07JAkSZIkHR/DDhWf/i76E9UAbmORJEmSJB03ww4Vn4EuDiRqSCYC1WX20JUkSZIkHR/DDhWf/i72U0VteYoQQqGrkSRJkiRNMIYdKj4DXfmxs25hkSRJkiSdAMMOFZdsGoZ66chVGnZIkiRJkk6IYYeKy0A3APuylY6dlSRJkiSdEMMOFZfhsKMtXcGkytICFyNJkiRJmogMO1Rc+rsA2Jsuo67CSSySJEmSpONn2KHiMtAJQMtguT07JEmSJEknxLBDxWV4ZYcNSiVJkiRJJ8qwQ8VlIB92dEdHz0qSJEmSToxhh4rL8MqO/Rh2SJIkSZJOjGGHistAF9lkGYOUOnpWkiRJknRCDDtUXAa6SZfUAjCpwtGzkiRJkqTjZ9ih4tLfxWCqBoC6Sld2SJIkSZKOn2GHistAF/3J4bDDbSySJEmSpBNg2KHi0t/FgVBNMhGoKk0WuhpJkiRJ0gRk2KHiMtDF/lBNXUUJIYRCVyNJkiRJmoAMO1Rc+rvpjpVuYZEkSZIknTDDDhWPXBYGu+nMVTl2VpIkSZJ0wgw7VDwG9wPQkS1nkmGHJEmSJOkEGXaoePR3AdCWrnAbiyRJkiTphBl2qHgM5MOOVsMOSZIkSdJJMOxQ8Rhe2bF7sMywQ5IkSZJ0wgw7VDyGV3Z0xSrDDkmSJEnSCTPsUPEYXtnRbdghSZIkSToJhh0qHsMrO7px9KwkSZIk6cQZdqh4DHSTCyn6KWNSpWGHJEmSJOnEGHaoePR3kS6tBYLbWCRJkiRJJ8ywQ8VjoIvBVC2AYYckSZIk6YQZdqh49HfRn6wGDDskSZIkSSfOsEPFY6CLA6GGVCJQWZosdDWSJEmSpAnKsEPFo7+LnlBFXW6IEEKhq5EkSZIkTVBjFnaEEL4ZQtgbQthw0LnJIYQ7Qwhbhh/rx+r9NQENdNEdK6nb11roSiRJkiRJE9hYruz4NnDNy859Gvh1jHEx8Ovh5xLECAPddOaqqBvoLXQ1kiRJkqQJbMzCjhjjfUDHy06/E/jO8PF3gN8Zq/fXBDPYAzHHvmyFYYckSZIk6aSkxvn9pscYW4aP9wDTj+VFmzZt4oorrhizolQEMoPQfIAd4VaG9keueO0dUFpa6KokSZIkSRNQwRqUxhgjEI90PYRwYwhhfQhhfTqdHsfKVBC5DACJkiFqZvTR17qtwAVJkiRJkiaq8V7Z0RpCmBljbAkhzAT2HunGGONNwE0Aq1ativfcc884laiCWFoJ/08Zgx/sIJnMks6maPq/trPszlbo7y90dZIkSZKkInCskzvHe2XHT4APDR9/CLhtnN9fxeJzn4MQXvpJpGF+llQyQyqZoySZofPaGhgYOPS+EPKvlSRJkiTpCMZy9Oy/AQ8BS0MIzSGEjwBfBN4UQtgCvHH4uU5Hn/tcfgLLiz9rvwHbk6SzJWSyCdLZFPV9Fx56z4s/hh2SJEmSpFGM2TaWGOP7jnDpqrF6T01gA93QnOKGmz/De2ruZPneeSx7sAc+WejCJEmSJEkTzXj37JAOr7+LGBI8uOM8fvcnd7Ls2e8YdEiSJEmSTkjBprFIhxjoIltaSyRBWWao0NVIkiRJkiYwww4Vh/4uMqV1AJRnBgtcjCRJkiRpIjPsUHEY6CJTUgtAuSs7JEmSJEknwbBDxaG/iyHDDkmSJEnSq8CwQ8VhoIvBVA0AFTd8uMDFSJIkSZImMsMOFdzatWtpa97KL+5fD8Ad8+cWuCJJkiRJ0kTm6FkV1Nq1a7nxxhvp/jJc+dp2Nu/+FX/56VuZUpZjzZo1hS5PkiRJkjQBhRhjoWs4qlWrVsX169cXugyNgfnz5/OWFTv56vdzxASQgz94bzm/apzO9u3bC12eJEmSJKmIhBAaY4yrjnaf21hUUDt27OB3rw2QhJAEEvDuN2fYsWNHoUuTJEmSJE1Qhh0qqLlz53LX3UAWYhbIwa0/zzF3rn07JEmSJEknxrBDBfX5z3+eux8qg+9U8vRPpvHpf/4Y/3pXOZ///OcLXZokSZIkaYKyQakKas2aNUzr3wLNX+Zzd7yWx+a8nptuutTmpJIkSZKkE+bKDhXcm153CQBXvv06Zk6batAhSZIkSTophh0qvKFeAHpy5ZSXJAtcjCRJkiRpojPsUOEN5sOO7lwpZSn/SEqSJEmSTo7fLFV4wys7urJlruyQJEmSJJ00ww4V3tABAPZnyigv8Y+kJEmSJOnk+M1ShTfYA8kyDmSDKzskSZIkSSfNsEOFN9QLZdUMpLOUpww7JEmSJEknx7BDhTd0AEqrGUjn3MYiSZIkSTppfrNU4Q32DocdWSpKXdkhSZIkSTo5hh0qvKEeKKumP52lzG0skiRJkqSTZNihwhvexjKYztmgVJIkSZJ00gw7VHiDvcTSaoay9uyQJEmSJJ28VKELOJU913IHnX13Ul/5JpbNvLrQ5RSvoV6yJZUAruyQJEmSJJ00w44x8lzLHcyb8g4WTcuQzn6F51p+YuBxJIO9ZFJVAJSnXNkhSZIkSTo5frMcI519d1KSzJBK5ihJZujsu7PQJRWnGGGol3RyOOxwZYckSZIk6SQZdoyR+so3kc6myGQTpLMp6ivfVOiSilNmAGKWdLICwNGzkiRJkqST5jaWMbJs5tX8r1/8E6nkvbz1/2fvzuPjqu77/7/PbNpGu2RbtjySbbAdGwzYDjEJDYsBYycNSYGUoJL0G4hoQpp8v9+kSVo1TfJt1UfbpNnaNPkpW0MisgBJmwQMGDsJSQGDBcbYxgbbSONFtrVLo2228/vjXsmSLW9Y0kij1/PxuI+5c+fO6FxzuPK8fc7nXPo+prCczmDEefA4NTtYehYAAAAAcKEY2TGBioPX6N+23K7ZedeluilTV9QJOwY8QwVK6ZIAAAAAgAvDN8sJVFns1KFobOtNcUumsOjQyA5nGgs1OwAAAAAAF4qwYwJVljijFZra+lLckinMncYyYAg7AAAAAADjg7BjApUXZssYRnacUdT5s+kbDjvokgAAAACAC8M3ywmU6fdqbn4WIzvOJNojSepTpiQpkwKlAAAAAIALRNgxwSqKsxnZcSbuNJZeyzQWAAAAAMD4IOyYYBXFOYzsOBN3GkuPdUZ2ZBF2AAAAAAAuEGHHBKsszlZ7b1Rd/bFUN2Vqcqex9NgMSVIGNTsAAAAAABeIb5YTrMJdfjbM6I6xDUYkj1/9Ca+MkTJ8dEkAAAAAwIXhm+UEG15+tp26HWOK9koZQQ3Ek8rweWSMSXWLAAAAAADTHGHHBAsVuWEHIzvGFo1IgVwNxBIUJwUAAAAAjAvCjgmWHfBpdl6GGlsZ2TGmwR4pkOOEHSw7CwAAAAAYB4Qdk4AVWc5gaBpLLKlMipMCAAAAAMYB3y4nQWVxthrbRo/sqK+vV2VlpTwejyorK1VfX5+i1qVYNCIFgkxjAQAAAACMG8KOSVBRnKPjPYPqi8YlOUFHdXW1Qiukz31juUIrpOrq6pkZeAxGpECO+gk7AAAAAADjhLBjElS6y88OTWWpqanRqrWlevyhZtVU79bjDzVr1dpS1dTUpLKZqRHtlTJyNcg0FgAAAADAOOHb5SSoKB5akcWZyhIOh7V2fa783rh83qT83rjWrs9VOBxOZTNTI9rjTGOJM7IDAAAAADA+CDsmwVDY0eiO7AiFQvr9cwWKJXyKJzyKJXzavLFHoVAolc1MDXcaC6uxAAAAAADGiy/VDZgJcjP9KgkGhkd21NbW6pP/vU9V37lFV4Ya9GjdM2rY3KK6uroUt3SSxaNSMsZqLAAAAACAcUXYMUkqinPU2OqM7Hj7+vco8+UteuFATA0HFsnseEZ1dXWqqqpKcSsnWTTiPAZyWY0FAAAAADBuCDsmSUVxtp7d3yZJ+tHWJnk8Ht319sX6z6cb9fKe15Sb6U9xC1NgsMd5HJrGQtgBAAAAABgHzBuYJJXFOTrSNaCuvph++vxB3bRsti6Zly9Jau+Nprh1KTI0smN4GgthBwAAAADgwhF2TJKhIqX/8dt96uyL6a6rKlQcDEiSWiMzNexwapgk/EFFE9TsAAAAAACMD75dTpI9z/9ekvStLXulrmYdeOZxleRkSJrBIzvcaSwxb5YkMbIDAAAAADAuCDsmQX19vf7+0x/TytAruu+GX2ix+YXuvbdaT216RJLUFhlMcQtTxJ3GMuhxRr1k+uiOAAAAAIALR4HSSVBTU6OVV2er/p4a+b1x/eX1Pq07VKYv/sPnpNu/qraZOrLDncYyMBR2MLIDAAAAADAO+Kf0SRAOh7V2fa783rh83qT83rjWrs9V+PX9Cmb41DZTa3YMOiM7+g3TWAAAAAAA44ewYxKEQiFt3tijWMKneMKjWMKnzRt7FAqFVJQTUFvvTJ3G4tTs6FemJFGgFAAAAAAwLvh2OQlqa2vVsLlF624rU23dMq27rUwNm1tUW1ur4mBg5hYojfZKxqu+pF8SIzsAAAAAAOODsGMSVFVVqa6uTuEd0hfu26XwDqmurk5VVVUqzgnM3KVnByNSRlCD8aQkwg4AAAAAwPigQOkkqaqqUlVV1SnHi3MytONQVwpaNAVEI1IgqIF4QhJhBwAAAABgfDCyI8WGprFYa1PdlMk3FHbEhkZ20B0BAAAAABeOb5cpVpQTUDxp1d0fT3VTJp87jWUg5o7s8DGyAwAAAABw4Qg7UqwkmCFJap2JK7JEI1IgZ8TIDsIOAAAAAMCFI+xIseJgQJJm5oos0V4pkHtiZAfTWAAAAAAA4yAlBUqNMY2SeiQlJMWttatT0Y6poCjHCTvaIjNwZMdgj5QRVH+MAqUAAAAAgPGTytVYrrPWtqbw508JQ9NY2mbkyA5nGsugG3Zk+BjZAQAAAAC4cHy7TLHC7KGRHTMx7Oh1l55NKtPvkTEm1S0CAAAAAKSBVIUdVtITxpgGY0x1itowJQR8HuVl+mbeNJZEXIoPSBlOzQ6msAAAAAAAxkuqprFcba09bIyZJWmTMWaPtfapkSe4IUi1JIVCoVS0cdKUBDNm3jSWaI/zGMhxwg6WnQUAAAAAjJOUjOyw1h52H49L+oWkK8c4p85au9pau7q0tHSymzipinICM28aS7TXeQwENRBLshILAAAAAGDcTPo3TGNMjjEmd2hf0k2Sdk52O6aS4mBAbb0zbBrLYMR5zAgyjQUAAAAAMK5S8c/psyX9wRjzkqTnJD1irX0sBe2YMoqDGWqfcdNY3LAjkKv+WEIZhB0AAAAAgHEy6WGHtfaAtfYyd1tura2d7DZMNcU5AbX3RpVM2lQ3ZVzU19ersrJSHo9HlZWVqq+vP/Wk4bAjR4OxpDJZdhYAAAAAME74hjkFFOcElLRSZ38s1U25YPX19aqurtZ73nxQj37ToxsvO6jq6upTA4+R01jiCWUFGNkBAAAAABgfhB1TQHEwQ5LSYvnZmpoa/etdUX35gaTW3ZNQ3YNJ3XnDgGpqakafODyyI8hqLAAAAACAcUXYMQUU5wQkSa1psCJLcfSQ7rnVI+OVjFeSV7p1g1E4HB594uDQ0rOsxgIAAAAAGF98w5wChkZ2TPsipZHj+lVVUF17vLIJySYkJaSHH7UKhUKjzx1aepbVWAAAAAAA44ywYwoockd2TNflZ+vr67V4YYWe/vhCFQSs1n8xqS2fDyixOaB73+vRA09mqrb2pDq00YgkI/mzCTsAAAAAAOOKsGMKKMz2y5jpOY1lqCDp9/7sqN76vrjub+vT9qNJPfTbHPmezlRT41zV1dWpqqpq9BsHI1IgKBmjgVhSGUxjAQAAAACME1+qGwDJ5/WoMDug9mk4sqOmpkY1tw3q6s8mZD3SvW+XGpo92vN6jqRuPf69Wmll1alvjEakjKASSatoIkmBUgAAAADAuOGf06eIopyA2qbhyI5wOKx33WykkwqS/m7nYSkzXzq0bew3Rp2RHYPxhCSx9CwAAAAAYNwQdkwRxTkBtU3DAqWhUEjNL3vGLkg6b5V0uGHsNw5GpECOBmJJSVKmj64IAAAAABgffMOcIkqCGWqLTL9pLLW1tdLhgMJfz9Tj3/Gq+vYRBUnnrZaO7z6x8spI0V4pI1cDMWdkBwVKAQAAAADjhbBjiigap5Ed9fX1qqyslMfjUWVlperr68ehdadXVVWlt15cohe3B7Xhw0ltemn+iYKk5aslm5SObD/1jdEeKRAk7AAAAAAAjDvCjimiOBhQZ19M8UTyDX/G0MooG1Ye1B++69GNlx1UdXX1xAYegxHlxNv17g99SslkUo2NjSdWXpm3ynk8PEbdjpOnsbAaCwAAAABgnPANc4ooDmZIktr7nNEdb2SERk1Nje68YUDf+ElSV70/oboHk7rzhgHV1NRMXMNbX3UeS5ac+lpOiVRQMXbdjmivlBFUvzuyI4ORHQAAAACAcULYMUUU5wQkSe290eERGqEV0ue+sVyhFTqnERrhcFi3bjh1ZZRwODxxDR8KO0rHCDskZyrLodFhR319vfo6j+tf/71Ot97+p5LE0rMAAAAAgHFD2DFFDIUdbZGoampqtGptqR5/qFk11bv1+EPNWrW29KwjNEKhkB5+1EruqihDK6N4PJ6Jm8rSslfy+KSihWO/Pm+V1H1I6jmq+vp6lZSU6P13/ZmyF8R1y91xbbh0nyTpd1s2TUz7AAAAAAAzDmHHFFEcdMKO1sigwuGwbrytQn5vXD5vUn5vXGvX5551hEZtba0eeDJT1bd71P1YQE0PZqv85mV664byiavd0bJXKlokef1jT72Zt1qS9LsHvqzq6mote2tQv/rVXOnP+7To1ri+8c3XdUfFE/rWv399/NsGAAAAAJiRCDumiOIct2ZHb1ShZSvV0LFOsYRP8YRHsYRPmzf2KBQKnfEzqqqqVFdXp+8/YrTxD7mqeG/feY0MeUNa90qli0879eYnv9steXza+fgPhkerrF9/ZNRUm/ULn9GRg03j3zYAAAAAwIxE2DFF/PoXD0rJhD7xt3+vxFs+oBdeX6j1f7ZY/7rxDt329x9Qw+YW1dbWnvVzqqqqlEwmlXhTnoxX5zUy5LzFo1L761LJEtXU1OjKP150ytSbz3z2C9LsS7Q0N6Ib3zNHGd6ojEeyclalVULaeOAqzZ1dMr5tAwAAAADMWIQdU0B9fb3+4t5qXTbnRX36r2J686pBdT7xDe3c0qwvfqNIu/rW6T++VXdiSdezCIVCuv+/4rIJKZkwZxwZ8kZWfRnWvl+yCal0qcLhsG5499yxp97MW6Ur5/m0uDtDnqSUTEixuFfPbczWxz5xuX7SdJNqPvPpc/+5AAAAAACcAWHHFDBUkPQnH/1HfWLdA6q/p0aXX3RQwWBQP/vK30r+TFVceeM5f15tba1+/3ibXv3eRTqyZa7e/ZlbxhwZMjT15MbLDurRb3p042UHz6+2R8se57F0sUIVFdp6+Kqxp96Ur1buwrj+dPlW7frVIv3zI7frhlvLteadfXpo1wpJ0l13/uk5Xx8AAAAAAGdC2DEFhMNhrV2fO+aoiLcuKlF2wKsndh8758+rqqrSV//j29p08CrN/kOfDrVdqrq6U0eG1NTU6M4bBlT3YFLr7kmo7sGk7rxh4Nxre7S8KslIxRfrzz/9T9rRslp/fN/V+pf/eqfe963P68WtSdXW1qo/63XpA32y1w9q2Tv3q+vwHIVfydSPfvQj/dVn/kaSlOGjKwIAAAAAxgffMKeAUCikzRt7xhwVken36tolpdq0+5iSSXvOn7ny2pv1dHK5/Cah6xYGdOedd55yTjgc1q0bzKhiobduMOde26N1r1QwXwpkqz1/sbK8Se3b3KTP3b1V28NLdc3Hv6aqqiod6X5C1iMZj9yCpM/qR4/+QVVVVRqIJ5Xh88gYc87XBgAAAADAmRB2TAG1tbVq2NyidbeVqbZumdbdVjZq2slNy+aopWdQLx3qPOfP3Hc8oobkYsWNX5fGXtLB9v5TzgmFQnr4USslNLw9/Kg966ovw1pelUqXqnsgpsd3HdXtVy5Q44F9inUe1SfWX6Kd3QFV3nCXvv3cpVLCKe+hpFOQdPvBDknSQCyhrID3nK8LAAAAAICzIeyYAoaWjA3vkL5w3y6Fd2jUtJPrlsySz2POayrLvuMRWV+mBuas0ts8u7R9jKCktrZWDzyZqf1fyZB+k6EtXwjogSczx1z15eRCpg/86IdS66tSyWI9sqNZg/Gkbl1ZPnx+7pHnlOg8Kq2+Qw+8vlb3fWSBNn/Pr60b79Hzfe/R9oNOewZiCWX6CDsAAAAAAOOHsGOKqKqqUmNjo5LJpBobG0fV18jP9ustC4v0xK6j5/x5+1t6tbAkR1mLr9cy06TXXm8a82fW1dUpry1T+kOGctqCY9b2GCpkGlohfe4byxVaIf3jp/9CSgxKpUv0UMMhXTwrqBXl+cPv+fxna9TV8CtJkvH49Ov8L+kdn1+kOz62SZfPL9T2g52y1mogllSmn24IAAAAABg/fMucJm5aNkf7W3q1vyVyTufvOx7RollBeRddI4+xSjb+Yczzqm5/j2ZlW0lGaxbkqWqM2h5Dq8U8/lCzaqp36/GHmvXODXmSpCP+CjU0dejWVeWj6m6Ew2EZX0A2mZDxeGQ8XmWGLlU4HNbloQK1RqI61NHvjOzwM7IDAAAAADB+CDumiRuXzdbK0Ct6oelT2tP8+BnPHYgldLCjTxeVBqV5qxSfb1S1/KuKN3/71JM73REf5W+W+tulyOipMvX19WpqajpltZib3j1bknTzZ+tlkwn9071/MmrJ2lAopIHwy7KJuLMlExoIv6xQKKQr5hdIkrYf7HQKlBJ2AAAAAADGkS/VDcC56e5/SvX31MjvjSuW+K72NP9SS8vWjXnu6629sla6aFZQar1f3vd3qczTJSWrpWMeafbdJ07uaHQel26QDj0nHdsl5c6RdGL6yj3v8ujm0OtKJj2KS4olfLIHs3UsmacF15RrTcX3tXFPl6qrqyU502Nqa2tVXV2tYz+pUWboUg2EX5avM6zaujotmZOrDJ/HCTuiCWWyWsePWQAAIABJREFU7CwAAAAAYBzxLXOa6OjbNGpkRUffptOeu++4M9VlUWlQ6nv4xNKyHjnPR31wo/O4ZIPzePyV4Zdqamp05w0DqnswqStv7pXfxPXYkwu17rYyBbe/oqNzsvST+2r1V7f8Uo8/1KxVa0tVU1Mj6UQ9kDJ/v3q2PqQyf/9wPRC/16NL5uW7IzuYxgIAAAAAGF+EHdNEYfaNiiV8iic8iiV8Ksy+8bTn7jsekTHSwtIcKfvWE0vLJuU8H6mjUQrkSiWLpZxZ0vHdwy+Fw2HdusGcCEuMdHFnk559pElLCxIanNU9KoBZuz5X4XB4+P1nKrp6+fwC7TzcpchAnAKlAAAAAIBxxbfMaWJp2To1tf1SD79wr6q+Uyurq0577v6WiOYXZjsjJmbfLXP4i9JvMvSbB9aPnsIiOWFHYaVkjDR72aiwIxQK6eFHrZSQrBuWLOnx69CXs5R/Q1Rdx/tHBTCbN/YoFAqd0/VcPr9Ag/GkXm/rVRYjOwAAAAAA44iwYxpZWrZONy//mvYevUTf/O3+056373hEi0pzThyo+IQGnilW874s9UcTo0/uaJQKK5z9Wcuk43ukpHNObW2tHtySqcHv56h5S5nuuzekf3suqtKP9EvXD+qGe7r1b/+Up9q6ZVp3W5kaNreotrb2nK7lcrdIqbViGgsAAAAAYFwRdkwz+dl+Va2p0K93HFFTW+8pryeSVgdae53ipEOMUX/hEi02Ye060nXiuLUnRnZITtgR7x+u41FVVaUHv/xJZTZ79Xcbq/TN/zyki1dZp9d4JHmlFbM79PmP7FR4h4ZrcpyL8sIslQQDkgg7AAAAAADji7BjGrr76gUysrrm3r+Xx+NRZWXl8LKvhzv6FY0nR4cdkjLmXaol5pC2hztOHIwck+IDJ8KO2cucxxFTWa6pMIpbjxZefasqQvNHT2tJSA8/alVRUXFKTY6zMcaoxDhhzde/8qVR1wAAAAAAwIUg7JiGnvzVw4q8/KSuuKZQn//W5QqtkKqrq1VfX699LT2S3JVYRsguX6E806ffbXtRDU1u4DG0EkvhAuexdKkkM2pFlt7dm/SivUg3rVys2tpaPfBkpqpv9+jx73hVfbtHDzyZec5TV0aqr69XwxMPaWXoFX2i+vCoawAAAAAA4EIQdkxDNTU1Whbcogfu/Tv9zd0vjVr2ddSysyPssU7hUF/rHt357WfV0NShI8d+KV09qP3moHNSIMcZ5XFslyTp1aaHlH9Jgw5XlGllqHB4OdlNL83Xhg8nteml+ec1deXka7hsQaPq76nRp9+7+ZSlawEAAAAAeKMIO6ahcDisa6+xYy77uv94r4pzAirMCYx6z++7SiRJS81BDcaT+vrmH6j0sn+RvW5Qc0N/oT3Njzsnzl4uHd+tPc2Pq7LsffJcP6j1dz2mV489IenMy8me7zX80ZqeMy5dCwAAAADAG0HYMQ2FQiFt3tgz5rKv+1oiWnRSvQ5JWrm4UodtiZZ6wvJ5jK6s3CGvNyHjlfzeuDr6NjknznqT1LZfXb0b5fPGJY/k9SZOvD6e1/Bo1xteuhYAAAAAgNPxpboBOH+1tbWqrq7WutvKdNPtC/RCzzu06+jv9bV/eK++uD+id6woO+U9qyoK1Tl/hd7WEdZP33uVcgJe2eR/ysoqlvAp4LvOOXHWMskmFG2tkCqMku7rhdk3Ttg1rF2fq80be9SwuUV1dXXj+nMAAAAAADMPIzumoaHaGeEd0t994Hd64Tmjkhs+pBXXvkNd/bFT6nUMKai8TCX9TVo1L0dLy9Yp+dN5OrJ1hd7/3X/Ut343W9ZaJ+yQtO+JnfL8IEsHdqxTU9svtbRs3YRdwxfu23XeS9cCAAAAAHA6xlqb6jac1erVq+22bdtS3Ywp62B7n9Z+aYuiPR1STpH0239X7V/+2anBwY4HpZ/fI334aalooVQ7R7rub/Udz636h0dekZ7/sY787gH1/E2Bek2WikxE+vhLJ5amBQAAAAAghYwxDdba1Wc7j5EdaeCpjb9Q25bvaeWbjukj1/5MlfMPjr2M62xn1IaO7ZY63UKgRQuU0fSMok3bdfm7L9Hn6m/SkfmFKjIRHeiU6h/9n8m9GAAAAAAALhA1O9JATU2Nlq+Q6u95RH5vXH95vU/rbitTTU3N6NEdxRdLHp90fJeUmeccK6zUZ//2Ni1+c5Z+fO8B+b1xeZJW2u5T438ZVVdXSxLTSwAAAAAA0wYjO9JAOBzW2vW5Z1/G1ReQShY7Izs6Gp1jhZUKh8O67nrf8PuNz0qrYrruc1HdecOAampqJv2aAAAAAAB4owg70sCZlqI9xaxl0nE37AgEpeziUe9PJt3zPJK80q0bzKmhCQAAAAAAUxhhRxqora1Vw+YWrbutTLV1y7TutjI1bG5RbW3tqSfPXiZ1HZSadziFR40Z9f5fPzpPiks2ISkhPfyoHTs0AQAAAABgiqJmRxoYqqdRU1OjL/x6l0Kh0OmXcZ213HkMPyMtWT/q/R//+Md1y6/adM+7PLp1g9HDj1o98GSm6urGCE0AAAAAAJiiWHp2pukMS1+91Nm/6qPSutFBRn19vWpqahQOhxUKhVRbW0txUgAAAADAlHCuS88ysmOGqf/1U/rjqJQXkD77le9qaeuyUWFGVVUV4QYAAAAAYFqjZscMUl9fr+p771Vje1ySFOnqUHV1terr61PcMgAAAAAAxg/TWGaQyspKlSUO6ak/z5bfa9Qfs7r+/j41e8vV2NiY6uYBAAAAAHBG5zqNhZEdM0g4HNa1lV55jPPc55GurfSytCwAAAAAIK0QdswgoVBIv21MaDAhxRJWsaT028YES8sCAAAAANIKYccMUltbqx3tGVp7f5/+7reDWnt/n3a0Z6i2lqVlAQAAAADpg7BjBqmqqlJdXZ2aveX65/+Jqdlbrrq6OlZfAQAAAACkFQqUAgAAAACAaYECpQAAAAAAYEYi7AAAAAAAAGmFsAMAAAAAAKQVwg4AAAAAAJBWCDsAAAAAAEBaIewAAAAAAABphbADAAAAAACkFcIOAAAAAACQVgg7AAAAAABAWiHsAAAAAAAAaSUlYYcx5mZjzF5jzD5jzGdS0QYAAAAAAJCeJj3sMMZ4JX1D0npJyyS9zxizbLLbAQAAAAAA0lMqRnZcKWmftfaAtTYq6SeSbklBOwAAAAAAQBpKRdgxT9LBEc8PuccAAAAAAAAu2JQtUGqMqTbGbDPGbGtpaUl1cwAAAAAAwDSRirDjsKT5I56Xu8dGsdbWWWtXW2tXl5aWTlrjAAAAAADA9JaKsON5SRcbYxYYYwKS7pD0yxS0AwAAAAAApCFjrZ38H2rMBklfleSV9D1rbe1Zzm+R1PQGf1yJpNY3+F5gPNAHMRXQDzEV0A8xFdAPMRXQD5Fq07kPVlhrzzr9IyVhx2Qyxmyz1q5OdTswc9EHMRXQDzEV0A8xFdAPMRXQD5FqM6EPTtkCpQAAAAAAAG8EYQcAAAAAAEgrMyHsqEt1AzDj0QcxFdAPMRXQDzEV0A8xFdAPkWpp3wfTvmYHAAAAAACYWWbCyA4AAAAAADCDTIuwwxjzPWPMcWPMzhHHiowxm4wxr7mPhe5xY4z5ujFmnzFmhzFm5Yj3fMA9/zVjzAdGHF9ljHnZfc/XjTFmcq8Q08Fp+uHnjTGHjTHb3W3DiNf+2u1Te40x60Ycv9k9ts8Y85kRxxcYY7a6x39qjAlM3tVhOjDGzDfG/MYYs9sYs8sY83H3OPdDTJoz9EPuh5g0xphMY8xzxpiX3H74Bff4mH3HGJPhPt/nvl454rPOq38CQ87QD//TGPP6iPvh5e5xfi9jQhhjvMaYF40xv3afcy+UJGvtlN8kvV3SSkk7Rxz7F0mfcfc/I+mf3f0NkjZKMpLWSNrqHi+SdMB9LHT3C93XnnPPNe5716f6mtmm3naafvh5SZ8c49xlkl6SlCFpgaT9krzutl/SQkkB95xl7nt+JukOd/9bkj6c6mtmm1qbpDJJK939XEmvun2N+yHbpG1n6IfcD9kmbXPvUUF33y9pq3vvGrPvSPqIpG+5+3dI+qm7f979k41taDtDP/xPSbeNcT6/l9kmZJP0fyU9IOnX7nPuhdZOj5Ed1tqnJLWfdPgWST9w938g6d0jjt9vHc9KKjDGlElaJ2mTtbbdWtshaZOkm93X8qy1z1rnv/T9Iz4LGHaafng6t0j6ibV20Fr7uqR9kq50t33W2gPW2qikn0i6xU3pr5f0kPv+kX0akCRZa5uttS+4+z2SXpE0T9wPMYnO0A9Ph/shxp17X4u4T/3uZnX6vjPyPvmQpLVuXzuv/jnBl4Vp5gz98HT4vYxxZ4wpl/QOSd9xn5/p9+iMuhdOi7DjNGZba5vd/aOSZrv78yQdHHHeIffYmY4fGuM4cK4+6g5F/J5xpw/o/PthsaROa238pOPAmNxhh1fI+Vck7odIiZP6ocT9EJPIHba9XdJxOV8O9+v0fWe4v7mvd8npa+fbP4FRTu6H1tqh+2Gtez/8ijEmwz3G72VMhK9K+pSkpPv8TL9HZ9S9cDqHHcPcpJNlZZAK35S0SNLlkpol/Wtqm4OZwBgTlPSwpP9tre0e+Rr3Q0yWMfoh90NMKmttwlp7uaRyOf/6uDTFTcIMdHI/NMZcIumv5fTHN8uZmvLpFDYRacwY805Jx621Daluy1Q0ncOOY+7QLrmPx93jhyXNH3FeuXvsTMfLxzgOnJW19pj7Sy4p6dty/rIlnX8/bJMzlNF30nFgFGOMX84XzHpr7c/dw9wPManG6ofcD5Eq1tpOSb+RdJVO33eG+5v7er6cvna+/RMY04h+eLM73c9aawclfV9v/H7I72WczdskvcsY0yhnisn1kr4m7oWSpnfY8UtJQ5WKPyDpv0ccf79b7XiNpC53ePfjkm4yxhS6Q2tvkvS4+1q3MWaNO1/p/SM+CzijoS+YrvdIGlqp5ZeS7nArHi+QdLGcAlPPS7rYrZAckFMY6Jfuv8b/RtJt7vtH9mlA0vAczO9KesVa++URL3E/xKQ5XT/kfojJZIwpNcYUuPtZkm6UUz/mdH1n5H3yNklb3L52Xv1z4q8M08lp+uGeEf8AYeTUShh5P+T3MsaNtfavrbXl1tpKOfepLdbaKnEvdJytgulU2CT9WM6Q2JiceUJ3y5lbtFnSa5KelFTknmskfUPOvM2XJa0e8TkflFNsZZ+k/zXi+Go5N6H9kv5dkkn1NbNNve00/fCHbj/bIed//LIR59e4fWqvRlTOllOJ+1X3tZoRxxfKuansk/SgpIxUXzPb1NokXS1nisoOSdvdbQP3Q7bJ3M7QD7kfsk3aJmmFpBfd/rZT0t+5x8fsO5Iy3ef73NcXjvis8+qfbGxD2xn64Rb3frhT0o90YsUWfi+zTdgm6VqdWI2Fe6G1zv8sAAAAAAAA6WI6T2MBAAAAAAA4BWEHAAAAAABIK4QdAAAAAAAgrRB2AAAAAACAtELYAQAAAAAA0gphBwAAAAAASCuEHQAAAAAAIK0QdgAAAAAAgLRC2AEAAAAAANIKYQcAAAAAAEgrhB0AAAAAACCtEHYAAAAAAIC0QtgBAAAAAADSCmEHAAAAAABIK4QdAAAAAAAgrRB2AAAAAACAtELYAQAAAAAA0gphBwAAAAAASCuEHQAAAAAAIK0QdgAAAAAAgLRC2AEAAAAAANIKYQcAAAAAAEgrhB0AAAAAACCtEHYAAAAAAIC0QtgBAAAAAADSCmEHAAAAAABIK4QdAAAAAAAgrRB2AAAAAACAtELYAQAAAAAA0gphBwAAAAAASCuEHQAAAAAAIK0QdgAAAAAAgLRC2AEAAAAAANIKYQcAAAAAAEgrhB0AAAAAACCtEHYAAAAAAIC0QtgBAAAAAADSCmEHAAAAAABIK4QdAAAAAAAgrRB2AAAAAACAtELYAQAAAAAA0gphBwAAAAAASCuEHQAAAAAAIK0QdgAAAAAAgLRC2AEAAAAAANIKYQcAAAAAAEgrhB0AAAAAACCtEHYAAAAAAIC0QtgBAAAAAADSCmEHAAAAAABIK4QdAAAAAAAgrRB2AAAAAACAtELYAQAAAAAA0gphBwAAAAAASCuEHQAAAAAAIK0QdgAAAAAAgLRC2AEAAAAAANIKYQcAAAAAAEgrhB0AAAAAACCtEHYAAAAAAIC0QtgBAAAAAADSCmEHAAAAAABIK4QdAAAAAAAgrRB2AAAAAACAtELYAQAAAAAA0gphBwAAAAAASCuEHQAAAAAAIK0QdgAAAAAAgLRC2AEAAAAAANIKYQcAAAAAAEgrhB0AAAAAACCtEHYAAAAAAIC0QtgBAAAAAADSCmEHAAAAAABIK4QdAAAAAAAgrRB2AAAAAACAtELYAQAAAAAA0gphBwAAAAAASCuEHQAAAAAAIK0QdgAAAAAAgLTiS3UDzkVJSYmtrKxMdTMAAAAAAEAKNTQ0tFprS8923rQIOyorK7Vt27ZUNwMAAAAAAKSQMabpXM5jGgsAAAAAAEgrhB0AAAAAACCtEHYAAAAAAIC0QtgBAAAAAADSCmEHAAAAAABIK4QdAAAAAAAgrRB2AAAAAACAtELYAQAAAAAA0gphBwAAAAAASCuEHQAAAAAAIK0QdgAAAAAAgLRC2AEAAAAAANIKYQcAAAAAAEgrhB0AAAAAACCtEHYAAAAAAIC0QtgBAAAAAADSCmEHAAAAAABIK4QdAAAAAAAgrRB2AAAAAAAmRUNTh77xm31qaOpIdVNShj+DyeFLdQMAAAAAAOnDWqvIYFytkahaI4Nq7RlUa2RQOw536ecvHFYiaeU1RtcuKVVZQaZ8Ho8CPo98HiO/1yO/18jn9Qzv+73Oa845I455zUnneBTwGeccn0d+z9DnDJ3nkddj1NDUoWcPtOnNlYW6dF6BoomkovGkYiMfh/ft8PGR5504Zk/zvhPvH3msLTKonUe6Za3kMdIlc/NVFAzI5zHyuu0d2vd7PPJ6zYnnbvt9HucafV4z4rmR1+tcs/M57jljvHd/S0R7jvbolsvn6soFxanuLhOGsAMAAAAAcEbJpFVXf0ytkUG1RAbVGomqLTLohhluqOEeb40MajCePOPnJazV1tfblOHzKppIKu6GBvGknaQrGn/GSAGvx9l8TrjiPDphQ4bPo/beqKx7iUkrtUYGZYwUT1rFE1bxZFKJpFUsYZVIWsWTVolk0n3NORZLJoc/40I81HBID3xojVZVFF74h01BhB0AAAAAMEMMjWpYs7BYl5Xnq70vOhxWtPWeCC6GAo3WHud4WyQ6ZhDh9RgV5wRUEsxQSW6GFs0KOvtB99jQlhtQY2uv3v+95xSLJ+X3efSDD77llC/a1jpf9OPJE6MqhoIQZzuxH0/a4WPxk16PuyMq4u55Q4HKM/tb9eyBdllJRtLbF5fq7YtLFfCakwKK0aGF33094D3pnOFjzqiMc/nzr/rOs8N/Bv9258o3FDYk3SAknnSuL5FwQpDEcGjihiQnPX9w2yH9bNtBJa0UTyT17IE2wg4AAAAAwNRirdVgPKmu/pi6+2PO44D72B8fPt49EFNTW6+eb+zQ2QZPBHwelQYzVBwMaE5+pi6ZlzcitBgdZBRk+eXxmHNq66zcTNXfs2Y4bBnrS7YxRgGfUWCCyku+7aKSUWHDx9ZePKlf9ldVFJ71z+BceDxGAc8b+XMy+q/th4evf83C9J3GYux4jH+ZYKtXr7bbtm1LdTMAAAAA4IKMHFkx9EU3kbTDgcRQSHFif2SAER/1vNt9Hk2cecpIdsCrvEy/4smkWiNRSc6ohjWLirX+kjkjRmAEVJKbodwMn4w5twBjOhrrv8FMMt2v3xjTYK1dfbbzGNkBAAAAYEY4ny95iaRVNJ7UYDyhwXhSg7ER+2c6HnP2o2Ocd7SrX88caFPSOmFDcTCggVhSkcH4Gdvi9RjlZ/mVl+lzHrP8mleYpbxMv/vcN2LfP+rc3Ey/Aj7P8PWPHNXwyZuWTMsvuxdqVUXhjLzuITPl+gk7AAAAAKQFa616BuNqi0TV7taZaO+Nqq03qleOdOvRnc1KuqtgLJmdK7/PM2ZYEXVrP1yogM8pSulsXvVF48NTSKyk2XmZunJBkRtOnAgr8jJ9ys8+cSw74B2XkRbjNYUCmA4IOwAAAABMSdZadffHnQKZvdHh8KL9pOdt7rH23uhpQwq/1wwHDUkr9UYTWpSfqQyfVxn+E4FEhs/jhhSnHs/wO8UoM/zeUSHGieMjPsPrOaWWxckjK/7fLZdMeuAwU/5VHyDsAAAAADAptjW267d7W7R4dlBz8rPU3uus+OEEGCdCi7aIs9/RO/YKIJIUzPCpOBhQUU5A8woydem8PBXlOHUninKcrTgnY/icXUe6RwUNX/nTy1MSNDCyApgcFCgFAAAAcF6i7uofXf1RdfY5BTM7+2Lq7I+pqy/qPJ50rC0yqJ7BxGk/MzfTp+KhkCKYMbzvPHeCi6H9wuyAMv3e8273dC/MCIACpQAAAABGOPmLvrVWfdGEOvtj6uyLOuGFG044IUVU3UP7I0KLrv6YeqOnDy2MkfIy/SrI9qsgy6/87IBCRdk62N6nlw52ysqpmXHrqnL9+VsrVRLMUGF2YLiI5kRiCgcwcxB2AAAAAGlmIJbQoY5+He7s16GOPm1r7NB/bz88vApIXpZffdH4GYtwBrwe5buBRUG2X/MKMrWsLG84xCjIdoppFmQHhp8XZAWUm+k7pVaFdGq9ijveHNLyufkT+KcAYCYj7AAAAACmmf5oQoc7+3Swo1+HOpxA4/Dwfr9aI4OjzvcYjVoFpKI4W2+7qET5WSeCi/ysgPvoPM/yj88KIEOoVwFgMhF2AAAAAFNMXzQ+IrzoGw4xDnX06XBnv1oj0VHn+71G8wqyVF6YrbVLZ6m8MEvlRc7z8sIsHero113f3To8quJzf7w8JWED00gATBbCDgAAAGASjKyZsWROrhtm9I2abjIUarT3jg4zAl6P5hVmqbwwS8vm5qm8MNsNN5xAY1ZuxphTR4aU5WcxqgLAjELYAQAAAIwDa626+mNqjTjLqbZGBtXa4+zvOdqtLXuO6zSrqCrg8wwHF8vn5rv7zvP5hVkqCZ45zDgXjKoAMJMQdgAAAACnkUhatfdG1dY7qNYeN8CIDKol4jxv6x10Qw1nf6yCnx4jZfq9w0GHkfRHF5fq9tXlw6M1SnIuPMwAAJxA2AEAAIAZYWgayeqKQoWKs9UWibqhxYiRGJFBtY3Yb++Njjkaw+81KglmqCSYodJght40J0/FwQyVBAMqzc0Yfq0kGFBBdkDbD3aOWonk4zdczCgLAJhAhB0AAACYdhJJq+7+mLoHYurqj6m7Pz5i330ciKmrP67u/piOdPZr3/GITr/QqpTl96okN6CSYIbmF2XrilChSoKBUcFFiRtk5GX6zmulElYiAYDJRdgBAACACTeyOOeqikJZa9UXTYwOK0aFFM6xoedDr/UMOMcig/Ez/jyvxyg/y6+8TJ/ys/yKJZLDQYeRdOOy2bp1VfnwyIziYEA5GRP7V2NqZgDA5CHsAAAAwISIDMa1+0i3Nu5s1v1PNylhrYykYKZP/dGE4qer1ukKZjhBRW6mT3lZfs0vylZept8JMbJ8bpjhV17WqceyA95RIy8amjpGTSO595pFBA8AkMYIOwAAAHDB2nuj2nWkSzsPd2vXkS7tOtKt11t7TznPSlpUmqO3LipxAwr/iNDiRFiRm+mTz+sZt/YxjQQAZhbCDgAAAJzV8DSUBUWaV5itnYe7tNMNNXYd7tKRroHhc8sLs7R8bp7+5Ip5umRevhJJq4/++IXhURWffefylIQNTCMBgJmDsAMAAACjWOsst3q4s1+HO/q19fU2/fDZsBInTTsxRlpYkqPVlUW6ZF6els/N1/K5eSrIDpzymYyqAABMJsIOAACAGWBkgdDL5xfoWPfAcJhxuLNfh9zHwx19OtI5oP5Y4rSftfZNs/ThaxbpTWV551zUk1EVAIDJRNgBAAAwDZy8mslIyaRVz2BcnX1RdfTF1NkXVWdfTB3u46vHevT4rqNKWmclEo+REifVBi3KCWheQZYunpWra5fM0ryCLM0rzNK8giy1RQZ1748ahqehfOTaiwguAABTGmEHAADAFBYZjOvnLxzS//vVbiWSVh5jdEWoQElr1dkfU2efsyTryVNMRsrweTT0spW0urJI77p8ruYVZKm8MEtzC7KUHTjzXwuZhgIAmE4IOwAAAKaIgVhCrzR3a8ehLr10qFM7DnVpf0tEdkSOkbBW4fY+XTw7qLKCLBVk+VWYHVBB9onHguyACt3H/Cy/th/sHLXs6qduXnregQXTUAAA0wlhBwAAQArEE0m9eiyilw936qVDXdpxqFN7j/Yo5s4vKQkGtKK8QO9cUaacgE9femKv4gknrPjmn606r+CBZVcBADMNYQcAAMAEiieS6h6I66lXW7Rp9zFJVke7B7XrSJcGYklJUm6mTyvK83XPHy3Uinn5WjG/QHPzM2WMGf6clRWFFxRWMDIDADCTEHYAAACchVMctFUrygtUWZyjjtMUAh1VILQ/po7eqLoH4qd83pI5uXrflSFdVl6gFeX5qizOkcdjxvjJJxBWAABw7gg7AAAARkgmrQ529Gnv0R69eqxHzxxo19P7WnX68p+O3EzfqJoZlSU5Kshy9nce7tKWPcdlJXmN9K7L5uq+6y6ajMsBAGBGIuwAAAAzkrVWx7oHtfdYj1492uM8HuvRa8ci6o8lhs/Ly/QNBx1G0s2XzNGfrCwfLgBakO1XQZZfPq/ntD+roalD/7O/dbhA6JqFxRN7cQAAzHCEHQAAIO39/rUWPbKjWcFMn/qjCb16rEd7j/aMmmJSmpuhJbOd6SVL5gS1eHauLp6dq71He0atZHLPHy18QyuZUCAUAIDJY6zHYlNrAAAgAElEQVQ926DM1Fu9erXdtm1bqpsBAACmgWTS6kBrRC80derFgx16el+bmtr7hl/PDni1fG6eFs/O1ZI5uVo829mKcgKn/UynZgdBBQAAqWaMabDWrj7beYzsAAAA01pXX0zbD3XqhaYOvXiwU9vDHcMjNvIyfSoOZshIw/Uy7rtuke677uLz+hkUBwUAYHoh7AAAAFPe0MiKKxcUKTfTpxfDJ8KNfccjkiSPkRbPztU7VszVylCBrggVamFJjl482DlqGsqahSUpvhoAADDRCDsAAMBZpWoax2A8oZ89f1Bf+NVuxZOjp94W5QR0xfwCveeKebpifoFWzC9QMOPUv9pQLwMAgJmHsAMAAJzR1gNtuuu7zymeTCrg9aj+Q2smLDCIJ5LacbhLz+xv0zP727StqV0DseTw60bShkvn6K/WLVVFcbaMMef0uUxDAQBgZiHsAAAApxiIJfS7V1v02M6jeuTlZkUTTuAwEE/qnh88rzULi7VkTq6WzsnVkjl5ChVly+s5t+BhpGTSandztxNuHGjTc6+3KzLo1NtYOsdZGWV2Xqa+sulVxRPONJQPXr1QlSU543q9AAAgvRB2AAAASVJkMK7f7Dmux3Ye1W/2HldfNKH8LL/etqhYf9jXqkTSymOMFs8O6pXmbj2266iGFnXL9Huc1U3cFU6WzsnTkjm5Ks3NkDRiGsyCIuVl+fX0/jY9vb9VW19vV2dfTJK0sDRH775irq5aWKI1C4tUHMwYbtubK4uYhgIAAM4ZYQcAADNYV19MT75yTBt3HtVTr7UoGk+qJBjQu6+Yp/WXzNGahcXyez1j1uzoi8b12rGI9h7t0Z6jPdp7rFu/2XtcDzYcGv784pyA5hZkandzjxIn1dwoL8zSTctm662LSrRmYbHm5Geetp1MQwEAAOeDsAMAgBmmLTKoJ3Y7AcfT+1oVT1qV5WfqzitDWn/JHK2uLDplSspYYUN2wKfL5hfosvkFo463RgZPBCBHu/XUqy2jgo6bl89RzTvepPlF2RN3kQAAYEYj7AAAIM1Za7X19Ud0uGOjnt6/XL94sUJJK1UUZ+vuP1qg9ZeU6bLy/HMu9nk2JcEMlVyUobdd5Czx2tDUMWrp1w+9fSFBBwAAmFCEHQAATGPWWnUPxHW0a0BHuvrV3Dmg5q5+HXEfm7sGVBps0A8++DdaXRHXhkt9WlBcp+vf9B69qSx33AKOM2HpVwAAMNkIOwAAmOJeDD+qo12Pqb33KrVEVqm50w02ugbU3Nmv3mhi1PkeI83Oy1RZfqaWzc3TWxe9Jr83Lp83KSmuVZUva9ncD0zqNVBzAwAATCbCDgAAppjugZief71dz+xv09GuLfri7Z/QpfPiiiX+P1V9p1YHOy7X3PxMLSrN0dUXlWhuQabK8rOGH2flZsjn9Qx/3p7m9yiW+L6kuGIJnwqzb0zdxQEAAEwCwg4AAFKseyCmbY1OuPHsgXbtOtKlpJUCPo8+ceP2UaMyPnlTs9560SfP6/OXlq3TnuZfqqNvkwqzb9TSsnUTcyEAAABTBGEHAACTrGcgpm2NHXrmQJuePdCmnYfdcMPr0RWhAv3l9RfrqkXFunx+gRpbPYolfqihURlFOTe9oZ/pBByEHAAAYGYg7AAAYIK92PSIjnQ/plePrtJv916kl0eEG5eHCvTR6y/WVQuLdUWoQJl+76j3MioDAADg/E1Y2GGMmS/pfkmzJVlJddbarxljPi/pQ5Ja3FP/xlr76ES1AwCAyWKt1eHOfu060q3dR7q160i3Esn/0X9UfUqXlsd1/RKfwu1f0TWL12rNomKtDBWeEm6MhVEZAAAA52ciR3bEJX3CWvuCMSZXUoMxZpP72lestV+awJ8NAMC5SSalg1+Tor+W8u6UZt99Tm+LJ5La39KrXUe6hoON3c3d6uqPSXJWRFlYGlTVW3aNqrnx3tUHdNWij0zgBQEAAGDCwg5rbbOkZne/xxjziqR5E/XzAADpq6GpQ88eaNOahcXnv3xprF/qOix1haWuQyO2g85j8IB0V7fklZTYIh3TKYHHjkMb1dz1mJo736I9Ry/R7uZu7Tnao2g8KUnK8Hm0tCxPGy4t0/K5eVo2N09L5+QqO+DTnuYBxRI/ECuhAAAATJ5JqdlhjKmUdIWkrZLeJumjxpj3S9omZ/RHx2S0AwAw/Tz4/EF96uEdspK8HqO/vP4i/ckV5ZpflCVjjHPSyw9Jrz4mZRdLxiN1jgg2+lpP+kQj5ZZJ+eVS2eXSgl7J2y155Ey67HtYzV13altjhxqaOtQW+a3+5bb/q2VlccUS39I9P/gn5WZepQ9cVaHlc/O1fG6eFpTkjFrqdSRqbgAAAEw+Y62d2B9gTFDS7yTVWmt/boyZLalVzl8p/15SmbX2g2O8r1pStSSFQqFVTU1NE9pOAMDU83xju6q+vVXRRPKU14qy/bqjtEnv7/u+5vTsOvGCN1MqrJAK5juBRn65lD9iP3eu5AsMnx5v/ra8JdVO2JGU/rn+E/rWnuskSZl+j/7PDQ/r7qu/L583qXjCo+cb/7euWvSvE33pAAAAGIMxpsFau/ps503oyA5jjF/Sw5LqrbU/lyRr7bERr39b0q/Heq+1tk5SnSStXr16YhMZAMCU84fXWvWh+7epJBhQW29U8URSfp9HtbcsV/GRLap8pU6Vx3YpYjOUlFMjIy6PNhXfpc7VH9MVoQJdPCtXXo8ZMQ0mXxdlGL2w77gampyRG9sPztctcz+m9Quf0dPNb9fhwJ363B8XalVFod5Ulqf9x0cv/VqY/caWfgUAAMDkmcjVWIyk70p6xVr75RHHy9x6HpL0Hkk7J6oNAIDpadPuY7qv/gUtLM3RD+9+i8Ltfdq6/5jW62kt2PoFqeUVqSAkXfclKe8i2QfvUDIRU8L49OOWCj3185clSTkBrxaU5OiVoz1KJK2MnGGFkjMlZllZnv70zfO1quLT/z979x1ldX3nf/z5vffO0MvQ6zD0LigDInbFGmNLVTZrEpXdzSa7STbd3cQkP3ZTN5rsJhuTmEQzdgVRsSEWLCiDdEQpzgxl6DNDmWHmls/vj4soQVAjU3k+zpkzl+/3+7n3fXPwnJwXn/f7w9ABeZzZuc1htdiGIkmS1PzUWxtLFEWnAfOB5cBb+4+/A1wFjCf7/zdLgH94R/jxrgoLC0NxcXG91ClJalpmL93MV+5ewpi+nfjz5ybSOScNi/8CL/4yO4uj+0g47Ssw5kqI52QXbXgFSuZDwemEfhMp2VnN4rIKlmyo5PGVW9i6u/bg+58+pBv/dPZgxvfvTNvcBhldJUmSpGPk/bax1PvMjmPBsEOSjg93LyzjWw8sZ2JBF2799HDaL/sTLPgN7NsG/SbCaV+FYRdC7N2Hgb6bRaUVTPv9ApKpbBtM0XWTP/iJLpIkSWoSmsTMDkmS3q9bn3+THzy8iksGJ/jFgMfJ+fUnoXY3DD4nG3IUnAZvnb7yAUwYkEfRdZP/9qNrJUmS1OwYdkiSGt19sx6grvh+7u9SxUlbFxJtqoVRl8FpX4Y+J37o958wIM+QQ5Ik6Thi2CFJajQhneSp22ZwecnNxBMZqIZo2AVw/gzoNrSxy5MkSVIzZdghSWpY6SS8+Rxh5Syqlz3I1HQVIYIIIIpD/5MNOiRJkvShGHZIkupfOglvPgsrZ8HqR6BmF7WxNsxNnkiH/BM4e+ufss/Ec6Hg9MauVpIkSc2cYYckqX4cDDhmHgg4KiC3PemhF/L7XeP47zf7809TR/Ov5w4l2vixg0fH0n9SY1cuSZKkZs6wQ5J07KSTsP5ZWPXOgKMDDL8IRl/O/gFn8YW7VzHvzW3ccPFIrj9jUHZd/0mGHJIkSTpmDDskSR/Omrmw4n6o3gkbXob9ldCqYzbgGHV59ujYnNbsq01x3Z+LWfDmTv7f5WP4u8kDGrtySZIktVCGHZKko1pUWsGC9TuZ0r8VJ7beCttWwbbV2d/lS6Fm19sPD54Kk67LBhyJVgfXP/t6KY+t3MLabXv5+SfGceVJ/Rrp20iSJOl4YNghSce7Da8cnJcR+k2ksmo3u8qWs3/jCqo2LKd20wouizbSL9pxcEld1IrtrQsgdKM3FcQIpIkxr3owz6/uT/T6WgC27dnP4yu3ks4EAL5xwTCDDkmSJNU7ww5JauHe2pkxeWAXBnVvT3nVfsqraiiv2k+idD4fX/1lYiFJIMa20JmeVJAXZcOJ2pBgPX1YlBnGHZlzKIsPYENOAeV0I10XZ2x4nf/j+yRIkSTB7Vv6s3TLZkIIBKA2lTkYdMQiCNkDZiVJkqR6ZdghSS3Y/DXb+ewfFx4MHCAwONrMmbFlnBVbwpTYShJR5sCdDPE2nVnS55NE3UfQqu8YymN9+Oe7l5FMZchJxCi6djITBuS94xPOgw2ToGQ+iYLTue2vhowuKq1g2u8XHFw/eVDXhvnikiRJOq5FIYT3fqqRFRYWhuLi4sYuQ5KajUwmMHPxJv7jwRVQt48psZWcFVvCBa1X0j21BYBU3hBivccSe/0RyKQhngvXzD7sVJSDO0MGdf2roOP9+bDrJUmSpLdEUbQohFD4ns8ZdkhSy7JyUyW/e2AOPbY8x0WtVzI6tZLcKM2+0Ipk/ul0PuFiGHIu5BVkF7xjZofHv0qSJKkpe79hh20sktTcbXgF1j5JTSaHlSuX0WfnC9wU7YIcCF1HsbXHdSyIjSd//LmcNKjn4ev7TzLkkCRJUoti2CFJ9axe2jjSKdj8Krx6O2HJXyBkaAOMDK0oyZtC58mX0Xbk+USd+tILuPzYfKokSZLULBh2SFI9WlRawVW/W0AqnSE3EaPour8e8Pk+hQC71sP6p2Hd0/DmfKit4q1GxAhIE7F34pcYfcl/HMuvIEmSJDU7hh2SVI9uf6mEulT2tJP9yQzfeWA5nzllAFMGd2Vgt3ZE0VGOYq3eBW8+B+vmZUOOyrLs9U757B/+UR6oHMrja/fx29ybyCVNLJFLz3EX1P+XkiRJkpo4ww5JqidLN1QyZ3k5UQQEiEUR2/fU8u+zVgDQu1NrThnclUvyNlIYVtJx2GkQMm/v3ti8OLuwVcfs8NAp/0J64NncsTbBz554g721KT43pYD0yLOJbX7JAaOSJEnSAYYdklQPNlXWcN1txfTo2JofXDaa18r3MHlQV07K70zJzmpeXLeDF9fuJLz2CKdnfk6cNOHFbDtKJoqT7n0SOWd9CwadDX0nQDzBotIKvnvnClZu3s0pg7ry/ctGM6xnh+wHDp7SqN9XkiRJakoMOyTpGNuzP8m1f1rI/ro0d1x3MkN7duCcEW+fgjIwvp2BqdlMq5kNYWE24QAywEPhdG7Yfw171rdlRHUHpuzpQLd1JTyyvJyVm3fTq2NrfnXViVxyQu+jt8BIkiRJxzHDDkk6hlLpDF+6czFrtu3lT5+byNC3dl7sWAurZsFrs6F8afZa73Ew4XOw9A5Ip4jFc7n4M/9O/2g4L67byYvrdnD7ghKS6ewY0kQs4uefHMepQ7o10reTJEmSmgfDDkk6hn748Cp2v/EC94/ZxfjqPfD0+mzAsW1V9oF+E+G8H8LIj0KXgdlr46+GkvlQcDqJ/pM4ETgxP49/PnsIN899g5ufWkMmQAiBJRsqDTskSZKk92DYIUnHyJ9eeJO1Cx7m3lY/Ib4mDWsO3MifAhf+GEZeAp36Hb6w/6QjDhY9bWh3fvPsOpKpDDmJGJMHda2/LyBJkiS1EIYdknQMzHutnJVzfsMfWv+ZWEgfuBrBaV+Bqd/7m993woA8iq6bzIL1O5k8qCsTBuQdm4IlSZKkFsywQ5I+pHlz59D1uX/npznrSHcdSVSxHjIpiOfC8Is+9PtPGJBnyCFJkiR9AIYdkvQ3qti6gTfv/ibn7HqEbVFnvpH+Ap+65GtMiK87OIPjSO0pkiRJkuqPYYckfQAhBFa++CjRizcxcO9ixpDm/9If5Vepy9kftWHAmxVMOPvIMzgkSZIk1T/DDkl6D4tKK3h69TbYvZkhr/+WS5OPEosgE8UonvBTbnqlL8nIAaKSJElSU2HYIUlHcc8Lr/HKnD9xeWw+U2KriEWBEGXvxaKISZ2rKLruYw4QlSRJkpoQww5J+ivJuloWPf0Ada/eyUf3v8Qnc+ooyfTkV+krGD52Iheu+QGk67IDSAtOZ0J/B4hKkiRJTYlhhyQBhMCe9Qt5c94f6LdpDpPZTRUdWNnjEn5WPp6F6cHkJOIUTZ4MUwodQCpJkiQ1YYYdko5ry1csY/uLf2HU9jn0Sm5geMhhSdvJtJlwFWPO/DiFOa34emnFX7WpOIBUkiRJasoMOyQdf2oqqF58PztfvI2xe5cC8HJmBI91/ypTLv08Jw/of8jjEwbYpiJJkiQ1J4Ydko4PqVqSqx9j50u303XTM7QlyeZMH36S/iQPpk9lS9Sdr44ZzrC/CjokSZIkNT+GHZJarhBY/cqTVL38F8ZUzqNdZg/x0Il7Yxewb8TH6DyokFtnrySZ8dhYSZIkqSUx7JDU8uxYS2bpXex5pYgRtZupDq14PFPI2p4XM2nqx/jk0J4k4jEABvXo4LGxkiRJUgtj2CGpZdi3A1bcT3rpXcQ3v0ogxtL0aGamL+OJTCH7ozZ8dfRwzhzR+5BlzuOQJEmSWh7DDknNV7KG9c/fS2z53eRXvEQspFlDAfclp1Ha+yImjB3Fo3PfIBlsU5EkSZKOJ4YdkpqXTAZK5sOye0ivnMWg5F42hy78Nn0xM9OnMWBkIf9wxiAKC7oAMLGgi20qkiRJ0nHGsENS87B1FSy7C5bfB7s3EXLb83zuqfzfvkJezowkEONzpxXw3UtGH7LMNhVJkiTp+GPYIanp2l0OK+6DpXfD1uUQS8CQqSwf/TW+urQPa3amiUVABK0SMT4ytk9jVyxJkiSpCTDskNS0rH8Wim+FyjIoXwIhA30nwEU/pbTPhdw4dwtPP72dQd1bc9vnR9OuVcI2FUmSJEmHMOyQ1DTUVcPcG+GV3x64EMH4q1kx6Frmbu1AaUk1j8xeSU484jsXj+CzUwaSm8geH2vIIUmSJOmdDDskNa7kflj0R3j+F7B369vXoxgl9Obyu7aSymwB4Mxh3fjpx8fRo2PrRipWkiRJUnMQa+wCJB2nUrXwyu/gl+PhsW9Bt2Fw8c8h0YYQxUmS4BvFHUllAgCxCCYN7GrQIUmSJOk9ubNDUsMqeQEW/C+UvQzVOyB/Clx5C6HgdF5Yu5PnuueQ2PACr4RRtCo4mdzSCtLpDDmJGJMHdW3s6iVJkiQ1A4YdkhpGqhbm/RBe/B8gQBSDC3/Ei10/zh/nl/LaPU+zsaKGru36cPUZ/8b/nDyAXp1as6i0wgGkkiRJkj4Qww5J9StZA6/eBs/fBHs2v+NGROmWHUx78BVCgJG7SvhFx0rOvvBCOk8cfvCpCQPyDDkkSZIkfSDO7JBUP+qq4aX/hZvHwaPfgLwCuOjHkGgDUZwQz+XmdT0JAUbsKuFHz/8fwx8uYsv111G9eHFjVy9JkiSpGXNnh6Rja90z8NKvYGMx7K+EgWfAx2+FgtOy9/ucRPVT9/HK4lpW1SRJdIs4bfNycjIpIiAkk1S/spC2J57YmN9CkiRJUjNm2CHp2Fk5C+79LAdncnzkv2HitQdvVy9eTNXMR6i4fw7d02l+kniG9A9+QubZ1dkHYjGinBzaTprYKOVLkiRJahkMOyQdG5uXwKwvAOHAhSi7swOoLi5m561/ZO+zzxDSGaLsXWKpOlr/9Pukq6roecN3yFTX0HbSRHd1SJIkSfpQDDskfSiLSivYuGgOl6z6OvFW7SGkIJ2CeC4UnE714sWU/v01kMkA2ZDjHXEI6YoKSCRoPWaMIYckSZKkY8KwQ9Lf7L5FG5h//2/4ac7/sSb0oeqjd3Fyl2oomQ8Fp0P/SVT+5oaDQUd46ycRZ333DIPLAzEgZDLO6ZAkSZJ0zBh2SPrAMpnArS+8ydbHf87NuX9hQWYk0+u+yv57NnD1yfl8puMUOs1ZQrzTevbMmwdAOopIxwILTmzP4yNrgBjfvTNNIg0kYs7pkCRJknTMGHZI+kC276nl6/csZsqbv+SGxCM8ljmZryT/iXSiNZMHdeHVh5/mY/N/Q214u20lFcFT4+C5sXHW9qvlI4M+ypOlTzLj6jrGbIi4/BM3uKtDkiRJ0jFj2CHpfXv2je3cflcR30jdyqhEKWHi9XQf9S2+WFLJ5EFdGb5xFRt/+xdCeLttBbKBx45OEWv6RcSjGIM7D+ZTwz9F8dZiCnsWMq7H+Eb7TpIkSZJaHsMOSe+pNpXm5kdepe3CX3FLYjaxWIBYgmjsJ5iQ340JA7ux98UX2XDd9RACAcgAMSAdQSoWsap/ggjIieVQ2LOQ8T3GM96QQ5IkSVI9MOyQdGSZNC/NvZ/Kl27nS5kFtEnUHdytQQhQ+jzkn8y+hQvZ9JWvZq+RDTqWD4xYMDyiQw0s6zCZNdFEPj0wyWUjTjfkkCRJklSvDDskHW7balh6J/uK7+CU2m1UhnY8kDmDU08/l4JXfgDpurePll24kLJrPnvwxJVMBKk4zDw9hzf6RcSjBBd3v4LvjTyVCQPyGvd7SZIkSTouGHZIyqreBcvvg6V3wObFhCjOy+lx3Ju6iqcyJ5GOcvhqznD++ZrCg0fLZrqNZfP1Vx4MOtLA8oKIDv94Ld855dyDMzncySFJkiSpIRl2SMezVB2seQKW3glvPA6ZJPQay8oTvs3nFw2gTedelFftJx0y5CRiTB7UFfoPgf6T2Pv8C5RfcwmpzZtJxyPIhOyOjjNy+M4p5zqTQ5IkSVKjMeyQjjchwObF2YBj+X1Qswva9YCT/wHGXcU9GzrxrQeWcVJ+Hn/47ETWbtvLgvU7mTyoKxMG5FFXVsa2X/+a3bMeBLItK384L6JjTcTK/Ij1fSOKtxYbdEiSJElqNIYd0vFi92ZYdjcsvQu2r4Z4KxjxERh/NQw6G+IJ/vD8m/zw4WWcPrQbv/3MBNrmJpgwII/xXXPY89hjrP7mXYQlK8mQPU42AuIh4tO9LuZf+j1DMpM8eNqKJEmSJDUWww6pJaurhtUPZ3dxrH8GQgb6T4ZLboLRV0CbzgCEELh57hvcNHcNF47uxc1XjSc3FrHvpZfYcf+97H1iLrG6JJu6wHNnJ+g6fCzn/XEFpDLEc3IYd8HV/K7vNGd0SJIkSWoSDDukliaTgbIXswHHygehbg90zoczvg4nfAq6Dj7k8UUlu/ivR1dTXFrBx07qxw8LO1L1P//Djpn3EW3dwb5W8OLoiDdO6c/Ec67mXwd/lK5tulJ95mKqX1lI20kTaXviiYwHQw5JkiRJTUIUQmjsGt5TYWFhKC4ubuwypKZt57psi8qyu6CyDHI7wOjLYNxVkD8FYrHDlhSX7OJTv11Aq7oazty8lH/cv5Lc11aRiWDpwIgXx7eix/kXc+moTzCu+ziiKGqELyZJkiRJWVEULQohvGffvDs7pOasphJWzYIld8KGBUAEg86Cc/4DRlwCuW2PuDSdTHHHb+7jq4ueYUr5Mlqn02zqGvHMWTF2njGG8yd+mp8UXEDbnCO/hyRJkiQ1RYYdUnOTTsH6p2HJHbD6EUjXQrfhMPXGbJtKxz5HXV5XUkLlzFmU3nUP11dVsLdVxLMnwDOj2jF0yuX804SrGdR5UIN8FUmSJEmqD4YdUnOxdWU24Fh+L+zdCm26wIRrsm0qfU6Eo7SYpPfsYfejj1LxwAPULllKJoI3BkY8e3ac/ZNOpnurs/j2qAs4eWCPBvxCkiRJklQ/6i3siKKoP3Ab0BMIwC0hhJujKOoC3A0UACXAJ0MIFfVVh9Ss7d2eDTeW3gFblkMsAcMuhHGfhqEXQCL3iEtDOs2+BQuomjmLqieeIKqrY3O3GPPOjvHssDz69rmAmz5yHb3b927ALyRJkiRJ9a8+d3akgH8LIbwaRVEHYFEURU8CnwWeCiH8KIqibwHfAr5Zj3VIzUuqFl5/NHuayponIaSzOzcu+gmM+Ti063rU5bXr36Rq1iwqZs0ks207NW1iPDcm8ML41iQHnMLy10fwifwz+a8rT3DgqCRJkqQWqd7CjhBCOVB+4PWeKIpeA/oClwFnHXjsz8AzGHboeBcCbCzO7uBY8QDsr4QOvWHKl7K7OHqMPOry9O7d7H70MSpnzmT/kiVkIlg2KMa8KTH2TRrJpaM+zpRNI7j5yU18fEI//vMKgw5JkiRJLVeDzOyIoqgAOBF4Geh5IAgB2EK2zeXd1kwHpgPk5+fXf5FSY6jckD0qduldsHMtJNrAyI9mA45BZ0EsfsSlIZ1m34svUTVrFrvnPgm1dWzpkcOT58RYPL4Dp53wUb469Eqq9/bif+at4enXN3HZ+D78+GMnEIsZdEiSJElqueo97IiiqD1wP/DlEMLud/5rcgghRFEU3m1dCOEW4BaAwsLCd31GapZq98Jrs7PDRkueBwIMOBVO/TKMugxadzz68vXrqZo5i8rZD5Leuo39bRM8OybD02PjdB8/kSuGXcl388+ldaI1i0p28albXiKVCcQimHZyPnGDDkmSJEktXL2GHVEU5ZANOopCCA8cuLw1iqLeIYTyKIp6A9vqswapSchkoOS57A6OVbMhuQ/yBsJZ34Zxn4K8gqMuT1dVsfvRR6maOYuapUvJxCJWDMnhySkxNpzQnUtGXMH/DLmc/h36A1BVk+TOl9/kV/PWkspks8IIWFhSwaSBR5/5IUmSJEnNXX2exhIBfwBeCyH89ztuzQauAX504PeD9VWD1Oh2rMkOGl16N+zeCK06wtiPw/irof/JRz0uNtum8iJVM2eye+5TUFfHtl6teeycGC+NzeGkkedwzZArmNJnCvED7S4rNlVx+0ulzF66mZpkmiE92rNnf5JMJpCTiDF5kEGHJEmSpJavPteRx94AACAASURBVHd2nAp8BlgeRdGSA9e+QzbkuCeKomuBUuCT9ViD1PCqd8HKB2DJnbCpGKIYDD4Xzvs+jPgI5LQ56vLadeuomjWLqgdnk9q2jdp2uTw3LjB3dJxoeH+uHPYxvjboErq2yQYXL63bwW0vlbJm217WbttLm5w4l43vw99NHsCYvp1YVFrBgvU7mTyoKxMG5DXE/wKSJEmS1KiiEJr+OIzCwsJQXFzc2GVIR5ZOwtq52TkcbzwG6TroMRrGXwVjPwEder3rskWlFTy9ehtn923NoOUvUjlrFvuXLiPEIl4b3pY5I2tYNqQNk/pO5foTP80J3U5gy+5alm2sZNnGKl5Yu4OlG6uAbJvK504t4F+nDqNTm5wG/PKSJEmS1DCiKFoUQih8r+ca5DQWqUUKAbYsy+7gWH4vVO+Att1g4nXZ01R6nXDUNpXiddv4yYzbOad0IYnylWzJpNjZpz2Pnpvg2dGB7r2HsnrNSPavGcPja1tTvm4fZbueYsfeOgASsYgu7XIPvl8sgq7tWxl0SJIkSTruGXZIH9SeLbDsnuwsjm2rIJ4Lwy7MzuEYMhXiRw8bateupeKBmaTuup/vV1exu1UOc8fFeXZ8YHOvHIZ3uIDP9f0Ijy0O1OyqACAVAmW7qjlzWA/G9e/E2L6dGNm7Iys372ba7xeQTGWcySFJkiRJBxh2SO9HsgZWP5INONbNg5CBvoXwkZ/D6CuhbZejLk9XVlI1Zw5VM2exf/ly0lHE6wVtefbEGK8ODiRrh9IxeSo7XhvIDhK8wC5iZHdrAOTGY/z2M4WHzdyYMCCPousmO5NDkiRJkt7BsEM6khCgbAEsvQNWzoLa3dCxH5z2FRh3FXQbevTlqRT7XniBypmz2PvUU4Rkksp+nZl9Tivmj0lBpzzO7f8ZhteezNRhw1mwfgc/K3+DQHb+xj+eNZhzR/Z8zyBjwoA8Qw5JkiRJegfDDumvVZTA0ruyuzgqSiCnHYy6NBtwFJwOsdhRl9euWUPlzFlUPTSb9PYdJDu2pfjkjswcWklpj/3U7RnL50Z9kq+f+RFi0aHv1Spn7cGWlHNH9jTIkCRJkqS/gWGHBLB/N6yalQ05Sl8AIhh4Opz5TRh5KbRqf9Tl6cpKqh55hM1330f8jdVk4jE2jOnOA2fm8sqgWgZ1HcieLRdRvW44v/jEFD46rs9h72FLiiRJkiQdG4YdOn5l0rD+6WzA8drDkKqBrkPgnP+AEz4FnfsfdXlIpdj7/PNUzZzF3nnzCMkkZV068MxZ7XnhhBqSHWuZ0vMyLtx/Ci+uas2WPfv5v6tPYuqonkd8T3dySJIkSdKHZ9ih48+217ItKsvugT3l0Lpz9iSVcVdBv8KjHhcLsP+NN6iaOYuqhx4ivWMHNe3a8MpJXXh41E5Ke9WQ2jeYZOVE0htGM3tlDpmQAaq58aOjjhp0SJIkSZKODcMOHR/27YQV97Hvldtpt3M5IYoTDT0PLvwRDL8IEq0AWFRa8a5tJKmKCnY/MoeqmTPZv3IlxOOUjOnN3ae1ZcmwWpKZJK32n0ftmyeSru1CPBZjWK/2rCrfDWRPVdlXl26Ury5JkiRJxxvDDrVcqTpY8zgsuTP7O5OiNBRwf/ozPMpp/OrUCwBYMH8Dkwd1ZcfeWr54x6uk0oFWOTGKPlvIsNIVVM2cyZ5nnoFkkqr8njx5YU8eHb6DPW22k9wzkuSmiYTqoXzh/BFMHtTtYFgCMO33Cw4OHH3rmiRJkiSpfkUhhMau4T0VFhaG4uLixi5DzUEIsPnVbMCx4j6oqYB2PeCET3LT9gnctKLVwUe7tc+lsjpJOpP9b+Ct/xIKqsqZWraQj2xdSuu9VYTOHXl9Yk9uH7CRNd2TpGt7kKwspH3dJPbWtCGTCeQkYhRdN/mweRtH2ikiSZIkSfrgoihaFEIofK/n3NmhluH1x+CV38KOtVBVBvFWMOIj2Vkcg87m6bW7+N/niokIRBFEB+ZypA4EHR1r9/F3+15j1LLnGVy5kWQUozi/By9fmMPLgyoI8c2kdp9ITckEMjX5RER8/vxhTBnc7ahhhgNHJUmSJKnhGXao+VszF+78VPZ1FINT/xVO+yq06cyi0gpuu2c5Dy/fzMjeHfm384ezavPubEtJKsVNM/7EWW++wsQtr5ET0uwt6MeDUwby8LBNVLXZQbp6AHVbzyW1+wTG9O7G63V7iaLsTo4pg7sZZkiSJElSE2TYoeZv7vcOvgxEzCupZUPbCnbt28qvn1lHKpPdzfHNC0dw+tDunBJ2UXXHb6l66CG+s2sX+zt04I1zRvDg8G0s6bSFLq27cPmgz7C/YgK3Pl1NJkA8govG9uH7l3W1LUWSJEmSmjjDDjVvq2bD1hUQSxBCYH8mzv+u78Wr61Yd8ljn2r3suu121q94ntrXXoNEgr2TRvDE6B7cm7eGkFjDqX1O5RdDr+TMfmeSE89hUWkFf5l/6IBRd3JIkiRJUtPngFI1X/t2wP+eDJ36woU/Yvavb2H9mgyv5ebTua6aTpMKWf3GpgNtKqtIhAxh+GCWTszj1t5r2JLYR7/2/bhi6BVcOvhSerXrddhHOGBUkiRJkpoOB5Sq5ZvzNdhfBdc8xJpHFjFw9kIGhwznszB7f9WjREBth06UnHcij42p4rlWJbSKb2HqgKlcOeRKCnsVEotiR/wId3JIkiRJUvNj2KHm6dmfwMqZVHe7gh3f/1/q5s077C9zAFZO6sGPz93DfpYysstIbhh6AxcNvIhOrTo1RtWSJEmSpAZg2KHmZ/Ff4OkZVO/IofTuBYQQ8dbejLeasjIRpOJwx/CdnJZ/HtNPmM7IriMbq2JJkiRJUgMy7FDzsmU5PPJvAFS92QYCRAduBbIhx+xJETWtI1bmR6zvn+DibqMNOiRJkiTpOGLYoeZj6yq47TKqKzuwc3E79m7KBaKDuznSEfz+ghjzToyRiBIEAjmxHAp7vufsGkmSJElSC2LYoeZh+b0w+1+prmhD6eNtIJk6eCsA63rDn6bGWdcvTut4Lt+Y+A2q6qoo7FnI+B7jG69uSZIkSVKDM+xQ07fuabj/eiBQvTFxWNCRiWWDjrX9YpzSZzL/NO6fDDgkSZIk6Thm2KGm79kfUb0jQfW2VqT2v335rRkdvz8/xrp+cVrFcw06JEmSJEmGHWritr1G9auLKZvXjZB5+3Iming5vycPn7GdEWdcypc6D7JlRZIkSZIEcPDETqnpCQHmfJ2qsk6ETET23JXs2SuBwJsF21jTL+KJ0icMOiRJkiRJBxl2qMmqfuAmyu9dRuXanEOuByBEsDI/G3ykMimKtxY3QoWSJEmSpKbINhY1SdUP30rZf/yWkGkHBw+Xzb5Kx7JzOtb0i4iIPF5WkiRJknQIww41PRteofr27x0IOrICkIlHzB0Lz42Ns6ZfjNxYgsuGXMalgy+1hUWSJEmSdJBhh5qeNU/QtnsNcGjY8dRY+MNFcUImzoTO5/OVU6425JAkSZIkHcaZHWp6QobWnZMAZKJAOoJkAp4de+Cva5Rh4bpAumZAIxYpSZIkSWqq3Nmhpqd8KVXlPYGIJ8dH7OwYsTI/4o2+UXYyaUiQ3DOQBet3MmFAXmNXK0mSJElqYtzZoaalehfVLz9P+UvZHO7s5YGV/eOsajeZie2vJ7PrAmrLriOeGsjkQV0buVhJkiRJUlPkzg41La/PoXJdK8hkT2CJp2HUhjQrh3SmsOvFfHFiVxas38nkQV3d1SFJkiRJeleGHWpSqh+/g6o32xHx9jGzq/oniNUNORhwGHJIkiRJko7GsENNR/UuquavhNAWgAywYsIwRhdezw0jTzXkkCRJkiS9L4YdajKqH7qFyvVtgLd2dcT4yJe+y7SJExq3MEmSJElSs+KAUjWsnTvhwguzv/9K9bw52dNWyIYdayZOoLNBhyRJkiTpAzLsUMP605/g8cfhz38+9HpNBamtJQCkI0gm4N4Ry1mybUmDlyhJkiRJat4MO9RwQoBf/CL7+he/yP75gMySmewuaU15r1zuPj3iB1fFeb1voHhrcSMVK0mSJElqrpzZoYYzfz5UVWVfV1bC88/D6acDsOu2P5PeH+fX56VZ3TeHWAStYjkU9ixsxIIlSZIkSc2ROzvUcG66Cfbty77et+/gLo/01lJ2Pr+FNUNyWd2rHdVlnyO183y+dsJ/M77H+EYsWJIkSZLUHLmzQ/Xjsstg9uxDr+Xmvt26EgL7dz9O+odt2b2qA5lkFx4fkaKu6iQy1UOprRnKjp29G75uSZIkSVKz584O1Y///E/Iz4fWrd++Vld38OX+M3PJfaiGtt+uoeet22k9vobrH8swpvpFctqUkpOIMXlQ10YoXJIkSZLU3Bl2qH6MHg2rVsGll0LbtofdTk7NIcoJRAmIcgLtJlWTSMPoDWnOGLeHousmM2FAXiMULkmSJElq7gw7VH/atYO774af/xxatTrkVs7cJCEZEVIQkhF7FrYlFYc3CnL40pQLDDokSZIkSX8zZ3ao/p10UjbsqK09eKn1s3XsvyiXDde14+EdnahpczKvXdmZb1/7jw4llSRJkiR9KIYdqn/FxZBMZl9HEbRpAzU1pJam+HxdLwa3ac8zPT7DDy8ew/geAxq3VkmSJElSs2cbi+rf/PlQU5MdVpqfD0VF0L8/f766N5XxOP1KTqRdbpwrTuzb2JVKkiRJkloAww7Vv5dfhng8exztypVw+eXsfPV5/jyhM+dX7OPe1AVcdmJf2rdyo5EkSZIk6cMz7FD9GzkSbrkF7rorO7QU+K8lP2V/DCZ178a15z7IeSPXN3KRkiRJkqSWwn9KV/175JFD/vjshmd5fOPTjOtezaUXrCInVkwydRery2czovcFjVSkJEmSJKmlcGeHGtzdr98NQGGvanJigUQskBNPUVH9ZCNXJkmSJElqCdzZoQZXVvUmUQgs2tKOZCaCEJFMJ8hre15jlyZJkiRJagEMO9Sg1lSsoXTvRj6zew+rwkeZfkc7vnBqiry259vCIkmSJEk6Jgw71KAeWv8QCeC6TEc+uuUKxufnccrgkxq7LEmSJElSC+LMDjWYdCbNI+se4rTq/eQMuphNVfuZWJDX2GVJkiRJkloYww41mJe3vMy2mh1csmcPi9qfCcDEgV0auSpJkiRJUktj2KEG8/C6h+lAjLNyuvN4RT86tE4wolfHxi5LkiRJktTCGHaoQVQnq5lb+iTn79lLq1GXsrC0gsIBecRjUWOXJkmSJElqYQw71CDmls2lJr2fS/fsoWrQJazdttcWFkmSJElSvfjAYUcURa2jKPpEfRSjlmth+S/55zE7aD+kPQtqCwCYVGDYIUmSJEk69t7X0bNRFMWBC4CrgPOB+cC99ViXWpDFW3/NdybPIycWSI2LmHPbd8lNXMnYfp0auzRJkiRJUgt01LAjiqIzgauBi4FXgFOBgSGE6gaoTS3Ejpr7yIkFEjGAQJv+r3Ji8vO0SsQbuzRJkiRJUgt0xDaWKIo2Av8FPA+MCiF8DKgx6NAHVb5vOMlMRCoDqUzE3JKzmOS8DkmSJElSPTnazo77gMuBTwHpKIoeBEKDVKUWZc2Ojnx5fT7XDezA9px/ZOG6Ar50pmGHJEmSJKl+HHFnRwjhy8BA4OfAWcDrQPcoij4ZRVH7hilPLcHarYvJbEowsfMfWV06lVgmzUkD8hq7LEmSJElSC3XU01hC1tMhhOlkg4+rgMuAkgaoTS1AJmRYV7OFIVFr6DuBTZVP8bVTb2fjrqcauzRJkiRJUgv1vk5jAQghJIGHgYejKGpTfyWpJdm04zVqCAztMZ6Vmx/n/13+FXLiKZLp2awun82I3hc0domSJEmSpBbmqDs7jiSEUHOsC1ELc+ONEEWs+YfTARj641lsfPxGcuIpEvEMOfEUFbO+BlF0+M+NNzZq6ZIkSZKk5u1vCjvejyiKbo2iaFsURSvece3GKIo2RVG05MDPxfX1+WpkN94IIbD2ivEADH5uK2VDvkgynSCVjpFMJ8i7/GcQwuE/hh2SJEmSpA/haEfPvu8WlyP4E3Dhu1z/RQhh/IGfOR/yM9SU1VSydk8ZfeNtaZvbjuLSEXzpzp+y8JZRlO60hUWSJEmSVD+OtrPjlbdeRFH0qw/6xiGE54Bdf0tRaiFef5Q1OXGG5g0jhMCi0go6tjmDU76wwqBDkiRJklRvjhZ2RO94feox/MwvRlG07ECbi+ePtmDJlTMpyclhSK8JlO6sZsfeOiZ45KwkSZIkqZ4dLewI9fB5vwEGA+OBcuDnR3owiqLpURQVR1FUvH379nooRfWqppLSDfNJRRFD8oZSXFoBQOGALo1cmCRJkiSppTta2DHiwA6M5e94vSyKouVRFC37Wz4shLA1hJAOIWSA3wGTjvLsLSGEwhBCYffu3f+Wj1Njev1R1sazL4d0HpJtYWmdYGiP9o1blyRJkiSpxTvaENKRx/rDoijqHUIoP/DHK4AVR3tezdiGX9DxtDpOrKhhYKeBLCp9iZMG5BGLRe+9VpIkSZKkD+GIYUcIoRQgiqJrgedCCGs+yBtHUXQncBbQLYqijcD3gLOiKBpPtkWmBPiHv61sNWkbfwUXLuTkOEzIVJDa/Cfe2NqXS8f1yd7/3vcatz5JkiRJUov2fo6XzQd+G0VRAbAIeA6YH0JYcrRFIYSr3uXyHz5ogWqGKv4MfSAeAwiU1/0K+BEnvTWc9MYbG682SZIkSVKLd7SZHQCEEL4XQjgHGA3MB75ONvSQ3t3mjqQzEALEIuhdsJKJw55hfP/OjV2ZJEmSJOk48J5hRxRF/x5F0aPAE8AQ4GtAv/ouTM1UJgPLN/Lquh4EIIogHgWmjimmbe772UgkSZIkSdKH855hB3Al0BWYCzwAPPiOIaPSobYuh71bKd46ltp0RCoDyUzEvuoLGrsySZIkSdJx4j3/qT2EcFIURR2BU4HzgFuiKNoWQjit3qtT87PmSQCe2NmGTQvO5uy+bfn1vOF8fuI1jVyYJEmSJOl48X7aWMYA04BrgE8Bm4B59VyXmqu1c9ncewxrd5cwNO/vKdn0SxatOZsJbw0nlSRJkiSpnr2fNpYfAR2AXwIjQwhnhxC+W79lqVmqqYQNr/Bcr8EAnNHvDBaV7qJv5zb06tS6kYuTJEmSJB0v3k8byyUNUYhagPVPQ0jzWqc3+eeCPdSln2VfbSXXnb6K1eVJRvR2bockSZIkqf55PIaOnTVzWTmsLd867QVyYoF0+Dy3/H2MeBRIpv/M6vLZBh6SJEmSpHr3ftpYpPcWAqydy+sjc8mJBRIxDvxOk4hnyImnqKh+srGrlCRJkiQdB9zZoWNjy3IW9NpOsg2kQwSZkP0dYoQQSKYT5LU9r7GrlCRJkiQdB44YdkRR1An4NnA50AMIwDbgQeBHIYTKBqlQzcIbZT9m3KcrKYwF0hlYsr2Q+xZewu7dXfnM5BLy2p5nC4skSZIkqUEcrY3lHqACOCuE0CWE0BU4+8C1exqiODUfuzo8Qat4tn0lHoNM6M9ji0+hQ6szOGXwzww6JEmSJEkN5mhhR0EI4cchhC1vXQghbAkh/BgYUP+lqakqKiqioKCAWCxGQUEBC2ddw0nDdhCRHd2RDhGkL6ayOsmYfp0au1xJkiRJ0nHmaGFHaRRF34iiqOdbF6Io6hlF0TeBDfVfmpqioqIipk+fTsHEcn7wxzYUTCynNnkPsRhEUTbs2L15HLsqPwLA2L6GHZIkSZKkhnW0sONTQFfg2SiKdkVRVAE8A3QBPtkAtakJuuGGG5h4cYpH70zyrc9U8+idSTb0b0UIkElDLA3dc7/I8k1VxGMRI3p1aOySJUmSJEnHmSOGHSGEihDCN0MIIw7M7MgLIYw8cG1XQxappqOsrIyplyQOOV7245OqiEWQjqBs67XQ81qWb9rN0B7taZ0Tb+ySJUmSJEnHmSOGHVEUnRxFUccDr9tEUfT9KIoeiqLoxwdOatFxKD8/n7kPp0hmIlKZbNtKjOxQ0gjYmthFCIGVm6psYZEkSZIkNYqjtbHcClQfeH0z0An48YFrf6znutQEFRUVsXfvXhaXtOb6Jwbyswc78u2b2hwMPlKZiE65l1FetZ+d++oY63BSSZIkSVIjSBzlXiyEkDrwujCEcNKB189HUbSknutSE/PWYNKJF6e49F878vKGJN+etptLxuRR1j2XqlPH0Snv8wzrcg2Pr8we4DPGnR2SJEmSpEZwtLBjRRRFnwsh/BFYGkVRYQihOIqiYUCygepTE/HOwaQ5sR0kMxFbH8ilcG8uw9bXwBV3Q4deAKzYlJ3hMbJXx0auWpIkSZJ0PDpaG8t1wJlRFK0DRgEvRVG0HvjdgXs6jrzbYNKplyQY0Go3tOtxMOgAWL6piqE9OtAm1+GkkiRJkqSGd8SdHSGEKuCzB4aUDjzw7MYQwtaGKk5NQ1FREbFYjOcXJ0hOi4BAMhMx9+EUv8lvB71POPhsCIEVm6o4c1iPxitYkiRJknRcO1obCwAhhN3A0gaoRU3QW7M6Trsiznkfz+W/nu1J7qbdzH0oxdLHEwz/aoBeb4cdW3fXsmNvHWP72sIiSZIkSWoc7xl26Pj2brM6Lroqh+dnpnnotzcS2/CjQ3Z2LN9UBeBJLJIkSZKkRnO0mR3SEWd1ZDIZLhrfJ/tQr0PDjlgEI3u7s0OSJEmS1DgMO3RU+fn5zH04RTITkcpwcFZHfn4+bFkGuR0gbyCQbXn55W0PsH97GaOGDaGoqKiRq5ckSZIkHY8MO3RUM2bMYNmqdlz/xEB+9lBHLroqh4VzEsyYMQPKl0GvsRCLHZztccL4Wr54wRzyT4Dp06cbeEiSJEmSGlwUQmjsGt5TYWFhKC4ubuwyjjtFRUXccMMN7J+0n24XdOO1f3mN/t37M2PGDKZd9Wn4r35w0t/DRT+moKCAgoltebRoHTnxFMl0ggs+3puyZVBSUtLYX0WSJEmS1AJEUbQohFD4Xs+5s0Pv6q2dGgUTy/nGlzOMyFTQmtbZoGPaNNi5DpLVB+d1lJWVce7FncmJp0jEM+TEU5x7UQfKysoa+ZtIkiRJko43hh16V+88heVfJm/n9s+VM/HiFDfccEP2gS3Lsr8PnMSSn5/P/IWdSaYTpNIxkukETz26JzvbQ5IkSZKkBmTYoXd1pFNYDu7UKF8K8VzoPgLIzvZY/Hpvrr7lh8y4ZTQXfLw3i57anp3tIUmSJElSAzLs0Ls66ikskN3Z0WMkxHMAmDZtGqdMvYTFq3vy/X9eQdkyuOWWW7ItL5IkSZIkNaBEYxegpmnGjBlM/8J0rn2kDye2reKRW/axcE6CW26ZAVt+D/3mQWrSIWvinXowpVtvSjKZRqpakiRJkiTDDh3BtGnTKAtl3FF5B4/8YBd5O3tzyy0zmDZ1P3S5Hs4C0vNg6x+g57UAbNhVw7kjejRq3ZIkSZIkGXboiNqNakd8RZyNL22kQ26H7MU3L4buZBugAlB9P3AtNXVpduytpX+XNo1XsCRJkiRJOLND76KoqIiCggJunnUzdaV1zL539ts3234M0mR/Mgf+DGysqAagf5e2DV6vJEmSJEnvZNihQxQVFTF9+nQGnbqVL126lyHx7UyfPp2ioqLsAz2vhccmwQtdYNfv325hORB29Msz7JAkSZIkNS7DDh3ihhtuYOLFKR75cy1fPGkbd39jJxMvTnHDDTe8/dAbVbDjYweDDsjO6wBsY5EkSZIkNTrDDh2irKyMqZckyIkFEjHIiQWmXpKgrKws+8CerbCnHHqPP2Tdhl3VtM6J0b19q0aoWpIkSZKktxl26BD5+fnMfThFMhORykAyEzH34RT5+fnZB8qXZn/3HnfIug0V1fTLa0sURQ1csSRJkiRJhzLs0CFmzJjBwjkJ/u53vfjlS9246KocFs5JMGPGjOwDb4UdvcYesm7Drhr659nCIkmSJElqfB49q0NMmzYNgBkbZrDovmpY2I5bbplx8DrlS6DrEGjd8ZB1GyqqKSzIa+hyJUmSJEk6jDs7dJhp06bReUBnrvvUdZSUlLwddEB2Z8dftbBUVSfZsz9Ff09ikSRJkiQ1AYYdOszeur3sqdtDn/Z9Dr2xbydUbTh8OOmBY2c9iUWSJEmS1BQYdugwm/dtBqB3u96H3ihfkv3918NJd2XDjn7u7JAkSZIkNQGGHTrMln1bgA8Qdhzc2WHYIUmSJElqfIYdOszmvdmdHYe1sZQvhbwCaNP5kMsbdtXQsXWCTm1yGqhCSZIkSZKOzLBDh9m8bzM5sRy6tel26I3ypYfN6wAo21Xtrg5JkiRJUpNh2KHDlO8tp1e7XsSid/z1qKmAipLDWlgg28biSSySJEmSpKbCsEOH2bxvM33a/XULy7Ls7z6H7uzIZAIbK2o8iUWSJEmS1GQYdugw5XvL6d3+SMNJDw07tu+tpS6VsY1FkiRJktRkGHboEHXpOrbXbH+Xk1iWQqd8aNvlkMtvHTtrG4skSZIkqakw7NBBRUVFDC8cDsB/3/jfFBUVvX1z8xLofcJha94+dtY2FkmSJElS05Bo7ALUNBQVFTF9+nRO+3yci8bU8GhxNdOnTwdg2pkVMGoVtBpy2LoNu2oA6OfODkmSJElSE2HYIQBuuOEGJl6cYtYvasiJ7eEfxkVctCWH5U99GT65A/oA6Xth6x+g57UH123YVU33Dq1onRNvvOIlSZIkSXoH21gEQFlZGVMvSZATCyRikBMLTL0kwdknV0Cc7N+UGFB9/yHrssfO2sIiSZIkSWo6DDsEQH5+PnMfTpHMRKQykMxEzH04xdMv50Ga7E8GaPuxg2uKiopYsHwN8x+bRUFBwaEzPiRJkiRJaiSGHQJgxowZLJyT4O9+14tfvtSNi67KYeGcBGPPvQmePB3m/3/27jy+8rq+9/jre5Ykk2X2VSCEAUQRSb8tXQAAIABJREFUQZgZN9Aqg+IgFW9FK0bqVWus6L16W6u28bpg06q111ZrwYgL2ogLWBecEWVU1Co4M7KJImsIyzCZJTPZz/q9f5yTTDLJsEm2k9fz8TiPc87v9zvnfJP58Qt55/P9fBfBvstGp7B0dHTQ8ldv49QTHuZdr7uFxpOhpaXFwEOSJEmSNONCjHGmx/Co1q9fH7dv3z7Tw6h4HR0dtHW2MbR/iPjNSFtbG83NzXDZSyBdA2/43uixTU1NHPOchWz+yh9IJ/PkCinOPn8NXbdAZ2fnzH0RkiRJkqSKFULYEWNc/2jHWdmhUc3Nzax56hqaz2ums7OzFHQA7L8PFjeOO7arq4szX1ZPOpknlSySTubZuKmBrq6uGRi5JEmSJEkHGXZoVKFYYO/QXlbWrjy4MTcE/btgcdO4YxsbG/nZ9fXkCinyhQS5QoqtW/pobBwfikiSJEmSNN1celaj9g3voxAL48OO/feX7g+p7Ghra+Odn/0+zZe1cUriK2zdfIAdW3fT3t4+jSOWJEmSJGkiww6N6h7qBmBF7YqDG/eXp6UsOXrcsc3NzXzvoQVcf1eRb//rrTQ2NtLe3n5w6oskSZIkSTPEsEOjugdKYceq2lUHN+7vLN0vnjg9ZdHqRo5LDtBZLE7D6CRJkiRJemzs2aFRu4d2A7BiwSGVHckqqF894fiHezOsXlgzXcOTJEmSJOkxMezQqO7BbhIhwbIFyw5u7LkPFh0FiYmnyq4Dw6wy7JAkSZIkzTKGHRrVPdjNspplpBJjZjft75rQrwOgUIzs7s+welH1NI5QkiRJkqRHZ9ihUd1D3eObkwLsvw8WTww79vZnKBSj01gkSZIkSbOOYYdGdQ92j192NtMPg3snbU76cO8wgNNYJEmSJEmzjmGHRu0e3M3KBWPCjsMsOwvw8AHDDkmSJEnS7DRlYUcI4QshhO4Qwm/HbFsaQvhRCOHO8v2Sqfp8PT7ZQpb9mf3jp7GMhB2TTGPZVa7sWL3IsEOSJEmSNLtMZWXHl4CXHbLtfcDWGOPxwNbyc82wjo4OTlh3AgCf+NAn6OjoKO3Yf1/pfpKw4+HeYZKJwPJ6G5RKkiRJkmaX1KMf8sTEGH8WQmg6ZPN5wIvKjy8Hfgq8d6rGoEfX0dFBS0sLZ7whyaaThvjBjUO0tLQA0Ly8C9K1ULd8wusePpBhRX01yUSY7iFLkiRJkvSIQoxx6t68FHZcHWM8qfx8f4xxcflxAHpGnj+ShoaGuG7duikb53x2/fXXU9OQ5eQTIyFAjHDL7wLDfVU8d+0iyA3BEadNeN3vd/ZSKEZOOmLRDIxakiRJkjQfXXfddTtijOsf7bgZa1AaSynLYZOWEEJLCGF7CGF7LpebxpHNL5lMhiXLAiFAAEKAJcsCmUwG8sOQmnyaSrZQpCplf1tJkiRJ0uwzZdNYDmNXCGFNjHFnCGEN0H24A2OM7UA7wPr16+NPf/rTaRri/NLU1MTRz9zJlitypBORXDGw6YIUcXgNP31TEZ75Gnj5Jya87pkfuoY/O/UIPnzeSTMwakmSJEnSfFSaJPLopvtP898F3lB+/AbgO9P8+TpEW1sb2zaneN2/r+TT21aw6YI02zan+PjFrTB8ABY3TnjNYDZP33CeVa7EIkmSJEmahaassiOEcAWlZqTLQwgPAB8EPgp8I4TwZuA+4DVT9fl6bJqbmwH4h9/9A7dekyO/rZb29jZec+Yz4bPAkklWYjlQWnZ2VYNhhyRJkiRp9pnK1VguOMyujVP1mXpimpub+e7V32VpzVIu+cAlpY2/v7p0P0llx8O9pbBjtZUdkiRJkqRZyA6TAmDP0B6W1Sw7uGF/V+l+8cTKjl3lsGPVQsMOSZIkSdLsY9ghirHIvuF9LF+w/ODG/fdBVQMsWDLh+IcPZAArOyRJkiRJs5Nhh+jN9JIv5lm24JDKjiVHl9aiPcSu3mHqq1PUV0/3Yj6SJEmSJD06ww6xd3gvwPhpLD33TdqvA0oNSlctrJ6OoUmSJEmS9LgZdoi9Q6WwY3QaS4ylyo5J+nUA7OobdgqLJEmSJGnWMuwQe4b2ABycxjLUA9m+w1Z27DowbHNSSZIkSdKsZdih0Wkso5Ud9/8bnJGB2j9MOLZYjHT3ZVht2CFJkiRJmqXsMCn2DO0hlUixsGoh7Po8rL0YjgcKn4JdJ8OqNx88diBDvhit7JAkSZIkzVpWdoi9Q3tZVrOMEAIMXgVJSmdGgtLzMXaVl5017JAkSZIkzVaGHWLv8N6D/TpqXwUFSrdi+fkYD/cOA9igVJIkSZI0axl2iL1Dew/261j1Zvjlq+An1bCnfdwUFhgTdljZIUmSJEmapQw7NDqNZdTwCXDDUljzlgnH7jowTCLA8vqqaRyhJEmSJEmPnWHHPFeMRfYOj6nsAMj0QXX9pMc/3DvMioZqUklPHUmSJEnS7ORvrPPcgcwBCrFwsGcHQLYfqiYPO3b1DjuFRZIkSZI0qxl2zGMdHR2se8E6AD747g/S0dFR2pHpP2xlx67eYVdikSRJkiTNaqmZHoBmRkdHBy0tLZzxpiSbThpky/ZBWlpaAGjO9kNVw6Sve/jAMM85Ztmk+yRJkiRJmg2s7JinWltb2XBOnm9/sp93nLqLb3+ynw3n5GltbZ20Z0dHRwdNxx5P73Cer7R/+mAViCRJkiRJs4xhxzzV1dXFWeemSCciqQSkE5Gzzk3R1dU1oWfHSBXIMRtquehF3+D4xk5aWloMPCRJkiRJs1KIMc70GB7V+vXr4/bt22d6GBWlqamJpg072XJFjnQikisGNl2QpnPbGjrfnoannQN/+m+jxzaeDNdcuZN0Mk+ukOLs89fQdQt0dnbO7BciSZIkSZo3Qgg7YozrH+04Kzvmqba2NrZtTvHnH13Gv9+4ik0XpNm2OUVbW9uEyo6uri42bmogncyTShZJJ/Ns3NRQqgKRJEmSJGmWMeyYp5qbm2lvb+f2e5fwuZuW0bltDe3t7TRf8FrIDUL1wQaljY2NbN3SR66QIl9IkCuk2Lqlj8bGxhn8CiRJkiRJmpyrscxjzc3NPPjUB/nWnd/its7bShuHD5Tux1R2tLW10dLSwivf+wo2nl3L1Zf8jB1bu2lvb5+BUUuSJEmS9MgMO+a5bCFLdbL64IZMf+l+zGoszc3NALRedRO//8F6EjdfV6oCKW+XJEmSJGk2MeyY5zKFDFXJqoMbsuWwo2r80rPNzc38Kjyd2x7q5Sc2JZUkSZIkzWL27JjnMoXMYSo7GiYc2zOYZUlteppGJkmSJEnSE2PYMc9l8oeEHdm+0v0hlR0A+wZyLK2rmrBdkiRJkqTZxLBjnssUD1fZMVnYkTHskCRJkiTNeoYd81y2kH1MPTtijPQM5Fhi2CFJkiRJmuUMO+a5iT07ytNYDunZMZAtkC0UWVpr2CFJkiRJmt0MO+a5w1Z2HBJ27OvPAjiNRZIkSZI06xl2zHPD+WFqkjUHN2T6ISQhVTPuuH2Dhh2SJEmSpLnBsGOem7Syo7oeQhh3XM9AKeywZ4ckSZIkabYz7JjnJvbs6IeqhgnH7S2HHcsMOyRJkiRJs5xhxzyXLWQPCTt6J1121soOSZIkSdJcYdgxz2UKmYnTWKomhh37BrOkk4GG6tQ0jk6SJEmSpMfPsGMeK8Yi2eKhlR39k1Z27OvPsqS2inBILw9JkiRJkmYbw455LFsoTU0ZF3Y8QmWHK7FIkiRJkuYCw455LFPIAExS2TGxQWnPQKmyQ5IkSZKk2c6wYx4bqewY37Ojz8oOSZIkSdKcZtgxjx2+smOSsGPAsEOSJEmSNDcYdsxjE8KOfAaKuQmVHflCkQNDOZedlSRJkiTNCYYd89iEsCPTX7o/pGfHgaEcMcLS2vR0Dk+SJEmSpCfEsGMem7AaS7avdH9IZce+gdJxS+urkSRJkiRptjPsmMdGKjtGG5SOVnYcJuxwNRZJkiRJ0hxg2DGPTZjGki2HHYdUdvQMlsKOJXVOY5EkSZIkzX6GHfPY4Ss7xvfs2Fuu7FhW5zQWSZIkSdLsZ9gxj42EHTWpmtKGw/Ts6CmHHYttUCpJkiRJmgMMO+axCQ1KD9uzI0ddVZKadHI6hydJkiRJ0hNi2DGPTZjGcpieHfsGMiyttzmpJEmSJGluMOyYxw5f2TG+Z8e+wZwrsUiSJEmS5gzDjnlsOD8MjK3s6INkNSTH9+boGciypM6wQ5IkSZI0Nxh2zGOZQoZESJAKqfKG/gn9OgD2DWRZatghSZIkSZojDDvmsWwhS3WymhBCeUP/hH4dUA47nMYiSZIkSZojDDvmsUwhc7BfB5QrO8b36xjKFhjKFZzGIkmSJEmaMww75rFsMXuwXweUenYcUtnRM1hqYrrMsEOSJEmSNEcYdsxjw/nhSSo7Dl12thR2WNkhSZIkSZorDDvmsZGeHQc3TOzZMRJ22KBUkiRJkjRXGHbMY5P37Jh8GothhyRJkiRprjDsmMcmr+wY36B0b3857HA1FkmSJEnSHGHYMY9lCpmDDUpjLIUdk1R2JAIsWpCegRFKkiRJkvT4GXbMY+OmseQGIRYn7dmxpLaKRCLMwAglSZIkSXr8DDvmsXGVHZn+0v0kq7G4EoskSZIkaS4x7JjHMoUMNcma0pNsOew4pGfHvoGs/TokSZIkSXOKYcc8li1kx1R29JXuJ+nZsaTOfh2SJEmSpLnDsGMeG9ezY7SyY+I0lqV11UiSJEmSNFcYdsxj48KOSXp2FIuRnsEcS63skCRJkiTNIYYd81SMcXyD0kl6dvQN5ykUI0vs2SFJkiRJmkMMO+apXDEHMKayY3zPjo6ODk559vMB+If3v5eOjo5pH6MkSZIkSU+EYcc8lSlkACbt2dHR0UFLSwvHnpbkohd9g+OO3UVLS4uBhyRJkiRpTkjN9AA0MyaEHZmDYUdrayvrNq7g6stuJJ3cxv86M8XZe9bQ2tpKc3PzDI1YkiRJkqTHZkYqO0IInSGEW0MIN4UQts/EGGajjo4OmpqaSCQSNDU1TWklxUjYMa5nR7oOEgm6urrYuKmBdDJPKlkkncyzcVMDXV1dUzYeSZIkSZKeLDM5jeXFMcZnxRjXz+AYZo2RqSNNG3Zy8RcX0LRh55ROHZlY2dE32q+jsbGRrVv6yBVS5AsJcoUUW7f00djYOCVjkSRJkiTpyWTPjlmitbWVDefk2XJFjvddOMiWK3JsOCdPa2vrlHxetpAFDgk7qkphR1tbGzu27uZ//P2r+JdrXsfZ569hx9bdtLW1TclYJEmSJEl6Ms1U2BGBH4YQdoQQWmZoDLNKV1cXZ52bIp2IpBKQTkTOOjc1ZVNHRis7UmMalJYrO5qbm2lvb+f2rmP49PfPousWaG9vt1+HJEmSJGlOmKkGpWfEGB8MIawEfhRCuD3G+LOxB5RDkBZgXkyfaGxs5Nqrd/I3zQGI5IqBa6/OT9nXPrGyox+qGkb3Nzc385P8dh7cP8SWz3ROyRgkSZIkSZoKM1LZEWN8sHzfDfwX8OxJjmmPMa6PMa5fsWLFdA9x2rW1tbFtc4o3XHEEn7phBZsuSLNtc2rKpo4M54eBsQ1KD/bsGNEzmGVpXXpKPl+SJEmSpKky7ZUdIYQ6IBFj7Cs/filw8XSPY7YZmSLyj7v+kVv3FxnaVkt7e9uUTR2ZvLLjkLBjIMvTn7JwSj5fkiRJkqSpMhOVHauAX4QQbgZ+DXw/xviDGRjHrNPc3Mzqo1bTsLSBzs7OKQs6Ojo6eOvb3wrAOS89p7Tiy5ieHSP2DWZZWls1JWOQJEmSJGmqTHvYEWO8J8Z4Svn2jBijS3yMkSlkGMoPUYzFKXn/kSVuT3jmPt580m7WnrSLlpYW8oP7x1V2FIqRA0M5ltQZdkiSJEmS5paZalCqw8jkS6ukDOeHqU3XPunvP7LE7ZUfGSKdiLz1ssC5A2lSMQfVBxuUHhjKESMsrbVnhyRJkiRpbpmppWc1iRgjw4VS49Ch/NCUfMZkS9y+5BXlzGtMZce+gVJPDys7JEmSJElzjWHHLJIpZEYfT1XYUVriNk+uGMgXIVcM/PqHhdLOMT07egbLYYc9OyRJkiRJc4xhxywyHWHHyBK3F/zbCj69fSWbLkhz33XJ0s5JKjuWWtkhSZIkSZpj7Nkxiwznh0cfT1XYMbLCy0d2fITf/yyS2baASz/4l3D/P4/r2bF/0GkskiRJkqS5ycqOWWSkXwdMXdgBpcDjrJefxcknnExbWxtfuewSAF5z4ZtKy9AC+wZyAC49K0mSJEmac6zsmEWmo7JjRF+2j8GeQVre1sI/vz4LZyQ56Z4BWlpaAOhZchrVqQQLqpJTOg5JkiRJkp5sVnbMItPRs2NEb7aXu393N687a5i3fToPZ2b4v5cVeN1Zw7S2trJvIGu/DkmSJEnSnGTYMYtMZ9jRl+2jf08/rzonQJLSmZCEV50T6Orqomcg60oskiRJkqQ5ybBjFhkbcExH2FGXquOqzREKEAtAAa7aHGlsbKRn0MoOSZIkSdLcZNgxi0xXZUe+mGcwP8iZp5/JV6+t4ef/UEXmR1W0vDrBV6+toa2tjZ7BnCuxSJIkSZLmJMOOWWRsg9LB3OCUfU5/th+A09edTnt7O5kHGrj922l+dPNRtLe309zczL6BLEtq01M2BkmSJEmSpoqrscwi01XZ0ZftA6ChqoHzms+Dwc9DzSI6L/0vAPKFIgeGcvbskCRJkiTNSVZ2zCIjYUc6kZ7asCN3MOwAoH831K0c3b9/KAdgzw5JkiRJ0pxk2DGLjAQcS6qXTFtlBzHCQDfUrxjdv38wWxqHYYckSZIkaQ4y7JhFRio7FtUsYjA/dT07RsKOhVULIdMH+eFxlR37BsqVHU5jkSRJkiTNQYYds0gmn6E6WU1tqnb6KjsGdpc21o8NO0qVHYttUCpJkiRJmoMMO6ZRR0cHTU1NJBIJmpqa6OjoGLd/uDBMdbKaBakFUxp29GZ7gXLY0b+rtLHu4DSWnvI0Fnt2SJIkSZLmIsOOadLR0UFLSwtNG3Zy8RcX0LRhJy0tLeMCj+H8MDXJmicUdjxakDJWX7aPQKAuXQf93aWNk1R2uBqLJEmSJGkuMuyYJq2trWw4J8+WK3K878JBtlyRY8M5eVpbW0ePGS4MU5Mqhx25xx52jAQpjSfDBz/zDBpPZkKQMlZfto/6qnoSIXFwGsvY1VgGsyxIJ1lQlXxiX6wkSZIkSTPIsGOadHV1cda5KdKJSCoB6UTkrHNTdHV1jR6TyWeoTj3+aSytra2s27iCa67cSWvL77jmyp2s27hiXJAyVl+2r9ScFMqVHQFql43u3zeQcwqLJEmSJGnOMuyYJo2NjVx7dZ5cMZAvQq4YuPbqPI2NjaPHZAqZJzSNpauri42bGkgn86SSRdLJPBs3NYwLUsbqy/aV+nVAadnZ2mWQTI3u7xnM2pxUkiRJkjRnGXZMk7a2Nm68voa3/PAYPnX9cjZdkGbb5hRtbW2jxwzlh8Y1KI0xPqb3bmxsZOuWPnKFFPlCglwhxdYtfeOClLF6s70Hw47+3eP6dUCpZ4eVHZIkSZKkuSr16IfoydDc3ExnsZOv7f4aO+6pYmhbHe3tbTQ3N48ekylkWFKzhNp0LZFYqvRI1Tzqe7e1tdHS0sIF//EBnv+0O7jma3eyY+vNtLe3T3p8X66Po+qPKj0Z6B63EguUKjsal9Y+8S9WkiRJkqQZZNgxjY7bcBzcAFULq7jt3ttKDULHGDuNBUqVHo8l7GhubqY/H/in3y/ipoefBZ1fpr397eOClLHGTWPp74ajnj1uf4+VHZIkSZKkOcxpLNOoq6/UQ6MYi/Rl+ybsH84PjzYoBR5X345TX/iy0cfvev9HDht0wKE9O3aPW4klVyjSO5x32VlJkiRJ0pxl2DGNRsIOgJ7hngn7hwvDEyo7Hqt7dvcDkE4GHug5/OvyxTwDuYHSaiyZfsgNjuvZsX8wB8CSOhuUSpIkSZLmJsOOadTV2zUaZOzP7J+wP5Mv9eh4ImHHvXsGqEomOOmIRTzQM3jY4wZyAwClyo6B7tLGMWFHz2AWwMoOSZIkSdKcZdgxTQrFAvf33c8zlz8TmDzsGC4Mj67GAo8v7Lh79wBHL6vl6KW1j1jZ0ZvtBcphR//u0sYx01j2DZTCDnt2SJIkSZLmKsOOadI92E2umOPkFScDE6exFIoFcsXcE57Gcu+eftauqOPIJbXsPDBMvlCc9LiRXiHjKzsOrsay38oOSZIkSdIcZ9gxTe7ruw+AB3aWgoVDKzsyhQzAuAalg/nDT0cZK18o0rVvkLUr6jlyyQIKxcjOA8OTHjsu7Ogvhx3jKjtKPTus7JAkSZIkzVWGHdPkF523A3DVryKxmOL27p3j9g8XSuHEuGksuUev7Ojo6OC4U55DrhC55GMf4o4bfwXAAz1DdHR00NTURCKRoKmpiYsuuojmN5VWafnz8/6cW361tfQmdctH32+kZ8fiWhuUSpIkSZLmJsOOadDR0cHnNn+LWExRzC8kFmq5Z9/uccdk8qXKjgWpBdSma4FHn8bS0dFBS0sL5zxnL5e/+MOcc/TP+ecP/R0AV275MS0tLTRt2MnFX1xA04adXHLJJZxw6j7efNJu1j59F9dv/R7DiTpIHgw29g1kqa1KUpNOPpnfAkmSJEmSpo1hxxQrBRJv5dSTdvLmk/aw7rifEvML6O/tGnfcpJUd5bDj0AqNjo4OAFpbW/mrc4b5zKX38sKztvGZ9od47XPuh1jkqh/8hA3n5NlyRY73XTjIlity/O+PL+DKi/fzjlN38b3Lhlj0POjaOz5Q6RnI2q9DkiRJkjSnGXZMsdbWVs5481q++Kod/K91D/Cf//OTnFTbSecDvwMOBhnPOPkZANzw3zdQk6whEBjKD41WbxzzvIf5yJdradqwkwsvvJAQAscmHqDtzSlCEkISSMKrNkXyfXvpjzWcdW6KdCKSSkA6EfmzV8Rxz5esDzywPztuvD2DWft1SJIkSZLmtNRMD6DS3f/QLt7xylWjIQNEnnP0ADc91DAaZLzurGHOeXWaq5YO8h8f/A9OSJxATaqGofwQn2j9BBvOybP5KznSiQx//drAJz+R5jVrI2sPpHn490XWnFkOOwpw1eZIavkB6lc1cu3Vef6mOQARItTWBQoxQDGSKwZq74B9ccG48e4bzLHEsEOSJEmSNIdZ2TFFLrroIlKpFA0bXsmv7j2DXDGQL0KuGPjVnctJL0zT2trK684apv2bRV75ugyfe+m9nLdukNbWVhakFjCUH6Krq4uXnl89riLjvX+b5bjzc4Q3DNL28yzv+cybGN5ay/aPVvPVa2t41vGNLD7iWLZtTvGxX6yCCMkErD9iiECk4ye1bLogzcn3w1NPO2PcuEvTWGxOKkmSJEmauww7psBFF13EJZdcwj99ZBW/+eLPeEH6Bt7yw2P4l82LeN1n3siN955Asi5J1/1dvPblAZIQykHGn55eoKuriwWpBfzuzt+RSCTY3l03GpbECIlA6V8uCa94WZJv7vozvvXNRo4drKH9s5fygtNOpDef4F8u/VcWN0QSAUL5lkrA/Q/Ar7+dZWF14GnrXjBu7PbskCRJkiTNdYYdU+Czn/0sH/vwMt79voc45viHeOeF/81xi4f5x4sjN97QRP3S44hEGp/ayK7fJQhFKBZKVR/f2xpYunQpnXd28sttv+RFF1bzwucVufjqpfz7jav49JWLCAWIBaAA3/75UgBOeuU7WVoTad54MkcuWUAxwtHPPZHtu+oolkOSGCFXCFx7dZ7TTjiyNNi6laPjzuaL9GXy9uyQJEmSJM1phh1ToFgs8poLS6uchFDa9mfH7SPfm+fdf/laBjL1APz13/8fnpWr4d5/q+GnP6zjLT88hrtuS9PX18czV/fzsbf08v3LhnjHad184Nx93HBPDT+9bRH5L9Xy4y8kaXl1gq//9mQA6p6+sfRB91zHUUtKS9fe3H0HN++upecrDey5sZpf3FDL2Rek2bY5xfvf9dbS8fUHw479Q6VmpfbskCRJkiTNZYYdU+SenjDuefdQmkJvgaetXkgs1AHwglOWceKKwKXXLOZ1/6+am3fX8uHnp3j+K+DLr3+I15x0gKoxvTrWregjt6aG67fV8JK3FvnRzUfxygvfSghwxFFrYflT4d7rOLIcdty5724WkGRhVw33fa6WRZcHOretob29nZedcWppYHUrgNKqMM8+48UA/N+/fdfo8raSJEmSJM01hh1ToK6ujov/KUeuCMUIuSJ86bYVVBWqePpTFhILpTBi/+3fgaoGPnb1nXz8Xz8JwGnLIhe+top0IpIs/+uU3iOw49cJHlqQ5rQ3fphisUhnZyd1a9Zy5JIF1KSTcMwL4b5fsro+QSLAg/33ckwuS/VJ57H+gr/n5FVJOm/bTnNzM/R3l968fuXoqjDHnprgohd9g+OO7aalpcXAQ5IkSZI0Jxl2TIHPfvaz/OK/CrzpmrV86jeraPn0Cm56eAH/8S//wVMW1VCXWgjA/gdugFP+HKrryRQyANz6QJ7np4ql1WJj6f2KMfCej69iwW8DxRC4Y9Xxo591755+1i4vTYvhmD+B3CBVD9/I6oU1HMjcw7HDw3DSq0pBCEDnL0r3A7tL93UraG1tZd3GFVzdvp2/fsl/8r327azbWNouSZIkSdJcY9gxBZqbm7n88su5eXctn//tCvbvW0h9sp7Xv/71hBB42orVAPSEIqx7IwBD+SFiMfLz7DBPO2eQZHkWTAhADKxZ+RRamkohyVlvbaapqYn//M8O7t09wDHLS9NiaDoDCHDvdaxZEugP/ayNSTj2THjKqZCug86fl47t74aaRZCqpquri42bGkgn86SSRdLJPBs3NdDV1TWN3zVJkiRJkp4chh1TpLm5efRx41PX8JQlTwFKvTGh65tvAAAgAElEQVS2XXM16WLkD8MpOrbeDECmkCHmIs96HsREaSlagGIRcoUUxy49iw2hm3WL+njfeyNNG3byP9/2TgayBfZ2/q50cO1SWHMK3dd/k9tu/CYAD901RMfXvwnJNBz9PLj3Z6VjB7pHV2JpbGxk65Y+coUU+UKCXCHF1i19NDY2TsN3SpIkSZKkJ1dqpgcwH+zL7GdpzQmjvTHa3r6apufsg1zkko+/DYDMsRnIw1XXRM5+I0SACD/6xTP47G//gmN/+EVOPT/BJed2kU5E/teL4Ou/LPKdO3/CZR+5li+1vomBgQH+9eWL+KtnFdh06iBHn9TD728d5GMtLQA0H/NC+NEHoO9h6N89uhJLW1sbLS0t/Pmn/57nHr2dH3z5VnZs3U17e/vMfMMkSZIkSfojGHZMg70xxx3fvYYvXfolLjov8r//8R5CsrRv0+WB1739b3n60W9icd1ivnrtAhZ+4uVceNqNnHz/gzz8wwe5/alPp+Wp9TzcGFlbXp0lGeD1L+jhgtP/hXfvO5qbf53lrHMXcPsNGTqPr+IfX/cH0olI7pTAH+5L09raSvN/f6v0oZ2/KFV2rDoJKFWh7M8G/vkPi/jpV7ezdC+0t7ePq06RJEmSJGmuMOyYBqtWZ3njK3rpjwma/zRAIlvqxQGkk5FTn3+AL135NRKrEyROeBFX9f4Fn333Hj56/AHeccowt97+cf7khE46dixkwxl9BCKJAIlQmu7y//7mPooRQsiSaw7c2wlVo6u5RM46N8UHruqCNadA9aLSVJb+3XDsytExNq17MfzhN/ziO1/h5CMXz8B3SZIkSZKkJ4dhxxQZWbb1lBWDXPLSTqoTkcSLofvKNMuKEMthR64YuPbqPKecOcj5ZwxTOHMFX/vBNfzozl9w+wvfyK8f+iof3/gbEscUWLH/BL6+Nc3qI/s56+m7SVJqYJqgHHwEgMgJa4dIhNJqLoUiXHt1nqVLl9K09lj+7Xl7WLf3KxxZXxzt2QHwm64eqlMJnrZ64XR/qyRJkiRJelIZdkyBkd4c/+Obq3nbKd1UJSKJRCl8uLG3yJWvSvCG96zkocUFrrypGujmq2/ZSVUS4Je8+rRf85LtR3Bp+2U0vDqy4X8WiQl4ReK/KcZANp/m0mufw9vOuoEEpZAjRiiWl6sdCT6KRfj1r1bwy+/sJ4Q+Tnx+PdWvWMqRAz3wQIrrb7uX5/5Jacw3dvVw8pGLqErZs1aSJEmSNLf5m+0UaG1tZcM5eT730nt5zpp+EuXggQJcuTnyxe8Hzn33C2j93l/x+/xi/vR/LySVKAUUIUAqUVr6tVAo8CcvKpVujPT4SCYi6WSevXcP8K6PriZfLFVvZAvw9VsW0fbjleQLgXwRQgG+dc2pFAoFnnP2Gq65cicvec1D8IZBODLPRz/9eTo6OsjkC/z2oV5ObVwyo983SZIkSZKeDFZ2TIGuri7+8sMLSCeypBKQL8LNd1Zz6XtyfPXaGi6/vJ0/9Kb4z907iTFyY99C8sU9JMpTW/LF0tKvyWSSqzaPWZ0lAYViGF0a9uffe5hbb6zirHNTXHt1nlv3J3nK61dy19ULePHCAww+tIGV6+p58YXPY+OfPYV08iqSyUgEwosyPPvn0NLSwv2DSbL5Bk49yl4dkiRJkqS5z7BjCjQ2NnLt1Tv5m+YARHLFwHs/luSn389z+eWl5Vw/+cG/YdMnX8jzn7aH7bvqeNMP1rJpeQ+5nga+eEnghmt20tLSwuWXXw6vHuZV5wRu2bWEoRWr2bqljx1bd/O2t72NzZs384Gruli6dCnD6SFOWTHI+lXD3P7bGi6+4DrSyTzvenmKD1x5IblCCsiWGpeuLfB3n4N79w9z6Td/AKe92soOSZIkSVJFMOyYAm1tbbS0tPCnLSnOfXsD23fVcf23d3H55ZfT3NxMU1MTpz43xeWvuZJ0MkeuGHjz95toef0wQ3f3sGzZMr7whS/Q3NzM6aefTmtrK5d99z6SyR4KhT0cffTRE5aGbWpq4qQNfXzupfeSTkTisyARAslEBPLUH/g1Z5+/hi9+bIi1J3SXJjAl4VXnBL69eSXHL6ph9aKaGfueSZIkSZL0ZDHsmAIjIcT7297P5/+knpiNXPqpS0e3d3V18cb3PoN0okAqAUQ4sbeKr90zTIxxwnuNDTUOZ7KpM8UYiIWRaS+9/Px79/GJxav5j8+XGplSgKs2R+qOeoZVHZIkSZKkimGD0inS3NzMh/7+QwDkenO8//3vH12OtrGxka1b+sgVUuQLCXKFND/85jCNjY1P+PNKU2fy5Iql5qS5YuCvP7aStvYTOfv8NaPTXr58VS9/+8lmfvr9E2l5dYIrfrkK6pdzaqP9OiRJkiRJlcHKjinS0dHBRW+9iPO+tpJ1x/bzvet7aWlpAQ5Oczn7/DVs3NQw2oOjvb39CX/eyHtuuoDRhqU/u2oXMT48btrL6aefTuuXf8yV+z4O917MOz/8N3R0YdghSZIkSaoY4dBpE7PR+vXr4/bt22d6GI9LU1MTTRt2suWKHOlEqUnppgvSdG5bQ2dnJx0dHbS2ttLV1UVjYyNtbW2PabrKI3ms77m7L8Nz/2krf3nGMYQQ+Pwv7uHWD51NTTr5R32+JEmSJElTKYSwI8a4/lGPM+yYGolEgou/uID3XTg42kPjo1+p5QNvHKJYLM708HjLl7dz0/37OXppLbli5DtvP32mhyRJkiRJ0iN6rGGHPTumyGQ9NK69Ov9H9eV4Mq0cuJvdfRm239fDzdf+12g/EUmSJEmS5jrDjinS1tbGts0pNl2Q5qNfqWXTBWm2bU7R1tY200Ojo6ODf33PWzhl1XYuetE3OG7FzbS0tBh4SJIkSZIqgtNYptBU9OV4MjQ1NdF4Mlxz5U7SyTy5Qoqzz19D1y3Q2dk508OTJEmSJGlSTmOZBZqbm+ns7KRYLNLZ2Tkrgg6Arq4uNm5qIJ3Mk0oWSSfzbNzUQFdX10wPTZIkSZKkP5phxzzU2NjI1i195Aop8oUEuUKKrVv6Zk0/EUmSJEmS/hipmR6Apl9bWxstLS2cff4aNm5qYOuWPnZs3U17e/tMD02SJEmSpD+aYcc8NDKdprW1lQ9ffRuNjY20t7fPmmk2kiRJkiT9MWxQKkmSJEmS5gQblEqSJEmSpHnJsEOSJEmSJFUUww5JkiRJklRRDDskSZIkSVJFmZGwI4TwshDCH0IId4UQ3jcTY5AkSZIkSZVp2sOOEEIS+AywCTgRuCCEcOJ0j0OSJEmSJFWmmajseDZwV4zxnhhjFvgacN4MjEOSJEmSJFWgmQg7jgDuH/P8gfK2cUIILSGE7SGE7bt37562wUmSJEmSpLlt1jYojTG2xxjXxxjXr1ixYqaHI0mSJEmS5oiZCDseBI4a8/zI8jZJkiRJkqQ/2kyEHduA40MIx4QQqoDXAt+dgXFIkiRJkqQKlJruD4wx5kMI7wCuAZLAF2KMt033OCRJkiRJUmWa9rADIMa4Gdg8E58tSZIkSZIq26xtUCpJkiRJkvREGHZIkiRJkqSKYtghSZIkSZIqimGHJEmSJEmqKCHGONNjeFQhhN3AfU/w5cuBPU/icKTHy3NQs4HnoWYDz0PNBp6Hmg08DzXT5vI5eHSMccWjHTQnwo4/Rghhe4xx/UyPQ/OX56BmA89DzQaeh5oNPA81G3geaqbNh3PQaSySJEmSJKmiGHZIkiRJkqSKMh/CjvaZHoDmPc9BzQaeh5oNPA81G3geajbwPNRMq/hzsOJ7dkiSJEmSpPllPlR2SJIkSZKkeWROhB0hhC+EELpDCL8ds21pCOFHIYQ7y/dLyttDCOFTIYS7Qgi3hBBOG/OaN5SPvzOE8IYx29eFEG4tv+ZTIYQwvV+h5oLDnIcfCiE8GEK4qXw7Z8y+vyufU38IIZw9ZvvLytvuCiG8b8z2Y0IIN5S3fz2EUDV9X53mghDCUSGEn4QQfhdCuC2E8M7ydq+HmjaPcB56PdS0CSHUhBB+HUK4uXwefri8fdJzJ4RQXX5+V3l/05j3elznpzTiEc7DL4UQ7h1zPXxWebs/lzUlQgjJEMKNIYSry8+9FgLEGGf9DXghcBrw2zHbPg68r/z4fcDHyo/PAbYAAXgucEN5+1LgnvL9kvLjJeV9vy4fG8qv3TTTX7O32Xc7zHn4IeDdkxx7InAzUA0cA9wNJMu3u4G1QFX5mBPLr/kG8Nry40uBt8301+xtdt2ANcBp5ccNwB3lc83robdpuz3Ceej10Nu03crXqPry4zRwQ/naNem5A1wEXFp+/Frg6+XHj/v89OZt5PYI5+GXgPMnOd6fy96m5Ab8NfBV4Oryc6+FMc6Nyo4Y48+AfYdsPg+4vPz4cuCVY7Z/OZZcDywOIawBzgZ+FGPcF2PsAX4EvKy8b2GM8fpY+pf+8pj3kkYd5jw8nPOAr8UYMzHGe4G7gGeXb3fFGO+JMWaBrwHnlVP6M4Ery68fe05LAMQYd8YYf1N+3Af8HjgCr4eaRo9wHh6O10M96crXtf7y03T5Fjn8uTP2OnklsLF8rj2u83OKvyzNMY9wHh6OP5f1pAshHAm8HLis/PyRfo7Oq2vhnAg7DmNVjHFn+fHDwKry4yOA+8cc90B52yNtf2CS7dJj9Y5yKeIXQnn6AI//PFwG7I8x5g/ZLk2qXHZ4KqW/Ink91Iw45DwEr4eaRuWy7ZuAbkq/HN7N4c+d0fOtvP8ApXPt8Z6f0jiHnocxxpHrYVv5evjJEEJ1eZs/lzUV/hV4D1AsP3+kn6Pz6lo4l8OOUeWk02VlNBMuAY4FngXsBP5lZoej+SCEUA9cBbwrxtg7dp/XQ02XSc5Dr4eaVjHGQozxWcCRlP76+LQZHpLmoUPPwxDCScDfUTofN1CamvLeGRyiKlgI4VygO8a4Y6bHMhvN5bBjV7m0i/J9d3n7g8BRY447srztkbYfOcl26VHFGHeVf8gVgc9R+p8tePzn4V5KpYypQ7ZL44QQ0pR+weyIMX6rvNnroabVZOeh10PNlBjjfuAnwPM4/Lkzer6V9y+idK493vNTmtSY8/Bl5el+McaYAb7IE78e+nNZj+Z04BUhhE5KU0zOBP4Nr4XA3A47vguMdCp+A/CdMdv/otzt+LnAgXJ59zXAS0MIS8qltS8Frinv6w0hPLc8X+kvxryX9IhGfsEs+x/AyEot3wVeW+54fAxwPKUGU9uA48sdkqsoNQb6bvmv8T8Bzi+/fuw5LQGjczA/D/w+xvj/xuzyeqhpc7jz0OuhplMIYUUIYXH58QLgJZT6xxzu3Bl7nTwf+HH5XHtc5+fUf2WaSw5zHt4+5g8QgVKvhLHXQ38u60kTY/y7GOORMcYmStepH8cYm/FaWPJoHUxnww24glJJbI7SPKE3U5pbtBW4E7gWWFo+NgCfoTRv81Zg/Zj3eROlZit3AW8cs309pYvQ3cC/A2Gmv2Zvs+92mPPwK+Xz7BZK/+GvGXN8a/mc+gNjOmdT6sR9R3lf65jtayldVO4CvglUz/TX7G123YAzKE1RuQW4qXw7x+uht+m8PcJ56PXQ27TdgJOBG8vn22+BD5S3T3ruADXl53eV968d816P6/z05m3k9gjn4Y/L18PfAv/JwRVb/LnsbcpuwIs4uBqL18IYS/+xSJIkSZIkVYq5PI1FkiRJkiRpAsMOSZIkSZJUUQw7JEmSJElSRTHskCRJkiRJFcWwQ5IkSZIkVRTDDkmSJEmSVFEMOyRJkiRJUkUx7JAkSZIkSRXFsEOSJEmSJFUUww5JkiRJklRRDDskSZIkSVJFMeyQJEmSJEkVxbBDkiRJkiRVFMMOSZIkSZJUUQw7JEmSJElSRTHskCRJkiRJFcWwQ5IkSZIkVRTDDkmSJEmSVFEMOyRJkiRJUkUx7JAkSZIkSRXFsEOSJEmSJFUUww5JkiRJklRRDDskSZIkSVJFMeyQJEmSJEkVxbBDkiRJkiRVFMMOSZIkSZJUUQw7JEmSJElSRTHskCRJkiRJFcWwQ5IkSZIkVRTDDkmSJEmSVFEMOyRJkiRJUkUx7JAkSZIkSRXFsEOSJEmSJFUUww5JkiRJklRRDDskSZIkSVJFMeyQJEmSJEkVxbBDkiRJkiRVFMMOSZIkSZJUUQw7JEmSJElSRTHskCRJkiRJFcWwQ5IkSZIkVRTDDkmSJEmSVFEMOyRJkiRJUkUx7JAkSZIkSRXFsEOSJEmSJFUUww5JkiRJklRRDDskSZIkSVJFMeyQJEmSJEkVxbBDkiRJkiRVFMMOSZIkSZJUUQw7JEmSJElSRTHskCRJkiRJFcWwQ5IkSZIkVRTDDkmSJEmSVFEMOyRJkiRJUkUx7JAkSZIkSRXFsEOSJEmSJFUUww5JkiRJklRRDDskSZIkSVJFMeyQJEmSJEkVxbBDkiRJkiRVFMMOSZIkSZJUUQw7JEmSJElSRTHskCRJkiRJFcWwQ5IkSZIkVRTDDkmSJEmSVFEMOyRJkiRJUkUx7JAkSZIkSRXFsEOSJEmSJFUUww5JkiRJklRRDDskSZIkSVJFMeyQJEmSJEkVxbBDkiRJkiRVFMMOSZIkSZJUUQw7JEmSJElSRTHskCRJkiRJFcWwQ5IkSZIkVRTDDkmSJEmSVFEMOyRJkiRJUkUx7JAkSZIkSRUlNdMDeCyWL18em5qaZnoYkiRJkiRpBu3YsWNPjHHFox03J8KOpqYmtm/fPtPDkCRJkiRJMyiEcN9jOc5pLJIkSZIkqaIYdkiSJEmSpIpi2CFJkiRJkiqKYYckSZIkSaoohh2SJEmSJKmiGHZIkiRJkqSKYtghSZIkSZIqimGHJEmSJEmqKIYdkiRJkiSpohh2SJIkSZKkimLYIUmSJEmSKophhyRJkiRJqiiGHZIkSZIkqaIYdkiSJEmSpIpi2CFJkiRJkiqKYYckSZIkSaoohh2SJEmSJKmiGHZIkiRJ0jTZcV8Pn/nJXey4r2emhyJVtNRMD0CSJEmSKlWMkf5Mnu6+DP991x4+cvXvyBci6WSCj77qmWxoWkpDTYq66hTppH+Llp4shh2SJEmS9DgVi5G9A1m6+4bZ3Zehuy/D7vKtu2+Y7t6D24ZyhQmvzxaK/PU3bh63rTqVoKEmRX11ivqR++p0OQxJjj4ubS8d01BdCkpGHtfXpFiQThJCmHTcO+7r4fp79vLctctYd/SSKfnePJKZ/vzZMIbH+vkxRoqxdB+BGKEYY3lf6XEccxwRIvGQfRNff+uDB/jNfT2cdeIqNjQtnYaveGYYdkiSJElS2XCuMCa8OBhkdPdm2N1/MMjYO5ClUIwTXt9Qk2JlQzUrGqp51lGLRx+vXFjNgcEc/7jldvKFIqlEgnduPI6VC2voz+TpH87Tn8nTV348UH780P6h0v7y9myh+KhfQyJAfXWKhpp0OSRJUV+TJp8vcsO9+yjESDIROPsZq1i1sIZECCQCJEIghEAIjHs+8jgRGLP/kNeUPzeRmOQ1lF7TtW+QS6+7m3whkkoG3nzGMRyxpJZ8oUihGMkVIoVikXwxki/E8n35eXHsMZFc+TXjjhnZV5z8/QrFyGA2T89g7uC/V3WS1JiKmrH/ojGOfRwnPebQDeNfP/E1hWIkkz/4b5hKBhKEicHFNPjSLzv56lueO2Oh01Qz7JAkSZLmgZn+a/ZMKhYj+4dy/PyO3fzy7j2sXrSA+upUKbgYrcbI0N07TO9wfsLrEwGW1VePBhcnrlnIyoaaUohRDjJWNtSwvL6aBVXJRxzLM49c/Ef9O2TyBQYyBfqH8/RlcqVgJJunbzg/PjQpByYjQUnvUI6ufYMUyr+AF4qRrb/vpjqVGP2Lf3GkImD0+cGKgCdbrhC59Lp7Drs/ESCVTJBKhNJtksfJsduT5X2JBNXpVHl/gnSyfFz52Dse7qNn8AAAATh2ZQMnH7lo3GePrYk5XIXMoZvDmFeN3Tf+veCm+/ezvbOHWN53WuNi1h29lFDenygHRxwSFAVKQRKHHDfyeGSsI6HTSCgVxhwXCFx3Rzc/vG0XEcgXilx/z96KvR4YdkiSJEkVKlcocueufr5/60Ncet09FIqRRICXnria41fVs7i2iiW1aRbXpsuPq1i8IM3CBWmSicl/yZstsvkiewcy7OnLsmcgw56+UrXF6H1/hj39pft9h6nCqE4lRoOK41fW8/xjl5XCi3KQMVKRsayu+kn7fqw7eskf9ctldSpJdSrJ0rqqx/3aHff10HzZ9eTyRdKpBB1/+dj+qh/HBSCHCUSKB5+PTL0ojplOUSxGbn3gAP/nGzeRKxRJJxN8+oJTObVxyZiwIkEqGUiGMPqL/ZPt0O/B/z33xGn9Zf/Qz3/vy54+rZ9/wuoGrrtj9+jnP3ftsmn77OkW4lTEdE+y9evXx+3bt8/0MCRJkqRZazCb5/c7e7ntoV5ue7CX23Ye4I6H+yed9lCTTpDJFw/7F/sQYNGCNIsXpMcEIlUsrk2XApHaMdsXlLfXVVFXdfheEfDI1SUxRgayBfb0ZcYFFXtH7g8JNiarwABYkE6yvKGKZXXVLK+vZnl9Fcvrq/ndzl5+cns3kdJfvt9x5nH8n7Oe+ojjrUQzXeEz058/G8Yw3z//jxVC2BFjXP+oxxl2SJIkSXPLvoEstz10oBRsPNTLbQ8d4N49A6PhxZLaNM94yiKe8ZSFnPiUhQTgPVfdMu4v+qcetZje4Rz7B3P0DGbZP5hj/1CWnoEc+wez7B/K0TNYfjzmmP7M5CEDQDoZWLTg0GqR0v1AJs83tt9PvlDqF/HCpy4nEMYFG2N7GYy1uDbN8vpqltVVsbyhmuV1pQBjWTnMWFZfzYr6apY3VFFbNXnx+hOtapA0uxh2SJIkSXNcjJGHDgxz24MH+O3/Z+++46uq7z+Ov84d2XuTkATCnrKHKIIKrtZR+3O2tspw1lH3qtvWamsddYKroNa96gAcKEqAhL1HIAkhe+/ce8/5/XHDFWRDFuH9fDSPu84593N4tBbf+Xw/3x1VrG0OOPIrG3zHJIYH0L852BiQGMbApHC6hAfs0bHQUr/NdXlMbzCyMxCp3SUo2Us4svP5L4OMEH8HqdFBzaGFH7HNj7uGGDEh/kQF+7XYlqxH+2+0RaQDhB2GYQQA3wP+eGeDvGdZ1n2GYXQH3gaigUzg95ZlNe3vWgo7RERERKSz85gWW0tqduvWWLOjiormnSMMA9Jign0dGzsfIw9jdkN7+GlzCZe/tgS3R50VInL4DjbsaM0BpY3AyZZl1RiG4QQWGIbxBfBn4EnLst42DOMFYArwfCvWISIiIiLS7nbtKhiQGMbGwurdQo31+dXUuzwA+Nlt9EkI5fQBCc1LUcLp1yV0n0s0jgbH94zhzWlj1FkhIm2i1f5paXlbRmqaXzqbfyzgZOCS5vdfB+5HYYeIiIiIHOU8pkVNg5uqBpf3p775eb2LtflV/GdhNm7T8m0DuXNzkFB/B/0Sw7hoVLKvW6NnXEiLLd3oSI50JxIRkYPVqtGwYRh2vEtVegL/BrYAFZZl7ZxqtB1Ias0aRERERETgwPMa3B6T6p1hRb2b6r2EFlUN7ubHn59X73zcz+DOXVnA6O5RXDa2GwMSw0iODGq1bTZFRI5VrRp2WJblAYYYhhEBfAj0PdhzDcOYDkwHSElJaZ0CRURERKRT8pgWpbWNFFY2UljVwOJtZbyyYCtu08JmwNCUSAzYJdxwUdvk2e81DcPbhREa4CQs0ElYgIPkqCDCApyEBToIC3ASGuBo/uzn98IDnWwtrmX6rAzfTiC3ntZXHQ4iIq2oTRb9WZZVYRjGt8BYIMIwDEdzd0dXIG8f57wEvATeAaVtUaeIiIiI7F1H2cXCsixqGt0UVjVQWNVIQWUDBVUNFFV5HwurvOFGUXUjHnPvf4U0LdheXkdaTAjdYnaGFc79hxaBTkL8HIfdgZEcFcTsqZpXISLSVlot7DAMIxZwNQcdgcAk4DHgW+C3eHdk+QPwcWvVICIiIiJH7qs1BVw7eyke08JuM5h2YneGp0b5tgmNCfEn0M9+xN/T5DYpqm7YLcgorG6g0BdoNFJQ1UDdXjowQgMcJIQFkBAeQI/YGBLC/YkPCyA+LICEsACKqhr509tLfZ0Vz106vM0DB82rEBFpO6259exgvANI7YANeMeyrAcNw0jDG3REAcuA31mW1bi/a2nrWREREZG2Y1kWa3ZUMWdtIfPWFrI2v+qA5wT72YkO8ScmxK/50fs8JsSf6BA/ymqb2FxYQ3JUECEBjuZAo8EbaDR3Y5TWNu1xXT+7jbgwfxKagwvvjz8J4bu/PphdSjpKd4qIiBy+g916ttXCjpaksENERESkdTW6PSzcUsq8dYXMW1tEQVUDNsPbjdA3IYx3MnJxe0ycdhtPXTyUhLAASmoaKa1porj5saSmkdLaRkqqvc/L6prY3181Y0L8dgksApoDDX/iwwOID/V2aUQGOTEMDe8UERGvgw07jt6NukVERESOIa3RlVBW28S364uYt66Q7zcWU9vkIcjPzvhesZzaP56JfWKJDvEH4NyhSYf8/R7Toqy2iX9/u5k3Fm7DtMBmwLTxadw8qQ9+js63taqIiHQMCjtEREREOrDqBhfPfrOZl37IwmoOC0Z1j6J7TAhRwU4ig/yICPIjMsjpe4wM8iM80LnbMM2dYUlKVCD5lQ3MW1tERnYZpgXxYf6cOzSJU/vHMzYtmgDnnvM3DmfehN1mEBvqz6+PS+TtJTm+eRmT+yco6BARkValZSwiIiIiHYxlWSzPreCtxTl8uiKfetfuAzmjgv2wGVBe59rnjiM2A8IDvcGHw26wuaiGXQ/t3yWMU/vHM6lfPAOTwlp9qYjmZYiISEvQMhYRERGRo0xlnYsPl23n7SW5rC+oJsjPzjlDEhmSEsH9n6zxdUa8fNkIhqdGYlkWVQ1uKuqaKLDuybcAACAASURBVK9zUV7XREVdE2W1rub3vO+v3l7pCzoMYPr4NO48s1+b3pt2IhERkbaksENERETkAFqzK8GyLJZsK+etxTl8viqfRrfJ4K7hPHreIM4ekkiIv/eva73iQveowTAMwgOdhAc6SY3ef/2Xzkj/eRnJgIQWvQcREZGORstYREREpNM7UFhR3+ShqLqB4upGiqsbKfI9NrC5qIZlORVYeJeGnNI3ntFpUXSPCaZ7TDDJUUE47Yc+f6K0ppEPlubx9pIcthTXEurv4JyhiVw0MoWBSeEtcNe70zISERHpDLT1rIiIiAiwYHMJV7y2BJfbxG4zOG1APIZhUFTdSElzsFHT6N7jPJsBMSH+GAYUVjX63g9w2mhwmb7XDptBSlQQabHBzQFICGmxwaTFBBMb6u+bhZGZXc7CLSWE+DtYkl3OnDUFuDwWw1MjuWhkMmcN7kKQn5puRURE9kczO0REROSY0uj2kFVcy4aCajYUVnsfC6rJq6j3HeM2LeasLaRrZBCxIf70SwxjfIg/cWH+xIb4ExvqT1xoALGh/kQF+2G3GXssAZk9dQxpMcFkldSSVVzD1pJatpbUklVcy/ebSmhy/xyEhPg76B4TTHigk4VZpb5hosF+dn43JpWLR6XQOz60zf+sREREOjt1doiIiEiHt+sSjCHJEeSW1f0caDQ/bi2p9YUJDptBj9gQ+iSEEhLg4N2MXDymhZ/dxuxpYw55GcfBLgExTYsdlfVkFdf6QpAtxTWsyK2gqsHbPWIz4IZTenHDqb0P/w9ERETkGKXODhERETkquT0mpbVNvpkZS7aW8fIPW3GbFoYBTptBk+fnX9akRAXROz6U0wck0DshlD7xoXSPCcbP8fMcjfOHdT2ieRUHu5OIzWbQNTKIrpFBjO8d63v/l90hJ/SK3c9VRERE5Eips0NERERaXWZ2OQs2FdMrLpS4MP/dBoAWVe06ELSRstpG3zapezM8NZILRyTTOyGUXnEhBPsfHb+70YBQERGRI6fODhEREWlzbo9JTlkdWcXe5RtZxbWs2F7B+oLqvR5vtxm+WRldwgM4Ljnc+zosgLhQ7/tFVQ3c+N/lvq6Iu87sd1SGBQfbHSIiIiJHTmGHiIjIMeBIuwp+eX5lnYstJTW+UGNLUQ1ZJbVkl9bi2mWJSUyIPwHOn5eTGMD5w7tyxbjuxIX5ExXkh81mHPD7Z4cGqCtCREREDprCDhERkU7Msiw+Xr6DW95dgce0sNsMLh6VQlJkIPtayWqx+wd55fX8d0kubtPCZkBogIPK+p+3anXYDLrFeLdandQ/nh6x3q1Xe8SEEB7k3GNexcWjUuifGHZI96GuCBERETkUCjtEREQ6GY9psTSnnDlrCpi7tpBtpXW+z9ymxX/Ssw/72qblHQj6q8GJvlAjOSoIp922z3OGp0Yye+oYdWaIiIhIm1HYISIi0gk0uDz8sKmEuWsL+HpdEaW1TTjtBsf3iGHygARe/2kbbo+J027jlT+OZGjKz4GDcYBVJMtyyrn81SW4PN7OjPvPHnjIgYU6M0RERKQtKewQERE5SpXVNvHN+iLmrCngh00l1Ls8hAY4OLlvHJP6x3NS71hCA5wAnDYg4bA7K8b2iGH2NHVmiIiIyNFDW8+KiIh0cLsOB40N8WfO2gLmrC0kY1sZpgVdwgOY1D+eyf0TGNU9Cj/HvpeUiIiIiBzNtPWsiIjIUc6yLL5eV8Q1szN9O5zs/BVF34RQrpvYk0n9ExiYFIZxoLUoIiIiIscQhR0iIiIdgMe02FpSy9r8KtbuqGp+rKSkpmm34yb2ieWBsweSEh3UTpWKiIiIdHwKO0RERFrZrstQhqdGUt/kYX1BlS/YWLOjivUFVTS4TACcdoPe8aFM7BNHaICDWek5eEzvcNDrTu6loENERETkABR2iIiItILaRjfF1Y0s2FzCA5+uwe2xMAzvfI38ygbM5vUoYQEO+ieGccmoVPonhtG/Sxg940J2m7tx1uBEDQcVEREROQQKO0RERA5gZ2fGiNRIkqOCKK5u9P7UNP78vLqRkpqf36tr8uxxHcuCQD8Hfzq5ly/Y6BoZeMB5G9q2VUREROTQKOwQERHZj3lrC5n+nwxfJ8beRAQ5iQ3xJybEn+O6RhAb6u/9CfGnor6Jv3+5AbfHuwzlsfMHK7gQERERaWUKO0RERPbCsizeXpLLfZ+s8QUdBjB5QDz/NzzZF2hEh/jh77Dv91pDkiO1DEVERESkDSnsEBER+YVtJbXc8cFK0rPKGJgYxqaiGl9nxvTxPQ45sNAyFBEREZG2pbBDRESkmdtjMmPBVp6cuxE/h42//WYQF45MZmlOhTozRERERI4iCjtERESANTsquf39lazOq2Jy/3geOncg8WEBgDozRERERI42CjtEROSY1uDy8PTXm3jx+ywig/x47tJhnDEw4YA7pIiIiIhIx6WwQ0REjlmLt5Zxx/srySqp5bfDu3LPWf2ICPJr77JERERE5Agp7BARkWNOdYOLv32xntmLcugaGch/pozixF6x7V2WiIiIiLQQhR0iInJM+XpdIfd8tJqCqgamnNCdmyf3JshP/3coIiIi0pnob3ciItLpZWaX8836QpbnVvLj5hL6xIfy3KXDGJqioaMiIiIinZHCDhER6bTcHpNPVuzgtvdW4jYtAC4ckcxD5w7Ez2Fr5+pEREREpLUo7BARkU7BY1pkFdewcnslq/IqWbm9grX5VTS4TN8xNgNSooMUdIiIiIh0cgo7RETkqGOaFttKa5tDjUpWba9k9Y5K6po8AAT52RmYGM6lo1MJDXDw/HdbcHtMnA4bY9Ki27l6EREREWltCjtERKTD+2JVPp+vzsdmGBRVNbI6r5LqRjcA/g4bAxLDuGBEMoOSwhncNZy02BDsNsN3/om9YknPKmVMWjTDUzWnQ0RERKSzU9ghIiIdTpPbZMm2Mr5ZX8QXq/PZUdHg+6xnbDDnDE1kcFIEg7qG0ysuBId9/8tShqdGKuQQEREROYYo7BARkQ6hsKqBb9cX8e2GIhZsKqG2yYOfw0ZiRCAGYAF2A84b1pVrJ/Zs73JFREREpANT2CEiIu3CY1oszy3nm/VFfLu+mLX5VQAkhgdwztAkTu4Tx/E9o1mXX82lM9JxuTVzQ0REREQOjsIOERFpVZnZ5b55GWkxwczfWMy3G4qYv7GYijoXdpvB8NRIbj+9LxP7xtInPhTD+HnexvDUSGZPHaOZGyIiIiJy0BR2iIhIq1mwuYQrXl2Cy2Oycy2KBUQH+3Fy3zgm9oljfK9YwoOc+72OZm6IiIiIyKFQ2CEiIi3C7THZUFjNitxKlueWszy3go2FNT8fYMHYHtHcfnpfBieFY9tltxQRERERkZaksENERA6ZZVnkVdSzPLeCFbkVLM+tYFVeJQ0uE4DIICfHJUcwJDmCj5bl4TEtnA4bt0zuw5DkiHauXkREREQ6O4UdIiKyX5nZ5czfUEREkJPaRg8rtlewPLeSkppGAPwcNgYmhnHxqBSGNAccKVFBvrkbF45M0bwNEREREWlTCjtERGSvymqbeGH+Fmb8kIVp/fx+j9hgxveOYWhyBMclR9A3IQw/h22f19G8DRERERFpawo7RETEp7bRzdy1hXy8PI8fNpXg3iXlsBlw3cSe/Hlyn3asUERERETkwBR2iIgc45rcJvM3FvPx8jzmrSukwWWSFBHI1BPT6B0fwl0frsLlNnE6bJzUJ669yxUREREROSCFHSIixyDTtFi0tYxPVuTx+aoCKutdRAX78X/Dkzl7SCLDUyJ9u6WkRgdr5oaIiIiIHFUUdoiIdHKZ2eXesKJ7FH4OOx8vz+OzlfkUVDUQ7Gdn8oAEzh6SyAk9Y3Da95y9oZkbIiIiInK0UdghItKJLdlWxqUzFuFye7eEtQCn3WBCnzjuGdKPU/rGE+hnb98iRURERERamMIOEZFOpMHlYUVuBUu2lbFkWzkLt5TS5DF9n582IJ6/n38c4UHOdqxSRERERKR1KewQETmKVda7WJpdzuJtZSzZWsbK7ZW+cKN3fAgT+sTy7YYiTNPC6bAxfXwPBR0iIiIi0ukp7BAR6eB8MzfSokmODPQFG4u3lbO+oArLAofNYGBSOH8c142R3aIYkRpJZLDfHudr9oaIiIiIHAsUdoiIdGDfbyxmyutLcHksDLwzNwCC/OwMS4nkxlN6M7J7JEOTI/c5e0MDRkVERETkWKOwQ0Skg6moa2Lu2kI+X5XP/I3FmM0JhwVM7BPLjaf2pn9i2F53ThEREREREYUdIiIdQlltE3PWFPD56gJ+2lyC27RIigjkV4O78OWaQjweE6fDxnUn9+K45Ij2LldEREREpENT2CEi0k5Kahr5ak0BX6wqYGFWKR7TIiUqiCknduesQV0YlBSOYRiauSEiIiIicogUdoiItKGi6ga+Wl3A56sKWLS1FNOC7jHBXHVSGmcM7MKAxDAMw9jtHM3cEBERERE5NAo7RERa2Zw1Bfx3SS47KutZX1CNZUGP2GCum9iTMwZ1oW9C6B4Bh4iIiIiIHD6FHSIiLaywqoH0rFLSs8qYv6GIHZUNABjA/43oytQT0+gdH9q+RYqIiIiIdGIKO0REjtC8dYV8tCyPRrfJlqIaskpqAQgNcBAX6u/bMtZmQGp0sIIOEREREZFWprBDROQQWZbF5qIa5qwt5MNleWwuqvF9NiI1kotHpTAmLZr+iWEsz63g0hnpuNze3VTGpEW3Y+UiIiIiIscGhR0iIgeQmV3Owi0lRAT5kVNWx5w1BWwrrQMgITzA17lhN2Bi3zimjU/znTs8NZLZU8doNxURERERkTaksENEZB9KahqZvSiHp+dtwmNZANhtMK5nLFNPTGNS/3i2l9cfsHNDu6mIiIiIiLQthR0ickzLzC73dV30SQhl8dZSftxcyo+bS1hfUL3bsTYDrpvYk5sm9fG9Fx8WoM4NEREREZEORmGHiByzMrPLufTldBrdJhhgAzwW+DlsjOwWya2n9SE6xI/7P1nj69wY3ztuj+uoc0NEREREpGNptbDDMIxk4A0gHu9y9pcsy3rKMIz7gWlAcfOhd1mW9Xlr1SEisi/zNxbR4Da9LywY0T2K60/pxfDUSAKcdt9xveJC1bkhIiIiInIUac3ODjdws2VZSw3DCAUyDcOY2/zZk5ZlPdGK3y0isl+VdS4+X5kPeJen+Dls3HZ6372GGercEBERERE5urRa2GFZVj6Q3/y82jCMdUBSa32fiBybdp25cbCBRFltE7+bsYicsnruPKMvbtNS14aIiIiISCfSJjM7DMPoBgwFFgHjgOsMw7gMyMDb/VHeFnWISOfy7YYipr2egdu08HPYeGvamAMGFsXVjVw6I53s0jpe/sMITuod20bVioiIiIhIW7G19hcYhhECvA/caFlWFfA80AMYgrfz4x/7OG+6YRgZhmFkFBcX7+0QETkGeUyL+RuLuXb2Uqa8tgS36d0Stsltcsf7K1m7o2qf5xZUNnDhSwvJLavn1ctHKugQEREREemkDMuyWu/ihuEEPgO+sizrn3v5vBvwmWVZA/d3nREjRlgZGRmtUqOItK7DWWayt/PTYoJZV1DNexm57KhsIDLIybgeMcxdV4jbY2IYBn52G3UuD6cPSOCGU3vRr0uY7zrby+u45OVFlNU28erlIxnZLaolb1NERERERNqAYRiZlmWNONBxrbkbiwHMBNbtGnQYhtGleZ4HwHnA6taqQUTaV2Z2ORe9tBC3x8LfaWP21AMvM/nl+Re/nE7Tzh1TgPG9Y7n7rP6c2j8Of4d9tzClZ2wIM3/cyqsLtvLlmgLOHJTAqf3iWZdfxYfL8mhym9x7fgBzCp/HHngGw+KHtcZti4iIiIhIO2vNmR3jgN8DqwzDWN783l3AxYZhDMG7He024MpWrEFE2tGPm0twebzdY40uk/Ss0kMKOz5bscMXdBjA9JPSuPOMfrsd88udUv48qTdTxnVn5oIsXv5hK5+v2o4tMA9H0FbSem/j4WXrAfhg4wfMPG0mQ+KGHOFdioiIiIhIR9Oau7EswPvvJ7/0eWt9p4h0LLZd/glgAS6Puc9jfym3rI6Pluf5ruPnsDG5f8IBz1tWtIyPN3+MFWyR3H8jOxo2YNhcAJQ2hvuOc1tuMgozFHaIiIiIiHRCbbIbi4gcmxZtLSMm2I/fjU3lqzUFPPvNZoamRB5wMGhxdSO/m7kI04InLxjCjsr6g5r5kVGQwZQ5UzAtk17bLU7JD2VhaF/WhhyHrSmNe85P4ImVf8ZlunDanIyIP+BSPxEREREROQop7BCRVpFbVseCzSVcf3Ivbjy1N1ec0J0LX0zn6lmZzJ46mqEpew8uKutdXPbKYoqqGpk1dfRBL3tpcDfwwMIHMC2TIVtMbnvPxG5W8Gu/tWTecAn9Tx3H8NRI+iS8TEZhBiPiR6irQ0RERESkk1LYISKt4p2MXAAuGJkMQFiAk9evGMlvn1/IFa8t4d2rxtIzLnS3c+qbPEx9fQmbi6qZ8YeRBx101Lpq+evLl3HmN1uIq4I+uRb2nRtNuV2c4d5BTPO1hsQNUcghIiIiItLJ2dq7ABHpfNwek3cycjmpdyxJEYG+9+NCA/jPlFHYbTYum7mYHRX1vs9cHpPr3lxKRnY5/7xgyAGXugDULVvG9mf/xUdTJnPx02uZsNqiX45F1cAULD8n2O0Yfn4EjRrZKvcpIiIiIiIdkzo7RKTFfbehmMKqRh44O2WPz1Kjg3n9ipFc9GI6l72ymHevHEt4oJPb3lvJ1+uLePjcgfz6uMQ9zltetJxF+YsYbQ+ld8ZytmTmYftmOYbHZBjeAagAht1O71PPJ+iukdQtXkLQqJEEDR3aujcsIiIiIiIdisIOEWlxby/JISbEn1P6xe318wGJ4bz8hxFc9spiLnhxIcH+DpbnVnDL5N78bkzqHse/v/F9Hlj4AD23mzSs8mBfZWHzGL7WNAswHA6wLAyn0xdwKOQQERERETk2KewQkRZVUNnAN+uLuPKkHjjt+14pNyYtmhtP7cXfv9wAgN1mMDYt2vf58qLlfJ3zNetL15NekE6v7Rb3venB6QEwMPCGHBZg+TlIuvsePBWV6uQQERERERGFHSLSst7NyMW04KLmwaT7Y1n4Qgssi/StZQzvFkVGYQbTvppG91wXA3IsrrR76L/MwOnZebyFiYHbDj8c5+DEqfcSefIFrXxnIiIiIiJytFDYISItxjQt/puRy/E9okmNDj7g8WPSovF32nC5TZwOG2PSotm87kNuy3iU7rku7nvLg8Pt7ePwdXIYBobNhueUoawf35sTxp/NcdpdRUREREREdqGwQ0RazILNJWwvr+e20/se1PHDUyOZPXUM6VmlREXlMWPZdBZWrGNQjoc/fAlO9y6dH4BhsxE8diwx111L0NChDGq1OxERERERkaOZwg4RaTFvL8khMsjJaQPiD/qc4amRlDZ9zy0/3UPP7Sa3LTAZstXCwPDN5DAAbDYMPz9f0CEiIiIiIrIvCjtEpEWU1DQyd20hl43thr/DflDn1C1JZ8nbDzEjchs9DXhwlond2qWTwzAIPv54QidP0vBRERERERE5aAo7RKRFvJ+5HZfH4uJRBxhMmrsYsubz08pMQl5cQbQH7rHD6lQb9p0pB4b3P/7+6uQQEREREZFDprBDRI6YZVn8d0kuI1Ij6RkXuu8DcxfDa2fxdaUfNZlhRDTP5LC5Ycg277IVbDYMh4OI884j/NxzFHSIiIiIiMghU9ghcgyqW7aMusVLCBo1knVR3UjPKmVMWjTDUyMP63qLtpaRVVLLNRN77vug6kL45HqWlTmJ+yqMLqb3bd+SFY8HHA4izj9fIYeIiIiIiBwRhR0ix5i6pcvI+eMfsdxuLKeTB46/ktURKfg5bMyeOuawAo+3F+cQGuDgrEFd9vzQsmDZLJZ/+xfm5zsY/V04Ac1BhwcoijRIqGg+zrJwJiYq6BARERERkSNia+8CRKTtWKZJ0T/+gdXUBKaJ1eSib+EmTAtcbpP0rNJDvmZFXROfry7g3CFJBPr9YjBp2VZ44xx+mnUHSxYEMOkzB2H13m4OyzDAz0HMlCnY/P3BbsdwOgkaNbJlblZERERERI5Z6uwQOUZYLhf599xLfWam9zXQZNhZFdPD93pkt0Pv6nj66000uU2OSw73vtE8gHR5xQbm5nyLq9jBWV+FMc7j/dgATANCjz/eN3y0bvjJvmU16uoQEREREZEjpbBD5Bhg1teTd+NN1MyfT8z117Nu7vcEbVrHp5fczl8unMSrP25jztpCZqXnMDw1CrvNOKjrvrkoh1d+3AbAPR+tZqC5gb5fXsJcfxu3xMXQozKAq+eZOD3ekMMCTMDw89ttl5WgoUMVcoiIiIiISItR2CHSyXkqKsi9+hrqV6wg/r77eCZkEFW2LKa6l3PX9Mn4x0QztkcMz3+3hce+XE9ogIOHzx2IYew/8HgnI5d7P1oNgB0PI/y+4KePviYzL4zMcD9uWOBh9EbvWrmdy1ZMuw3rzAn0uHiKwg0REREREWk1CjtEOjFXYSG5U6fStC2bhH/8g4eru/D+j9u44/ihsOYz3Js24h8zFoCrJ/Sgor6JF+dnERHk5NbT+u79mh6TR/63jtd+2sbxXWwMK/mEAQHzWJjjx+jvwbCcDPX2b/x8kmEQssuyFRERERERkdaksEOkk2rM2krO1CmYlVXEv/AiV2/OZmnRPK4f3pUpgTVsBhrWbyB47FjfOXec3peqehf//nYL4YFOpo/vsds1y2ub+Ners0gt+JKnk8rJr9tCZK6NkLVOLq6ysNi5XMXwLVuxDAObv7+CDhERERERaTMKO0Q6ofpVq8idfiXYbJQ98hR/WLyImshX8I+zmFVrMXFzEf6Bkaye9wrhowIZ0mUky2t3kFG+jv/rGczYvAw++mIp3RqGMTnJBZW5lO3IInttOjdZ6/nKDGXH/BDGrvPHzwObewQyb5iL8xa4cbibt3my2TAcDiLOO4/wc89R0CEiIiIiIm1GYYdIJ1Pz449s/9P1OKKiWHz1fdzz0yYCu83ChgWAyzCYHh/Dn7tYROQWc8OSh+jb2MQ6fz9MwAk8X1vE9WEWGWsCWLS0EZdh8JMzmMYyf4asSGBwPtT7WXxznMHc4Q5+M/kazosfwYbvP6F/jkmXpH54Kiq1u4qIiIiIiLQLhR0inUjVF1+Qd+tt1Cem8LeTriJj5TqCU2fibzVhWSZuDOxApGmxNc7g19ssMGFzYDCm5QbABUyPjwXDwMQguspi0nKTU5ZbhNdBbYTJ9uObeGBUEDWBDpx2P0bEj2BI3BCG/HZIu96/iIiIiIgIKOwQ6TTyXn2Dyr//jY2xadw98I/EhZYQHf4Coe4GXswv4k3jRBh3AufEJED+CmZs/gKH6eKP3xoMGDmJn9Z9xequJluSLFJdbvx3ODh9qcnITd5ZHIsT+hMw7RIuPqsrRvYCYiO7kGHV+YIOERERERGRjsKwLKu9azigESNGWBkZGe1dhkiH9L8VeWz9x1OcsvhTFiYMYMdvJjM4ZgEPNS0jzu3iX02xZCbfRa/BYxieGuk7b+Xsf+N86NldhoqCZbdh9UrCKCrBVlZPVSB8fZyDz+Iupcz/OGZP3f0aIiIiIiIibckwjEzLskYc6Dh1doi0oMzsctKzShmTFs3w1Mg9XrekwqoG7nl/Bb3feZFfbV3I3JSRHPfnc0ld9SdubYqkm8vFS11/Tcxpf6eXzbbH+YnVdor5eYNYAzA8JqzPBcPAfdl5rD4thR7OAVxa2qVV7kFERERERKQ1KOwQOQLeMKOE/l3CyKto4IFP1+D2WNhsBgMTw1iVV4lpgcNm8MzFQzljUJcj/s7qBhcvzs/itfkbuSF9FifsWMk7vSYyd8BoEtbfzaOxkQxobOK5olLC+3aBvQQdAEGjR2MEBGA1NYFpgmHAzk4vm40u0d2YMnz6EdcrIiIiIiLS1hR2iBymjG1lXPRSOm5zz6VgHtNifUE1Oz9ymxZXz15K34RQJvWPZ1L/eAYlhbM0p+KgOz+a3CZvLc7hqa83UV9RxdNr36LrjjW8etzZVPQM5oqo+3koMoTRDY08XVhKkM0J3U7c5/WChg4l5dVXqFu8BHtEOA1r11H54YdYHg+G00nQqJFH9OcjIiIiIiLSXjSzQ+Qw1Dd5OPe5H9lQUA14l4Cc1CeGhVvKcHtMnA4bf/nVAB78bA0ut4nDbuOikcmsK6gmY1sZpgWRQU6qGtyYpoXTYeOZi4cS6u9gWW7FL5bBlGCa8P7S7WwrrePkBAc3f/MCti2bSHzoAeqb5vNp/oc8HRXBxPhRPN73Cvxz071BR/KoQ7qvumXLqFu8RFvGioiIiIhIh3SwMzsUdogcgszscr5eV8icNQVsLq7FYTOwLG9YMXvqGIADzuwoq23i2/VFvDB/C5uKavb5XQmh/hTVNPq6Q5IjA3lkTDSJj96Ou7CQpIduJ2THv3myIYdXI8L4VbczePDER3DanK3+5yAiIiIiItIeNKBUpIVlZpdz8cvpNLlNAO44oy8ju0XtEWbsuhxleGrkHstTooL9OH94V7rFBHPpy+k0eUzsNoNhKREs3lru2x2lybR8QYcBXJHoocs9f8LT1ETK3b/Df9XNPBgRwnsRYVzY50LuGn0XNmPv8zlERERERESOJQo7RA5CbaObRz9f6ws6bIZ3LsfewoyDNTw1ktnTxvjCEoBLZ6TjcnuXwdwyuY9vGczgim2Mfup1CAqk2xV9sK15kDtT+/CFrZ6pg6Zy/dDrMQzjAN8oIiIiIiJybFDYIbIfmdnlvLkom/kbiympacJu8+5Y4nTYfAHFkfhlWDJ76pjdOkX6JISy6aMvGPy/l/CPjyFlYiWegk+4sd9ovm/I58ZhNzJl0JQjrkNEvKCqDgAAIABJREFURERERKQzUdghsg/z1hUy/Y0MTMu7jOTR8wbSJyHsoHdPORy/DD96ZH5H0EuPEpAaS/KwNTT4hfKnfhPIrNrCvWPu5YI+F7R4DSIiIiIiIkc7hR0iu8jMLmfhlhKqG9y8+tM238wMmwHlda4jWrZyqEpnzqTo8ScI7hFG1yHLqOo9nqsj/FhXsZm/nvhXzko7q03qEBEREREROdoo7BBplpldziUvp9PYPJcjLSaIvIoG31ayLbFs5WBYlkXR409Q9sorhPUw6DJ8EyUn38r0isXkVm7lXxP/xYTkCW1Si4iIiIiIyNFIYYcIUFTVwP2frPEFHQZw/vCujEmLadVlK79kuVzk33svlR99TGSvOuInhJD36/8wbdWzlDWU8fypzzOqy6hWr0NERERERORoprBDjmk/bS7h2W83k7GtHI9l/mIAaUybLlsx6+vJu/46an74iZiBVcScfxJZE29l+ve30OBp4OXJLzM4dnCb1CIiIiIiInI0U9ghxySPafHEV+t5fn4W4J3J8czFQ0kID2zTTg5fPZWV5F5+KfVrN5MwspbIP93Pmu5juerrq3HYHLx2+mv0iuzVZvWIiIiIiIgczRR2yDElc1sZby7JYXFWGbnl9b73DWBbaR1nDU5s05ADwJW/g9xLz6epoJyk0/wJu+MdMowmrps7lXC/cF6e/DIpYSltWpOIiIiIiMjRTGGHdCqZ2eW7dWZ8v6GY/63aQaCfna0ltXy/sQQLb7hxyahkPliWh8vdtgNId9W4ahG5U6biqWsi+fLjCL7+Fb4vXsqfv/sziSGJvDTpJRKCE9q8LhERERERkaOZwg7pNHbuptLkNjEMiAh0Ulbn8n0e4LTRvJMsNgOSIoOYPXVMuyxbAaj/3wxy734CLIuUB6cT+Jub+XLbl9z5/Z30iuzFC5NeICogqk1rEhERERER6QwUdshRLTO7nIVbSnDabcxKz/btpmJZYBgGBmABdgN+M6wrHyzdvlsnR1sOIPVxN1H73LVsf+l77EEOUl58Dr+hJ/H+xvd5YOEDDI0byrOnPEuoX2jb1iUiIiIiItJJKOyQo9b3G4u54rUluE1vv0ZYgAOHzcBq3k3l5sl9ePCzNb5w4/xhXTl/WNd26+QAoGwrVY9cTN4XFfjHh5M86z2cSSm8vuZ1nsh4gnFJ43hywpMEOgLbvjYREREREZFOQmGHHFUytpXxbmYu+RUN/LilFE9z0GEzYNr4NI7vEbNbmNEnIXSPcKNdQg6A1R9Q/vjNFCzyJ7Bfd5Jf/y+20FCeXfYsL658kcmpk/nbiX/DaXe2T30iIiIiIiKdhMIOOSqYpsXT32ziqXmbfHM3RnePZFluJR6Pt3Pj+B4xeyxLaZdlKr/kqsf64nZK3nifktVhhJwwmqRnXwB/Px5b8hiz183mvJ7ncd/Y+7Db7O1bq4iIiIiISCegsEM6tMxtZfwnPZul2RXklNf53rcbML53HLed3q99l6UcSNF6rHf+SOGXOyjfHEb4uefQ5eGH8djg/h//wsdbPub3/X/PrSNuxTCM9q5WRERERESkU1DYIR3W/A1F/PG1Jd5ho8BFI5P5aHle+w8YPRiWBctmYX56KzvSw6jeGkz01CnE3nwzLtPF7fNvZ17OPK4Zcg1XDb5KQYeIiIiIiEgLUtghHVJVg4vb31+J1bxmxWZAclT7bhV70Bqq4H9/xrP0PfIy06jdVk/crbcSPeUK6lx13PTdTfy04yduH3k7v+v/u/auVkREREREpNNR2CEdTm2jm8tfXUJxdSNOu4FpWh2/k2OnHcvgvStw52eTu3QQDdvL6fLXvxJx3rlUNVVx7bxrWVmykgePf5Dzep3X3tWKiIiIiIh0Sgo7pENZuKWE299bxfaKOv59yTDiwgI6ficHeJetLHoB5txLkxVL7pLBuEoq6frsM4ROnEhpfSlXzbuKzRWbeXz840zuNrm9KxYREREREem0FHZIh/Hj5hJ+P3MRpgVOu0FcWEDH7+QAqCuDj6+FDZ/TEDGB3PfLMBvrSXllJkHDhlFQW8C0OdMoqC3g2ZOfZVzSuPauWEREREREpFOztXcBIgB5FfXc+N/lmM0zOkzTIj2rtH2LOhjZC+GFE2DTXOp6XE/2mwVg2Eid9R+Chg0juyqby764jJL6El6c9KKCDhERERERkTagzg5pV5nZ5XywdDufrczH5Tbxs9vwmD/vttJhmR5Y8E/49q8QkUL1gMfIe/AZnF26kDxjBn5dk9hQtoEr516JaZnMPG0m/aP7t3fVIiIiIiIixwSFHdJuMrPLueilhbg8Fgbw1EVDSIoM6vgzOqoL4IPpsHU+DPwtFdYk8v/yMAH9+pH80os4oqJYUbyCq+ddTaAjkFcmv0JaeFp7Vy0iIiIiInLMUNgh7eaVBVtxebzrVmwG5JbXc/aQpI4bcgBsngcfXgWNNXD2M5Quc1H0+AMEjR1D12eexR4SzMIdC7nh2xuIDYzlpckvkRSS1N5Vi4iIiIiIHFM0s0PaxXcbivhydT42A+wGHX/ZiscFc++DWedDUAzWtG8o/LqQosefIPSM00l+8UXsIcF8k/MN1359LUkhSbx+xusKOkRERERERNqBOjukzS3LKefqWUvpkxDGnWf2ZeX2yo69bKUiB96bAtsXw/A/Yp3yEPkP/Y3KDz8k8pKLib/7bgy7nU+3fMq9P97LgOgBPHfqc4T7h7d35SIiIiIiIsckhR3Spj5Znsdt768kPMDJa1eMJC40gBN7xbZ3Wfu29hP45DqwLPjtK5g9zyLvpj9T8+23xFx3HTHXXoNhGLy9/m0eWfQIoxNG89TJTxHsDG7vykVERERERI5ZCjukzXy/oZgb3l6OBViWi9yyeuJCA9q7rL1zNcCce2DJy5A4FH77Kh57FLlTplK/dCnxf7mXqEsuwbIsZqyawVNLn2JC8gSeOOkJ/O3+7V29iIiIiIjIMU1hh7SZJ+ZswGp+7vaYpGeVdsylKyWb4N3LoXAVjL0OTrkPV2kFuX+8jMatW0n65z8IO+MMLMviyaVP8urqVzkr7SweGvcQTpuzvasXERERERE55inskDaxeGsZK/MqsdsMsKyOO5B0+Vvwv5vB4Q+XvAO9T6Np2zZypkzFU15OyosvEHz88XhMD48seoR3N77LBb0v4O4xd2MzNO9XRERERESkI1DYIa2u0e3hzg9W0jUykL+fP5hluRUdbyBpYw18fguseAtSx8FvXobwJOpXryF3+nSwLFJef53AQQNxmS7uXnA3X2z9gikDp3DDsBswDKO970BERERERESaKeyQVvfCd1lsKa7ltctHcnzPGI7vGdPeJe2uYJV32UrpZjjpDjjpNrDZqU1PZ/s112KPiCB55gz8u3enwd3ALfNvYf72+dww7AamDpra3tWLiIiIiIjIL7Ra371hGMmGYXxrGMZawzDWGIZxQ/P7UYZhzDUMY1PzYwf69b60tE+W5/H015sY1zOGCX3i2ruc3VkWLH4ZXj4FGqvhD5/CxDvBZqfqy6/InTYdZ1ISqW+9hX/37tS6arn262v5fvv33DP6HgUdIiIiIiIiHVRrDhlwAzdbltUfGANcaxhGf+AO4GvLsnoBXze/lk4oc1sZN/53OR7LImNbGZnZ5e1d0s/qy+Gd33uXrnQfD1f/CN1PBKD87bfJu+kmAgYNInXWf3DGx1HRUMHUr6aSWZjJoyc+yoV9L2znGxAREREREZF9abVlLJZl5QP5zc+rDcNYByQB5wATmg97HfgOuL216pD288L3WZjN2690qN1XchfDe1OgegdMesi744rNhmVZlDz3HCXPPEvIhAkkPflPbIGBFNcVM33udHKqcnhywpNMTJnY3ncgIiIiIiIi+9EmMzsMw+gGDAUWAfHNQQhAARDfFjVI28otq+OHjcXYDDCgY+y+Yprw01Pw9UMQngRXfAVdRwBgmSaFDz9C+ZtvEn7uuXR56EEMp5Pt1duZNmcapQ2lPHfqc4zuMrp970FEREREREQOqNXDDsMwQoD3gRsty6raddcKy7IswzCsfZw3HZgOkJKS0tplSgsyTYvb31+Jw27jXxcNYUtxbfvvvlJTDB9eCVu+hv7nwK+fhsAIb71NTeTfcQdVn39B1BVXEHfrLRiGQVZFFtPmTqPB3cCMyTMYHDu4/eoXERERERGRg9aqYYdhGE68Qcdsy7I+aH670DCMLpZl5RuG0QUo2tu5lmW9BLwEMGLEiL0GItIxzV6cw09bSnn0vEGcPrBLe5cDWd/BB9OhvgLO+ieMuAKaQzdPTS151/+J2p8WEnfrLURPmQLAmtI1XDX3KuyGnVdPf5Xekb3b8QZERERERETkULTmbiwGMBNYZ1nWP3f56BPgD83P/wB83Fo1SNv7YlU+D366huO6hnPxqOT2Lcbj9i5ZeeNcCAiHad/AyCm+oMNdVkbO5ZdTu2gxXR591Bd0ZBZmMvWrqQQ5gnjjjDcUdIiIiIiIiBxlWrOzYxzwe2CVYRjLm9+7C/gb8I5hGFOAbOCCVqxB2lDGtjKufXMppgXrC6pZmlPRfktXKrfD+1MhZyEMuRTOfBz8gn0fu/LyyJkyFVd+Pl2feYbQk71DR3/Y/gM3fXcTiSGJvDTpJRKCE9qnfhERERERETlsrbkbywK8syn35pTW+l5pP+9m5naM3VfWfw4fXwMeF5z3Ehy3+zaxjZs2kTNlKmZ9PSmvzCRo+HAAvtr2FXf8cAe9InrxwqQXiAqIavvaRURERERE5Ii1yW4scmxocJkA2I122n3F3Qhz74NFz0PCYPjtqxDTc7dD6pYuI/fqq7H5+ZE6axYBfbxLVD7Y9AEPLHyAIbFDePaUZwn1C23b2kVERERERKTFKOyQFrMuv4pBSWGcPrBL2+++UroF3rsc8lfAqCth8kPg8N/tkJr589l+w4044+NJnjkTv65JALyx5g0ez3iccYnjeHLikwQ6AtuubhEREREREWlxCjukReyoqGdjYQ13n9mPaePT2vbLV70Hn94INjtcOBv6/WqPQyo//pgdd91NQJ8+JL/8Eo7oaCzL4rkVz/HCiheYlDqJx058DKfd2ba1i4iIiIiISItT2CEt4rsNxQBM6BPbdl/aVAtf3AbLZkHyaDh/JkTsuQNM6auvUfTYYwSNGUPXZ5/BHhKCaZk8vuRxZq2bxbk9z+W+sffhsOl/DiIiIiIiIp2B/u1OWsR3G4pIigikZ1xI23xh4Vp4949QshFOvBkm3Am/6MqwLIvif/6T0pdnEHraaSQ+/ndsfn64TTf3/3Q/H2/5mN/1+x23jrwVm9FquzCLiIiIiIhIG1PYIUesyW3y4+YSzhmahGHsawOeFmJZkPkafHkH+IfB7z+AHifveZjbTf5991H5/gdEXHQhCffei2G30+Rp4o4f7mBu9lyuOe4arjruqtavWURERERERNqUwg45YhnZZdQ2eZjQu5WXsDRUwqc3wJoPIW0inPcihMbvcZjZ0EDen2+m5ptviLn2WmKuuxbDMKhz1XHTdzfx046fuG3kbfy+/+9bt14RERERERFpFwo75IjN31CM025wfM+Y1vuSvEx47wqoyIVT/gLjbgLbnktPPFVV5F5zDfWZS4m/9x6iLr0UgKqmKq77+jpWFK/gweMf5Lxe57VerSIiIiIiItKuFHbIEftuQzEju0UR4t8K/3UyTUj/N8y7H0IS4PLPIWXMXg91FRWRO206jVlZJP3jCcLOPBOA0vpSrpp3FZsrNvP38X/ntG6ntXydIiIiIiIi0mEo7JAjsqOing2F1dw1vG/LX7y2FD66CjbNgb6/grOfgaCovR7atG0bOVOm4i4vJ/mF5wkZNw6AgtoCps2ZRkFtAc+c/AwnJJ3Q8nWKiIiIiIhIh6KwQ47I/I07t5yNa9kLb1sA70+FulI443EYNQ32MUi0fs0acqdfCaZJ6uuvEThoEADZVdlMmzON6qZqXpj0AsPjh7dsjSIiIiIiItIhKeyQI/LdhiISwwPo1VJbzpoe+P5xmP8YRHaHqf+FLsft8/Da9HS2X3sdtvAwUmbMxD+tOwAbyjZw5dwrMS2TmafNpH90/5apT0RERERERDq8PSc8ihykJrfJ9xtLiAn1Z2lOxZFfsCof3jgHvvsrDPo/uHL+foOOqq/mkDttOs7ELnR76y1f0LGieAWXf3U5dpud105/TUGHiIiIiIjIMUZhhxy2NxdlU+/ysGp7JZfOSCczu/zwL7ZpLrwwzrvryjnPebeV9Q/d5+Hlb/+XvBtvJGDgQFL/8x+c8d4taNPz05k2ZxoR/hG8ccYbpEWkHX5NIiIiIiIiclRS2CGH7f2leQBYgMttkp5VeugXcTfBV3fD7N96d1uZ/h0MvXSf8zksy6Lk+ecpuP9+QsaPJ+WVmdgjIgD4Jucbrpl3DUkhSbx++uskhSQd3o2JiIiIiIjIUU0zO+SwNLo9bCmuwW4YgIXTYWNMWvShXaRsK7w/xdvNMWIKnPYIOAP3ebhlmhQ+8ijls2cTfs7ZdHn4YQynE4DPsj7jngX30D+6P8+f+jzh/uFHcHciIiIiIiJyNFPYIYfluw3F1DV5uPdX/WhwmYxJi2Z4auTBX2DNh/DJ9YAB//c6DDh3v4dbTU3suONOqj7/nKjLLyfu1lswbN7GpLfXv82jix5lZMJInj75aYKdwUdwZyIiIiIiInK0U9ghh+Xj5XlEB/vxh7HdcNgPYTWUqx6+vBMyX4WkEfDbmRDZbb+nmLW1bL/+Bmp//JG4W28hesoU32czVs3gqaVPMaHrBJ6Y8AT+dv/DvCMRERERERHpLBR2yCGrbnAxb10RF49MPrSgo3gDvHs5FK2B46+HU/4Cdud+T3GXl5N75VU0rF5Nl0ceIeL83wDe2R3/WvovXln9Cmd2P5OHT3gYp23/1xIREREREZFjg8IOOWRfrSmkyW1y9pCDHABqWbB8Nnx+q3cmx6XvQa9JBzzNtWMHOVOm4tqxg67PPkPoyScDYFomj6Q/wjsb3+GC3hdw95i7sRmatSsiIiIiIiJeCjvkkH28PI/kqECGpUQc+ODGavh/9u48vs6yzv//6zpLki7pXtpCSQtI2aGUCqggDCBYRVFkdLSOiGJkcV9GxziKM9/4Gxl3GcEiqGhccRkFUaCALMrSQkFkp7QppfuSpM16cq7fH+e0BGi60HPuk6Sv5+NxT8+57/vc9+c0l3emb67luk/A338J00+Es6+EUVN2/LGnnqL5/eeTb2+n7qrvM3z2bAB68j18/s7P88dn/sj7Dn8fH5v1MUI/K7dIkiRJkvZMhh3aJWvaurjrqbVcdPIrdhwyrHiwMGxlwzPwTw1w4ichld7hPdofeIBlF1xIqMoy7Sc/puaggwDo6u3iU7d9ituevY2Pzvoo5x9xfim+kiRJkiRpiDHs0C65/qHnyEc4a+be/Z8UI9w7D278PAyfAOdeB9Nfs1PX33T77Tz7kY+SmbQXdVddRdXUqQBs7tnMR275CPeuvJeG4xr4l4P/pRRfR5IkSZI0BBl2aKctXLqB792+mGnjh3PgpNptn9S+Hv7vQ/D49TDj9XDWd2HE+J26fsvvf89zn2ugesaB1M2bR2bChML+rhYuvPlCHln3CF8+4cu86YA3leorSZIkSZKGIMMO7ZSFSzfwrivvpiuXJ5MKLFy6gWOmjX3hSc13w7Xvh02r4Iwvw/EXwU7Op7Huhz9k9X9/heHHHcfU/72M9MiRAKxpX0P9TfUsbV3K10/+OqfUnVLqryZJkiRJGmJcwkI75e7F6+jO5QHIx8jdi9c9fzCfh9u/Cj94A6Qz8P4b4VUX71TQEWNk9de+zur//gq1p5/OvvO+tzXoWL5pOef+6VyWb1rOd0/7rkGHJEmSJGmn2LNDO2X2tLHE4uuqTIrj9y8OTWlbBb+th8W3wWFnw5u+CTWjd+qaMZdjxRe/SMuvf8OYd7yDyV/4D0K6MIHp4o2L+cBNH6Aj18GVp1/JUROPKv2XkiRJkiQNSYYd2imr2roAOOeYfXjnsdMKQ1ievgV+Uw9dm+BN34ZZ79npYSv5zk6Wf/JTbJo/nwkXXcSED39o6+ouj6x7hAtuuoBUSPGDM37AQeMOKtv3kiRJkiQNPYYd2ik/uXspdeOGc+nbjiIVc3Dzl+DOb8DEg+DcP8Beh+z0tXpbW1l20UV0LLyfSZ//POPePXfrsYWrFvKh+R+itqqWK0+/kmmjppXj60iSJEmShjDDDu3Q4yvbuPeZ9Xx2zsGkWpfBr8+HZfcUenK8/itQNXynr9WzejXLPlBP1+LF7P3V/2H0G9+49didy+/k47d+nMkjJnPl6VcyecTkcnwdSZIkSdIQZ9ihHbr9luv5cPZW/jX3CFzxncKEpG+7Co44Z5eu093cTPP7zye3bh37Xn45I094zdZjf17yZz57x2d5xZhXcMVpVzB+2M4tVytJkiRJ0ovtMOwIIRwZY3woiWI08HQ8/Tfe/fiHqUl3E+4Axh8I7/oFjD9gl67T+cgjNH+gHnp7mfbDHzDsyCO3Hvvtk7/lkr9dwlETj+KyUy9jVNWoEn8LSZIkSdKepN+lZ0MIk4ovf9hn31fKXZAGlsfvuYEqeihMHRrgyLfvctCx+Z57Wfqv7yFUVTHtp00vCDp+/MiP+cJfv8DxU47nitOuMOiQJEmSJO22fsMO4PIQwt1AXQjhwhDCa4DXJ1SXBoCFS9bznacnEQKFZWczNbD/ybt0jdYbb2TZ+eeTmTKZ6T/7KdX77w9AjJHvLvoul953Ka+b9jq+c8p3GJ7d+bk/JEmSJEnqT79hR4zx7Bjj8cAaYBPwVmB6COEv9vAY+hYu3cA7v38Pj24eSYpI65QT4Nzfw77H7vQ1Nvzylyz/2MepOewwpv/kJ2QnFyYczcc8l953KZc/eDlnHXAWl772UqrSVeX6KpIkSZKkPUy/c3aEEP4KPAkMBx4GfgmcApwGHJdIdaqYuxevoyeX56z0XwH4/b6f5l93MuiIMbLue99jzTe/xYjXnsjUb36T1PBCr43efC+X/O0SfvfU73j3Ie/m06/8NKmwvQ5GkiRJkiTtmn7Djhjjq0MIrwBOBt4HHAm8AvgqcEci1alijt9/PITIW9J3cn+cwaGHHbVTn4v5PKv+v/9mw49/zKg3v4m9GxsJ2SwA3b3dfPaOz3LT0pu48KgLufCoCwkhlPNrSJIkSZL2QNtdjSXG+FQIYX2M8cMAIYRFwI+Bk5IoTpVzyJRaDk01c1DqWZqP/y/qpo3d4WdidzfP/fvnaL3+esadey57febfCKlCr42OXAcfv/Xj3PXcXXx69qd5z2HvKfdXkCRJkiTtoXa49Czwqj6vfx1jXAAsKFM9GiAWLNnAm8Od5EOGuhPn7vD8/ObNPPuRj7L5rruY+MlPMP7887f22mjrbuND8z/EojWL+NKrv8TZB55d7vIlSZIkSXuwHYYdMcbOPq//K4RQA7wpxvirslamivrbU6s5N/034gGnwojx2z03t2EDyz54AZ0PP8yU//dfjDnnnK3H1neu54KbLuDJjU9y6Wsv5YzpZ5S7dEmSJEnSHm6nZoYMIaRDCG8IIfwYWAq8o7xlqdLaHruNyWE96Znb/1H3PPccS+e+m67HHmPqd779gqBj5eaVvPdP7+WZlmf49j9926BDkiRJkpSI7fbsCCGcBLwLeANwL/AaYL8YY3sCtalCWjp6OHLDjXRnh1M1Y06/53U99RTN53+A/KZN1F31fYa/8pVbjzW3NvOBGz9AS3cLV7zuCo6ZdEwSpUuSJEmStN2lZ58FmoHLgU/FGNtCCM8YdAx9T9xzA29O3cnmKSdQVTV8m+d0LFrEsg9eANks037yY2oOPvj5z294gg/e9EFy+RxXnXEVh40/LKnSJUmSJEna7jCWa4G9KQxZeVMIYQQQE6lKlbPsXo7+y3nUhBxjVv4Vlt37klM23XEHS897H6nRo5n+s5++IOh4aM1DnPen80iR4oev/6FBhyRJkiQpcf2GHTHGjwH7AV8DTgYeByaGEN4eQhiZTHlK3JI7SMccACHfC0vueMHhlj/8gWUXXkTV9OlM/2kTVfvuu/XYvSvu5fwbz2dU1Sh+NOdHHDDmgERLlyRJkiQJdjBBaSy4NcZYTyH4eCdwFrAkgdpUAa3D6whAJEC6CqafuPXY+muu4blP/xvDZ81i2jU/IjNhwtZjtzbfyoU3X8g+I/fhmjnXMLV2agWqlyRJkiRpJ5ae3SLG2ANcB1wXQhhWvpJUSasfv4cREdYceQGTjz0b9j2WGCNrvvkt1n3ve9S+7nXs/dX/IVVdvfUz1y++noY7Gzhk3CFcftrljKkZU8FvIEmSJEna0+102NFXjLGj1IVoAMh1M3nxtfyF2bz2LV+GdIqYy7HyS19i46+uZczb387kL36BkE5v/cgvHvsFjfc0MnvybL5zyncYkR1RwS8gSZIkSdLLDDs0RD3+R0bmNvDgpLdySjpFvquL5Z/8JJtuns/4Cy9g4kc+Qghh6+nf//v3+db93+KkqSfx1ZO+Sk2mpoLFS5IkSZJUYNihrdbePo+uOJ7WfU6kt62NZy+6mPb77mNSQwPj/vXdW8+LMfKt+7/FVQ9fxZz95tB4QiPZVLaClUuSJEmS9Lx+w44Qwh/YzlKzMcY3l6UiVcTfH36QI1bdxddz53D9HY9xzvf+g1TzM+z91a8y+sw3bj0vH/N8+Z4v84vHf8E/z/hnGo5rIJ1Kb+fKkiRJkiQla3s9O76aWBWquO57rqY3Bm5pPYr//ut3iD2b2Pfyyxl54glbz+nJ9/Afd/0H1y++nvMOP4+Pz/r4C4a1SJIkSZI0EPQbdsQY/5JkIaqgJXdx1HO/5IH1B/Dvt/+ETMzT8z+XvSDo6Ort4lN/+RS3LbuNj876KOcfcX4FC5YkSZIkqX/Hx31VAAAgAElEQVSp/g6EEA4MIfwghPD1EMLUEMINIYRNIYQHQwizkyxSZbTsXvjxW+h6LsfI2zYxsiZF9n+v5Ogzng86Nvds5uKbL+a2ZbfRcFyDQYckSZIkaUDb3jCWHwDXAKOAe4CPAW8FTgT+Fziu7NWp/JbcQevSFM/9dSzZkb0c8Lk5ZE88euvhlq4WLrr5Iv6x7h98+YQv86YD3lTBYiVJkiRJ2rF+e3YAI2OM82KMXwU6Yoy/ijF2xhhvAqoTqk9ltuEfOZbfNZbqMT3se3ob2Vlzth5b27GW8/58Ho+uf5Svnfw1gw5JkiRJ0qCwvZ4d+T6vW7dzTINQ+/0PsPayy9j8178yYkoXT51wIPue/5+w77EALN+0nA/c+AHWdqzlu6d9l+OnHF/hiiVJkiRJ2jnbCzsODiE8BATggOJriu/3L3tlKpv2Bx5g6XveA7kchMCEQ9q47thLOGVaIdBY3LKY+hvrac+1M+9185i518wKVyxJkiRJ0s7bXthxSGJVKFGb77yrEHQAEFm8ZjJnvroQaDyy7hEuuOkCUiHFD874AQeNO6hyhUqSJEmS9DJsb+nZpUkWouR0PvooADEEUqk8z9QdzpvGD+f+Vfdz8fyLqa2q5crTr2TaqGkVrlSSJEmSpF23vZ4dGoLa73+ATbfcQqQw8cqUozfyxWHHse6BP/O///g8k0dM5srTr2TyiMmVLlWSJEmSpJfFsGMPs/nOO4DCxCupGNncVcODwzt47KHPMmPcK7jitCsYP2x8ZYuUJEmSJGk3GHbsYbLTpwOFISwhlee30yaT2fvn7D/qMK4643uMqhpV2QIlSZIkSdpNqZfzoRDCDaUuRMnIjB0LQO2cf+KxM9uZd8Rmjhg3m6YzrzLokCRJkiQNCf327AghzOrvEOBapINUz4oVAFw7YwVXDxvNrDHHcuUbL6cqXVXhyiRJkiRJKo3tDWO5D/gLhXDjxcaUpxyV27OLHyQV4EdVT3BSa+DL7/hfgw5JkiRJ0pCyvbDjUeCDMcYnX3wghLCsfCWpXBatXsRfH/g/jhoBpGBm1z6MqqmpdFmSJEmSJJXU9ubsuGQ7xz+8owuHEK4OIawOITzcZ98lIYTlIYRFxe0Nu1audseCVQsY25pnXW3hfW/mUVh2b2WLkiRJkiSpxPoNO2KM18YYH+/n2O924to/BF6/jf3fiDHOLG5/3LkyVQozxsxg73WRmh445Nk8x3Z0wZI7Kl2WJEmSJEkl1W/YEUI4LoQwqvh6WAjhSyGEP4QQvhJCGL2jC8cYbwfWl7BW7aZN9y9gYitMXRv5j5/lOWhlGqafWOmyJEmSJEkqqe0NY7kaaC++/hYwGvhKcd8PduOeHwohPFQc5jJ2N66jXbT+xj8RgECAfKB9n/fBvsdWuixJkiRJkkpqe2FHKsaYK76eHWP8WIzxzhjjl4D9X+b9LgcOoLB07Qrga/2dGEKoDyEsCCEsWLNmzcu8nba4+7m7eSL3XPFdJJ/JMvx1Z1e0JkmSJEmSymF7YcfDIYTziq8fDCHMBgghzAB6Xs7NYoyrYoy9McY8cCXQb7eCGOO8GOPsGOPsiRMnvpzbqWjR6kVcNP8iqnry9ALrjwqs/OLXGX700ZUuTZIkSZKkktte2HE+cFII4WngUOBvIYTFFEKK81/OzUIIU/q8fSvwcH/nqnQWrFpAT76Hw5dEWkfATdMmcOQZJ1S6LEmSJEmSyiLT34EYYwvw3uIkpfsVz302xrhqZy4cQvgZcDIwIYTwLPBF4OQQwkwgAkuAD+5W9dopsyfN5nUL88wojmI5+/r1jHzno2DPDkmSJEnSENRv2LFFjLEVeHBXLxxjfOc2dl+1q9fR7pvyTCvvuylPKL5P5yPt997nMBZJkiRJ0pC0vWEsGiKe++53SMXC6wgQUgw/9pWVLEmSJEmSpLIx7Bji2hcupPqeLVOjRGKAy2eezaPjpleyLEmSJEmSysawo0yampqYPn06qVSK6dOn09TUVJE62m77CwG2DmH567QjuGHacdy9eF1F6pEkSZIkqdwMO8qgqamJ+vp6VvQMo/a4c1jRM4z6+vqKBB6pqYUFcCJAGn5d91qymRTH7z8+8VokSZIkSUrCDico1a5raGggN6aOyXMvhQAx18OqnzfQ0NDA3LlzE61lQftjTAdWHtFL+8TpjDxiFk1vOIRjpo1NtA5JkiRJkpJiz44yaG5upqbuCAiBEFKEVJqauiNobm5OtI5Fqxdx+8LfAPCfJ2e4fcpY3nlsnUGHJEmSJGlIM+wog7q6Ojqb/w5EYswT8710Nv+durq6ROtYsGoBY9p66c7AxuGB/UbezdGpJxKtQZIkSZKkpBl2lEFjYyOZjc30rFtOz/rlrPp5A5mNzTQ2NiZax+xJsxnfCutqIQsc29FJXev9idYgSZIkSVLSnLOjDLbMy9Fwyzo6NrUyJdtB47x5ic/XsdfwvRjfFukdkWfeyrUc0g2Z/V+baA2SJEmSJCXNsKNM5s6dy/Xtd9PTm+dXP/98RWp4aO1DTFoPY6p7Wfvc4Vwx6/18bN9jK1KLJEmSJElJcRhLGVVnUnTl8hW7/7N33cyYdggbMoy+ZS17xTEVq0WSJEmSpKQYdpRRdSZNV0/lwo7M7QsIAARSvb0cuOLJitUiSZIkSVJSDDvKqDqboru3MmFHT76HpakNhTcBcqkMe5/86orUIkmSJElSkpyzo4yqMym6enorcu8/Lv4jMZcDYMOxM/jW6Dfy81c7X4ckSZIkaeizZ0cZVVVozo5Fqxdxyd8uYerayOrR8KPZR5M98ihCCInXIkmSJElS0gw7yqg6k65I2LFg1QJy+RwHPBfpScOaZUs5eHJt4nVIkiRJklQJhh1lVFiNJflhLLMnzebgZZFJLTBlPfzH9QuYtenZxOuQJEmSJKkSDDvKqDqTpqc3ks/HRO971MSjOO7pFIHCDzjT28u0Zx9LtAZJkiRJkirFsKOMqrOFv96kV2RZ1b6K5aMLPUpigN50hqknvybRGiRJkiRJqhRXYymj6kwh7OjqyVOTTSd236c2PsXm6sLrfxx9Ijfv+yq+N/uYxO4vSZIkSVIl2bOjjKq2hB0Jz9vx9ManmdBWeH3FQW9m2NEzE72/JEmSJEmVZNhRRtWZQm+OpFdkeXLDk0xtiYSqFE93BA6ZMirR+0uSJEmSVEmGHWVUXameHeseZerGXnKjC8vNZtIh0ftLkiRJklRJhh1l9HzYkVzPjnzM83TLYia0RlamqgC49E+Ps3DphsRqkCRJkiSpkgw7yqg6m/wwluVP3kBHzFHbEtiv+znOWn8Hud48dy9el1gNkiRJkiRVkmFHGVWln1+NJSk3P3Ythy3Jk+4OdG/I8IG7/sDhLc0cv//4xGqQJEmSJKmSDDvKqDqb7Jwdi1Yv4tsbH+Dsu/IEAhAI+ch/TuvmmGljE6lBkiRJkqRKy1S6gKEs6Tk7FqxawH7LchzWDLG4L6bSHHj6axO5vyRJkiRJA4E9O8oo6aVnZ0+azdHPxGKfDsgDy44/leFHH53I/SVJkiRJGggMO8poS8+O7oTCjpl7zaR74mgCEAP0pLJ0nHxGIveWJEmSJGmgcBhLGSU9ZwdAS+gEIHPKcXyi55V8Ypa9OiRJkiRJexZ7dpRRdbo4jCWh1Vjae9oZva4LgPVvfQePjZvO5NE1idxbkiRJkqSBwrCjjJ7v2ZFM2LGqfRWTNkZyNXmaq6YAMHmUYYckSZIkac9i2FFGVelkh7Gsal/FpA0QantpXpMjnQqMH1mdyL0lSZIkSRooDDvKKJUKVKVTiU1QumrzKqaujWS6IH/dH9irtpp0KiRyb0mSJEmSBgonKC2z6kwqmWEsw4bR8eqxjG4fTSTD6+/+Ncs2dsKwM6Gjo/z3lyRJkiRpgLBnR5lVZVLJDGNZvJiRwydT6McRSMU8R+XWwjPPlP/ekiRJkiQNIIYdZVadSSWzGsuUKbRunYs0kkulaZ8wBSZPLv+9JUmSJEkaQBzGUmbV2XRiq7GEri46qiN7H38Q742n8+beNYncV5IkSZKkgcSeHWVWndQwFmDqijw9wyK57hyPjZvO5IvPT+S+kiRJkiQNJIYdZVadSWA1lmHD2DBqBOPboHZjoPVvT3Pw+iVMfsdby3tfSZIkSZIGIMOOMqvOJDCMZfFi1r3yaAIQiv/3yLVPM+n/flXe+0qSJEmSNAAZdpRZVRJLz06ZwqYJwwGIRPIEHppwAJMPmFre+0qSJEmSNAAZdpRZUnN2rE+1A5A+JHDrq85m+ei9GVHt/LOSJEmSpD2PYUeZVWeTWXp22SsPAqDlxL34xylvZdKUcWW/pyRJkiRJA5FhR5lVZ9J095Y37Fi0ehGPLr4HgM8M28CSzY8weVRNWe8pSZIkSdJAZdhRZtWZ8vfsWLBqASM68uSBjTV51vT8g0mGHZIkSZKkPZRhR5lVJTBnx+xJs6ntCGyugXQ6S9uGaUwaVV3We0qSJEmSNFAZdpRZdQKrsczcayZTeobRMSzyzQPeR3d7HZNH27NDkiRJkrRnMuwos+pMuvxLzwLDNueI1ZFJI2YBOIxFkiRJkrTHMuwos+pMit58JFfmSUpr2nvIVUeW5wursDhBqSRJkiRpT2XYUWbV2cJfcblXZBnWnidfA8u6hgE4jEWSJEmStMcy7Ciz6kwaoKwrsvTke6jdDLWtGboefJB0KjBhpBOUSpIkSZL2TIYdZVaVKfwVl3PejnV/vYPqXhi9InLcZV/g+I7lpFOhbPeTJEmSJGkgM+wos+qtYUeZlp9dt462z34GgACE3hyzNy4pz70kSZIkSRoEDDvKbOswlnL17PjhD+leuRSAGKA3laZlxuHluZckSZIkSYNAptIFDHVbenZ0lyPsiBG+8Q06xweGd0HutIP5UjyDIw49ovT3kiRJkiRpkLBnR5ltWY2lLMNY7rgDWlroqa4il4L0qw7i/pH7MsmVWCRJkiRJezDDjjKrShfDjnKsxvLNb8LmzZDKsGY0dN/6MACTRxl2SJIkSZL2XIYdZVadLdGcHWedBSG8cLv+eoiRdD7DqjGB+NSTAEx+6xufP+ess3b3K0iSJEmSNKgYdpRZyVZj+fKXoa4Oavr02ujuhqlpxh3YzVFnr+UVc1YxKzzBxZvW05TJwLRphc9JkiRJkrQHMewos+fDjt3s2XHYYfDII/DmN8Pw4Vt3t59ew37fX8Yh561h5IdbOXfM9byudjz1MdL0hS8UPidJkiRJ0h7EsKPMSjaMBWDECPjFL+BrX4PqagByB6cI2UjIQMhGJuyzjt+/7QvcPulA3nb++bt/T0mSJEmSBhnDjjIrWc+OvmbN2hp29NyaIfYEYg5iT+DaZ0+hJ5Xmiroj2C/G0t1TkiRJkqRBIlPpAoa6qi1hR08Jl55dsAB6emgCWhbVcPIF+9LyxnZ++fR7+O3Gk6nJ97BX89+pnjatdPeUJEmSJGmQMOwos7L07LjjDpo6OqgHflczjFVPZrn1zjS/rTmJdPNDnH3HTzh25RMces01pbunJEmSJEmDRNmGsYQQrg4hrA4hPNxn37gQwk0hhCeLf44t1/0Hiqp0GcKOe+6hATh82DD2yWbZa33gbfOrOHjjMlb9/WZ+uvopNl1zDXPnzi3dPSVJkiRJGiTKOWfHD4HXv2jfZ4H5McYDgfnF90NaCIHqTGr3l57t65BDaAZeO3IkIQRSQLo3cOTap8mtX86S00836JAkSZIk7bHKFnbEGG8H1r9o91nAj4qvfwS8pVz3H0iqMym6S9mz4/rrqZs2jUc7OwHIA70peGjCAUwemYbrry/dvSRJkiRJGmRCLOOKHSGE6cB1McbDi+83xhjHFF8HYMOW99tTW1sbjznmmLLVWW4Ll25g3Igq9pswomTXXLVqFcuffJKDq6rYOCLQmsmyMT2F/Wph0qRJJbuPJEmSJEkDxV/+8peFMcbZOzqvYhOUxhhjCKHfpCWEUA/UA1QXl1kdrFIhkC9xqDRp0iTSnZ2wahUbR0JXvoaaVJpJkyaU9D6SJEmSJA02SYcdq0IIU2KMK0IIU4DV/Z0YY5wHzAOYPXt2vO222xIqsfRO+dptHDplFJe9a1ZJr9t2y608e9FFfPa9aTZk3s3x0+dw6TlHlfQekiRJkiQNFIVBIjtWzglKt+X3wLnF1+cC/5fw/SuiOpMu7WosRbGzA4CuLDy3uZb9Jows+T0kSZIkSRpsyrn07M+AvwEHhRCeDSG8H/hv4HUhhCeB04rvh7yST1BalO94PuzI9w4v6ZwgkiRJkiQNVmUbxhJjfGc/h04t1z0HqpIvPVuUb38+7Ij5GvafaNghSZIkSVLSw1j2SFWZVFmGsWzp2dGZBXqHUTdueMnvIUmSJEnSYGPYkYDqTJqunnKEHe3UzGzn3JlrOGX/W6jJpkt+D0mSJEmSBpuKLT27J6nOlmEYy7BhtL1pJPv9aB0XV0d6Zl7GE//8PWZcl4Jijw9JkiRJkvZE9uxIQHUphrFccgmE8PzW2Qkn5QjZSCYF2VSk5cxMYX/f80IofFaSJEmSpD2EYUcCqjPp3V+N5ZJLIMYXbo/tQz4XyOUhlw+MbjvhpefEaNghSZIkSdqjOIwlASXp2bGt695bxQMf2Zd7z4/ULTyWM2/Jw4dKfhtJkiRJkgYVw44ElG3p2VccwOonO/jV32bwo3dfAxe6GoskSZIkSQ5jScCWnh0xxpJeN9++mfYs9PaMZJ+xw0p6bUmSJEmSBivDjgRUZ9PECD29pQ07cu2b6awKDNuUJp0KJb22JEmSJEmDlWFHAqozhb/m7t7SztuR6+igMwujNpZ+iIwkSZIkSYOVYUcCqophR1dPaUOJfFc33VmYvLajpNeVJEmSJGkwM+xIwJaeHaVekSXflaMzC/sddHhJrytJkiRJ0mBm2JGA6kwaKH3YEXp66crCjLe9vaTXlSRJkiRpMDPsSMDzPTtKN4wl5nKkeqErG6DXJWclSZIkSdrCsCMB1dktc3aUrmfH/U+sYNjMDt7ymjXc/qfvsnDphpJdW5IkSZKkwSxT6QL2BFuGsZRyNZb1f7+Ko3/QzLRs5Mier/PnmyfDtE+V7PqSJEmSJA1W9uxIwPOrsZQu7Dh8zB2EbCRkIGQjM0fdVrJrS5IkSZI0mBl2JKAcc3aMTL2G2BOIOYg9gbGTzynZtSVJkiRJGswMOxJQjtVY0mEmzefVsegX+9DdfDU1B723ZNeWJEmSJGkwM+xIQDl6duQ3rqZj0TB+tXS2QYckSZIkSX0YdiSgHKuxdG5YDUB6+LiSXVOSJEmSpKHAsCMBVenCX3MpV2NpXb+ycO3avUp2TUmSJEmShgLDjgRUZ4tzdpSwZ0fbxrUADB+3T8muKUmSJEnSUGDYkYByzNnRsWkjAGPH7l2ya0qSJEmSNBQYdiQgkwqkQmlXY+nq2ATAXhOmlOyakiRJkiQNBYYdCQghUJ1JlzTs6OnsJJeCfcZNLtk1JUmSJEkaCgw7ElKdTdFdwrAj391NZxVMG+MEpZIkSZIk9WXYkZCqdKqkc3ZU77+JieevY23nr0t2TUmSJEmShoJMpQvYU1RnUyVbjeWJ9T/iNV9qJpWOdHMeT6yHGePOLcm1JUmSJEka7OzZkZBSztnR0vkbUplIKgOZVKSl+/9Kcl1JkiRJkoYCw46EVGdKN4xldDyZfE8gn4NcPjC66qySXFeSJEmSpKHAYSwJKYQdpenZMYOTuO8T+1L9yi5qzvqKQ1gkSZIkSerDnh0JqSph2EH7ejoXDeOR3+1j0CFJkiRJ0osYdiSklHN2xPa1ZHLQXZUtyfUkSZIkSRpKDDsSUp1J0dWz+3N2NDU18V8NnybbA+u7OmlqaipBdZIkSZIkDR2GHQmpzqbp3s2eHU1NTdTX1zP7qBb2OXcdEw9ppb6+3sBDkiRJkqQ+nKA0IaWYoLShoYF3ndbJnC/mIdXGO3rXcdtjgYaGBubOnVuiSiVJkiRJGtzs2ZGQUoQdzc3NvO0NAdIQMpDORi5+T5rm5uYSVSlJkiRJ0uBn2JGQwmosuzdnR11dHb/+Y4Q8xAgEOPLMHj76lsmlKVKSJEmSpCHAsCMhpViNpbGxkZ/eXMOGP4+EPIQAIQ0Xv6euRFVKkiRJkjT4OWdHQqozKbpzeWKMhBBe1jW2zMvRtuBTjDl1M2QjsScw9ZALSlmqJEmSJEmDmj07ElKdLfxV727vjrlz51LdPpzm8+pY8rtD6G6+mpqD3luCCiVJkiRJGhoMOxJSnUkDux92ANDbQceiYTy84SyDDkmSJEmSXsSwIyFVmcJfdffuhh29OYg9AGSy1btbliRJkiRJQ45hR0KqM1uGsezeiix0tdIdC3N+ZDJVu1uWJEmSJElDjmFHQp4PO3azZ0ffsMOeHZIkSZIkvYRhR0K2ztnRs7thRxs9FMKOrGGHJEmSJEkvYdiRkOdXY9m9YSy59o30OIxFkiRJkqR+GXYkpFTDWNrbNpDb2rOjZrfrkiRJkiRpqDHsSEh1iVZjaW/dsLVnR7bKYSySJEmSJL2YYUdCts7ZsZthR9emPmGHPTskSZIkSXoJw46ElGrp2e72lucnKK0y7JAkSZIk6cUMOxJSqtVYcu0tdOUL16rKOIxFkiRJkqQXM+xIyPOrsexe2BE7W+ggA0BV1bDdrkuSJEmSpKHGsCMhVektE5Tu3jAWOlvpIgtANmvPDkmSJEmSXsywIyGl6tmR6t5EdywOY6kavtt1SZIkSZI01Bh2JGRLz47dDTsyPW3kcM4OSZIkSZL6Y9iRkEw6RSYVdns1lmzu+bAjlcmUojRJkiRJkoYUw44EVWdSu70aS03vZvKhEHZg2CFJkiRJ0ksYdiSkqamJza0b+ca3L2P69Ok0NTW9rOsMj5vJF39sIeWPT5IkSZKkF/Nfywloamqivr6eI/d9jE9+YCl1R0J9ff2uBx4xMiJ2EEPxx2bPDkmSJEmSXsKwIwENDQ0cc+pEfvHh/49/O/tP/PnaFRxz6kQaGhp26Todm1pIhUiMAbBnhyRJkiRJ2+K/lhPQ3NzMqXNqyaZzZNJ5sukcp86ppbm5eZeu07JxHQCRQthB2p4dkiRJkiS9mGFHAurq6ph/Qxs9vRlyvSl6ejPMv6GNurq6XbrOppZ1L3gfMulSlilJkiRJ0pBg2JGAxsZGFs5fw1s+cTpfv+ndzJl7AAvnr6GxsXGXrtPRtgGAEAvvHcYiSZIkSdJLOQ4iAXPnzgWg4ZtX8/jIC+DZtcyb17B1/87qaGsBIMZi2uEEpZIkSZIkvYRdAxIyd+5c/n7HnwD4VOM3dznoAOjavKVnRyHssGeHJEmSJEkvVZGuASGEJUAb0AvkYoyzK1FH0mprskwfP5x/PNe6y59tamri4Rt/yYn7QUvLRnrNOSRJkiRJ2qZK/pP5n2KMM/eUoGOLQ/cexSMrdi3saGpqor6+ngMOaoMTupj6ig5yRJqamspUpSRJkiRJg5f9AxJ22N6jWbqundbOnp3+TENDA8ecOpFzP3U/8Z+6eNfnmxk2s5OGhoYyVipJkiRJ0uBUqbAjAjeGEBaGEOorVENFHLr3KAAe3YWhLM3NzZw6p5Z0upeQhlQmMuLYdpqbm8tVpiRJkiRJg1alwo4TYoyzgDnAxSGE1774hBBCfQhhQQhhwZo1a5KvsEwOm1IIO3ZlKEtdXR3zb2gj35si9kI+F2i5bzh1dXXlKlOSJEmSpEGrImFHjHF58c/VwG+BY7dxzrwY4+wY4+yJEycmXWLZ7DWqhgkjq3dpktLGxkYWzl/DgquPZNVN4/hNYx0ti6ppbGwsY6WSJEmSJA1Oia/GEkIYAaRijG3F16cD/5l0HZV02N6jeGQXwo65c+fSnYf4xGU8+vhI1jw3nAOGZV/W8rWSJEmSJA11lejZMQm4M4TwIHAvcH2M8U8VqKNiDt17FE+ubqM7l9/pz5z0+rMYGdrZe8bhpPKQrakpY4WSJEmSJA1eiffsiDEuBo5K+r4DyWF7j6KnN/LEqjYO32f0Tn1mZWsne9NB+7CRpCKQTpe3SEmSJEmSBimXnq2AQ1/GJKWrWjupDe0wvJZ0Hkj7o5MkSZIkaVv8F3MFTB8/ghFV6V2at2Plxk5qaScMH0EqQrBnhyRJkiRJ22TYUQGpVOCQKbs2Sem6llaqQi/5muGFnh0pww5JkiRJkrbFsKNCDt17FI+saCWfjzt1/sYNawHoztSQykPIJD7diiRJkiRJg4JhR4UctvcoNnXlaF7fvlPnb27dAEBX1rBDkiRJkqTtMeyokKUP/hWAw044g+nTp9PU1LTd8zvbCmFHd7qKdB5SDmORJEmSJGmbDDsqoKmpiS99/IMcPfVhPnfJCOqOhPr6+n4Dj958JNfRAkBXOlOYoNSeHZIkSZIkbZNhRwU0NDRwzD+N5af1X+Az/3wzf752BcecOpGGhoZtnr92UxfDY2G4S2c6QyoPqbRhhyRJkiRJ22LYUQHNzc2cOqeWbDpHJp0nm85x6pxampubt3n+ipZORoVC2NGdSpOKkVQmm2TJkiRJkiQNGoYdFVBXV8f8G9ro6c2Q603R05th/g1t1NXVbfP8lS2d1NIBQFcqVZizI+2cHZIkSZIkbYthRwU0NjaycP4a3nTh8Xz9pnfzxvcfzcL5a2hsbNzm+ataO6ml2LMjFMOOTFWSJUuSJEmSNGg48UMFzJ07F4CGL3+Npya+HZY3MW/eh7fuf7GVrZ1MSHUQsyPoyveQipDK+qOTJEmSJGlb7NlRIXPnzmXx3xcyoirNez/W0G/QAYVhLHtVdRNqRtHV20U6H5ygVJIkSZKkfhh2VFAqFThwUi1PrGrb7nkrWzoZn+mE6lF093aTjoFg2CFJkiRJ0jYZdlTYQTsRdqxq7WRsupM1m7q58gdXQk+e6274I01NTQlVKUmSJES9HE4AACAASURBVEnS4GHYUWEzJteydlM3azd1bfN4jJGVrZ1kO9fx4KNPc+iMFvZ/zzpGH91KfX29gYckSZIkSS9i2FFhB02qBei3d0dbV4727l7YtJY1B8NPP7Sa/evXcM6P1/DKN+RoaGhIslxJkiRJkgY8w44KmzF5JABPrNx22LGypROAEaGD6qMC2VQkZCCdiZx2Zobm5ubEapUkSZIkaTAw7KiwiSOrGTs8y+OrNm3z+JawY3Q2z3P35OnJB/I56M0Fbr4uR11dXZLlSpIkSZI04LmkR4WFEJixnUlKV7Z2kiHH8Eye9XfCeb/el6+sbGf+XXDfH9uZN68x4YolSZIkSRrY7NkxABw0uZYnVrYRY3zJsVUtnYyg0LvjDW95Bw9vrGXlvHGsuX8M8+bNY+7cuUmXK0mSJEnSgGbYMQDMmFRLW1eOFcUhK32tbO1k3+E9ABz1qpMINYHhVTW89/3vM+iQJEmSJGkbDDsGgIMmF1ZkeXwbQ1lWtnQybUQvABszaQBS+QipdHIFSpIkSZI0iBh2DAAz9iouP7uNFVkKPTu6AdiQCgCEfCRkDDskSZIkSdoWw44BYPTwLJNH1WyzZ8eq1k72rskB0BKKO3vz9uyQJEmSJKkfhh0DxIzJL12RpTuXZ+2mbvaqLvbsiL0QIyGfJ6QNOyRJkiRJ2hbDjgFixl4jeXLVJnrzz6/Isqq1MGHpxGzhz42xh7DlcNofnSRJkiRJ2+K/mAeIGZNr6crlaV7fvnXflrBjbLoYduQ7SecLx0I6k3iNkiRJkiQNBoYdA8QzD9wFwOGveR3Tp0+nqamJlcWwY3SqA9LVbOzZxMj0cAAnKJUkSZIkqR+GHQNAU1MT//mpi5hV9yifu2QEdUfCeeedxwc+8mkAnnzke/S+ejO1vXcxNjO68CEnKJUkSZIkaZscCzEANDQ0cMxJo2g6v4FsOscn3pZhzrtnMGwafOSs/8dxr9wIAd6f/wNrWo4F7NkhSZIkSVJ/DDsGgObmZs77zGFk08vIpPNAjvM/UcfbZl1LdaYbAoQA6RCZNX4tkLVnhyRJkiRJ/XAYywBQV1fH/Bva6OnNkOtNFf7ctJ5sOkeq+BOKeejJBx55ZjwAF334Q1vn9pAkSZIkSc+zZ8cA0NjYSH19PWecM4VT59Qy/4Y2YCXveG0GyJHPBx64sZrv9OzFI79ZydtnBj5yVC9Vf15BfX09AHPnzq3od5AkSZIkaaAIMcZK17BDs2fPjgsWLKh0GWXV1NREQ0MDzc3NjBs3jra2No474/nwY+Gta9j/sv05876VNP7POkI2EnsC752T5fYlU1iyZEmlv4IkSZIkSWUVQlgYY5y9o/McxjJAzJ07lyVLlpDP51m7di1XX301zQ/Bly7+B80PwTcu/wYApxzcQ8hGQgZCNvKWU9M0NzdXuHpJkiRJkgYOw44Bqm/4sWTJEk554ykA/HZBoUdHzEHsCfxufi91dXUVrlaSJEmSpIHDOTsGiY1dGwH45UNZNs3J8pZT0/xufi+/vi/DvHmNFa5OkiRJkqSBw54dg8SWsONzn/gcty+Zwjlf7OT2JVOYN2+ek5NKkiRJktSHPTsGiS1hx7ve+i4+8e5PVLgaSZIkSZIGLnt2DAJNTU187r8+B8DxM4+nqampwhVJkiRJkjRwGXYMcE1NTdTX13PI4Rt536GrmT5zBfX19QYekiRJkiT1I8QYK13DDs2ePTsuWLCg0mVUxPTp05n+yhXc8LMesqlITz4w551Zltw3hSVLllS6PEmSJEmSEhNCWBhjnL2j8+zZMcA1Nzdz2pkZsqlIJgXZVOS0MzM0NzdXujRJkiRJkgYkw44Brq6ujpuvy9GTD+Ty0JMP3Hxdjrq6ukqXJkmSJEnSgGTYMcA1NjZy3x8zzHlnlv/+8XDmvDPLfX/M0NjYWOnSJEmSJEkakFx6doCbO3cuAA0NDXzh183U1dUxb17j1v2SJEmSJOmFnKBUkiRJkiQNCk5QKkmSJEmS9kiGHZIkSZIkaUgx7JAkSZIkSUOKYYckSZIkSRpSDDskSZIkSdKQYtghSZIkSZKGFMMOSZIkSZI0pBh2SJIkSZKkIcWwQ5IkSZIkDSmGHZIkSZIkaUgx7JAkSZIkSUOKYYckSZIkSRpSDDskSZIkSdKQYtghSZIkSZKGFMMOSZIkSZI0pBh2SJIkSZKkIcWwQ5IkSZIkDSkhxljpGnYohLAGWPoyPz4BWFvCcqRdZRvUQGA71EBgO9RAYDvUQGA7VKUN5jY4LcY4cUcnDYqwY3eEEBbEGGdXug7tuWyDGghshxoIbIcaCGyHGghsh6q0PaENOoxFkiRJkiQNKYYdkiRJkiRpSNkTwo55lS5AezzboAYC26EGAtuhBgLboQYC26Eqbci3wSE/Z4ckSZIkSdqz7Ak9OyRJkiRJ0h5kUIQdIYSrQwirQwgP99k3LoRwUwjhyeKfY4v7Qwjh2yGEp0IID4UQZvX5zLnF858MIZzbZ/8xIYS/Fz/z7RBCSPYbajDopx1eEkJYHkJYVNze0OfYvxfb1OMhhDP67H99cd9TIYTP9tm/XwjhnuL+X4QQqpL7dhoMQgj7hhBuDSE8EkL4Rwjho8X9Pg+VmO20Q5+HSkwIoSaEcG8I4cFiO/xScf82204Iobr4/qni8el9rrVL7VPaYjvt8IchhGf6PA9nFvf7e1llEUJIhxAeCCFcV3zvsxAgxjjgN+C1wCzg4T77LgU+W3z9WeArxddvAG4AAnA8cE9x/zhgcfHPscXXY4vH7i2eG4qfnVPp7+w28LZ+2uElwKe2ce6hwINANbAf8DSQLm5PA/sDVcVzDi1+5pfAvxRfXwFcWOnv7DawNmAKMKv4uhZ4otjWfB66JbZtpx36PHRLbCs+o0YWX2eBe4rPrm22HeAi4Iri638BflF8vcvt081ty7addvhD4JxtnO/vZbeybMAngJ8C1xXf+yyMcXD07Igx3g6sf9Hus4AfFV//CHhLn/3XxIK7gTEhhCnAGcBNMcb1McYNwE3A64vHRsUY746Fn/Q1fa4lbdVPO+zPWcDPY4xdMcZngKeAY4vbUzHGxTHGbuDnwFnFlP4U4Nri5/u2aQmAGOOKGOP9xddtwKPAPvg8VIK20w774/NQJVd8rm0qvs0Wt0j/bafvc/Ja4NRiW9ul9lnmr6VBZjvtsD/+XlbJhRCmAm8Evl98v73fo3vUs3BQhB39mBRjXFF8vRKYVHy9D7Csz3nPFvdtb/+z29gv7awPFbsiXh2KwwfY9XY4HtgYY8y9aL+0TcVuh0dT+K9IPg9VES9qh+DzUAkqdtteBKym8I/Dp+m/7Wxtb8XjLRTa2q62T+kFXtwOY4xbnoeNxefhN0II1cV9/l5WOXwT+DcgX3y/vd+je9SzcDCHHVsVk06XlVElXA4cAMwEVgBfq2w52hOEEEYCvwY+FmNs7XvM56GSso126PNQiYox9sYYZwJTKfzXx4MrXJL2QC9uhyGEw4F/p9AeX0lhaMpnKliihrAQwpnA6hjjwkrXMhAN5rBjVbFrF8U/Vxf3Lwf27XPe1OK+7e2fuo390g7FGFcVf8nlgSsp/D9bsOvtcB2FroyZF+2XXiCEkKXwD8ymGONvirt9HipR22qHPg9VKTHGjcCtwKvov+1sbW/F46MptLVdbZ/SNvVph68vDveLMcYu4Ae8/Oehv5e1I68B3hxCWEJhiMkpwLfwWQgM7rDj98CWmYrPBf6vz/73FGc7Ph5oKXbv/jNweghhbLFr7enAn4vHWkMIxxfHK72nz7Wk7dryD8yitwJbVmr5PfAvxRmP9wMOpDDB1H3AgcUZkqsoTAz0++J/jb8VOKf4+b5tWgK2jsG8Cng0xvj1Pod8Hiox/bVDn4dKUghhYghhTPH1MOB1FOaP6a/t9H1OngPcUmxru9Q+y//NNJj00w4f6/MfIAKFuRL6Pg/9vaySiTH+e4xxaoxxOoXn1C0xxrn4LCzY0QymA2EDfkahS2wPhXFC76cwtmg+8CRwMzCueG4A/pfCuM2/A7P7XOd9FCZbeQo4r8/+2RQeQk8DlwGh0t/ZbeBt/bTDHxfb2UMU/oc/pc/5DcU29Th9Zs6mMBP3E8VjDX3270/hofIU8CugutLf2W1gbcAJFIaoPAQsKm5v8HnoluS2nXbo89AtsQ04Enig2N4eBr5Q3L/NtgPUFN8/VTy+f59r7VL7dHPbsm2nHd5SfB4+DPyE51ds8feyW9k24GSeX43FZ2GMhf+xSJIkSZIkDRWDeRiLJEmSJEnSSxh2SJIkSZKkIcWwQ5IkSZIkDSmGHZIkSZIkaUgx7JAkSZIkSUOKYYckSZIkSRpSDDskSZIkSdKQYtghSZIkSZKGFMMOSZIkSZI0pBh2SJIkSZKkIcWwQ5IkSZIkDSmGHZIkSZIkaUgx7JAkSZIkSUOKYYckSZIkSRpSDDskSZIkSdKQYtghSZIkSZKGFMMOSZIkSZI0pBh2SJIkSZKkIcWwQ5IkSZIkDSmGHZIkSZIkaUgx7JAkSZIkSUOKYYckSZIkSRpSDDskSZIkSdKQYtghSZIkSZKGlP+fvTsPb7O88/3/uSV535fEdpzYibNvkMWAaSkUWgq0PaW0HQqlpS3QZaZ05kw7pcvMrzM9na7zKx16tTNngHagLYUuQGEKFChLgYKzOAtx9sSxknhf5DWWLOm5zx9SFDtxHAciy5bfr+vypUePHj36KvwR/Ml9f7+EHQAAAAAAIKkQdgAAAAAAgKRC2AEAAAAAAJIKYQcAAAAAAEgqhB0AAAAAACCpEHYAAAAAAICkQtgBAAAAAACSCmEHAAAAAABIKoQdAAAAAAAgqRB2AAAAAACApELYAQAAAAAAkgphBwAAAAAASCqEHQAAAAAAIKkQdgAAAAAAgKRC2AEAAAAAAJIKYQcAAAAAAEgqhB0AAAAAACCpEHYAAAAAAICkQtgBAAAAAACSCmEHAAAAAABIKoQdAAAAAAAgqRB2AAAAAACApELYAQAAAAAAkgphBwAAAAAASCqEHQAAAAAAIKkQdgAAAAAAgKRC2AEAAAAAAJIKYQcAAAAAAEgqhB0AAAAAACCpEHYAAAAAAICkQtgBAAAAAACSCmEHAAAAAABIKoQdAAAAAAAgqRB2AAAAAACApELYAQAAAAAAkgphBwAAAAAASCqEHQAAAAAAIKkQdgAAAAAAgKRC2AEAAAAAAJIKYQcAAAAAAEgqhB0AAAAAACCpEHYAAAAAAICkQtgBAAAAAACSCmEHAAAAAABIKoQdAAAAAAAgqRB2AAAAAACApELYAQAAAAAAkgphBwAAAAAASCqEHQAAAAAAIKkQdgAAAAAAgKRC2AEAAAAAAJIKYQcAAAAAAEgqhB0AAAAAACCpEHYAAAAAAICkQtgBAAAAAACSCmEHAAAAAABIKp5EFzARxcXFdv78+YkuAwAAAAAAJFBdXV2ntXbWma6bFmHH/PnztXnz5kSXAQAAAAAAEsgY453IdWxjAQAAAAAASYWwAwAAAAAAJBXCDgAAAAAAkFQIOwAAAAAAQFIh7AAAAAAAAEmFsAMAAAAAACQVwg4AAAAAAJBUCDsAAAAAAEBSIewAAAAAAABJhbADAAAAAAAkFcIOAAAAAACQVAg7AAAAAABAUiHsAAAAAAAASYWwAwAAAAAAJBXCDgAAAAAAkFQIOwAAAAAAQFIh7AAAAAAAAEmFsAMAAAAAACQVwg4AAAAAwIxR5/XpJy8cUJ3Xl+hSEmKmfH9PogsAAAAAAMwMdV6fahu6VFNVpPWVBefkntZaDYcdBUKOAkFHgVBYw6Ho85CjQDAceT3oaHdLn370/H6FwlYet9Hnr1isRbOz5TKSyxi5jJHbZWSM5HaZ2DlX9LmJvj7yepdLcpsxXnMZuaPvdUXv5TZGrzf1aOOhbp0/L1/LSnM0HHI0HHYUDFkNh8MKhBwNhxwFwzb6WuT7RI7tiONw7JoT73Fi9xv1GD3uHwqqrT8gSUrzuPSrT9Wcs/8OUw1hBwAAAADMEPEIG8LO8V+4I7+o+4PhUcFDIPraruY+3fVcJGhwu4xuuqhCs3LSYqFE7B5BJ/aewMmhxcjnoRPBwBsRDFvd+ey+c/JnkAhul1GK2yjV7VKqx600jyvy3OOK/LgjjznpHqVFzzV2DsbCjlDYUW1DF2EHAAAAAGD68AfD6vMH1e8Pqd8f0hZvt77z1J7YqoaP1lRqdk66AqGw/CODieAYwcVJYcOJ85HVBWcr5Fjd/5pXkmRMZJVBWvQX9rSUyC/qaR630lJcSvO4lJeRorSctBPXHb8mZcT7Yj8n3pfmcSt1xPmDHQP68sOvKxh2lOJ26fsfPE/LynIVdqwce/wnEuBYa6PnFXstcl6x47FeG+9eL+3v1At72mUlGUlXrSzV1atKY+FEyoiQIhJeuEaHFyOeu13mrP/c67w+3XRvrYIhRykel2qqis76HtMFYQcAAAAATJKJrqwYDjnqHxFU9PuD6vMH1Tfy+VDoxDWBk577QxoOn37FQzBs9d9/aYw9HxkIHA8c0jxupUdDg/zjYUPKiWAhPXY8Olw4/v702PnIuYMdA/rqIztiQcNPP3GBLlpQKE90e8hkWD03T/MKM8/56paJf36+Xj3YGQsbPnVp1aTWsL6yQA/cVpOw7z+ZjLVnn8JNturqart58+ZElwEAAAAAE+I4Vv2BkHqODavnWFC+Y8PaerhHP3nhgMKOlctldPnSWUrzuEeEGMFYkOEPnnlrRnaaRznpx39SlBt9jD3PGHneo5Yev/7PH3bFwoZ7PlatC6sKlep2yfUGVgm8EfHYRjPd8Gfw5hhj6qy11We8jrADAAAAAMZmrdWx4bB80dCi51hQPUPD8h0LqvdY5NF3bFi90ceeocg1vUNBhZ3xf9fKSnWrNC89FlDkZowILNIiz3NGBBi5Ix6z0z1veBsDv2hjOpto2ME2FgAAAAAzwoaGLr24r0OLZ2drTn6GeqJhRSTEOLECY3SgERx3O0hWqlv5manKz0xRfmaKyvIzVJCZovyM4+dSI88zU9XUc0xf+u3rCoUjWxh+futFkx44rK8sIOTAjEDYAQAAAGBachyrnqGgugYC6hwYVtdgQF0Dw5Hng5HHroFhdQ0Oq63Pr2PD4dPeK9XjGhVSLCjO0rrM1FiQcTywyM9IUUFW5DEvM0VpHveE611fWaDy/MT1iwBmEsIOAAAAAJPiTFsorLUaCITUPTgcCS8GAuqKhhad0dDiRIARUPfgsMbaKWKMVJiZqqLsVBVlpWnlnFwVZKZo6+EeWUkuI/3V+rm6+S3zVRANMzJS3JPSJJOVFcDkIOwAAAAAEDdhx6p7cFh/3teurz2yQ8Gwldtl9J7zyuRxuU5ZjTEcGnvLSE6aJxJeZKepsihT6yoLVJydqqKsyLnYY3aqCjJTT+lncfLIzesvqNDKOXmT8UcAIAFoUAoAAADgrA0Nh9XRH1B7vz/6GBjzedfg8JiNOt0uo5KctFhAUZSVFgkvoseF2akqzoq8VpiVqvSUiW8XOR2acwLTHw1KAQAAAJwVx7HyHRtWx0BA7X2BMUOM4z/9gdAp73cZqTg7TbNy0jQ7J7J9ZHZOumblpGnAH9Rdzx1QyHGU6nbpgdsu0vr5hZP6/dhCAswchB0AAABAkgs7Vs/vbteL+9pVnp+hnIwUdfT5T4Qa0cfOgYBCY6zCyEx1a3ZOJMRYXparS5dEjo+HGpHHdBVmnbp9ZKSahcWsrAAwKQg7AAAAgGnMWqu+oZCaeobU0juk5p4hNfX4Y8fNPX619g4pfFKGYYxUlHUisFhSkjMquBgZZGSlnZtfG1hZAWCyEHYAAAAAU5g/GFZLrz8aXETCi5beoWi4ETl/8kjVFLdRaV66yvIydOGCQrX0DmlDQ3dsEslnL1uoL1y5RB63KzFfCgDijLADAAAAmARjNccMO1Yd/YFRqzKaeyIBxvEgo2tw+JR7FWenqTw/XYtmZevSxbM0Jz9dc/IzVJaXrvL8DBVnp8k1YjvJyZNI3rG8hKADQFIj7AAAAADiIBAKxxp81h7s1J3P7lfYsTJGWlqSoz5/SG19/lN6ZGSneTQnP7IqY1V5nubkRYOM/EiQUZqXrjTP2U0mWV9ZoAduq6FfBoAZg7ADAAAAOAvDIUcdAwG19fnV3udXe3/kuK0vEmy09/nV1ueX71hwzPdbK/UHQrpwQaHKokFGeTTMmJOfodz0lLjUTb8MADMJYQcAAACgEyFGeyy48Ku9LxpkREOM9v6AusfYVuJ2Gc3KTlNJbprmFmRqfWWBSnLTNTsnTSW56eoaDOgfH61XKBzZRnLXDWsJHgAgjgg7AAAAkNRC4UiI8eLeDm1o6NKsnDSledyRlRnRVRlnCjFmjwgxZuekqyQ3EmLMioYZZxq5KkkLirPZRgIAk4SwAwAAANPWQCCk1t7ItpHWXr9aRzweP9c5ENBJbTHkMooFFXMLMrWuskAlOemanRtZnTE7elyUlXbGEGOi2EYCAJOHsAMAAABTTtix6hoIqLXPr5aTwozjx219AQ0EQqe8Nzfdo9K8dJXmZWhZaY5Kc9O1p7Vfz+5qk5XkNtLfX7lEt1+xePK/GABgUhB2AAAAIO5Gjl1dXpZzUnAROCXMaO8PKHzScgyPy0R6YOSla0lJjt62eFYk1MhNV0lueuw4I/XUSSV1Xp9e2t8RG7168cLiyfrqAIAEIOwAAADAOddzbFgHOwZ1sGNArx7o0uPbm07ZSjJSTppHJdGwYuHCYpXmpZ0SYhRlv/EtJYxeBYCZhbADAAAAZzRyZcbxoCAUdnTEN6SGjgEd7BhQQzTcaOgYVNeIZp8uo1jQYSRdsrhY719TrrK89FjAkZUW//8tpWcGAMwchB0AAAA4rUAorOd2tet//3qbgmFHbpfR+sp8dQ0G5e0aVDB8YrlGUVaqFs7K1pUrSrRwVraqZmVp4axstff7dfPPNsa2kPzvdy4hdAAAxBVhBwAAwAww1soMfzCs1t5IA9CW3iG19Ppjz1v7htTS4x+1QkOSQo7V/vYBra8s1DuXl8QCjYWzspSfmTrmZ88vzmILCQBgUhF2AAAAJLHeoaB+v7VJ3/zDLoUcK5eRKgoz1TsUlO9Y8JTr8zJSVJaXrrK8dK0uz1dZXroCobDueemQQo6jVI9L99x8wVkHFmwhAQBMJsIOAACAJNE1EFB9c5/qm3q1s7lXO5v75O06Nuoax0pul9G7V5epLDqedU5etAloXroyU8f+38MrlpWwMgMAMG0QdgAAAEwDI7ehrKvIV1tfQPVNvapv7lV9U592Nveqpdcfu76iMFOrynN1ffU8pae49P0/7lUoHOmZ8f0Pnc/KDABAUiPsAAAAmKIcx6pzIKDn9rTr64/VKxS2MkbKSfeodygkSTJGqirO0oULCrVqTp5WludqZVme8jJTRt1rzbwCVmYAAGYMwg4AAIBJcLrRra19fjX5hnTUN6SmniE1RR+P+o6pucev4bAz6j7WSvMKMvWFK+dpVXmulpXmTmhsKyszAAAzCWEHAABAnDiOVXt/QM/sao00CA1buYzRktJs9Q2F1NrnV9ixo95TnJ2m8oIMrSzP01UrS1VekKGh4bDufHZfbBvKN65dRXABAMA4CDsAAADehLBj1dI7JG/XMTV2DUYeOyOP3u5B+YOjV2aErVXfUFAXLihSeX6GygsyVJ6fobkFGZqTn6H0FPeYn1M9v5BtKAAATBBhBwAAwBlsauzWMztbVZqXrhS3S42dx+TtGlRj16COdA+N2mqS6nGpsjBTlUVZetviYlUWZykYCut7IxqE/ujGdTQIBQAgjgg7AAAAohzH6ojvmPa1DWhfW7/2t/Vr25EeNZ40vjUjxa3Kokwtnp2jd64o0fyiLFUWZWp+UZZKc9PlcplT7n0+DUIBAJg0hB0AACDpndwc1HGsjvqGIoFG+4D2t/VrX3u/DrQPjNp2UpaXrrQUt4wkK8llpM9etlBfumqpjDk10BgPKzMAAJg8hB0AACCpvXawUx//2SYFw45cxqiyKFMtvX4NBcOxa0pz07W4JFs3XVSpJSXZWlySo8Wzs5WTnqI6r0833VurYCiyBeUdy0vOOugAAACTi7ADAAAklYFASHVenzYe6tLGQ93a4u1R2EYmnoStlWOtbrywIhpqZGvR7BzlZaSc9n7rKwv0wG01bEEBAGAaIewAAADTmm9wWJsau7XxULc2NnarvqlXjpXcLqPV5Xl67/llenJHixzHKsXj0g+uX0NzUAAAkhxhBwAAmPJG9tyYW5ARCTaiP3vb+iVFpqCsnZev2y9fpAsXFGltRb6y0iL/q3PzxfNZmQEAwAxC2AEAAKasYNjRY9ua9NVHdigYtrFGoZKUlerW+vmFet+aObpwQaHOm5unNI97zPuwMgMAgJmFsAMAAEwJobCj/e0D2tHUqx1He/V6U692t/RpOHRiOoqVdPnSWfr7K5doRVmuPG5X4goGAABTFmEHAACYdGHH6mDHgF4/2qv6pl69frRHu1r6YmNfs9M8WlWeq49fXKns9BT9xwsHFApHpqHcfsVinTc3P8HfAAAATGWEHQAAIK6CYUdPvN6iZ3e1SpLa+wOqb+qLjX7NTHVr1Zw83XRRpVaX52n13DwtKMqSy3VivOsli4rpuQEAACYsbmGHMWaepJ9LKlFk1end1tq7jDH/IulTkjqil37NWvtkvOoAAACTw3GsmnqGtLe1X3vb+rW3tV/72vq1v71f4RM7UbS0NEcfvmCezpubp9XleaqalS33iGBjLPTcAAAAZyOeKztCkr5ord1ijMmRVGeMeTb62g+ttf9/HD8bAACcQyOnoayryFfHQED7Wge0t61f+6Lhxv62fg0Oh2PvKc/P0JKSbOVmpGjToW5ZSW4jve/8Ofrc5YsS92UAAEDSR9wO0wAAIABJREFUi1vYYa1tkdQSPe43xuyWVB6vzwMAAOfeQCCkx7c1658fr1cwbOUykSko/YEToUZhVqqWluTor6rnaWlpjpaU5GhxSbZy01MkRYKSm+6tVTAU6blRU1WUqK8DAABmiEnp2WGMmS9praQNkt4q6XZjzM2SNiuy+sM3GXUAAICxhcKOGruOaU9rn/a29mt3S7/2tvXpSPfQqOscKy2Yla3r1pZraUmOlpTmqDg7bdx7r68s0AO31dBzAwAATBpjrT3zVW/mA4zJlvRnSd+y1j5ijCmR1KlIH49vSiqz1t4yxvs+LenTklRRUbHe6/XGtU4AAJLZyG0oFYWZp4Qa+9oGYiNe3S6jquIsLS3N0fKyXHlcRnc+uy82DeWB22oILAAAQEIYY+qstdVnvC6eYYcxJkXSHyQ9ba29c4zX50v6g7V21Xj3qa6utps3b45LjQAAJKt+f1D72wf0p12t+q+XDinsnPp3/uyctFiosbQkR8vKcrRwVrbSU9yjrhsZlhB0AACARJlo2BHPaSxG0k8l7R4ZdBhjyqL9PCTpOkn18aoBAICZYGg4rAPtA9rX1j/iZ0BNPUOnXGskXb5stm572wItK81VYVbqhD6DaSgAAGA6iWfPjrdK+pikHcaYbdFzX5N0ozFmjSLbWBolfSaONQAAMO0dX1WxvjJf+Zmp2tvar/1tA7EJKN7uYzq+UDPV7VLVrCxVzy/QR0oqtKQkR8GQoy/8dlusQejnLl9EcAEAAJJaPKexvKLIPyCd7Ml4fSYAAMnCHwxrV0uf/rC9Wfe/6lX4pG2nbpfRguIsrZiTq/evLdeSksgUlPlFmfK4XafcryQvnW0oAABgxpiUaSwAAOD0wo7VgfYBbT/So+1HIz97WvoVOqnHhpH0nvPK9LnLF6lqVpbSPO6xbzgGtqEAAICZhLADAIA4G9ncc11Fvo76hiKhxpEebT/aq/qmXh0bDkuSctI8Om9enj51aZXOn5svl5H+9qGtsS0on3zrAi0vy03wNwIAAJjaCDsAAIijl/d36Nb7NisYdmSMlJXmUb8/JElK9bi0oixX11fP03lz83T+vHwtKMqSyzV6F+gDt9WwBQUAAOAsEHYAAHAONfUMaXNjtzY3+rTZ69Pulr7Ya9ZKlYWZ+vCFFVozN19LS3OU6jm1v8bJ2IICAABwdgg7AAB4g8KO1Z7WPtV5fdrU6FNdY7eae/2SpKxUt9ZWFOj66rn6/dZmhZ3INpRvXLuK4AIAACDOCDsAADiD4z031s7LlyRtavRps7dbWw/3aCAQ2ZJSmpuu6vkF+nRlgarnF2pZaU5sKsqHL6hgGwoAAMAkIuwAAGAMjmPV2DWox7Y168cvHFB4xGQUY6SlJTl6/9o5qq4sVPX8ApXnZ8iYsSausw0FAABgshF2AAAgqb3fr+1Hek+Mfz3So75oI9HjjKQPrC/X19+7UnkZKYkpFAAAAGdE2AEAmHEGAiHtONp7YvzrkZ5Yrw23y2hpSY7ec94crZmXpxS3S197dEds9OtHLqwk6AAAAJjiCDsAAEktFHb06NYmPbOrTeGwo6M9Q9rfPiAb3ZVSUZip9fMLdcvcPK2Zl6+Vc/KUkeoedY/Koix6bgAAAEwjhB0AgKQyEAhp62GfNjf6VOf1aXNjt/whJ/b6uop8/d07Fuv8efk6f26+CrNSz3hPem4AAABML4QdAIBprblnSJu9kbGvm70+7W7pk2MjTUSXleZqWVmuth/pkZXkNtI7lpfoc5cvSnTZAAAAiCPCDgDAlHd89OuFCwqVmeqOrtiIrNxo6hmSJGWkuLW2Il+3X75I1fMLtbYiXznpKarz+nTTvbWxnhs1VUUJ/jYAAACIN8IOAMCU1d7v1++3Nun7f9yr0IjRr5JUkpum6spC3XrJAl0wv1DLy3LkcbtOucf6ygI9cFsNPTcAAABmEMIOAMCU0N7n146mXu1o6lV99LGtLzDqGiPp3atL9ZVrlmtuQYaMMRO6Nz03AAAAZhbCDgBAXB3fgjJyVUVbn187jo4ONtr7I8GGMVJVcZYurirSqvI8pXlc+tYTuxUMR7ah3HJJleYVZibyKwEAAGCKI+wAAMRNndenj9xTq+GQI7fL6Px5+TrcfUwdI4KNhbOy9dZFxVpVnqfV5XlaMSdX2Wmj/3paMSePbSgAAACYMMIOAMA54zhW+9sHtNnbrTqvT8/vaVcgOvY15Fg1dg7qsiWzIsHG3DytKMtVVtqZ/ypiGwoAAADOBmEHAOANGwiEtO1wj+q8PtUd9mnrYZ/6/SFJUlFWqpbMztaWwz1yrFWq26W7b64mtAAAAEDcEXYAAMYV67mxoFCzc9MjY1+93arz9mhva58cG9mOsrQkR//r/DlaXxFZhVFZlCljzJg9OwAAAIB4IuwAAJzWxkNduuneDQqGR499zUp1a21FgT5/xWKtryzQmop85aanjHkPtqAAAABgshF2AABO0d7n1682HtY9LzWMCjreuaJEX3jnEi0tzZHbNbGxrwAAAMBkI+wAAEiSrLWq8/p0/2tePbWjRSHHam1FvnY29SrsWKV4XPrryxZqxZzcRJcKAAAAjIuwAwBmuKHhsB7f3qT7X/VqV0ufctI9+vhb5uujNZVaUJxFzw0AAABMO4QdADBDHe46pl9u8OrXm46odyioZaU5+vZ1q/X+tXOUmXrirwd6bgAAAGC6IewAgBnEcaxePtCpn7/aqOf3tstljK5eWaqbL67UhQsKZQx9OAAAADD9EXYAQJKr8/r0533t6veH9OLeDh3qHFRxdqo+f/kifeSiSpXmpSe6RAAAAOCcIuwAgCQ0HHK0q6VPj21r0v2vNsqJDlRZUpKtu25Yo6tXlSrN405skQAAAECcEHYAQBLoHhzWFq9PdYd9qvP6tP1IjwIhZ9Q1LiNdu6Zc164pT1CVAAAAwOQg7ACAacZxrA52DKjO64v9NHQOSpI8LqOV5Xm66aJKra8sUKrbpc8/tEXBkKMUj0s1VUUJrh4AAACIP8IOAJjiXj3Qqce2N8ltjJp7/dri9anPH5IkFWSmaH1lgT5UPVfVlYU6b26e0lNGb0954LYaRscCAABgRiHsAIApqHcoqOd2t+mhjYe1sdEXOz+3IEPvXl0WGwe7oDjrjBNUGB0LAACAmYawAwCmiM6BgJ7Z2aY/7mzVqwc6FXKsstNOrNJwG+nGCyv0ucsXJbBKAAAAYOoj7ACABGruGdIf61v1x52t2tzYLcdKFYWZuvWSBbpqVakcx+qjP91Azw0AAADgLBB2AMAkO9Q5qKfqW/R0fau2H+2VJC0tydHtVyzW1StLtbwsZ9TWFHpuAAAAAGeHsAMA4qyusVuPb2/RsWBIrx/p1d62fknS+XPzdMfVS3X1ylJVzco+7fvpuQEAAACcHcIOAIiT1l6/fvT8fj244bBs9Nzyshx9/b0rdNWqUpXnZyS0PgAAACBZEXYAwDk0HHL0/J52/WbzEb24t12OPfGa20jvPW+ObrlkQeIKBAAAAGYAwg4AeJPqvD49saNZnf0B/eVAl7oGhzU7J02fvWyhVszJ1T/8djsNRgEAAIBJRNgBAGcp7Fg1dAxoR1Ov/rS7TU/Vt8pGV3BctKBA/3bZebp08Sx53C5JUlleBg1GAQAAgElE2AEAZ/DE6816ckeLjIza+v3a2dynY8NhSZLHZWJBh9tIly6ZrSuWlYx6Pw1GAQAAgMlF2AEApxF2rO743XY9vKUpdm5JSbaur56nVeV5Om9unnqHgvrYTzewTQUAAACYQgg7AGAMvsFh/e1DW/Xy/s7YObeRrl1Trs9dvmjUtQ/cVsM2FQAAAGAKIewAgJPUN/XqM7+oU0d/QJ+9rEr3vdo47soNtqkAAAAAUwthBwCM8JvNR/RPv69XcVaqfvPZi7VmXr6uXFHKyg0AAABgGiHsAABJgVBY3/ifXfrVhsN666Ii/eiGtSrKTpPEyg0AAABguiHsADCj1Xl9enZXq57b3a797QP67GUL9Q/vWhIbGwsAAABg+iHsADBjbW7s1o331CoYjsyOveOqJfqbyxcnuCoAAAAAbxb/dAlgRnr1YKf+5oEtsaDDZSQrk+CqAAAAAJwLrOwAMKMcaO/Xd5/aoz/tbldxdqpS3EaOY087aQUAAADA9EPYASCp1Xl9qm3o0vKyHD2/p10PbjyizBS3vnz1Mn3yrfO1s7mPSSsAAABAkiHsAJC06rw+3XRvrQJBR1aRrSofranU371jMZNWAAAAgCRG2AEgaT21o0X+oBN7/sm3LtD/994VCawIAAAAwGQg7ACQdKy1+l3dUf2i1ispsqIj1ePSu1eXJbgyAAAAAJOBsANAUun3B/WPj9br8e3Nqqkq1K1vrdK+9n56cgAAAAAzCGEHgKSx7UiP/vbBrWrqGdI/vGuJ/vrti+R2GV25siTRpQEAAACYRIQdAKa1Oq9Prx3sVFtfQA9uPKyS3HT95jM1Wl9ZmOjSAAAAACQIYQeAaavO69NH7qlVIBRpQnpxVaH+70erlZeZkuDKAAAAACSSK9EFAMAbMRxy9KPn9seCDiPpksXFBB0AAAAAWNkBYPp5ZX+n/vnxeh3sGJTLRM6lelyqqSpObGEAAAAApgTCDgDTRlPPkP71D7v0VH2rKosy9bNPVCsvI1W1DV1MWwEAAAAQQ9gBYEqr8/r0lwMdau0L6NEtTbKy+uKVS/SpS6uUnuKWJEIOAAAAAKMQdgCYsuq8Pt1492saDltJ0kULCvSD69dobkFmgisDAAAAMJXRoBTAlNTYOag7frc9FnS4jHTpktkEHQAAAADOiJUdAKaUwUBIP3nhgO59+ZBcRvK4jKy1SvG4VFNVlOjyAAAAAEwDhB0ApgRrrR7f3qzvPLlHrX1+fWBtub58zTId9Q3RgBQAAADAWSHsAJBQdV6fHt/WrI2HurS7tV+rynP144+sVfX8QklSSW46IQcAAACAs0LYAWDSWWt1sGNQD208rJ/95ZCcSFsOffayKn3pqmVyu0xiCwQAAAAwrRF2ABhXndc37jaSib6+vCxH/f6QXtnfqb8c6FRzr3/UdW4j5aSnEHQAAAAAeNPiFnYYY+ZJ+rmkEklW0t3W2ruMMYWSfi1pvqRGSddba33xqgPA+Oq8Pr20r0MLZ2WpKDtNrb1+tfb51dbn156WPm3y+mRtZBrKBfMLNLcgS9lpbmWne9R7LKSHNh1W2LFyu4yuv2CeirNSFQg58gfDauoZ0vN72mMrNyQpLyNFb1lYpM9dUayCjFR94bfbFAw5NCAFAAAAcM7Ec2VHSNIXrbVbjDE5kuqMMc9K+oSk56y13zXGfEXSVyR9OY51ADjJQCCkV/Z36NebjuiFvR1jXpOXkaIUt5GNBhWOlRo6BnXU59dAIKSBQEjhESlGyLH61YbDkqT0FJfSPG6FHScWdBhJN9VU6hvvWzlq9UZJXjoNSAEAAACcU3ELO6y1LZJaosf9xpjdksolXSvp7dHL7pf0ogg7gLg5vo1k4awstfUF9KfdbdrQ0K3hsKM0jyt2nctIf1U9T5+9bKFKc9OVkepWndenm+6tja28+L8fq44FEtZavXawS5+8b5NCYUcet0v3ffIC1VQVyRgT++yR779ubfkp21TWVxYQcgAAAAA4p4y19sxXvdkPMWa+pJckrZJ02FqbHz1vJPmOPz+d6upqu3nz5niXCSSdJ19v0d8+tFWhESswqoqz9I7ls/WO5SVyGenmn22MhREP3FZzSvBwrnp2sHIDAAAAwJtljKmz1laf8bp4hx3GmGxJf5b0LWvtI8aYnpHhhjHGZ6095TcgY8ynJX1akioqKtZ7vd641gkki2DY0Z92telXGw/r5f2dsfNG0q2XLNA/vXfFqOsJIwAAAABMFxMNO+I6jcUYkyLpYUkPWGsfiZ5uM8aUWWtbjDFlktrHeq+19m5Jd0uRlR3xrBOYzo6HFVXFWapv7tVvNh9VR39Ac/LS9eHqefr9tiaFwpGVG9esLjvl/WwjAQAAAJBs4jmNxUj6qaTd1to7R7z0uKSPS/pu9PGxeNUAJLuX93folvs2KRiO5IFG0hXLZusjF1Xo7UtnxyaksHIDAAAAwEwSz5Udb5X0MUk7jDHboue+pkjI8RtjzK2SvJKuj2MNwLR28haTPn9Qmxu7VdvQrdqGLu042qvjy56MpM9cVqWvXLN81D1YuQEAAABgponnNJZXFPn9ayzviNfnAtPZyHAjGA7r4z/bpOGQI5fLaH5Rpg51DsqxUqrbpTUV+fpQ9Vw9trVZYSeyTeXKFaWJ/goAAAAAkHBx7dkBYHwjw43W3iH93UPbRk1OOS7sWAVCjj5/xWJdVFWodRUFSk9xS5JuuKCCbSoAAAAAMAJhB5AgL+/v0K33bVYw7EiSTo44Vpfnak9rv8KOVarbpbtuWDtmmME2FQAAAAAYjbADiKPIyo1OLS3Jlcsl7Wzq087mPu1q6dPh7mOjrl1Xka+dzX2xySn/8r5VksSqDQAAAAA4S4QdwDn06oFOPbzlqHLSPWry+fXcnjadvCtlflGmVpfn6ZLFxfrd5iMKO1YpHpf+8T0rJJ0abhByAAAAAMDZIewA3oTjPTdWz8nTk/UtemjTkdhrqW4TCzqMpBsvrNBX371MOekpsWs+uG4u4QYAAAAAnGOEHcAbVOf16SP31Go45JzSb8NtpA9Vz9MjW44qGIpsS/ng+rmjgg6JfhsAAAAAEA+EHcAb9OLedgVCTuz5u1eX6vk97SfCjXVzx1y5AQAAAACIL8IO4A0YCIT0VH2rJMllpFSPS7deUqVbL6liWwoAAAAAJBhhB3CW/MGwbrt/kw51DurLVy+VY0W4AQAAAABTCGEHcBY2NHTpK4/s0KHOQd11wxpdu6Y80SUBAAAAAE5C2AFM0IaGLt14T60cK6W4jeYWZCa6JAAAAADAGFyJLgCYDgKhsL726I7YKFnHsapt6EpsUQAAAACAMbGyAzgDfzCsv3lgiw52DMrjMrLWKsXjUk1VUaJLAwAAAACMgbADGMdrBzv1tUfrdahzUN+6bpWWleYyShYAAAAApjjCDuA0XjvYqZvu3RDr0bGsNFfrKwsIOQAAAABgiqNnBzAGfzCsrz5aT48OAAAAAJiGCDuAk/iDYX3mF3Vq7BxUitvIbUSPDgAAAACYRtjGAoxQ29Cprz1Sr4bOQX3vg6u1aHYOPToAAAAAYJoh7ACi/nKgUx/76YkeHYtm59CjAwAAAACmIbaxAJI6BwL64m+20aMDAAAAAJIAKzswo9V5fXq6vlWPb29S9+CwUtxGjmPp0QEAAAAA0xhhB2asOq9PN95Tq+GQI0n6zgdWa0kJPToAAAAAYLoj7MCM9fTO1ljQ4TJS9+AwPToAAAAAIAnQswMz0kAgpD/uaJUUCTpS2bYCAAAAAEmDlR2YccKO1d89uFVNvUP6+nuXayjosG0FAAAAAJIIYQdmlDqvT997arc2Nvr0zWtX6mMXz090SQAAAACAc4ywAzNGndenG+5+TcGwldtltGJOXqJLAgAAAADEAT07MCNYa/WDZ/YqGLbHT6i2oSuxRQEAAAAA4oKVHUh6/mBYd/zudb16sEtuYyRZpdCQFAAAAACSFmEHktpzu9v0T7+vV0uvX1+6aqlqFhSq9lA3DUkBAAAAIIkRdiBpbWrs1m33b5aVlOI2sYBj/fzCRJcGAAAAAIgjenYgad37coOiHTrkOPToAAAAAICZgpUdSEqDgZA2HOqWMZFEjx4dAAAAADBzEHYgKf3Xnw+q51hQ3/nAanUPDtOjAwAAAABmEMIOJJ2W3iHd/XKD/tf5c3TjhRWJLgcAAAAAMMno2YGk829P75VjpTuuWproUgAAAAAACUDYgaTy201H9MiWJl2zqlTzCjMTXQ4AAAAAIAEIO5A06rw+ffmR1yVJT9e3qs7rS3BFAAAAAIBEIOxA0ni6vlVOdNZsMOwwahYAAAAAZijCDiSNnqFhSZLLMGoWAAAAAGYyprEgKVhrVdvQrdXlubp6VRmjZgEAAABgBiPsQFLY1OjT4e5juvP68/WBdXMTXQ4AAAAAIIHYxoKk8HDdUWWmunX1qtJElwIAAAAASDDCDkx7Q8NhPbGjRdesKlNmKouVAAAAAGCmI+zAtPfMrlYNBEL64PryRJcCAAAAAJgCCDsw7T28pUnl+RmqWcD0FQAAAAAAYQemubY+v17Z36EPrCuXy2USXQ4AAAAAYAog7MC09uPnD8ix0pKS7ESXAgAAAACYIgg7MG3VNXbrl7VeSdKXfve66ry+BFcEAAAAAJgKCDswbT2ytUk2ehwMOapt6EpoPQAAAACAqYGwA9NWS8+QJMltpBSPSzVVNCgFAAAAAEieRBcAvBH9/qBea+jWlctna01FgWqqirS+siDRZQEAAAAApgDCDkxLj21r1lAwrNuvWKzz5+UnuhwAAAAAwBTCNhZMSw9tOqxlpTk6b25eoksBAAAAAEwxhB2YduqbelXf1KcbL6yQMSbR5QAAAAAAphjCDkw7D248rDSPS+9fU57oUgAAAAAAUxBhB6aVY8MhPbatWe9ZXaa8zJRElwMAAAAAmIIIOzCt/OSFAxoIhLSugskrAAAAAICxEXZg2qhr7NZ/vHhQkvSvT+5SndeX4IoAAAAAAFMRYQemjV/UemVt5DgYclTb0JXYggAAAAAAU5In0QUAEzE0HNYrBzplJLmMlOJxqaaqKNFlAQAAAACmIMIOTAv/8eIBdQ4M61+vXaVef1A1VUVaX0nfDgAAAADAqQg7MOU1dg7qv/7coPevmaOPXlyZ6HIAAAAAAFMcPTsw5f2fP+xSqselr717eaJLAQAAAABMA4QdmNL+688H9fyedn1ofblm56YnuhwAAAAAwDRA2IEp6y8HOvXdp/ZIkh7adIRRswAAAACACSHswJT1vaf2KDppllGzAAAAAIAJo0EppqSnd7bq9aZeeVxG1lpGzQIAAAAAJuyswg5jTLGkLmutPePFwBvU3u/XVx/ZoZVzcvX1967QZq+PUbMAAAAAgAk7bdhhjKmR9F1J3ZK+KekXkooluYwxN1tr/zg5JWImsdbqjt+9rsFASHfdsEaLZufoIlZ0AAAAAADOwng9O34s6duSHpT0vKTbrLWlki6V9J0z3dgY8zNjTLsxpn7EuX8xxjQZY7ZFf979JutHkvn2k7v14t4OfaymUotm5yS6HAAAAADANDRe2OGx1j5jrf2tpFZrba0kWWv3TPDe90m6eozzP7TWron+PHl25SKZvbSvQ/e8fEiS9MsNXqavAAAAAADekPHCDmfE8dBJr52xZ4e19iVFtsAAE/LABm/smOkrAAAAAIA3arwGpecbY/okGUkZ0WNFn6e/ic+83Rhzs6TNkr5oreWf7yFJOuo7JiPJZcT0FQAAAADAG3basMNa647D5/2nIs1ObfTxB5JuGetCY8ynJX1akioqKuJQCqaS5p4h7Wzu14er56miKJPpKwAAAACAN+ysRs++WdbatuPHxph7JP1hnGvvlnS3JFVXVzPqNsk9vr1ZkvTXb1+o+cVZCa4GAAAAADCdjdez45wzxpSNeHqdpPrTXYuZ5fdbm7S2Ip+gAwAAAADwpsVtZYcx5kFJb5dUbIw5KumfJb3dGLNGkW0sjZI+E6/Px/Sxp7VPe1r79Y33rUx0KQAAAACAJHBWYYcxplhSl7V2ItNYbhzj9E/P5vMwM/x+a7PcLqP3nFd25osBAAAAADiD025jMcbUGGNeNMY8YoxZa4ypV2TbSZsx5urJKxHJzHGsHt/WpEsXF6s4Oy3R5QAAAAAAksB4PTt+LOnbkh6U9Lyk26y1pZIulfSdSagNM8DGxm419/r1/rXliS4FAAAAAJAkxgs7PNbaZ6y1v5XUaq2tlSRr7Z7JKQ0zwU9fblCK22gWqzoAAAAAAOfIeGGHM+J46KTXGAWLN+2Fve16dne7gmGrW+7fpDqvL9ElAQAAAACSwHgNSs83xvRJMpIyoseKPk+Pe2VIav5gWP/06I7Y82DIUW1Dl9ZXFiSwKgAAAABAMjht2GGtdU9mIZg5HMfqS797XU09fqW4jRzHKsXjUk1VUaJLAwAAAAAkgTOOnjXGfFPSS5JetdYOxr8kJLs7n92n/9nerDuuXqqLFhSptqFLNVVFrOoAAAAAAJwTZww7JDVIulHSj4wx/ZJelvSStfaxuFaGpPRvf9yjn7x4UO9cPlt/fdlCGWMIOQAAAAAA59R4DUolSdba/7bW3iLpckm/lPRX0UfgrDyzs1U/efGgJOmVA53acrgnwRUBAAAAAJLRGcMOY8y9xphXJf2nIitBPiSJf4rHWXtw05HY8fGGpAAAAAAAnGsT2cZSJMktqUdSt6ROa20orlUhKbX2DMlIchnRkBQAAAAAEDdnDDustddJkjFmuaSrJL1gjHFba+fGuzgkj7Y+v/a09evDF8zTvMJMGpICAAAAAOJmItNY3ivpbZIulZQv6XlFmpQCE/b0zlZZK932tgVaNDsn0eUAAAAAAJLYRLaxXK1IuHGXtbY5zvUgST25o0WLZ2cTdAAAAAAA4m4i21hun4xCkLw6BwLaeKhbt1++KNGlAAAAAABmgDNOYwHerGd2tsmx0jWryxJdCgAAAABgBiDsQNw9Vd+iBcVZWlbKFhYAAAAAQPwRdiCufIPDevVgl65ZVSpjTKLLAQAAAADMAKcNO4wxucaY7xhjfmGM+chJr/1H/EtDMnh2d5vCjtW72cICAAAAAJgk463s+G9JRtLDkm4wxjxsjEmLvlYT98qQFB7aeFi56R4FguFElwIAAAAAmCHGCzsWWmu/Yq39vbX2fZK2SHreGFM0SbVhmvvz3nZtOdyjfn9IN/10g+q8vkSXBAAAAACYAcYLO9KMMbHXrbXfknSPpJckEXjgjH78wgFJkpUUDDlPrlN9AAAgAElEQVSqbehKbEEAAAAAgBlhvLDjfyRdMfKEtfY+SV+UNBzHmpAEjnQf09bDPXIbI7eRUjwu1VSRkQEAAAAA4s9zuhestXec5vwfJS2OW0VICv/29F553EY/umGt9rcPqKaqSOsrCxJdFgAAAABgBjht2GGMuUjSbmttnzEmQ9JXJK2TtEvSt621vZNUI6aZ14/26PHtzbr98kV618pSvWtloisCAAAAAMwk421j+ZmkY9HjuyTlSfpe9Nx/x7kuTFPWWn3rid0qykrVZy6rSnQ5AAAAAIAZ6LQrOyS5rLWh6HG1tXZd9PgVY8y2ONeFaerulxq04VC3PvW2BcpJT0l0OQAAAACAGWi8lR31xphPRo+3G2OqJckYs0RSMO6VYdrZeKhL331qjyTpF7VeRs0CAAAAABJivLDjNkmXGWMOSloh6TVjTIMi42dvm4ziML384jWvbPSYUbMAAAAAgEQZbxpLr6RPGGNyJS2IXnvUWts2WcVhetnfPiAjycWoWQAAAABAAo3Xs0OSZK3tk7R9EmrBNFbf1Ks9rf36xFsqNSsnnVGzAAAAAICEOWPYAUzEz19rVEaKW39/5VLlZdCYFAAAAACQOOP17AAmxDc4rMe2NesD68oJOgAAAAAACUfYgTftoU1HFAg5uvni+YkuBQAAAAAAwg68OWHH6pe1Xl1cVaSlpTmJLgcAAAAAAMIOvDl/2t2mpp4hffwtlYkuBQAAAAAASYQdeJN+/Px+5aR5VJiVmuhSAAAAAACQRNiBiejqkq6+OvI4wsN1R7WjqU8DgZBu/tlG1Xl9CSoQAAAAAIATCDtwZvfdJz39tHT//bFTjmN157N7JUlWUjDkqLaha+z3AwAAAAAwiQg7MD5rpR/+MHL8wx9Gnkv63ZajaurxK8Vt5DZSiselmqqiBBYKAAAAAECEJ9EFYIp7+WWptzdy3NMjvfKKfOsu0nee3K3qygJ95Zpl2nCoWzVVRVpfWZDYWgEAAAAAEGEHzuTf/10aHIwcDwxI112n7//7E+rzh/TN96/S8rJcVc8vTGyNAAAAAACMwDYWnHDttZIxo3+eeCK2daVuzjL94/rr9WB9p26pfVjL5+RFrrn22gQXDgAAAADACazswAnf/ra0bZvU3i75/ZFzw8OSIkHHTTd8S35PqmStLmuoi7xeWRl5HwAAAAAAUwQrO3DCypXSrl3S+94nZWaOeqm2YrUC7hTJGLmso+1zlkau27kz8j4AAAAAAKYIwg6MlpUl/frX0g9+IKWlxU7XHN4hIytZq9RwSDUFLumxxyLXAwAAAAAwhbCNBWNbty4SdgQCkqSKnlZJ0kWHd+iOV3+l9VXFiawOAAAAAIDTYmUHxrZ5sxQMRo6N0ePnv1OOy61/ffY/tb7joHT99YmtDwAAAACA0yDswNheflkaGpLS06WKCj16zce1qvuwFg92RM6//HKiKwQAAAAAYEyEHRjbhg2S2y1de632v7hR9YNG191weaQpqdsdeR0AAAAAgCmIsANjW75cuvtu6aGH9MiebrldRu+7YEGkeendd0vLliW6QgAAAAAAxkSDUoztiSckSY5j9djWJr1tcbFm5USns9xyS+QHAAAAAIApiJUdGNeGQ91q7vXrurXliS4FAAAAAIAJIezAuB7delTZaR69a0VpoksBAAAAAGBCCDtwWjuOPqWSnB/qhguOKiPVnehyAAAAAACYEHp2YEx7Wp7Wotnv1/L/x96dx8dVHvb+/z6zShrti428jIXBJsHGCaAEuNkoJjgmudkwLaAszab7y1LaJv1lqfLqD3qj3vySNml7m1daNbQhlyFLIU1pMD9CDCRpU5LYBIwN2NhYFt61r9asz++POZJGsuRVM0c683m/Xuc1Z55z5swz0sOR58uzNKaUTH9XLx5doVc1bnK7WgAAAAAAnBE9OzCr/rHHFPSnFPBnFPSn1D/2mNtVAgAAAADgrBB2YFY1ZW9VMh1QKu1TMh1QTdlb3a4SAAAAAABnhWEsmNXapTep5Z4va/P6F/X6pvcyhAUAAAAAsGjQswOz6uwd1X/tX6uSwBezQcddd7ldJQAAAAAAzgphB2a189CgJOmKFVXZgrvvdrE2AAAAAACcPcIOzGrnoUGVBH1as6Tc7aoAAAAAAHBOCDswq52HBrRuWZUCfpoIAAAAAGBx4ZssTpFKZ7TryKA2rKhSLBbT61as0M8kvW7lSsViMberBwAAAADAaRF24BT7ukc0nsxo5OButba26i9fd1Rv6vDrK1cdUWtrK4EHAAAAAGBBI+zAKXa+kp2c9EN3fUajN47rLd/PyPeRtH7nXzIavXFct7z//S7XEAAAAACAuRF2YMpdd0nGaGfb/1JFfFQ39h7WkZuNrF+ST7J+6cjNRhdbKxkzfWNpWgAAAADAAkHYgSl33SVZq53vvEPrXx1VaFVUe7daKSPZtKS0tGerVXjVKsna6RthBwAAAABggSDswDTxVFovHB3ShpVVam9vV/q/jMy9ZXr5BwE9catPQz+W2tvb3a4mAAAAAABzCrhdASwse44NK5m22rC8Wm/f3KId/dukQw9q41+flKqjav9Ou1paWtyuJgAAAAAAc8pb2GGM+SdJ75B0wlq73imrlfR9SU2SOiX9rrW2P191wLl79lB2ctINK6okSVdX9km6TJ2Dv5EGOt2rGAAAAAAAZymfw1i+LeltM8o+L2mbtXaNpG3Ocywgzx0aUE1ZUCtqSqXEqHTwP6U1b3W7WgAAAAAAnLW8hR3W2p9L6ptR/C5J9zr790p6d77eH+cmFoupqalJ9239hfr3PaP7779fOvBzKZ0g7AAAAAAALCqFnrNjqbX2qLN/TNLSs3nRnj17dP311+etUsXu+PHj2rt3rypqQqrd/iUN9Gf0gViv/vbiapWmx6Un/ix7Ir8DAAAAAMAi4NoEpdZaa4yxcx03xrRKapWkcDhcsHoVowMHDqiiJqgN6+IyOq4VNUY7T4bkiw9KFbWS8UmrVrldTQAAAAAAzkqhw47jxphGa+1RY0yjpBNznWit7ZDUIUnNzc32ySefLFAVi4/P59MX/uc6tbU+r4DfKpU2+odvr9InXzkmvePLUvOH3a4iAAAAAAAyxpzVefmcoHQ2D0n6oLP/QUn/VuD3xyyi0ai2PTKsZDqgVNqnZDogu8tZJOdS5usAAAAAACwueQs7jDHflfRfki4zxhwyxnxE0pclvdUY85KkG53ncFl7e7t2bOvW73390/rKv71Tm7Y06vL+kxoINUrVK92uHgAAAAAA5yRvw1istbfPcWhjvt4T56elpUXJjHTXcxX6xcOH9AdrR3X9bSn5fJe6XTUAAAAAAM5ZoYexYIF67fVvl3x+/eJvrtSff7NHvhvGpTc9LB2/x+2qAQAAAABwTgg7IEnadXhQknRp+U8kv7Itwydp7EE3qwUAAAAAwDkj7IAkafeRQVWVBhWu2CKlld0ykspucblmAAAAAACcG8IOSJJ2HR7S+uWVMhd9VNp6tfTLeqnvW9LSj7hdNQAAAAAAzglhB5RIZbTn2LDWL6vKFnRZ6ehmgg4AAAAAwKJE2AG9dGJYiXRG65ZXSZmMNNAl1TS5XS0AAAAAAM4LYQe0+/CQJGn9skpp+KiUTkjVq1yuFQAAAAAA54ewA9p1ZFCRkF9NdRGpvzNbSM8OAAAAAMAiRdgB7To8qHXLquTzGWngYLaQsAMAAAAAsEgRdhS5dMbqhaPDWre8MlvQf1CSkapWuFovAAAAAADOF2FHkTvQM6KTyfTUSiz9nVLlcikQdrVeAAAAAACcL8KOIrdrYnLS5U7YMXBQqmFyUgAAAADA4kXYUeR2HR5UOODTJQ2RbEF/J/N1AAAAAAAWNcKOIrfryKBe3VipgN8nJcezS8+y7CwAAAAAYBEj7ChSsVhMTU0X65cvvKJnHn9IsVhMGnwle5BhLAAAAACARYywowjFYjG1trbq4msr9KlND2vt0ufU2tqqJ374z9kTGMYCAAAAAFjEjLXW7TqcUXNzs92+fbvb1fCMpqYmRTdIjz5wVEF/Ssl0QJu2NOrN8XF96bqT0qdflCob3a4mAAAAAADTGGN2WGubz3QePTuKUFdXlzZurlDQn1LAn1HQn9LGzRWqtoNSoEQqX+p2FQEAAAAAOG+EHUUoGo1q2yPDSqYDSqV9SqYD2vbIsNYti0jVUclHswAAAAAALF58qy1C7e3t2rGtW7d9o01f+eFmbdrSqB3bunXNZRexEgsAAAAAYNELuF0BFF5LS4sGk0ZfebFKT9z3G9X2Sh0dHart+gKTkwIAAAAAFj16dhSpNa/fKEl64of3qrOzUy3vvVmKD7LsLAAAAABg0SPsKFK7jwzKGOnVjZXZgv6D2UeGsQAAAAAAFjnCjiK16/CQLmkoV1nIGcnU35l9ZBgLAAAAAGCRI+woUruPDGrdssqpggGnZwfDWAAAAAAAixxhRxHqHYnr6OC41i+rmirs75RKa6SSqjlfBwAAAADAYkDYUYR2HxmSJK1bntOzo/8g83UAAAAAADyBsKMI7ToyKElal9uzY+AgQ1gAAAAAAJ5A2FGEdh8e0sraUlWVBrMFmYw00MXkpAAAAAAATyDsKEK7jwxOztcRi8V07fomKZ1Q21/+o2KxmLuVAwAAAADgAhF2FJmh8aQ6e8e0fnmVYrGYWltb9Z5rjkhvjKt+RbdaW1sJPAAAAAAAixphR5F53pmc9PJllWpra9MdN47rs/+Qlm6I64++mdYdN46rra3N5VoCAAAAAHD+CDuKzMRKLOuXVamrq0u33Gwkv7ItwS/dcrNRV1eXq3UEAAAAAOBCEHYUmd2HB7W0MqyGirCi0age3GqltGTTktLSg1utotGo29UEAAAAAOC8EXYUmV05k5O2t7fr/p+W6MWvhTXwSFCtt/p0/09L1N7e7nItAQAAAAA4f4QdRSIWi6npkjXac3RQ2x74tmKxmFpaWtTR0aGyE6V65J8DeuzZlero6FBLS4vb1QUAAAAA4LwF3K4A8m9i1ZVr3rNOb7vhQf2kr0utrd+WJLXcfpu0/06tuvmzuuPGu9ysJgAAAAAA88JYa92uwxk1Nzfb7du3u12NRaupqUnRDdKjDxxV0J9SMh3Qpi2N6topdT77n9LXL5fe8XWp+cNuVxUAAAAAgDkZY3ZYa5vPdB7DWIpAV1eXNm6uUNCfUsCfUdCf0sbNFdlVVwaclVeqmJQUAAAAAOANhB1FIBqNatsjw0qmA0qlfUqmA9r2yHB21ZXBV7InVRN2AAAAAAC8gbCjCLS3t2vHtm5t+dKH9dWHb9GmLY3asa07u+rKZM+OFe5WEgAAAACAecIEpUVgYnWVtm0ntGN/QiU7fz216spDd0qRBilU5nItAQAAAACYH4QdRaKlpUXfOfFzNdWX6R9in5s6MPiKVLXSvYoBAAAAADDPGMZSRPrGEqopC00vHOhivg4AAAAAgKcQdhQJa60GxhKqzg07rJUGD0nV9OwAAAAAAHgHYUeRGImnlExb1UaCOYUnpNQ4y84CAAAAADyFsKNIDIwlJWl6zw6WnQUAAAAAeBBhR5HoH0tIkmpzw46Bg9lHhrEAAAAAADyEsKNI9I1mw46a3GEsA07PDlZjAQAAAAB4CGFHkZgYxjJtNZaBLqmkWiqpdKlWAAAAAADMP8KOIjHZs2PmnB3M1wEAAAAA8BjCjiIxMJaQMVJlae4wli7CDgAAAACA5xB2FIm+sYSqS4Py+0y2wNrsnB2EHQAAAAAAjyHsKBL9Y8npQ1hO9kvJUSYnBQAAAAB4DmFHkRgYS6gmMtuys/TsAAAAAAB4C2FHkegbTaqmbJZlZ6vp2QEAAAAA8BbCjiIxMJZQ9cxlZyV6dgAAAAAAPIewo0j0jSZUG5mx7GyoQiqpdq9SAAAAAADkAWFHETiZSCueyqi6bJZlZ41xr2IAAAAAAOQBYUcR6BtLSJJqpw1jeYX5OgAAAAAAnkTYUQT6R7NhxylzdjBfBwAAAADAgwg7isDAWFKSpubsODkgxQelKnp2AAAAAAC8h7CjCEwMY6kpCyoWi2nzf1svSfr4n35ZsVjMzaoBAAAAADDvCDuKwIATdjz+yL+rtbVVb3/dcemNca1oOqHW1lYCDwAAAACApxB2FIE+Z86O/3X3F3XHjeP65N+lpBvi+tN/TOuOG8fV1tbmcg0BAAAAAJg/hB1FYGAsqYqSgLoOduqWm43kV/Y375duudmoq6vL7SoCAAAAADBvCDuKQN9oQrWRkKLRqB7caqW0ZNOS0tKDW62iUVZlAQAAAAB4B2FHEegfS6i6LKT29nbd/9MS/eovwhr7SUitt/p0/09L1N7e7nYVAQAAAACYNwG3K4D8GxhLqq48pJaWFknS+BN3avfhuB57tlEdHe2T5QAAAAAAeIErYYcxplPSsKS0pJS1ttmNehSLvtGE1iwpl6RssDF2j1RSrc5//KHLNQMAAAAAYP652bPjd6y1PS6+f9EYcIaxTDrZL9Vc7F6FAAAAAADII+bs8Lh4Kq3RRFq1keBU4ckBqbTGvUoBAAAAAJBHboUdVtJPjDE7jDGtLtWhKAyMJSVpqmdHJiOND0il1S7WCgAAAACA/HFrGMsbrbWHjTFLJD1mjHnRWvvz3BOcEKRVEkujXoC+0YQkqTbihB3xIclm6NkBAAAAAPAsV3p2WGsPO48nJP2rpNfPck6HtbbZWtvc0NBQ6Cp6Rv9YNuyoLnOGsZzszz4SdgAAAAAAPKrgYYcxJmKMqZjYl3STpF2FrkexmBjGUjMxjIWwAwAAAADgcW4MY1kq6V+NMRPvf7+19v9zoR5F4ZRhLOMD2UfCDgAAAACARxU87LDWvizpNYV+32I1MNcwlhImKAUAAAAAeBNLz3pc32hSkZBf4YA/W8AwFgAAAACAxxF2eNzAWGJq2VkpJ+ygZwcAAAAAwJsIOzyufyyhmkhwquDkgBSMSIGwe5UCAAAAACCPCDvyJBaLqampST6fT01NTYrFYq7Uo28sObUSi5QNOxjCAgAAAADwMMKOPIjFYmptbVV0g/T/fGOdohuk1tZWVwKPgbHEjLCjnyEsAAAAAABPI+zIg7a2Nl29sUGPPnBUba3P69EHjurqjQ1qa2sreF36RhNTy85KTthBzw4AAAAAgHcRduRBV1eXNm6uUNCfUsCfUdCf0sbNFerq6ipoPZLpjIbHU1PLzkr07AAAAAAAeB5hRx5Eo1Fte2RYyXRAqbRPyXRA2x4ZVjQaLWg9BsaSkkTPDgAAAABAUSHsyIP29nbt2NatLe0f0VcfvkWbtjRqx7Zutbe3F7QeA2MJSTp16VnCDgAAAACAhwXcroAXtbS0SJLafrRbz/Zeq8DOX6ujo2OyvFD6nZ4dNRPDWJInpXRcKmEYCwAAAADAu+jZkSctLS36+Ec+oNKqeh04cGDeg44zLW0bi8X0u+/7kCTp/be+J3v8ZH/2ID07AAAAAAAeRtiRR3WRkJJpq6Hx1Lxe90xL204cX/uapD5x/Q/UtGZAra2teviB+7IXIOwAAAAAAHiYsda6XYczam5uttu3b3e7Gufsh08f0qd/8Kwe/8xbtLqhfN6u29TUpOgG6dEHjiroTymZDmjTlkZ17ZQ6OzvnPN54PKnvbx6RPvCQtPot81YfAAAAAAAKwRizw1rbfKbz6NmRRxOroPSNJub1umda2nau48mh7uwF6NkBAAAAAPAwwo48qouEJUm98xx2nGlp27mOX7K8LnsBwg4AAAAAgIcRduRRXXl+enZMLG37e1/7Y33tsfdpc8vqaUvbThy/9cv/l7767++ZXPr29ndvyl6glNVYAAAAAADexdKzeZSvYSyTS9v+xqedT75JemmfOjq+OFk+efwXY/r1MxUq27ldHR0dumrpPumXASk0f/OHAAAAAACw0NCzI49Kgn5FQn71jsxv2CFJv3fb7TKllZKke3/wo1OWtm1paVHt8iZ97P2/p87Ozuzxk/3ZISzGzHt9AAAAAABYKAg78qy2PKS+0fi8X7dvNKGJhXS6h0+9fjKdUd9oQg0V4anCibADAAAAAAAPI+zIs9pIeN4nKJWkEzkBx2xhx0Rvkmlhx/gAYQcAAAAAwPMIO/KsLhLKyzCW7pHThx09zvH68hk9O0qYnBQAAAAA4G2EHXlWGwnN+wSlktQ9lA0zQgHftOBj8rgTgDCMBQAAAABQbAg78qyuPOTMr2Hn9boTAcfapeXqmaVnx2TYMa1nB8NYAAAAAADeR9iRZ3WRkBLpjEbiqXm9bvdwXBUlAa2sKZu9Z8fIjJ4d6aQUHyLsAAAAAAB4HmFHntVGsmHDfA9l6R6Oq6EirIaK8KxzdnQPx1URDqgk6M8WjA9mHwk7AAAAAAAeR9iRZ3WRkCTN+4os3cNxNZSH1VAe1uDJpOKp9PTjI/EZ83UMZB9LmaAUAAAAAOBthB15VuuEHX3zvCLLieFxLaksmQw0emZcv3s4rvqZk5NK9OwAAAAAAHgeYUee1U727Dh1qMmFmOjZMbG07MxJSntG4jMmJyXsAAAAAAAUB8KOPKsrn/9hLKPxlEYT6ck5OySdMm/HxJwekwg7AAAAAABFgrAjz8pCAZUG/fM6jKUnZ6WVybAjZ0WW8WRaw+Mpwg4AAAAAQFEi7CiA2khoXldjmejF0VARnuw5ktuzY/J47jCWcWeC0pKqeasHAAAAAAALEWFHAdSVh+Z1GMsJJ8xYUhFWOOBXdVlwWtgx0fOjviI09aKT/VK4SvL5560eAAAAAAAsRIQdBZDPnh2SVF8engw4ph0vL5l60cl+lp0FAAAAABQFwo4CyEfY4fcZ1ZRle240lIenD2MZmR6GSHLCDubrAAAAAAB4H2FHAdRFQuoZictaOy/X6x6Oqy4Skt9nJGVDjdwJSnuGs8HKxHwekgg7AAAAAABFg7CjAOrKw4qnMhpLpOflet0j05eVbaiY2bNjXDVlQQX9Ob/ekwMMYwEAAAAAFAXCjgKojWR7WMzXUJYTw+NaMiPsGEukNRpPScr2/Jg2hEWiZwcAAAAAoGgQdhRAnRN2zNeKLDPDjHpnidmJ3h2nhB3WEnYAAAAAAIoGYUcBTPXsiJ/hzDPLZKx6RhKnDGORppac7RlJqKE8J+yID0s2TdgBAAAAACgKhB0FUBfJBg+9Ixfes6N/LKF0xk4LMxpyenZYa9U9HJ/s7SEp26tDIuwAAAAAABQFwo4CqC2fvzk7ppaVLZksm+jZ0T0S12girZPJ9KnLzkqEHQAAAACAokDYUQCRkF+hgG9e5uw4MZQNO5ZUToUZtZGQfCbbs2Ni3o5pYcf4QPaxhNVYAAAAAADeR9hRAMYY1UdC8zKMZTLMyBmm4vcZ1ZVnl5/tGZkedsRiMX3iQ3dIkm56922KxWIXXAcAAAAAABYywo4CqS0PzcsEpd0js/TcUHZFlp6RqZ4d9eVhxWIxtba26roNPdIb49qw9ohaW1sJPAAAAAAAnkbYUSC1kfD8zNkxHFdZyK9IODCtvKEifMowlra2Nt1x47je91dJ6Ya4vnpfRnfcOK62trYLrgcAAAAAAAsVYUeB1EVC8zJnR/dw/JReHVJ2WMvEMBa/z6imLKSuri7dcrOR/Mr+pv3SLTcbdXV1XXA9AAAAAABYqAg7CqQ2EpqXnh0nhse1ZLawoyKs7pG4TgzFVRcJye8zikajenCrldKSTUtKSw9utYpGoxdcDwAAAAAAFirCjgKpjYQ0lkhrPJm+oOvM2bOjIqxk2mpf94jqnclL29vbdf9PS9R6q0+Pfsuv1lt9uv+nJWpvb7+gOgAAAAAAsJARdhRIXSQkSRc8lKV7OD5tJZYJ9eXZ6794dGgyDGlpaVFHR4cee3albv54Ro89u1IdHR1qaWm5oDoAAAAAALCQBc58CuZDnRNQ9I7Etby69LyuMZ5Ma2g8NWfPDkkaTaSnHW9paSHcAAAAAAAUFXp2FEjtPPTs6Jlj2VlJ0+bxmO04AAAAAADFgrCjQCaGsfSNnH/YccJZVnZJRckpxxrKp8rqZxnmAgAAAABAsSDsKJBtW38kSfrwJ+5UU1OTYrHYOV+je3junh2VpQGF/L45jwMAAAAAUCwIOwogFovpzo+36soVu/TZPx5TdIPU2tp62sAjFoupqalJPp9PTU1N+sQnPqH/ceefSJLesfHNp7zWGDMZcsw2gSkAAAAAAMXCWGvdrsMZNTc32+3bt7tdjfPW1NSk6Abp0QeOKuhPKZkOaNOWRnXtlDo7O085PxaLqbW1VanqqEqiV2i86zkljryom/7oVt1wU4ke/ubPtWNb97SVVWKxmNqeHJDqmqSH/1ztn7+TiUkBAAAAAJ5ijNlhrW0+03msxlIAXV1d+tDn1inof0UBf0ZSShs3V+juH++e9fy2tjalqqNaevtfyPgDUiaj9eGH9cCf3augP6U7N2bDkra2NrW0tEyGI9f/ye/rLdf9Wlv39qu1tVWSCDwAAAAAAEWHYSwFEI1Gte2RYSXTAaXSPiXTAW17ZFjRaHTW87u6ulQSvULGH5QxPsnn15v/20kF/SkF/BkF/dmwpKurS1I2HLl6Y4MeaPuWPv3W+/TI9w7q6o0NamtrK+THBAAAAABgQSDsKID29nbt2Natt3/4NfraY+/Tf//Um7VjW7fa29tnPT8ajSo11CNjjGwmI5tK6NHvvjRnWNLV1aWNmyvmDEMAAAAAACgmDGMpgImhJG1f/KL+d+0fyz/4gjo6fn/OISbt7e36428/KZtJa/Cpf9HJ/dv1ypEXtWlwlTZurtC2R4Yn5+yQpnqOfPYjAUmpM/YcAQAAAADAy+jZUSAtLS3qPHBA77nuVaq/4k26/fY75jz3jjvu0LJr3ylz7EUN/UdMjcGT+vjHP66undLdn9ytrp2aNjnpRM+RTVsa1d5xuTZtaTxtz/cnIXEAACAASURBVBEAAAAAALyMnh0Fdv1lDXro2SN6/uiQ1i+vmvWcp7v6NZD06Wt/dIfe+53PnvGakz1H2tp09493KxqNTgtDAAAAAAAoJoQdBfamNQ2SpJ/t7Z4z7Pi3Z44oHPDppnUXnfV1W1paCDcAAAAAABDDWAquoSKs9csr9bM93bMeT6Uz2vrcUW189RKVh8miAAAAAAA4V4QdLnjL2gbt6OrX4MnkKcd+ub9XPSMJvfM1y12oGQAAAAAAix9hhwvesnaJ0hmrX+7rOeXYQ88eUUU4oOsva3ChZgAAAAAALH6EHS64MlqtinBAP9s7NZQlFoupafWl+sEv92j4hV/owR98z8UaAgAAAACweBF2uCDo9+mNa+r1s73dstYqFouptbVVl26M6lObHtalkZ+ptbVVsVjM7aoCAAAAALDoMAOmS8L9L+voYJlKllys9OAxXf/7b9C//91/KOhP6Q9uCGhTb6Pa2tpYYQUAAAAAgHNEzw4XxGIx3fOlz+iq6Au6q+Mq3fzlL+im965Q0J9SwJ9R0J/Sxs0V6urqcruqAAAAAAAsOvTscEFbW5uuvMan2EfbFPSnlEw/rC/872uUvCEgKaVkOqBtjwwrGo26XVUAAAAAABYdV3p2GGPeZozZY4zZZ4z5vBt1cFNXV5c2bq6Y1pOjpqxfm7Y0qr3jcm3a0qgd27rV3t7udlUBAAAAAFh0Ch52GGP8kr4habOkyyXdboy5vND1cFM0GtW2R4aVTAeUSvsme3L8cush3f3J3eraKXV0dDBfBwAAAAAA58GNYSyvl7TPWvuyJBljvifpXZKed6Eurmhvb1dra6s2bWnUxs0V2vbIsHZs69a9995LwAEAAAAAwAVyI+xYLumVnOeHJF3jQj1cMxFotLW16e4f71Y0GqUnBwAAAAAA82TBTlBqjGmV1CrJkxN1trS0EG4AAAAAAJAHbkxQeljSypznK5yyaay1HdbaZmttc0NDQ8EqBwAAAAAAFjc3wo7fSFpjjLnYGBOSdJukh1yoBwAAAAAA8KCCD2Ox1qaMMZ+S9Kgkv6R/stbuLnQ9AAAAAACAN7kyZ4e1dqukrW68NwAAAAAA8DY3hrEAAAAAAADkDWEHAAAAAADwFMIOAAAAAADgKYQdAAAAAADAUwg7AAAAAACApxB2AAAAAAAATyHsAAAAAAAAnkLYAQAAAAAAPIWwAwAAAAAAeAphBwAAAAAA8BTCDgAAAAAA4CmEHQAAAAAAwFOMtdbtOpyRMaZb0sHzfHm9pJ55rA5wrmiDWAhoh1gIaIdYCGiHWAhoh3DbYm6Dq6y1DWc6aVGEHRfCGLPdWtvsdj1QvGiDWAhoh1gIaIdYCGiHWAhoh3BbMbRBhrEAAAAAAABPIewAAAAAAACeUgxhR4fbFUDRow1iIaAdYiGgHWIhoB1iIaAdwm2eb4Oen7MDAAAAAAAUl2Lo2QEAAAAAAIoIYQcAAAAAAPCURRF2GGP+yRhzwhizK6es1hjzmDHmJeexxik3xpi/NcbsM8bsNMZclfOaDzrnv2SM+WBO+dXGmOec1/ytMcYU9hNiMZijHd5ljDlsjHnG2W7OOfYFp03tMcZsyil/m1O2zxjz+Zzyi40xv3LKv2+MCRXu02ExMMasNMY8YYx53hiz2xjzh04590MUzGnaIfdDFIwxpsQY82tjzLNOO7zbKZ+17Rhjws7zfc7xppxrnVP7BCacph1+2xhzIOd++FqnnL/LyAtjjN8Y81tjzI+d59wLJclau+A3SW+WdJWkXTllX5H0eWf/85L+X2f/ZkmPSDKSrpX0K6e8VtLLzmONs1/jHPu1c65xXrvZ7c/MtvC2OdrhXZL+ZJZzL5f0rKSwpIsl7Zfkd7b9klZLCjnnXO685geSbnP2/17Sx93+zGwLa5PUKOkqZ79C0l6nrXE/ZCvYdpp2yP2QrWCbc48qd/aDkn7l3LtmbTuSPiHp75392yR939k/5/bJxjaxnaYdflvSllnO5+8yW142SZ+WdL+kHzvPuRdauzh6dlhrfy6pb0bxuyTd6+zfK+ndOeXfsVlPSao2xjRK2iTpMWttn7W2X9Jjkt7mHKu01j5ls7/p7+RcC5g0Rzucy7skfc9aG7fWHpC0T9LrnW2ftfZla21C0vckvctJ6W+Q9IDz+tw2DUiSrLVHrbVPO/vDkl6QtFzcD1FAp2mHc+F+iHnn3NdGnKdBZ7Oau+3k3icfkLTRaWvn1D7z/LGwyJymHc6Fv8uYd8aYFZLeLulbzvPT/R0tqnvhogg75rDUWnvU2T8maamzv1zSKznnHXLKTld+aJZy4Gx9yumK+E/GGT6gc2+HdZIGrLWpGeXArJxuh1cq+3+RuB/CFTPaocT9EAXkdNt+RtIJZb8c7tfcbWeyvTnHB5Vta+faPoFpZrZDa+3E/bDduR9+3RgTdsr4u4x8+GtJn5WUcZ6f7u9oUd0LF3PYMclJOllDF274pqRLJL1W0lFJf+VudVAMjDHlkh6U9EfW2qHcY9wPUSiztEPuhygoa23aWvtaSSuU/b+Pr3K5SihCM9uhMWa9pC8o2x5fp+zQlM+5WEV4mDHmHZJOWGt3uF2XhWgxhx3Hna5dch5POOWHJa3MOW+FU3a68hWzlANnZK097vyRy0j6R2X/sSWdezvsVbYrY2BGOTCNMSao7BfMmLX2h04x90MU1GztkPsh3GKtHZD0hKTrNHfbmWxvzvEqZdvaubZPYFY57fBtznA/a62NS/pnnf/9kL/LOJM3SHqnMaZT2SEmN0j6G3EvlLS4w46HJE3MVPxBSf+WU/4BZ7bjayUNOt27H5V0kzGmxulae5OkR51jQ8aYa53xSh/IuRZwWhNfMB3vkTSxUstDkm5zZjy+WNIaZSeY+o2kNc4MySFlJwZ6yPm/8U9I2uK8PrdNA5Imx2DeI+kFa+3Xcg5xP0TBzNUOuR+ikIwxDcaYame/VNJblZ0/Zq62k3uf3CLpcaetnVP7zP8nw2IyRzt8Med/QBhl50rIvR/ydxnzxlr7BWvtCmttk7L3qcettS3iXph1phlMF8Im6bvKdolNKjtO6CPKji3aJuklST+VVOucayR9Q9lxm89Jas65zoeVnWxln6QP5ZQ3K3sT2i/p7yQZtz8z28Lb5miH/8dpZzuV/Q+/Mef8NqdN7VHOzNnKzsS91znWllO+Wtmbyj5J/yIp7PZnZltYm6Q3KjtEZaekZ5ztZu6HbIXcTtMOuR+yFWyTtEHSb532tkvSnznls7YdSSXO833O8dU51zqn9snGNrGdph0+7twPd0m6T1MrtvB3mS1vm6TrNbUaC/dCa7P/sQAAAAAAAHjFYh7GAgAAAAAAcArCDgAAAAAA4CmEHQAAAAAAwFMIOwAAAAAAgKcQdgAAAAAAAE8h7AAAAAAAAJ5C2AEAAAAAADyFsAMAAAAAAHgKYQcAAAAAAPAUwg4AAAAAAOAphB0AAAAAAMBTCDsAAAAAAICnEHYAAAAAAABPIewAAAAAAACeQtgBAAAAAAA8hbADAAAAAAB4CmEHAAAAAADwFMIOAAAAAADgKYQdAAAAAADAUwg7AAAAAACApxB2AAAAAAAATyHsAAAAAAAAnkLYAQAAAAAAPIWwAwAAAAAAeAphBwAAAAAA8BTCDgAAAAAA4CmEHQAAAAAAwFMIOwAAAAAAgKcQdgAAAAAAAE8h7AAAAAAAAJ5C2AEAAAAAADyFsAMAAAAAAHgKYQcAAAAAAPAUwg4AAAAAAOAphB0AAAAAAMBTCDsAAAAAAICnEHYAAAAAAABPIewAAAAAAACeQtgBAAAAAAA8hbADAAAAAAB4CmEHAAAAAADwFMIOAAAAAADgKYQdAAAAAADAUwg7AAAAAACApxB2AAAAAAAATyHsAAAAAAAAnkLYAQAAAAAAPIWwAwAAAAAAeAphBwAAAAAA8BTCDgAAAAAA4CmEHQAAAAAAwFMIOwAAAAAAgKcQdgAAAAAAAE8h7AAAAAAAAJ5C2AEAAAAAADyFsAMAAAAAAHgKYQcAAAAAAPAUwg4AAAAAAOAphB0AAAAAAMBTCDsAAAAAAICnEHYAAAAAAABPIewAAAAAAACeQtgBAAAAAAA8hbADAAAAAAB4CmEHAAAAAADwFMIOAAAAAADgKYQdAAAAAADAUwg7AAAAAACApxB2AAAAAAAATyHsAAAAAAAAnkLYAQAAAAAAPIWwAwAAAAAAeAphBwAAAAAA8BTCDgAAAAAA4CmEHQAAAAAAwFMIOwAAAAAAgKcQdgAAAAAAAE8h7AAAAAAAAJ5C2AEAAAAAADwl4HYFzkZ9fb1tampyuxoAAAAAAMBFO3bs6LHWNpzpvEURdjQ1NWn79u1uVwMAAAAAALjIGHPwbM5jGAsAAAAAAPAUwg4AAAAAAOAphB0AAAAAAMBTCDsAAAAAAICnEHYAAAAAAABPIewAAAAAAACeQtgBAAAAAAA8hbADAAAAAAB4CmEHAAAAAADwFMIOAAAAAADgKYQdAAAAAADAUwg7AAAAAACApxB2AAAAAAAATyHsAAAAAAAAnkLYAQAAAAAAPIWwAwAAAAAAeAphBwAAAAAA8BTCDgAAAAAA4CmEHQAAAACAorHjYL++8cQ+7TjY73ZVXFEsnz/gdgUAAAAAoFjsONivp17u1bWr63T1qhq3q1Nw+fj81lrFUxlnSysxsZ/MKJHOKJ5MK57KKJHK6IWjQ/rbx19SKm0V8Bt97m2v0rplVQoFfApPbv7J5xOPAf/89ROYr5+BtVbJtFU8ldZ4MjPrY/bnkH0cT6b10okRffs/O5XOWIUDPsU+dq1n2yFhBwAAAADMg0Qqo56RuLqHnS13fziuA72j2ntsWFaSkXRxfURVZUEF/T4F/UZBv08Bn0+hgFHA55tWPu2cybKJ5z6F/M5rAj4FfVPnhfzZsoBT9tLxEe08PKArllfp1Y2Vylgra6WMtcrY7Bfo3MdsuZWspj2feM2sr1Xuc6tMJntOZ++oOn7+slJpK7/P6PbXR1VfHlYinVY8OUtY4QQUE1/ap0KMtBNiOOekM+f1+0qmrb708Atnda7fl/1ZhoO+6Y+nBCP+qdBk8ly/c65PJ4bj+u6vu5TOZH8G771quWoj4cnPOJ48NaCYCG7GU+lpj/FUWhl7Xh/d+fwZPfVyL2EHAAAAABSbTMaqbywxLbToHomrZ2aYMRLXwFhy1mtUlQbVUBFWIpnRxHfTicfycECJVEYnE2kNZ1JKpDJKZayS6YxSaatEOqNUOqNkOluWTGcu6AvuQpHKWP2fpw5KkgI+Mz0syAkUJsKDSDhwSq+LafvBmcemzsm99v7uEX3uwZ1KpjMK+H2667+v08X1kWkhy9Tj9JBlZi+Rmb1JhsdT6k0lss9zw5jU7MFEKmP1g+2HJoOQcDBb1xLns0w8RiIBlTg/l4nH7Hn+aY8Tr8997bTHoF97jg3pE/c9rWQ6o2DAp2tX17nw2y8Mwg4AAAAABeH2EI7J97+4VmsvqpizB0bu897RhNKzpAulQb8aKsJqqAjrkoZyXbu6bvJ5Q3l4cr+uPKRwwD/5/i3fekrJVPaL5ldvfc15/RzSE2FIxiqZyiiZyYYhKScMmQpGpkKTZDqjh545rB89c0RWks9I73zNMm2+olE+Y+QzkjGSMWbyuc+YbJmc576J87LnGE2d4zNGPt/UuSbnGhPn7D4yqD/83jNKOUHDP//+63TN6jr5feYCf7Nn74oVVVpZW+ZKO0ylM/rVgT59+Nu/USqdUdDv030fvUbNTbUFq8Py6lLFPnZtUQylMtYu/FiwubnZbt++3e1qAAAAADgNa62GxlPTQoMTQ+PqHonrxaND+sVLPcrY7Bfty5ZWqKIkKKvsUAgp29th4vtJdn+qXNZO9YpwhkpM7s/yek17vdVYIq3D/Sd1um8/AZ9RfU5QkRta5JbVV4QVCfllzLl/SXcz8JkZtsQ+Wvj5GtwOvBYCfgYXxhizw1rbfMbzCDsAAAAAnM54Mn3KXBQnhmbvEZFInTp/Qsif7Zo/NJ6aLFtZU6oVNWWSJnoUZMuNjHIzhIlAwSj3nGy5mTxnotS5Vk75xFkv94xo7/GRyde/ZW2D3n3lcjVUhCcDjurSoHwF7GXgBr5oY7E727CDYSwAAABAEZj5JXeuuSimQozxyfLckGKCMVJtWWiyx8Pq+ogaKqf3hlhSEVZDeYkqSwN6umtgWq+Cv77tyoJ+2Z7Zq+EPNq4pyi/7V6+qKcrPjeJDzw4AAADAI6y1Gk2kpwcYw+N67vCgfvTbI0pbKyOpuiyoofHUrHNRREL+U4ZtLKksOWVIR20kpOA5Lsfpdq8Ct98fwIWjZwcAAADgEWda0jT3+clk+pTX+4wmV4KwklbUlOktaxu0ZEZPjPrysCLh/H1FcLtXgdvvD6BwCDsAAACAAphtGEn/WOLU4OIcljStKQtOBhVXRatn9Mgomdx/uXtE77vnV5NDOO565zq+9APwNMIOAAAA4ALEU2kNj6c0dDKZfRxPnvJ8f/eIHt11PDuMxEjVpXMPI5lY0nRJRViXLinXdZfUzboqSF0krFDg7IaR1EZqFftocSw3CQASYQcAAACKxGzzNWQyVqOJlIbGUxoeT2ropPM4S2AxNEegEZ9l9ZFcxmRXI0nbqaVSV9SU6s1rG5wQo2RaiHG+S5qeCUM4ABQTwg4AAAB4QiqdUf9YUr2jcfWNJNQzmlDvSFy9IwntOTakbS+eUMZmlx2tKw8pkcpoOJ7SmebrDwd8qiwNqqIkoMqS7OPymlJV5jyffjyoytJA9rEkoEgooN++Mn0lkrveuZ7gAQDyiLADAAAAC5K1VkPjqWxgMZpQ70hCvaPZ8KJ3JD4tzOgdTah/LDFrcOH3GZUEfNMm6FxaUaLXXVyrypLAjHBienhRURJQOOC/4M9y9aoahpEAQAERdgAAACDvJoaQXBWt1srassngomckob6c0GJ6gBFXMj17t4uq0qDqykOqj2TntXh9JKS68rDqy0Oqi4Szx5z9qtLgKT0r/vzdhe9ZwTASACgcwg4AAACc0WzzXUyIp9LqGUmoZ8ZKIhNLpR7oGdWeY8M63WiRkqBP9eVh1ZWHdVFlidYtq1RdeVh1kZDqpgUYYdWUhc56Ys4J9KwAgOJC2AEAAIA5DYwl9OjuY/rij3Yplbby+YyuXV2ndCajnpGEuofjGjw5+7Ko1WVBNZSHFU9lJoMOI2nTuot0a/OKaWFGWSj//yylZwUAFA/CDgAAgCJmrdWJ4bgO9o6ps3dUXROPfWPq7BnV0Hhq2vnpjNXuI4Nas6Rca5eW6w2X1Kn+DMui7jjYP20IycfevJrQAQCQV4QdAAAAHmat1dDJlH720gn94qUeVZeFJGvV2Tumrt4xHewb1XhyaulUv89oRU2porVletdrl2tVXZlSGauvP7ZXqXQ2rLjng687p7CCISQAgEIj7AAAAFgEcufMeO3KavWNJtQzkp0Xo3cku9+dsz9R3juSUCKdmXatkN+oqT6iVXURvWlNvVbVlWlVXUSr6sq0rLpUQf+p82G8rqn2gsIKhpAAAAqJsAMAAGCBGU+m9UrfmDp7x3Swd1TbO/v1k+ePTS6dOpeQ3zc5iWdDeVivvig7yeeeY0N6ck+3rCS/ke7cuEafumHNOdWJsAIAsJgQdgAAABTAzNVMRuIpHewd1cHeMWcbVafz/NjQuGxOsBEK+CaDDiPp2tW12nxFY3b1kkhI9RVh1ZeHVVkSkDFm1vf+r5d7J+fMuO6S+sJ8aAAAXELYAQAAkAfxVFrHBsd1eOCkfrm/V3//5H6lMlbGSJUlwVNWMKkvD2lVXUTXra7TqrqImuqdoSW1ZXq5e0Qt9/xqMqz4k02vYs4MAABOg7ADAADgDGb2yrDWqm80oSMD2TDjyMQ2eFKHB8Z1ZOCkuofjs17LWilaW6bNV1ykprqIorVlWlVXpoqS4Jzvf3Wk9oLDCoahAACKCWEHAADAHFLpjH70zGF9/sHnlMpY+Yx0UVWJ+kYT01YwkaSSoE/Lqku1vLpUr7psiZZVl2pZdYmWV5eqfyyhz/zgWSWd1Uzueue6cw4eCCsAADh7hB0AAACO3pG4fts1oKe7+vXbrgE9e2hAY4n05PGMlSrCQb39ikYnzMiGG8uqS1VTFpx1vowJF1WVMowEAIACIewAAABFKZXO6MVjw/ptV7+e7hrQb7v61dk7JkkK+Ixe3VipW69eoZpISN98cr9STq+Mv3jvFQwjAQBggSPsAAAAnrfjYL8ef/G4KpyJQX/b1a+dhwYne23Ul4d1VbRat70+qquiNbpieZVKQ/7J179pTQO9MgAAWETyFnYYY1ZK+o6kpZKspA5r7d8YY+6S9DFJ3c6pf2qt3ZqvegAAgMVv5gShudIZq96RuI4NjevY4LiOD407+3EdHxpXZ++oDvWfnDzfb6T1y6v0u80rdWW0WldFa7SipvS0Q1DolQEAwOKSz54dKUmfsdY+bYypkLTDGPOYc+zr1tq/zON7AwAAD7DW6vEXT+jj9z2tZDojv8/orZcvVcZaHRuK6/jguLpH4kpn7LTX+X1GDeVhLa0qUWlwqoeGz0h3blyjP7xxbaE/CgAAKKC8hR3W2qOSjjr7w8aYFyQtz9f7AQCAxWtoPKnOnlEdmLl1j2o4npo8L5Wx2vbiCa2qLdNFVSVas6ReSyvDuqiyREsrS3RRVYkuqixRXXlYfl+2p8aOg/1q+dZTSqayc268cU2DWx8TAAAUSEHm7DDGNEm6UtKvJL1B0qeMMR+QtF3Z3h/9hagHAABwx46D/fqPl7q1qi6ikqBfB3pGJ8ONl3tG1TMSnzzXGGl5dakuro/ovVctl99ndN9TB5XKWIX8PsU+du05DSm5elWNYh+9ljk3AAAoIsZae+azLuQNjCmX9DNJ7dbaHxpjlkrqUXYej/8pqdFa++FZXtcqqVWSotHo1QcPHsxrPQEAwPwYT6a178SI9h4f1t7jI9re2acdB/s1818c9eVhra6P6OL6iC5uiKipLqLVDRFFa8tUkjP0RDr9nB0AAKB4GGN2WGubz3hePsMOY0xQ0o8lPWqt/dosx5sk/dhau/5012lubrbbt2/PSx0BAMD5GU+mtb97RC8dnwo2XjoxrK6+MU388yLoN6oqDapnJCEpO2fG+65Zpf/7bZepoiToYu0BAMBidLZhRz5XYzGS7pH0Qm7QYYxpdObzkKT3SNqVrzoAAIALl0hl9OOdR/T4iydUEvRpeDyll46PqLN3VBPzggZ8Rk31Ea1bVqn3XLlca5dWaO3Scq2qi2jnocFpc2a868rlBB0AACCv8jlnxxskvV/Sc8aYZ5yyP5V0uzHmtcoOY+mU9D/yWAcAAHCWUumMDvaNae+xbC+NvceHtef4sA50jyid0xF0WXWJNiyv1js2NGrN0gqtXVqhi+sjCgV8s16XOTMAAECh5XM1lv+QNNuC9Vvz9Z4AAGB2uXNeXLmyWocHTmrPsWHtPTGsvceGtef4iPZ3jyiRykjKThK6sqZMa5dWqL48pF+93CcryW+klmtW6ZO/c+k5vf/Vq2oIOQAAQMEUZDUWAADgjpF4Sv/69CHd/e/PK5WxMkYK+X2KO6GGJDVWlWjt0gq9aU291iwp12UXVejSJeUqC2X/mTBz6dZrV9e59XEAAADOCmEHAAAeMZ5M6/mjQ3ru0KCePTSg5w4Nal/3iHLnIrdWWresUluuXqnLLirXmqUVqjzD/BkMQwEAAIsNYQcAAItQMp3RnmPD2nloUM8dHtCzrwxq7/FhpZwZQ+vLQ9qwolpv39CospBff/WTvUqlsz0z2t5++TkHFgxDAQAAiwlhBwAAC9xvOvu09bmjioQDGjqZ1LOHBvXC0aHJ+TWqSoPasKJKrZet1oYV1dqwokqNVSXKLoyWdfWqWnpmAACAokHYAQDAApLOWB3oGdFzhwe189CgntrfqxeODU8eLwn4tGFltT543SpdsaJar1lRpWht2bRgYzb0zAAAAMWEsAMAAJdkMladvaOTwcZzhwe1+/CgRhNpSVJJ0KfaSGjyfJ+RPnXDpfrUDWvcqjIAAMCiQNgBAECeZZd97VFTXURpK+06PKidhwa0+/CQhuMpSVI44NPlyyp1y9UrdMXyKm1YUa1LGiJ69tDgtJVQrruk3uVPAwAAsPARdgAAkCev9I3pO08d1D2/eFmZnBVRQn6fXt1YoXdduUwblldr/fIqrVlarqDfd8o1WAkFAADg3BF2AAAwT+KptH5zoF9P7jmhJ/ac0P7u0WnHjaT3X7dKX3z75QoFTg025sJ8GwAAAOeGsAMAgAvwSt+YntzbrZ/tOaFf7u/VWCKtkN+na1bX6vbXR7WkIqzPPrhzchjKu167/JyCDgAAAJw7wg4AAM5BPJXWrw/06ck93Xoyp/fGytpS3XLVCl1/WYOuu6ROZaGpP7HLa8oYhgIAAFBAhB0AAJyGtVZbnzuqf33miAZGE3r+6NC03ht3XLNK11/WoNX/P3v3Hh53XeZ9/POdmZyTtjm3tE3StKWUQoE2bYNQRCoiLqfloEJw6wrEdd1d93lWXd26ID7bXVwVXX3UxwoKrkEEBBGRraUcWg5paTiWntJDkh5zTptJmpnMzPf5Y5LQNIcm0OQ3v8n7dV25OvOb38zcveAC+uG+729O2pDHvzKGAgAAML4IOwAAOIG1Vnsa/dq0r0Wb9rbopeomtXQGJUV3blyxYKpuKpkxoHsDAAAAsYP/SgMATGiRiNXO+nZt3teiTfuatXlfi5r80XAjLyNJeZOS1NoZlJXkMdK5MyZrxfx8Z4sGAADAsAg7AABxr6q2tW9nxvkzp2jboWPatK9Zm/a16LWaFrV1dkuSpk9J0SVzc7WsOEtLZ2WrKDtVr9e1qey+yr4Fo6XF2Q7/bgAAAHAqhB0AgLj2Wk2LbkK2GAAAIABJREFUyu7bpO5QRMZIyT6vOrvDkqTC7FR97Ox8LZ2VrWWzsjQzK3XA+xcXZqri9lIWjAIAALgIYQcAIO4cOdqlDbsa9WJ1o9Zvr1cwFJEkWSvNyU/XbRfP0rJZ2Zo6OXlEn8eCUQAAAHch7AAAuF5Xd/Q42A27GrWhulG76v2SpNyMJJXOytbLe5oUiVgl+Dy66+oFBBcAAABxjrADAOA61lpVN/ij3Ru7GrV5X4sCoYgSvR4tmZWpGxbN0CVn5uqsqRkyxvTb2UHQAQAAEP8IOwAAMa+qtlXP72hQos+jA62d2ljdpMNHuyRJs3PTdMuyAl1yZq5KZ2UrJdE74P2MoQAAAEwshB0AgJjT0hHUjiPHtPNIu17e3aT1OxpkbfS11ESvPnxmrv5hRa6Wz83RjMyBS0UBAAAwsRF2AAAc09UdVnW9vy/Y2Fnfrh1H2tXYHui7JznB0xd0eIz0hUtn6+8vm+tQxQAAAHADwg4AwJiqqm3Vq3uaNCsnTV6PRzuPtPeFGzXNHYr0BBlJPo/m5qfrkrnRXRvzpmborKkZ2t/SqbL7o0fHJvg8+tDsHGd/QwAAAIh5hB0AgNPOWqud9e16eHOdfvVqbV+gIUnGSIVZqZo3NUNXnXdGX7BRlJ0mr8cM+Ky8ScmquL2UBaMAAAAYMcIOAMBpceRol17a3aSXqhv10u5mNfkD/V43km4tLdTXP3GWUhNH968fFowCAABgNAg7AADviz8Q0qa9zdpY3aSXdzepusEvScpOS9RFc3J08dwcTU5J0JcefqNvBOW6C6aPOugAAAAARov/4gQADKuqtlWVe5u1pChTXo9HL/WEG6/XtSoUsUryebR0VpZuKpmhi+dE9214ThhHYQQFAAAA442wAwAwpGe31+sLv65Sd/i9pRvGSOecMVl3XFKs5XNytKgwU8kJ3iE/gxEUAAAAjDfCDgBAH2utdjf49edt9Xp2e73eqGvre81Iuvq8M3T3NQuUmZboXJEAAADAKRB2AMAEFwpHVFXbqnXb6rVue71qmzslSQtnTNbNS2bq8TcOKhSO7txY+aEigg4AAADEPMIOAJiAOgIhbdjVqHXb6/X8jga1dnYr0evRhbOzdcfyYn10fr6mTk6WJN1YMpOdGwAAAHAVwg4AiHO9C0bn5Weovr1L67bV65XdzQqGI5qckqDLzsrT5Wfn65Izc5WeNPBfC+zcAAAAgNsQdgBAnOrqDuvh1+r0b3/crlDkvQWjM7NSdGtpoS4/O18lRZlK8HocrBIAAAA4/Qg7ACBOdHWH9UZdmyr3Nqtyb7Pe2N+mYCjS97qR9NkPFenOq8+WMWboDwIAAABcjrADAFyqqzusN/dHw41X97wXbvQeDbvywkLlpCfp3nW7+haMXnXeGQQdAAAAiHuEHQAQ43p3biwunCIjo8q9LXp1b5Ner3sv3FhwxiT9VWmhSouztWRWlianJPS9v6QoiwWjAAAAmFAIOwAgRgVCYT362gF986l3++3cOFW4cTIWjAIAAGCiIewAgBgRDEX0zsE2vbqnWa/ubVZVbau6uvvv3Ljugun65tULNDl16HADAAAAmOgIOwDAIaFwRG8fPNq3c2NLTauOd4clSWdNzdDNSwuUl5GkHzxb3bdz49bSQoIOAAAA4BQIOwBgjPXu3FhSlKkkn1ev9pyW8tq+FnUEo+HGvPwMfWrJTJUWZ2nZrGxlpiX2vX/prGx2bgAAAACjQNgBAGNo/fZ6ff6/q/rt3JCkOXnpun7RDF04O1tLZ2UpJz1pyM9g5wYAAAAwOoQdAHCaBUMRPb+zQY9uOaDndtSrN+cwkq5aOE13Xr1AuRlDhxsAAAAAPhjCDgD4gHrHVKZNTtbWg8f05JsH1dwRVG5Gkq4+7wz9z9YjfTs3PnvRLIIOAAAAYIwRdgDAKfSGGb07M7q6w2psD6ihPaDKPU36/rPVfWMqXo/0sbOn6qaSGbpkbq58Xs+A9wMAAAAYW4QdADCMZ945rL/7zRsKR6yMpNREb99S0ZMZSV/48Bx9+Yp5/a6zcwMAAAAYX4QdADCIcMTqly/v0z3P7FC4p2vDSpqbn6EVZ+Upb1KS8iYlq9kf0KontvaNqXzkrDxnCwcAAABA2AEAJ9t++Ji+9ru39daBoyopzNQ7B4/2hRn/etXZA7o0ZuWkM6YCAAAAxBDCDgDo0dUd1o+eq9bPXtyrySkJ+tHNF+iqhdP0el3bsGEGYyoAAABAbCHsADCh9S4PnZTs0y9frtHepg7duHiGVn1ivjLTEiURZgAAAABuQ9gBYMKqqm3VLT+vVCAUkSTlZSTqv29bquVzcx2uDAAAAMAH4XG6AABwwvbDx3Tnk1v7gg4j6ZZlhQQdAAAAQBygswPAhGGt1YbqJt23ca82Vjcp0euR12NkrVWiz0PQAQAAAMQJwg4Aca2qtlUv725UoDuiddvrtaver7yMJH3linkqW1agPY0dnKQCAAAAxBnCDgBxqbUjqF9X1uoH66sVjlhJUmFWqr5303m6+rwzlOiLTvEtLkwk5AAAAADiDGEHAFfrPU1lUcEURaz00u4mvVTdpK2Hjsra9+7zGOmTS2bohsUznCsWAAAAwLgg7AAQ03rDjN4xE2utGv0B1TR16oWd9frZhn19nRuS5PMYLSrI1D+uOFO5GUn61h/fVXcoogSfR6XFOQ7+TgAAAACMF8IOADGr92jYYCgiY6Si7DQ1tAfkD4QG3GskXb9ouu6+9hylJ733j7Z5UzPYyQEAAABMMIQdAGLW2q1H+o6GtVaKSLpx8QzNyklTUU6aOgMh/a9H3uzr3LhlWWG/oEOSFhdmEnIAAAAAEwxhB4CYdKjtuJ5484Ck6L6NRJ9H37vpvAHBRd6kZDo3AAAAAPRD2AEg5jS0d6nsvk3qCkb0nRsWqsEfGDLMoHMDAAAAwMkIOwDElJaOoG69b5Pqj3Xpv29bqsWFWU6XBAAAAMBlPE4XAAC9jnZ26zP3b1Jtc6fuW1lC0AEAAADgfSHsABAT/IGQVv5ys3bVt+tnn1msD83mmFgAAAAA7w9jLAAcdzwY1uceeE3vHDyqn5Qt0qXz8pwuCQAAAICLEXYAcNSre5r09cffUU1zp3548wW6YsFUp0sCAAAA4HKEHQDGVFVta/Ro2FlZKshO06769r6fqtpW7ar3S5ISvEbTp6Q4XC0AAACAeEDYAWDMVNW26tNrXlV32A54LTM1QWlJ7/0jKBKxqtzbzDGyAAAAAD4wwg4AY+ZH66v7gg4j6SNn5em2i2fpzPwM5aQn6vW6NpXdV6nuUEQJPo9Ki7OdLRgAAABAXCDsADAmfvz8br2wq1EeEw06EnweffEjc/p1biwuzFTF7aXRMZfibLo6AAAAAJwWhB0ATrsfrq/Wvet26drzz1DZsgK9VtM6ZJixuDCTkAMAAADAaUXYAeC0sdbq+89W64frq3X9oun6zo3nyesxWjqL8RQAAAAA44ewA8BpYa3Vd9bu1E9e2KNPlszQf1y/UF6PcbosAAAAABMQYQeAD8xaq3ue2aGfbdirm5cWaPV158hD0AEAAADAIZ6x+mBjzExjzPPGmG3GmHeNMV/quZ5ljFlnjKnu+ZVhfcDFqmpadOP/e1U/27BXnyktJOgAAAAA4LgxCzskhST9k7X2bEmlkr5ojDlb0tckrbfWzpW0vuc5ABeqqmnRJ9dUqqq2VV6P0XXnn0HQAQAAAMBxYxZ2WGsPW2tf73ncLmm7pOmSrpX0YM9tD0q6bqxqADC2frC+WuGIjT6xVpX7WpwtCAAAAAA0Tjs7jDFFki6QtElSvrX2cM9LRyTlj0cNAE6vR7fs18bqJnmMZCQl+DwqLebUFQAAAADOG/OwwxiTLul3kv7RWnvMmPda3K211hhjh3hfuaRySSooKBjrMgGMwvM7G/S1x9/RxXNy9PeXzdGW2laVFmdrcSEreAAAAAA4b0zDDmNMgqJBR4W19vGey/XGmGnW2sPGmGmSGgZ7r7V2jaQ1klRSUjJoIAJg/L21v01/++vXNS8/Qz+9dZEykhO0jI4OAAAAADFkLE9jMZLul7TdWnvvCS/9QdLKnscrJT05VjUAOL1qmjr0uQdeU3Z6oh743BJlJCc4XRIAAAAADDCWnR0XSfqMpHeMMW/2XPsXSfdIesQYc5ukWkmfHMMaAJwmje0B/dUvNstK+tXnliovI9npkgAAAABgUGMWdlhrX1J0b+FgVozV9wI4/fyBkP76gc1qbA/ooTuWqTg33emSAAAAAGBI43IaCwD32rS3Wf/8u7dV19Kp+1aW6IIClpACAAAAiG2EHQCGtGFXoz77y82KWCnBazQ5JdHpkgAAAADglMZsQSkA97LW6sk3D+pvfl2lSM9ZSJGIVeXeZmcLAwAAAIARoLMDQD81TR361ye3amN1k2bnpml/63GFwxEl+Dwq5YhZAAAAAC5A2AFAkhQIhfWzF/fq/z6/W4lej+6+ZoFuLS3Um/vbVLm3WaXF2VpcyL4OAAAAALGPsAOY4KpqW/XIljptrG7SobYu/cXCabrzqrOVPyl6tOziwkxCDgAAAACuQtgBTGCPv35AX370LUVs9Jzob/zFfN2+vNjpsgAAAADgAyHsACaYcMRq3bZ6/fLlfdq0r6XvusdIgVDEwcoAAAAA4PQg7AAmiKPHu/XIa/v14Ks1OtB6XNOnpOgzpYV6ZMt+hVhACgAAACCOEHYAcSx6hOwhPfDKPm071K5gOKKlRVla9Yn5uvzsfPm8Hl13wXQWkAIAAACIK4QdQJxpONalV/Y06+XdTXp+Z4Oa/EFJktcYfefGhbqpZGa/+1lACgAAACDeEHYALrdhV6Mef/2AAqGIqhv82t3glyRNTklQXkaSmv1BWUmSVUN7wMlSAQAAAGBcEHYALvX2gTZ9d+1Obahu6rt2/swp+vqVZ+miOTmaP22S3tzfprL7KtUdYicHAAAAgImDsANwkVA4oj9vq9cvXtqnLbWtSvR6ZCRZSV4jXX52vj7/4dl99y8uzFTF7aXs5AAAAAAwoRB2ADGsqrZVlXubde4Zk7Wj/pgefKVWB9uOqyArVXdedbbm5qfrjl9tGbZzg50cAAAAACYawg4gRlXVtOjm+zYpGIr0XSstztJdV5+tFfPz5fUYSaJzAwAAAABOQtgBxJCqmhY98eYhHTse1As7G/sFHSsvLNTd154z4D10bgAAAABAf4QdgIN6x1SWzcrS5n3N+s6fd8lGj07RvKkZOt7oVyRileDz6JrzpztbLAAAAAC4BGEH4JCq2laV3VepQHe0e8Oe8JrXSNecd4ZKi7MZUQEAAACAUSLsABxgrVVFZa26ut8bU7lodraq6lr7LRtlRAUAAAAARo+wAxhn7x46qtVPb9cre5plJBkjJfo8+t8fmydJdHIAAAAAwAdE2AGMk/pjXfru2p167PUDmpKSoLuvWaD50zL0Wk1rv3CDkAMAAAAAPhjCDmAMVdW2amN1ow61HddTbx1WKBLRHcuL9cWPzNHklARJ0tJZ2Q5XCQAAAADxhbADGCNbalp0888r1R2Orh69sDhL99ywUIXZaQ5XBgAAAADxjbADOI16j5KdnJKgHz1X3Rd0eIx08dxcgg4AAAAAGAeEHcBpUlXbqlt+XqlAKHrCSkaSTwleo0jE9p2uAgAAAAAYe4QdwAcQ7eRoUnKCV7+urOsLOoyk25bP0vK5uZyuAgAAAADjjLADeJ+qalv16TWv9o2qpCV65fMYWRvt5Fg+N1eLCzMJOQAAAABgnBF2AO9Dsz+gVU+80xd0GEmf/3CxLppDJwcAAAAAOI2wAxhG78LR3vCiqqZFD7xSoxd2NaozGOrXyXHRHDo5AAAAACAWEHYAJ9hS06Jnt9erOCdNrZ3d+u6fdyoUtvIYoxmZKapt6ZQkGSPde9P5KshOpZMDAAAAAGIMYQcgqas7rO+v26U1G/bKDvJ62Fq1dgb7nnskHTp6XH+5aDohBwAAAADEGMIOTGgv7mzQ/S/V6K0DbTp6vLvvusdIl589VS/sbFAoHFGCz6OvXTlf3/rju+oORThKFgAAAABiGGEHJpTXalr05BsH1R22emN/q3bV+yVFw43bLi5Sxaa6vjCj/JJilV9S3G9MZd7UDMZWAAAAACDGEXZgwnhoU61WPbG1b0wlKy1BRpJV9DSVrLQkVdxeOiDMODHUYAEpAAAAAMQ+wg7EtaraVm3c1ahdDe360ztH+q57jfTxc6bp8dcP9BtLIcwAAAAAAPcj7EDcqqpp0ad/XqnucLSXo7Q4S2/Wtam7ZwfHDYtm6IZFMxhLAQAAAIA4Q9iBuFJV26pX9jQpFLZ6aFNtX9DhMdLyubn6yhVnDTumAgAAAABwP8IOxI2q2lZ9es2rfQFHbkaiErxGkYhlTAUAAAAAJhDCDsSNZ7fV9+vkWHlhkS6cncOYCgAAAABMMIQdiBu1LR2SokFHos+jC2fn0MkBAAAAABMQYQfiQkN7l9Zvb9Bl83K1uCiLTg4AAAAAmMAIOxAXfr5hr7rDEd159QIV5aQ5XQ4AAAAAwEEepwsAPqgmf0C/rqzTtedPJ+gAAAAAABB2wP3u27hPXaGwvviROU6XAgAAAACIAYQdcLUXdjbo/pf26kOzczQnL93pcgAAAAAAMYCwA65VVduq2x/cou6w1ZaaFlXVtjpdEgAAAAAgBhB2wLV+s7lOoYiVJIXCEVXubXa4IgAAAABALOA0FrjSy7ub9OSbB2UkeYyU4POotDjb6bIAAAAAADGAsAOuU7m3Wbc9+JqKc9L1tU+cpW2Hjqm0OFuLCzOdLg0AAAAAEAMIO+AqFZW1+uZT7ypvUrIq7limnPQkfWRentNlAQAAAABiCDs74Brr3q3Xqt9vVXfYqqk9oNrmTqdLAgAAAADEIMIOuIK1Vv/xzPa+5ywkBQAAAAAMhbADrrDlte/qrnO/qrKidfKykBQAAAAAMAx2diDmtdX8VCUXfFXySpeEX9OKV/I1uehvWEgKAAAAABgUnR2IadZaHdr/S8kjmZ6fywo2EnQAAAAAAIZE2IGY9uvKh5WaeEiyksKSIpJSb3C4KgAAAABALGOMBTHr9dqnddPizyrJG1TEGh3fv1jpKX8j5d/mdGkAAAAAgBhGZwdi1o4jTynRG5TxStYYvRP+MEEHAAAAAOCUCDsQkxrau7TpjSyZiBQJG3WHfcpMvdzpsgAAAAAALsAYC2LST57foxUH31D4vzP15sWfVnrGtTpr2hVOlwUAAAAAcAHCDsScQ23H5d9coat8r8gz5VMqOfMnTpcEAAAAAHARxlgQc5586gl92/sTGUna9qS0f7PTJQEAAAAAXISwAzHl6bcPKXnn7+U1Nhp2hLulmo1OlwUAAAAAcBHCDsSMqtpW/cNv3lSROSJrJWu8kjdRKlrudGkAAAAAABdhZwdixvM7GpRnm3SxZ6ueDi9TdnGJLrzsOmnmUqdLAwAAAAC4CJ0diBmJPo8+53tGRlb3mluVeOlXCDoAAAAAAKNG2IGY0dLcoFu8z2lP3sf0nduv1uLCTKdLAgAAAAC4EGMsiAnWWuXvekhppkvzrl8lTSPoAAAAAAC8P3R2ICbUNrTqhu4/6lB2qTRtodPlAAAAAABcjLADMaF97b8pz7Qpcf6VTpcCAAAAAHA5wg44r26TFuz9hayk7Mp7pP2bna4IAAAAAOBihB1wXOSth+WRlZFkwkGpZqPTJQEAAAAAXIywA45ra2mUtVJEXsmbKBUtd7okAAAAAICLjVnYYYz5hTGmwRiz9YRr3zTGHDTGvNnz84mx+n64RCSihEObtSVypo4v/5q08g/SzKVOVwUAAAAAcLGx7Ox4QNLHB7n+fWvt+T0/fxrD74cbHKxSRqBeGyb9hdJWfJWgAwAAAADwgY1Z2GGt3SCpZaw+H/Gh+53HFbRemXk0+QAAAAAATg8ndnb8nTHm7Z4xl0wHvh+xwlqFt/5eGyILtWT+LKerAQAAAADEifEOO34qabak8yUdlvS9oW40xpQbY7YYY7Y0NjaOV30YTwerlNx5SH/WhVpSlOV0NQAAAACAODGuYYe1tt5aG7bWRiT9XNKQCxqstWustSXW2pLc3NzxKxLj590n1C2f3k3/kN49dMzpagAAAAAAcWJcww5jzLQTnv6lpK1D3Ys4Z6263npcG8LnalurR2X3VaqqttXpqgAAAAAAccA3Vh9sjPmNpEsl5RhjDki6S9KlxpjzJVlJNZI+P1bfjxjXM8Lyp/A1spK6QxFV7m3W4kLWuAAAAAAAPpghww5jTLKkDGtt40nXcyW1W2u7hvtga+3Ng1y+/31VifhT+ROF5VG9nSKvkRJ8HpUWZztdFQAAAAAgDgw3xvJDScsHuX6xpO+PTTmYEOo2SVsfl0cR3Zd0r769LKCK20vp6gAAAAAAnBbDhR2LrbWPn3zRWvuEpEvGriTEva2PSbIykhIU0o3Z+wg6AAAAAACnzXBhR+r7fB8wvHC3JClkPbKeRKlosAYiAAAAAADen+FCiwZjzICjYY0xSyQ1DnI/MDIN23UsrUj3hm7SgWselmYOeQIxAAAAAACjNtxpLF+R9Igx5gFJVT3XSiT9laRPj3FdiFfHW6UDm/VG3mf0QPsn9E8LL3W6IgAAAABAnBmys8Nau1nSUklG0md7foykZdbaTeNRHOLQnuclG9GfAufq3OmT5fUYpysCAAAAAMSZ4To7ZK1tkHTXONWCiaB6nWzyFD3ZeIZWXjTF6WoAAAAAAHGIRaMYP5GItPtZtZ1xibrC0vkzCTsAAAAAAKcfYQfGz5G3pY4GbU1ZIkk6j7ADAAAAADAGhgw7jDHDjrgAo1a9TpL05+A5ystI0rTJyQ4XBAAAAACIR8N1dmzufWCM+dE41IJ4t3uddMYFeumwR+fNnCJjWE4KAAAAADj9hgs7TvyT6EVjXQjiXGeLdOA1dRVepn1NHezrAAAAAACMmeHCDjtuVSD+7XlOshFtyyiVxHJSAAAAAMDYGW4vx1nGmLcV7fCY3fNYPc+ttXbhmFeH+PHWw5IvRXuOHJUxqTp3xmSnKwIAAAAAxKnhwo7541YF4lttZXRfh6Rr3vmiNmT+H01KTnC4KAAAAABAvBpyjMVaW2utrZX0UUmJvc9PuA6MzDuP9D302m6V2K2qqm11sCAAAAAAQDwbbmdHrwJJPzPG7DXGPGqM+XtjzPljXRjiSKBdkhSRR93WpyfbilV2XyWBBwAAAABgTAw3xiJJstbeJUnGmBRJd0j6iqQfSPKObWmIC9ZKB6ukMy7Qgy3n6qmjxXrdnilvKKLKvc1aXJjpdIUAAAAAgDhzyrDDGPMNRY+eTZf0hqQvS9o4xnUhXjTukFr2qOXSe/St/ymQx2PklVWCz6PS4mynqwMAAAAAxKFThh2SrpcUkvS0pBclvWqtDYxpVYgf2/8oSbq/6Sz5vMf1k1sWa1dDu0qLs+nqAAAAAACMiZGMsSwyxkxStLvjcklrjDEN1tqLx7w6uN+Op9Q9bbHuf6tL150/XZcvyNflC/KdrgoAAAAAEMdOuaDUGHOOpDJJKyV9StJBSc+NcV2IZc3N0sc/Hv11OG110uG39Grih9TVHdHnP1w8PvUBAAAAACa0kZzGco+kDEk/lDTfWvsRa+2dY1sWYtoDD0hr10oPPjj8fTueliT9Z+1cXX52vubkZYx9bQAAAACACe+UYYe19ipr7X9aa1+x1naPR1GIYdZK3/9+9PH3vx99PpTtT6k+uVhbu3J02Vl541MfAAAAAGDCG0lnB/CejRulo0ejj9vapJdeGvy+jibZulf1sP88SdLdT72rqtrWcSoSAAAAADCRjeQ0FuA9P/iB1NERfdzREe3uWL687+Udh9eqoX2tut7162M2orXhJZKk7lBElXubOYEFAAAAADDmCDswtGuvlf7wh/7XEhPfG12xVnr6ackYSdK2qws167HDmpMXkimy6mjJVsa+bnnDUoLPo9Li7PGtHwAAAAAwIQ05xmKMmWqM+akx5sfGmGxjzDeNMe8YYx4xxkwbzyLhkH//d6mgQEpOfu9aMNj/nhOeb715rhK8Ifm8EXm8VqmF7fpN0n/o28sCqri9lK4OAAAAAMC4GG5nxwOStknaL+l5ScclfULSRkn/b8wrg/MWLJC2bZOuuUZKTR321n3TivVo80fVHfYpEpZMRDI1Xnki3boxex9BBwAAAABg3AwXduRba39krb1H0hRr7bettfuttT+SVDhO9cFpaWnSb38rfe97UlLSoLfYpCR9vfw/taPpfG098DsFN+bIPpgmHUySvIlS0fJB3wcAAAAAwFgYbmfHiUHIr4Z5DRPBokXRsCMQGPDSw+d/XJVdybrn+vlaYvdILwSlS74mzUuJBh0zlzpQMAAAAABgohou7HjSGJNurfVba7/Re9EYM0fSrrEvDTFlyxapuzv62BgpJUU6flz1aZn69wtv0YVJXfrUkpnSw/8speZIy78sJSQP/5kAAAAAAIyBITs0rLV3Wmv9g1zfba29cWzLQszZuFE6fjy6rLSgQKqokJ05U39/7T+r05ekWw9slmmrlXY+Iy3+LEEHAAAAAMAxw53GsswYM6nncYox5m5jzFPGmG8bYyaPX4mICZs2SV5v9Djad9+VrrtOv614VptnLFDE49E/ZZbqyPofS8YjlXzO6WoBAAAAABPYcLs3fiGps+fxf0maLOnbPdd+OcZ1IdbMny+tWSM9/HB0aamk5/YelSRZ45HPG9KUHb+Rzr5GmjzdyUoBAAAAABPcsAtKrbWhnscl1tpFPY9fMsa8OcZ1IdY8/fSAS4neaFbmNdL1iZVKDrVLSz8/3pUBAAAAANDPcJ0dW40xf93z+C1jTIkkGWPOlNQ95pUh5rUHQpqVk6r/ffmZ+sa830uXJUhJ7zpdFgAAAABgghuus+N2Sf9Zws0ZAAAgAElEQVRljPmGpCZJrxpj9kva3/MaJrg9jX4tKsjUF6f+Qlq+V/JKCt8h1Rsp/zanywMAAAAATFBDhh3W2qOSPtuzpHRWz70HrLX141UcYtfxYFgH247rpsUzpfbfRIMOjyQrqfN3kgg7AAAAAADOGK6zQ5JkrT0m6a1xqAUusq+pQ9ZK8zKt9FabtEjRoCMiKfUGh6sDAAAAAExkpww7gMHsafRLks47ul6qs9Kef5WStkSDDkZYAAAAAAAOIuzA+7L7kT/KmOnK3/2olDtfmne3ZIzTZQEAAAAAMOxpLMCQ9mzdo+WTm+Q5VCUt+gxBBwAAAAAgZhB24H3ZkzVDtyS8KHl80sJPOV0OAAAAAAB9CDswapGI1f6sfC0//pw070opLcfpkgAAAAAA6EPYgVE72HZcFyVtU1qoVbrgr5wuBwAAAACAfgg7MGqN2zfqK76H1Z2YKc2+zOlyAAAAAADoh7ADo7N/sxau/4xmm8PyhdqlQ687XREAAAAAAP0QdmBo3/xm9JSVE39uWS5POBB9GuqWblk+8B5jou8FAAAAAMABhB0Y2je/KVnb/+ehjYoYb/T1xBTpoY0D77GWsAMAAAAA4BjCDozOzKXapHN1PJQgrXxKmrnU6YoAAAAAAOiHsAOj0tYZVGrEr+a2dIIOAAAAAEBMIuzAqOxp8KvYHJKardOlAAAAAAAwKMIOjMr+Qwc02XQq9UiH06UAAAAAADAowg6MyrH92yVJkw8ec7gSAAAAAAAGR9iBUQk1VkuSvE0hhysBAAAAAGBwhB0YlaSj+xSWV/qHbzhdCgAAAAAAg/I5XQDcY+vBZ1Sy9EUdPZSprJXfcrocAAAAAAAGRdiBEdlxeK1m516n5MuCioQ92nF4rc6adoXTZQEAAAAAMABjLBiR1s51SvCGZLyS8Vq1dq5zuiQAAAAAAAZF2IERyUy9XKGwTwpLobBXmamXO10SAAAAAACDIuzAiJw17Qr9/ul/lJ5P0uFd9zDCAgAAAACIWYQdGLGuWp/0UpIKC25xuhQAAAAAAIZE2IERS/PXKGCSpYypTpcCAAAAAMCQCDswIqFwRLnBA2pLLZSMcbocAAAAAACGRNiBETnU1qUiHVZg0iynSwEAAAAAYFiEHRiRusZWzTQN8uTOdboUAAAAAACGRdiBEWk5UC2vsUqbNs/pUgAAAAAAGBZhB0YkUL9TkjR5xnyHKwEAAAAAYHiEHRgRT8ue6K85sx2uBAAAAACA4RF2YERS22t0zDNFSsl0uhQAAAAAAIZF2IFTstYqO7BfbSkFTpcCAAAAAMApEXbglFo6girUIXVx7CwAAAAAwAXGLOwwxvzCGNNgjNl6wrUsY8w6Y0x1z6/MRLhAR80Plb+8XlMKjjldCgAAAAAApzSWnR0PSPr4Sde+Jmm9tXaupPU9zxHL6u/XzHlflS4LKPejT0r19ztdEQAAAAAAwxqzsMNau0FSy0mXr5X0YM/jByVdN1bfj9Ok83eSV9G/Uzw9zwEAAAAAiGG+cf6+fGvt4Z7HRyTlj+RNO3fu1KWXXjpmRWEYwcNSwgnPu/dIiZc6VQ0AAAAAAKc03mFHH2utNcbYoV43xpRLKpekpKSkcasLJ0mcpkONXZqU2Kb0lKlS4jSnKwIAAAAAYFjjHXbUG2OmWWsPG2OmSWoY6kZr7RpJaySppKTEvvDCC+NUIk62dPWz+vCZufrOTec5XQoAAAAAYAIzxozovvE+evYPklb2PF4p6clx/n6M0vFgWA3tARVmpzpdCgAAAAAAIzKWR8/+RtKrkuYZYw4YY26TdI+ky40x1ZI+2vMcMWx/a6ckqSA7zeFKAAAAAAAYmTEbY7HW3jzESyvG6jtx+tU294QdWXR2AAAAAADcYbzHWOAytc0dkqRCwg4AAAAAgEsQdmBYdS2dykj2aUpqwqlvBgAAAAAgBhB2YFh1LZ0qzE4d8cZbAAAAAACcRtiBYdU1d7KvAwAAAADgKoQdGFRFRYWKZs3Snvo2/em3v1JFRYXTJQEAAAAAMCKEHRigoqJC5eXlKlqSpi+ueEJnzqhWeXk5gQcAAAAAwBWMtdbpGk6ppKTEbtmyxekyJoyioiIVLJTWPnZYCd6QusM+XXHjNNW9LdXU1DhdHgAAAABggjLGVFlrS051H50dGKCurk4rrsxQgjcknzeiBG9IK67MUF1dndOlAQAAAABwSoQdGKCgoEDrn2lXd9inUNij7rBP659pV0FBgdOlAQAAAABwSoQdGGD16tWqWt+o6758pe5dd6s+/qkZqlrfqNWrVztdGgAAAAAAp+RzugDEnrKyMknSqt+8oh3PXSHzxotas2ZN33UAAAAAAGIZYQcGVVZWpt2TztdjWw7oHZaSAgAAAABchDEWDKkjEFJaEnkYAAAAAMBdCDswpI5AWGlJXqfLAAAAAABgVAg7MCR/IKR0OjsAAAAAAC5D2IEhMcYCAAAAAHAjwg4MyU/YAQAAAABwIcIODKkjyBgLAAAAAMB9CDswJBaUAgAAAADciLADQ2KMBQAAAADgRoQdGFR3OKJgKKL0RMIOAAAAAIC7EHZgUB2BkCTR2QEAAAAAcB3CDgzK3xN2sKAUAAAAAOA2hB0YVEcgLInODgAAAACA+xB2YFD+vjEWTmMBAAAAALgLYQcG1cEYCwAAAADApQg7MCgWlAIAAAAA3IqwA4NiQSkAAAAAwK0IOzAoOjsAAAAAAG5F2IFBdQR7T2NhQSkAAAAAwF0IOzAofyCkBK9Rko+wAwAAAADgLoQdGFRHIMQICwAAAADAlQg7MCh/IKS0RMIOAAAAAID7EHZgUB2BECexAAAAAABcibADg+oIhFlOCgAAAABwJcIODMrPzg4AAAAAgEsRdmBQjLEAAAAAANyKsAOD4jQWAAAAAIBbEXZgUH46OwAAAAAALkXYgQGsteoIsqAUAAAAAOBOhB0YIBCKKByxjLEAAAAAAFyJsAMDtHeFJEkZhB0AAAAAABci7MAAHYFo2EFnBwAAAADAjQg7MICfsAMAAAAA4GKEHRigt7OD01gAAAAAAG5E2IEBOoJ0dgAAAAAA3IuwAwP4A2FJUjpHzwIAAAAAXIiwAwOwoBQAAAAA4GaEHRiAsAMAAAAA4GaEHRig7zSWRMIOAAAAAID7EHZggI5ASCkJXnk9xulSAAAAAAAYNcIODOAPhBlhAQAAAAC4FmEHBugIhDiJBQAAAADgWoQdGKAjEKKzAwAAAADgWoQdGMBP2AEAAAAAcDHCDgzQEQwpnbADAAAAAOBShB0YoIMFpQAAAAAAFyPswAB+FpQCAAAAAFyMsAMDdARCSkukswMAAAAA4E6EHegnErHqDDLGAgAAAABwL8IO9NMRDEkSC0oBAAAAAK5F2IF+OgJhSaKzAwAAAADgWoQd6McfiHZ2pLGgFAAAAADgUoQd6KcjwBgLAAAAAMDdCDvQT0dfZwdhBwAAAADAnQg70I+fzg4AAAAAgMsRdqCf3tNY6OwAAAAAALgVYQf68fedxsKCUgAAAACAOxF2oB8WlAIAAAAA3I6wA/10BELyGCklgc4OAAAAAIA7EXagH38gpLREn4wxTpcCAAAAAMD7QtiBfvxdIZaTAgAAAABcjbAD/XQEQywnBQAAAAC4GmEH+vEHwiwnBQAAAAC4miN/qjXG1EhqlxSWFLLWljhRBwbqCDDGAgAAAABwNyf/VPsRa22Tg9+PQXQEQspKS3W6DAAAAAAA3jfGWNCPPxBijAUAAAAA4GpOhR1W0p+NMVXGmHKHasAgomMsLCgFAAAAALiXU/8L/2Jr7UFjTJ6kdcaYHdbaDSfe0BOClEtSQUGBEzVOSB2BsNKTEpwuAwAAAACA982Rzg5r7cGeXxskPSFp6SD3rLHWllhrS3Jzc8e7xAkpGIooGI4onc4OAAAAAICLjXvYYYxJM8Zk9D6W9DFJW8e7DgzUEQhJEqexAAAAAABczYk/1eZLesIY0/v9D1lr/8eBOnASP2EHAAAAACAOjPufaq21eyWdN97fi1PrCEbDDk5jAQAAAAC4GUfPog9jLAAAAACAeEDYAUlSRUWFbvhUmSRp5c2fVEVFhcMVAQAAAADw/hB2QBUVFSovL9ecc4P620sf0ax5R1VeXk7gAQAAAABwJWOtdbqGUyopKbFbtmxxuoy4VVRUpIKF0trHDivBG1J32Kcrbpymurelmpoap8sDAAAAAECSZIypstaWnOo+Ojuguro6rbgyQwnekHzeiBK8Ia24MkN1dXVOlwYAAAAAwKgRdrhERUWFioqK5PF4VFRUdFpHTAoKCrT+mXZ1h30KhT3qDvu0/pl2FRQUnLbvAAAAAABgvBB2uEDvTo2ChdJdP16ggoU6rTs1Vq9erar1jbrh7lv13Wdu0hU3TlPV+katXr36tHw+AAAAAADjiZ0dLjAeOzUqKiq0au1BBUyikl78gVavXq2ysrLT8tkAAAAAAJwO7OyII+OxU6OsrEznLvmQPn7ph1RTU0PQAQAAAABwLcIOFxivnRrN/oCy0pJO62cCAAAAADDeCDtcoHenxqd+9C+6d92turJs9mnfqWGtVVNHUDnpiaftMwEAAAAAcILP6QJwamVlZYpY6V/fztDbjSXS7n1as2bVaR016QiGFQxFlE3YAQAAAABwOTo7XOLK626UPF5J0s8rHj3tOzWa/QFJYowFAAAAAOB6hB0u0dge6Hvc0N512j+/yR+UJDo7AAAAAACuR9jhEv3CjmOBYe58f1o6omFHDp0dAAAAAACXI+xwiSb/iZ0dow87KioqVFRUJI/Ho6KiIlVUVPR7vW+Mhc4OAAAAAIDLEXa4RG9nR0FWqhpHOcZSUVGh8vJyFSyU7vrxAhUslMrLy/sFHs09nR3ZaYQdAAAAAAB3I+xwicb2gFISvCrKSRt1Z8eqVau0eEWu1j52WKvKt2ntY4e1eEWuVq1a1XdPsz+o9CSfkhO8p7t0AAAAAADGFWGHSzT6A8rNSFJeRtKod3bU1dVpxZUZSvCG5PNGlOANacWVGaqrq+u7p7kjoCy6OgAAAAAAcYCwwyUa298LO5r8AUUidsTvLSgo0Ppn2tUd9ikU9qg77NP6Z9pVUFDQd0+zP8hJLAAAAACAuEDY4RJN/oBy05OUPylZoYhVS2dwxO9dvXq1qtY36lP/9VXdu+5WXf2FC1W1vlGrV6/uu6e5I6hsTmIBAAAAAMQBn9MFYGQa2wNaOitLeRnRQKLhWEA56SMLJ8rKyhSMSHdvnaS3XyiV6h7VmjV3qKysrO+eZn9AC6dPHpPaAQAAAAAYT3R2uEAwFFFrZ7dy05OVNykacNSP8kSWJZddJZnoX+7bvvTVfkFHJGLV0sEYCwAAAAAgPhB2uEBzR3QhaXRnR7IkqXGUS0qrG9olSUk+jw62Hu/32rGuboUiVtkj7BQBAAAAACCWEXa4QGP7e2FHbu8Yyyg7O3bV+5XgNVpcmKmDbf3DjuaO6P6PbE5jAQAAAADEAcIOF2jyR8OOnPREJSd4NSnZp4b2UXZ21LdrVk6ainLSBoYd/p6wgzEWAAAAAEAcIOxwgRM7OyQpb1KyGkY9xuLX3LwMTZ+SopaOoDqDob7XmnvCFE5jAQAAAADEA8IOF+gNO3pPX8nLSBrVGMvxYFh1LZ2am5+uGZkpktRvb0ffGAudHQAAAACAOEDY4QKN7QFNSvYpOcErqTfsGHlnx55Gv6yVzsyPdnZI0oETRll6x1gyUwk7AAAAAADu53O6AJxakz+onIz3RkzyJyWroT0ga62MMad8f+9JLHPz0pWeHP1L3r+zI6DJKQlK9JF9AQAAAADcj7DDBRrbA8o94VjY3IwkBUMRHTse0uTUhFO+v/cklqKcNHmMUYLX9FtS2twR5CQWAAAAAEDc4H/lu0CjP9C3nFSKLiiVRn78bHW9X7Ny0pTg9cjrMZo2OaV/Z4c/wL4OAAAAAEDcIOxwgcb2k8KOnscj3dtR3dCuuXkZfc+nT0np39nhD3ISCwAAAAAgbhB2xLjjwbD8gdCgYUf9sVN3dnR1v3cSS6/pmSk60NrZ97ylI6gsOjsAAAAAAHGCsCPGNfn7HzsrnTjGcurOjt0N0ZNYTu7saGgPKBiKKByxaukMKoedHQAAAACAOMGC0hjXG2ic2NmRnuRTaqJXDcdOHXb0nsRy5kmdHdZKh48eV1qST9ZK2emMsQAAAAAA4gOdHTGusTfsOCmMyMtIGtGC0up6v3ye6EksvWZkpkiKHj/b0hGUJGXR2QEAAAAAiBN0dsS4xp4xlryMk8OO5BGNsew64SSWXjOmpEqSDrQdl0z0GqexAAAAAADiBZ0dMa6xPSBjBnZe5E1K6uv6GM7uhnadmZ/R79rUyckyJtrZ0eyPdnbkMMYCAAAAAIgThB0xrskfUFZqonze/n+p8jKS1XCK01i6usOqPekkFklK9HmUn5GsA4yxAAAAAADiEGFHjGtsD/RbTtorb1KSOoJhdQRCQ753sJNYek3PTNHBtk41+6OdI5mphB0AAAAAgPhA2BHjhgw7eq717u2oqKhQUVGRPB6PioqKVFFRoa0Hn9HfXvqIMpJeG/D+6VNSdLDtuJo6gspKTZTXY8b2NwIAAAAAwDhhQWmMa2wPaNYJJ6n0ystIliQ1HOvSK2t/r/Lyci1ekau//vp5eunNqXp4T6UeuWmNErwhdYcf1o7Df9BZ067oe/+MzBT96Z3DamwPMMICAAAAAIgrdHaMk8E6L07FWqtG/9BjLJJU3x7QqlWrtHhFrtY+dlirbn9bf/iv53TTip1K8Ibk80aU4A2ptXNdv/dPz0xRKGK1/fAxTmIBAAAAAMQVwo5xUFFRofLychUslO768QIVLJTKy8tPGXi0B0IKhiLKHeSklL4xlmNdqqur0+XXT+8XboRaDqo77FMo7FF32KfM1Mv7vX/6lBRJ0oHW48rmJBYAAAAAQBwh7BgH/Tovyrdp7WOHtXhFrlatWjXs+3qPlh2ss2NySoISfR41tgdUMG+htrR9vF+48cDPO1RWvkCv1fwv1Tb3H2GRomMsvbIZYwEAAAAAxBF2doyDuro6fe7OpUrw7pfPG5EU0oorM3T3H98d9n3DhR0PPfSQgkfDuvdnzyt52Uq9UTdTn1g5X5deEtb6Z9pVtb5Ra9as1oWzywb97DOmnBh20NkBAAAAAIgfdHaMg4KCAlXuOadf58X6Z9pVUFAw7Pt6w46ck8ZMesdizpn2lr78N0e0ZGlYR5/9qd5Zd0B3f/Fd1b0trVmzRmVlgwcdkpSa6OtbTMrODgAAAABAPKGzYxysuvvf9W/vpOj6O4NaXtKmzQeW6fUN9+pnP/7hkO+pqKjQqgfXSYtu0hWXlGr1Xf/SF170jsU8+uX/23Paym91xf9MU92xdDU1NY2opoqKCrXUHZWyC/WNL39J5gs3DRuOAAAAAADgFnR2jAM7a5mML1Hbn6nWt760S28eOV8r/3979x/jdX0fcPz5ujsEowyRMnuK54Exs9ghozfDtq5ViQJ2KVtGFud1NdsyMl2XbkvjNJdtuuS7bEv6Y2am5uasdT2LSJuMkVJm0WZpFlSYiKC1HPQ8sFQQB0JXK3Dv/fF93/ULvR8ccN/P9/u95yN5h8/3/fl8vrw/8cX7473u/Xl9Hnh4xOTC4MqNa3/xXe766JO0XfujUwqa9vf3s2T59FMKki5ZPp3+/v4zGs/g91/X+jJ337iGq69+84wKpkqSJEmSVA8ipVT0GMbU0dGRtmzZUvQwzsrAQOKmz36bn58+laf++FcB+O0v/jcHjr7Ltz9zE81N8TPntLe307YANq7dn1dutLB0ZSv926Gvr2/M/WM51/MlSZIkSSpCRGxNKXWMdZwrOybYd3rf4vVD/8cnFl811PdHvz6XvW//mP/c+cNhzxlr5UapVGLrpoMsXdlKqXs+S1e2snXTQUql0hmN6VxXhkiSJEmSVMtMdkywr2x+nVkXXcCyD75/qO+W+e9n5pST3PWFp2hqaqK9vf2UR0ja2trYtOHoiAVNOzs76e7upn87Z1yQtNJY3y9JkiRJUj0z2TFBenp6aP/AQjbu+AGHXljP2idXD+1b/dUn2Putx1n0ofe4/5EbaFvAKTUzSqUS27Y00/lIib9/4iPDrtzo7Oykr6+PgYEB+vr6xlVc9FxXhkiSJEmSVMus2TEBBguAfnjVx7j51ml887FtPL9+99Dqi/b2dq5aNIVvru4fsWbGPQ+tYc3ei9j/pT+l9cIBSqXSeX1bSk9PD11dXfT399PW1nbev1+SJEmSpPPtTGt2mOyYAGMVAG1qauJvHrqOrlWv0NI8wImTTZS65/PAn+xkYGAAgL/9j1d44vnX2XH/UlqaXYAjSZIkSZIFSgs0VgHQM6mZsX3fYa67fIaJDkmSJEmSxsmfpCfAWMmMwZoZt/3eL/C5pz/Bij+/5ZSaGSdODrDjB0dYMGdGkZchSZIkSVJdail6AI2oVCqxatUqlq5sZcny6WzacJStmw7S3d0NMFQbo6uriwdn3UTL4b10d//uUP+uA8d49/gA18+5pLBrkCRJkiSpXrmyYwKcyathB9+m8jsfXcisDyzmjjvuGNq3fd9hAFd2SJIkSZJ0FlzZMUE6OzvP6O0mi+fN4usvvkHvgWNcc9l0AF7ad4Tp01pon3XRRA9TkiRJkqSG48qOgi2eNwuAzXsODfVt33eYBXNm0NQURQ1LkiRJkqS6ZbKjYFdeeiGXz5jG5j1vA/Du8ZN8d/9RFlivQ5IkSZKks2Kyo2ARweJ5s9i85xApJV7d/w4nBhLXW69DkiRJkqSzYrKjBiyeN4tDP3qP3gPH2L7vCIArOyRJkiRJOksmO2pAZd2Ol/Yd5n0XT6V1xrSCRyVJkiRJUn3ybSw1oLJux2tvHuX6OTOIsDipJEmSJElnw5UdNWCwbsd3et9i98FjPsIiSZIkSdI5MNlRI9KBXRz58XFSgs//1afp6ekpekiSJEmSJNUlkx01oKenh0f+7h4Wtb3K3Teuof3yPaxatcqEhyRJkiRJZyFSSkWPYUwdHR1py5YtRQ9jwrS3t9O2ADau3c+U5hMcP9nC0pWt9G+Hvr6+oocnSZIkSVJNiIitKaWOsY5zZUcN6O/vZ8ny6UxpPkFL8wBTmk+wZPl0+vv7ix6aJEmSJEl1x2RHDWhra2PThqMcP9nCiZNNHD/ZwqYNR2lrayt6aJIkSZIk1Z1Ckh0RsSwiXouI3oi4t4gx1JJSqcTWTQdZurKVUvd8lq5sZeumg5RKpaKHJkmSJElS3Wmp9l8YEc3AQ8AtwD7ghYhYl1J6pdpjqRWdnZ0AdHV18cD6nbS1tdHd3T3UL0mSJEmSzlzVkx3ADUBvSmkPQESsBlYAkzbZAeWEh8kNSZIkSZLOXRGPsVwB7K34vC/3SZIkSZIknbOaLVAaEasiYktEbDl48GDRw5EkSZIkSXWiiGTHG8CVFZ/n5L5TpJS6U0odKaWO2bNnV21wkiRJkiSpvhWR7HgBuCYi5kbEBcDtwLoCxiFJkiRJkhpQ1QuUppRORMSngI1AM/BoSmlntcchSZIkSZIaUxFvYyGl9A3gG0X83ZIkSZIkqbHVbIFSSZIkSZKks2GyQ5IkSZIkNRSTHZIkSZIkqaGY7JAkSZIkSQ3FZIckSZIkSWooJjskSZIkSVJDMdkhSZIkSZIaiskOSZIkSZLUUEx2SJIkSZKkhmKyQ5IkSZIkNRSTHZIkSZIkqaFESqnoMYwpIg4Cr5/l6e8D3jqPw5HGyxhULTAOVQuMQ9UC41C1wDhU0eo5Bq9KKc0e66C6SHaci4jYklLqKHocmryMQdUC41C1wDhULTAOVQuMQxVtMsSgj7FIkiRJkqSGYrJDkiRJkiQ1lMmQ7OguegCa9IxB1QLjULXAOFQtMA5VC4xDFa3hY7Dha3ZIkiRJkqTJZTKs7JAkSZIkSZNIXSQ7IuLRiDgQETsq+i6NiKcjYlf+c2buj4h4MCJ6I2J7RCyqOOfOfPyuiLizov9DEfFyPufBiIjqXqHqwQhxeH9EvBER23K7rWLffTmmXouIpRX9y3Jfb0TcW9E/NyKey/1PRsQF1bs61YOIuDIino2IVyJiZ0R8Ovc7H6pqRolD50NVTURMi4jnI+KlHIcP5P5hYycipubPvXl/e8V3jSs+pUGjxOFjEfH9ivlwYe73vqwJERHNEfFiRKzPn50LAVJKNd+AjwCLgB0Vff8I3Ju37wX+IW/fBmwAAlgMPJf7LwX25D9n5u2Zed/z+djI5y4v+ppttddGiMP7gc8Mc+x84CVgKjAX2A0057YbmAdckI+Zn89ZA9yetx8G7ir6mm211YBWYFHeng58L8ea86Gtam2UOHQ+tFWt5Tnq4rw9BXguz13Dxg5wN/Bw3r4deDJvjzs+bbbBNkocPgasHOZ478u2CWnAXwBPAOvzZ+fClOpjZUdK6b+At0/rXgF8OW9/GfjNiv7HU9lm4JKIaAWWAk+nlN5OKf0v8DSwLO/7uZTS5lT+L/14xXdJQ0aIw5GsAFanlH6SUvo+0AvckFtvSmlPSuk9YDWwImfpbwbW5vMrY1oCIKW0P6X0P3n7KPAqcAXOh6qiUeJwJM6HOu/yvHYsf5ySW2Lk2KmcJ9cCS3KsjSs+J/iyVGdGicOReF/WeRcRc4CPAY/kz6PdRyfVXFgXyY4RXJZS2p+3fwhclrevAPZWHLcv943Wv2+YfulMfSovRXw08uMDjD8OZwGHU0onTuuXhpWXHf4S5d8iOR+qEKfFITgfqorysu1twAHKPxzuZuTYGYq3vP8I5Vgbb3xKpzg9DlNKg/NhKc+Hn4+IqbnP+7ImwheAe4CB/Hm0++ikmgvrOdkxJGc6fa2MivBF4GpgIbAf+Gyxw9FkEBEXA18D/iyl9E7lPudDVcswceh8qKpKKZ1MKRH7ZlsAAAKPSURBVC0E5lD+7eO1BQ9Jk9DpcRgRHwTuoxyPv0z50ZS/LHCIamAR8RvAgZTS1qLHUovqOdnxZl7aRf7zQO5/A7iy4rg5uW+0/jnD9EtjSim9mW9yA8C/UP6fLRh/HB6ivJSx5bR+6RQRMYXyD5g9KaWv527nQ1XVcHHofKiipJQOA88Cv8LIsTMUb3n/DMqxNt74lIZVEYfL8uN+KaX0E+BLnP186H1ZY/k14OMR0Uf5EZObgX/CuRCo72THOmCwUvGdwL9X9H8yVzteDBzJy7s3ArdGxMy8tPZWYGPe905ELM7PK32y4rukUQ3+gJn9FjD4ppZ1wO254vFc4BrKBaZeAK7JFZIvoFwYaF3+bfyzwMp8fmVMS8DQM5j/CryaUvpcxS7nQ1XNSHHofKhqiojZEXFJ3r4QuIVy/ZiRYqdynlwJPJNjbVzxOfFXpnoyQhx+t+IXEEG5VkLlfOh9WedNSum+lNKclFI75XnqmZRSJ86FZWNVMK2FBnyV8pLY45SfE/pDys8WbQJ2Ad8CLs3HBvAQ5ec2XwY6Kr7nDygXW+kFfr+iv4PyJLQb+Gcgir5mW+21EeLw33Kcbaf8D7+14viuHFOvUVE5m3Il7u/lfV0V/fMoTyq9wFPA1KKv2VZbDfgw5UdUtgPbcrvN+dBWzTZKHDof2qrWgAXAiznedgB/nfuHjR1gWv7cm/fPq/iuccWnzTbYRonDZ/J8uAP4Cj99Y4v3ZduENeBGfvo2FufClMr/WCRJkiRJkhpFPT/GIkmSJEmS9DNMdkiSJEmSpIZiskOSJEmSJDUUkx2SJEmSJKmhmOyQJEmSJEkNxWSHJEmSJElqKCY7JEmSJElSQzHZIUmSJEmSGsr/A8kGZxqu7yDLAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "#%load_ext autoreload\n", + "%load_ext autoreload\n", "%autoreload 2\n", "\n", "import numpy as np\n", "from common import parse_yaml_cfg\n", - "from plot_seq import plot_noise_regions_main\n", + "import plot_seq_1\n", "\n", - "inDir = \"/home/kevin/temp/p_ac_3e\"\n", + "inDir = \"/home/kevin/temp/p_ac_3h\"\n", "cfgFn = \"p_ac.yml\"\n", - "pitchL = [60,61,62,63,64,65,66,67,68,69,70,71,72]\n", "pitchL = np.arange(48,60)\n", "pitchL = np.arange(36,60)\n", "pitchL = [40,41,42,43,44,45,46,47,48,49,50,51,52,60,61,62,63]\n", - "\n", - "minDurMs = 800.0\n", - "minDb = 10.0\n", - "noiseLimitPct = 5.0\n", + "pitchL = [23,24,25,26,27,28,29,30,31,32,33,34,35,36]\n", + "pitchL = pitchL + [37,38,39,40,41,42,43,44,45,46,47,48,49,50,51]\n", + "pitchL = pitchL + [52,53,54,55,56,57,58,59,60,61,62,63,64]\n", + "pitchL = pitchL + [ 64,65,66,67,68,69,70,71,72]\n", + "pitchL = pitchL + [ 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89]\n", + "pitchL = pitchL + [ 91,92,93,94,95,96,97,98,99,100,101]\n", "\n", "cfg = parse_yaml_cfg( cfgFn )\n", "\n", - "plot_noise_regions_main( inDir, cfg, pitchL, minDurMs, minDb, noiseLimitPct )" + "plot_seq_1.plot_us_db_curves_main( inDir, cfg, pitchL, plotTakesFl=True )\n", + "\n", + "#plot_seq_1.plot_min_max_db( inDir, cfg, pitchL=pitchL )" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, diff --git a/rms_analysis.py b/rms_analysis.py index c4a2d44..f1c22a2 100644 --- a/rms_analysis.py +++ b/rms_analysis.py @@ -30,8 +30,8 @@ def rms_to_db( xV, rms_srate, dbLinRef ): #dbWndN = int(round(refWndMs * rms_srate / 1000.0)) #dbRef = ref = np.mean(xV[0:dbWndN]) - #print("DB REF:",dbLinRef) - rmsDbV = 20.0 * np.log10( xV / dbLinRef ) + #print("DB REF:",dbLinRef, min(xV), np.argmin(xV)) + rmsDbV = 20.0 * np.log10( (xV+np.nextafter(0,1)) / dbLinRef ) return rmsDbV @@ -41,7 +41,9 @@ def audio_rms( srate, xV, rmsWndMs, hopMs, dbLinRef ): hopSmpN = int(round( hopMs * srate / 1000.0)) xN = xV.shape[0] + yN = int(((xN - wndSmpN) / hopSmpN) + 1) + assert( yN > 0) yV = np.zeros( (yN, ) ) @@ -52,7 +54,7 @@ def audio_rms( srate, xV, rmsWndMs, hopMs, dbLinRef ): while i < xN and j < yN: if i == 0: - yV[j] = np.sqrt(xV[0]*xV[0]) + yV[j] = np.sqrt(xV[0]*xV[0]) elif i < wndSmpN: yV[j] = np.sqrt( np.mean( xV[0:i] * xV[0:i] ) ) else: @@ -62,7 +64,7 @@ def audio_rms( srate, xV, rmsWndMs, hopMs, dbLinRef ): j += 1 rms_srate = srate / hopSmpN - return rms_to_db( yV, rms_srate, dbLinRef ), rms_srate + return rms_to_db( yV[0:j], rms_srate, dbLinRef ), rms_srate def audio_stft_rms( srate, xV, rmsWndMs, hopMs, dbLinRef, spectrumIdx ): @@ -219,12 +221,19 @@ def note_stats( r, decay_pct=50.0, extraDurSearchMs=500 ): if qualityCoeff > qmax: qmax = qualityCoeff - durAvgDb = (np.mean(r.rmsDbV[bi:ei]) + np.mean(r.tdRmsDbV[bi:ei]))/2.0 + if ei-bi == 0: + tdRmsDb_v = 0.0 if bi >= len(r.tdRmsDbV) else np.mean(r.tdRmsDbV[bi]) + hmRmsDb_v = 0.0 if bi >= len(r.rmsDbV) else np.mean(r.rmsDbV[bi]) + durAvgDb = (hmRmsDb_v + tdRmsDb_v)/2.0 + else: + tdRmsDb_u = 0.0 if ei >= len(r.tdRmsDbV) else np.mean(r.tdRmsDbV[bi:ei]) + hmRmsDb_u = 0.0 if ei >= len(r.rmsDbV) else np.mean(r.rmsDbV[bi:ei]) + durAvgDb = (hmRmsDb_u + tdRmsDb_u)/2.0 statsL.append( types.SimpleNamespace(**{'begSmpSec':begSmpIdx/srate,'endSmpSec':endSmpIdx/srate,'pkSmpSec':pkSmpIdx/srate,'durMs':durMs, 'pkDb':r.pkDbL[i], 'pulse_us':r.pkUsL[i], 'quality':qualityCoeff, 'durAvgDb':durAvgDb })) for i,r in enumerate(statsL): - statsL[i].quality /= qmax + statsL[i].quality = 0 if qmax <= 0 else statsL[i].quality / qmax return statsL @@ -284,6 +293,42 @@ def rms_analyze_one_rt_note( sigV, srate, begMs, endMs, midi_pitch, rmsWndMs=300 return { "td":tdD, "hm":hmD } +def rms_analyze_one_rt_note_wrap( audioDev, annBegMs, annEndMs, midi_pitch, noteOffDurMs, rmsAnalysisD ): + + resD = None + buf_result = audioDev.linear_buffer() + + if buf_result: + + sigV = buf_result.value + + # get the annotated begin and end of the note as sample indexes into sigV + bi = int(round(annBegMs * audioDev.srate / 1000)) + ei = int(round(annEndMs * audioDev.srate / 1000)) + + # calculate half the length of the note-off duration in samples + noteOffSmp_o_2 = int(round( (noteOffDurMs/2) * audioDev.srate / 1000)) + + # widen the note analysis space noteOffSmp_o_2 samples pre/post the annotated begin/end of the note + bi = max(0,bi - noteOffSmp_o_2) + ei = min(ei+noteOffSmp_o_2,sigV.shape[0]-1) + + + ar = types.SimpleNamespace(**rmsAnalysisD) + + # shift the annotatd begin/end of the note to be relative to index bi + begMs = noteOffSmp_o_2 * 1000 / audioDev.srate + endMs = begMs + (annEndMs - annBegMs) + + #print("MEAS:",begMs,endMs,bi,ei,sigV.shape,audioDev.is_recording_enabled(),ar) + + + # analyze the note + resD = rms_analyze_one_rt_note( sigV[bi:ei], audioDev.srate, begMs, endMs, midi_pitch, rmsWndMs=ar.rmsWndMs, rmsHopMs=ar.rmsHopMs, dbLinRef=ar.dbLinRef, harmCandN=ar.harmCandN, harmN=ar.harmN, durDecayPct=ar.durDecayPct ) + + #print( "hm:%4.1f %4i td:%4.1f %4i" % (resD['hm']['db'], resD['hm']['durMs'], resD['td']['db'], resD['td']['durMs'])) + + return resD def calibrate_rms( sigV, srate, beg_ms, end_ms ): @@ -368,7 +413,7 @@ def rms_analysis_main( inDir, midi_pitch, rmsWndMs=300, rmsHopMs=30, dbLinRef=0. tdPkIdxL = locate_peak_indexes( tdRmsDbV, rms0_srate, r['eventTimeL']) rmsDbV, rms_srate, binHz = audio_harm_rms( srate, sigV, rmsWndMs, rmsHopMs, dbLinRef, midi_pitch, harmCandN, harmN ) - + pkIdxL = locate_peak_indexes( rmsDbV, rms_srate, r['eventTimeL'] ) holdDutyPctL = None @@ -393,7 +438,6 @@ def rms_analysis_main( inDir, midi_pitch, rmsWndMs=300, rmsHopMs=30, dbLinRef=0. 'pkDbL': [ rmsDbV[ i ] for i in pkIdxL ], 'pkUsL':r['pulseUsL'] }) - statsL = note_stats(r,durDecayPct) setattr(r,"statsL", statsL ) @@ -492,7 +536,7 @@ def samples_to_linear_residual( usL, dbL, pointsPerLine=5 ): assert( len(scoreL) == len(usL) ) return np.array(scoreL) -def write_audacity_label_files( inDir, analysisArgsD ): +def write_audacity_label_files( inDir, analysisArgsD, reverseFl=True ): pitchDirL = os.listdir(inDir) @@ -520,7 +564,9 @@ def write_audacity_label_files( inDir, analysisArgsD ): for i,s in enumerate(r.statsL): - label = "%i %4.1f %6.1f" % (i, s.pkDb, s.durMs ) + noteIndex = len(r.statsL)-(i+1) if reverseFl else i + + label = "%i %4.1f %6.1f" % (noteIndex, s.pkDb, s.durMs ) f.write("%f\t%f\t%s\n" % ( s.begSmpSec, s.endSmpSec, label )) diff --git a/velMapD.h b/velMapD.h new file mode 100644 index 0000000..a9c2eae --- /dev/null +++ b/velMapD.h @@ -0,0 +1,162 @@ +{ +{ 23, { 12800, 12950, 13175, 13500, 13750, 14750, 15375, 17500, 23000, 37000, } }, +{ 24, { 12425, 12800, 13175, 14225, 14750, 15500, 17500, 22500, 32000, 39000, } }, +{ 25, { 14150, 14375, 14975, 14625, 15500, 16500, 20000, 28500, 40000, 40000, } }, +{ 26, { 13000, 13175, 13500, 13700, 13925, 14250, 15000, 16250, 19000, 26500, } }, +{ 27, { 13625, 13925, 14075, 14250, 14500, 14875, 15375, 16500, 18750, 25000, } }, +{ 28, { 12625, 13750, 13775, 14225, 14500, 16500, 18000, 20000, 25500, 34000, } }, +{ 29, { 12125, 12725, 13000, 12950, 14150, 15500, 16250, 17750, 21500, 28000, } }, +{ 30, { 13175, 13325, 13550, 14450, 14875, 15500, 16250, 17750, 21500, 27000, } }, +{ 31, { 13925, 14075, 14450, 14625, 15500, 16250, 16750, 17750, 19500, 23500, } }, +{ 32, { 13250, 14150, 14975, 14750, 15250, 16000, 17500, 21000, 27000, 38000, } }, +{ 33, { 11825, 13025, 14075, 14825, 14375, 14875, 16250, 17500, 22000, 28000, } }, +{ 34, { 13025, 13375, 13325, 13775, 14375, 14500, 15250, 18000, 22000, 27000, } }, +{ 35, { 11375, 12250, 12350, 12725, 14225, 13750, 15375, 17000, 20500, 25000, } }, +{ 36, { 11750, 13875, 14125, 14225, 14675, 14750, 16500, 18500, 22500, 32000, } }, +{ 37, { 12425, 12575, 13000, 13025, 13375, 15000, 16000, 18750, 25500, 35000, } }, +{ 38, { 13750, 13875, 14075, 14600, 14750, 15500, 17750, 21500, 27500, 37000, } }, +{ 39, { 11000, 12500, 12950, 13700, 14875, 15500, 16250, 20000, 26500, 37000, } }, +{ 40, { 11525, 11750, 12125, 12500, 12875, 13500, 14625, 18250, 23500, 29000, } }, +{ 41, { 11675, 11750, 12500, 13000, 13925, 15250, 17000, 20000, 26500, 36000, } }, +{ 42, { 11875, 12000, 11975, 12050, 12275, 13375, 15000, 17250, 22000, 29000, } }, +{ 43, { 11500, 11625, 11750, 11750, 12625, 12250, 13625, 16750, 19500, 25500, } }, +{ 44, { 12425, 12500, 12750, 12650, 13000, 14000, 15250, 16500, 20000, 27000, } }, +{ 45, { 11250, 11600, 11875, 12000, 12250, 13100, 14750, 15500, 18250, 25500, } }, +{ 46, { 11450, 11525, 11600, 11625, 11875, 12250, 14000, 15750, 17750, 21500, } }, +{ 47, { 11900, 11975, 12125, 12375, 13125, 14375, 15750, 18750, 22500, 28500, } }, +{ 48, { 11750, 13100, 13325, 13625, 14300, 14975, 15750, 19000, 24000, 30000, } }, +{ 49, { 11975, 12050, 12500, 12750, 13125, 14000, 17000, 20000, 25500, 40000, } }, +{ 50, { 11625, 11525, 11750, 11825, 12125, 12375, 14750, 16250, 19000, 25500, } }, +{ 51, { 12050, 12125, 12125, 12275, 12350, 12500, 12875, 16250, 18500, 22500, } }, +{ 52, { 12950, 13025, 13125, 13175, 13250, 13500, 13875, 15750, 18000, 22000, } }, +{ 53, { 10600, 10250, 10350, 10450, 10900, 11375, 13025, 14750, 18250, 26500, } }, +{ 54, { 12650, 12625, 12725, 12800, 13000, 13625, 16250, 18500, 23000, 32000, } }, +{ 55, { 11875, 12125, 12250, 12425, 12875, 13175, 13750, 17250, 20000, 26000, } }, +{ 56, { 11625, 11750, 12000, 12200, 12500, 13125, 14375, 17000, 20500, 26500, } }, +{ 57, { 11625, 11750, 12125, 12275, 12750, 14625, 16750, 20000, 25500, 39000, } }, +{ 58, { 12000, 12500, 12750, 12875, 13100, 13375, 15000, 17750, 21000, 28000, } }, +{ 59, { 11625, 11525, 12050, 13375, 13625, 14150, 16500, 21000, 24500, 30000, } }, +{ 60, { 12250, 12250, 12375, 12350, 13000, 13500, 16000, 17750, 22000, 29000, } }, +{ 61, { 11375, 11500, 11625, 11750, 12000, 12200, 12725, 13625, 17500, 21000, } }, +{ 62, { 11600, 11675, 11825, 12125, 12650, 13375, 14375, 18500, 24500, 32000, } }, +{ 63, { 12125, 12200, 12350, 12500, 13025, 13625, 16250, 18750, 24500, 36000, } }, +{ 64, { 10550, 10650, 10850, 11250, 11875, 12250, 14000, 16250, 19500, 26500, } }, +{ 65, { 12750, 12800, 12875, 13175, 13250, 14625, 14975, 17500, 20500, 26000, } }, +{ 66, { 10750, 11000, 11250, 11500, 12000, 12875, 15375, 17000, 20500, 28500, } }, +{ 67, { 10950, 11125, 11250, 11500, 11875, 13875, 15750, 17750, 23000, 37000, } }, +{ 68, { 10150, 10300, 10550, 10800, 11125, 11875, 13000, 16000, 19000, 25000, } }, +{ 69, { 11750, 11875, 12375, 12500, 12750, 13500, 16250, 18250, 23500, 31000, } }, +{ 70, { 10700, 10850, 10950, 11125, 11625, 13875, 14500, 15750, 18750, 24500, } }, +{ 71, { 10200, 10700, 11000, 11250, 11625, 14000, 14875, 16250, 22000, 27000, } }, +{ 72, { 9800, 10100, 10400, 10550, 11000, 11625, 13000, 15500, 17750, 23000, } }, +{ 73, { 10750, 10900, 11125, 11375, 11625, 12750, 14750, 15500, 18500, 23000, } }, +{ 74, { 10300, 10450, 10600, 10850, 11250, 12000, 14250, 15000, 17500, 21000, } }, +{ 75, { 10600, 10750, 10900, 11125, 12500, 14500, 14750, 15000, 21000, 31000, } }, +{ 76, { 10200, 11625, 12375, 12875, 13500, 15750, 19000, 22500, 27500, 39000, } }, +{ 77, { 10500, 10700, 11125, 11375, 11750, 14000, 14875, 16500, 20500, 27000, } }, +{ 78, { 10450, 10800, 11000, 11625, 12000, 13125, 15500, 18250, 22000, 34000, } }, +{ 79, { 12250, 13500, 14125, 14750, 16250, 17500, 19000, 24500, 31000, 40000, } }, +{ 80, { 10400, 10450, 10750, 11125, 12125, 13375, 14750, 17750, 23000, 39000, } }, +{ 81, { 10800, 10950, 11125, 11375, 12625, 13875, 14875, 16000, 19000, 23500, } }, +{ 82, { 12000, 12375, 13750, 13750, 12625, 14000, 17000, 19000, 21000, 24500, } }, +{ 83, { 12250, 12500, 13625, 13875, 14375, 16500, 17750, 20500, 25000, 35000, } }, +{ 84, { 11500, 12000, 12250, 12500, 13125, 14250, 15375, 16750, 19500, 25500, } }, +{ 85, { 10400, 10500, 10600, 11250, 12250, 13375, 15000, 16750, 20000, 26000, } }, +{ 86, { 11500, 11750, 11875, 12000, 12250, 12500, 13500, 15000, 20500, 21000, } }, +{ 87, { 10650, 11500, 13125, 13375, 13750, 14500, 16500, 18000, 20000, 24000, } }, +{ 88, { 11375, 11375, 11500, 12375, 12000, 13375, 14500, 16500, 19000, 23000, } }, +{ 89, { 9200, 10900, 11500, 12125, 22000, 12875, 14125, 16000, 19000, 26500, } }, +{ 91, { 9450, 9950, 10000, 10150, 10600, 11250, 12125, 13875, 15250, 19000, } }, +{ 92, { 9050, 9500, 9600, 10100, 10900, 11875, 13000, 16000, 20500, 31000, } }, +{ 93, { 11250, 11375, 12000, 12375, 12875, 13625, 14250, 17500, 21500, 39000, } }, +{ 94, { 11125, 11375, 11750, 13500, 14000, 14875, 15750, 17750, 22000, 25500, } }, +{ 95, { 10200, 10350, 11500, 12250, 12500, 13125, 13875, 15250, 19000, 21000, } }, +{ 96, { 9050, 9550, 10100, 13875, 13000, 14000, 18500, 22000, 27000, 39000, } }, +{ 97, { 11000, 12500, 13250, 13000, 13750, 15750, 15000, 18000, 19000, 22500, } }, +{ 98, { 10400, 10850, 12125, 12125, 13250, 13875, 16000, 18750, 26500, 37000, } }, +{ 99, { 11000, 12625, 13125, 14000, 15500, 16750, 19000, 21500, 25000, 36000, } }, +{ 100, { 9650, 10450, 11500, 12375, 12500, 12875, 13500, 15500, 17500, 21500, } }, +{ 101, { 10950, 11250, 11500, 11875, 12250, 12875, 13500, 14375, 22500, 39000, } }, +} + +{ +23, {{ 0, 70 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +24, {{ 0, 75 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +25, {{ 0, 70 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +26, {{ 0, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +27, {{ 0, 70 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +28, {{ 0, 70 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +29, {{ 0, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +30, {{ 0, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +31, {{ 0, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +32, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +33, {{ 0, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +34, {{ 0, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +35, {{ 0, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +36, {{ 0, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +37, {{ 0, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +38, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +39, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +40, {{ 0, 55 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +41, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +42, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +43, {{ 0, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +44, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +45, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +46, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +47, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +48, {{ 0, 70 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +49, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +50, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +51, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +52, {{ 0, 55 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +53, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +54, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +55, {{ 0, 50 }, { 22000, 55 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +56, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +57, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +58, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +59, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +60, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +61, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +62, {{ 0, 55 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +63, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +64, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +65, {{ 0, 50 }, { 17000, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +66, {{ 0, 53 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +67, {{ 0, 55 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +68, {{ 0, 53 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +69, {{ 0, 55 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +70, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +71, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +72, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +73, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +74, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +75, {{ 0, 55 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +76, {{ 0, 70 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +77, {{ 0, 50 }, { 15000, 60 }, { 19000, 70 }, { -1, -1 }, { -1, -1 }, } +78, {{ 0, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +79, {{ 0, 50 }, { 15000, 60 }, { 19000, 70 }, { -1, -1 }, { -1, -1 }, } +80, {{ 0, 45 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +81, {{ 0, 50 }, { 15000, 70 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +82, {{ 0, 50 }, { 12500, 60 }, { 14000, 65 }, { 17000, 70 }, { -1, -1 }, } +83, {{ 0, 50 }, { 15000, 65 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +84, {{ 0, 50 }, { 12500, 60 }, { 14000, 65 }, { 17000, 70 }, { -1, -1 }, } +85, {{ 0, 50 }, { 12500, 60 }, { 14000, 65 }, { 17000, 70 }, { -1, -1 }, } +86, {{ 0, 50 }, { 12500, 60 }, { 14000, 65 }, { 17000, 70 }, { -1, -1 }, } +87, {{ 0, 50 }, { 14000, 60 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +88, {{ 0, 50 }, { 12500, 60 }, { 14000, 65 }, { 17000, 70 }, { -1, -1 }, } +89, {{ 0, 50 }, { 12500, 60 }, { 14000, 65 }, { 17000, 70 }, { -1, -1 }, } +91, {{ 0, 40 }, { 12500, 50 }, { 14000, 60 }, { 17000, 65 }, { -1, -1 }, } +92, {{ 0, 40 }, { 14000, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +93, {{ 0, 40 }, { 12500, 50 }, { 14000, 60 }, { 17000, 65 }, { -1, -1 }, } +94, {{ 0, 40 }, { 14000, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +95, {{ 0, 40 }, { 12500, 50 }, { 14000, 60 }, { 17000, 65 }, { -1, -1 }, } +96, {{ 0, 40 }, { 12500, 50 }, { 14000, 60 }, { 17000, 65 }, { -1, -1 }, } +97, {{ 0, 40 }, { 14000, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +98, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +99, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +100, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +101, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +106, {{ 0, 50 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, { -1, -1 }, } +} diff --git a/velMapD.json b/velMapD.json new file mode 100644 index 0000000..8b816a4 --- /dev/null +++ b/velMapD.json @@ -0,0 +1 @@ +{"23": [[12800, 11.028076471959775], [12950, 12.695743247558934], [13175, 14.36341002315809], [13500, 16.031076798757248], [13750, 17.698743574356406], [14750, 19.366410349955565], [15375, 21.034077125554724], [17500, 22.701743901153883], [23000, 24.369410676753038], [37000, 26.037077452352197]], "24": [[12425, 10.868725749031896], [12800, 12.548113172022447], [13175, 14.227500595012996], [14225, 15.906888018003546], [14750, 17.586275440994097], [15500, 19.265662863984648], [17500, 20.945050286975196], [22500, 22.624437709965747], [32000, 24.303825132956298], [39000, 25.98321255594685]], "25": [[14150, 10.709375026104016], [14375, 12.40048309648596], [14975, 14.091591166867902], [14625, 15.782699237249844], [15500, 17.473807307631787], [16500, 19.16491537801373], [20000, 20.856023448395675], [28500, 22.547131518777615], [40000, 24.23823958915956], [40000, 25.929347659541502]], "26": [[13000, 10.550024303176135], [13175, 12.25285302094947], [13500, 13.955681738722806], [13700, 15.65851045649614], [13925, 17.361339174269474], [14250, 19.06416789204281], [15000, 20.766996609816147], [16250, 22.469825327589483], [19000, 24.17265404536282], [26500, 25.87548276313615]], "27": [[13625, 10.390673580248256], [13925, 12.105222945412983], [14075, 13.819772310577711], [14250, 15.534321675742438], [14500, 17.24887104090717], [14875, 18.963420406071894], [15375, 20.67796977123662], [16500, 22.392519136401347], [18750, 24.107068501566076], [25000, 25.821617866730804]], "28": [[12625, 10.079130823274099], [13750, 11.82231106183536], [13775, 13.565491300396623], [14225, 15.308671538957885], [14500, 17.051851777519147], [16500, 18.79503201608041], [18000, 20.53821225464167], [20000, 22.281392493202933], [25500, 24.024572731764195], [34000, 25.767752970325454]], "29": [[12125, 9.767588066299943], [12725, 11.539399178257739], [13000, 13.311210290215536], [12950, 15.083021402173333], [14150, 16.85483251413113], [15500, 18.626643626088924], [16250, 20.398454738046723], [17750, 22.17026585000452], [21500, 23.942076961962314], [28000, 25.71388807392011]], "30": [[13175, 9.456045309325788], [13325, 11.256487294680118], [13550, 13.056929280034447], [14450, 14.857371265388778], [14875, 16.657813250743107], [15500, 18.458255236097436], [16250, 20.25869722145177], [17750, 22.0591392068061], [21500, 23.859581192160427], [27000, 25.66002317751476]], "31": [[13925, 9.14450255235163], [14075, 10.973575411102495], [14450, 12.80264826985336], [14625, 14.631721128604225], [15500, 16.46079398735509], [16250, 18.289866846105955], [16750, 20.11893970485682], [17750, 21.948012563607683], [19500, 23.77708542235855], [23500, 25.606158281109415]], "32": [[13250, 8.91877278193751], [14150, 10.766941737800462], [14975, 12.61511069366341], [14750, 14.463279649526362], [15250, 16.311448605389312], [16000, 18.15961756125226], [17500, 20.007786517115214], [21000, 21.855955472978163], [27000, 23.704124428841112], [38000, 25.552293384704065]], "33": [[11825, 8.69304301152339], [13025, 10.581384867931163], [14075, 12.469726724338939], [14825, 14.358068580746714], [14375, 16.246410437154488], [14875, 18.13475229356226], [16250, 20.023094149970035], [17500, 21.911436006377812], [22000, 23.799777862785586], [28000, 25.68811971919336]], "34": [[13025, 8.46731324110927], [13375, 10.395827998061868], [13325, 12.324342755014467], [13775, 14.252857511967065], [14375, 16.18137226891966], [14500, 18.10988702587226], [15250, 20.038401782824856], [18000, 21.966916539777454], [22000, 23.895431296730052], [27000, 25.82394605368265]], "35": [[11375, 8.3916813051731], [12250, 10.343691425506304], [12350, 12.29570154583951], [12725, 14.247711666172716], [14225, 16.19972178650592], [13750, 18.151731906839125], [15375, 20.10374202717233], [17000, 22.055752147505537], [20500, 24.007762267838743], [25000, 25.95977238817195]], "36": [[11750, 8.316049369236929], [13875, 10.29155485295074], [14125, 12.267060336664553], [14225, 14.242565820378363], [14675, 16.218071304092177], [14750, 18.193576787805988], [16500, 20.169082271519798], [18500, 22.144587755233616], [22500, 24.120093238947426], [32000, 26.095598722661236]], "37": [[12425, 8.240417433300756], [12575, 10.239418280395176], [13000, 12.238419127489594], [13025, 14.237419974584014], [13375, 16.236420821678433], [15000, 18.235421668772855], [16000, 20.234422515867273], [18750, 22.23342336296169], [25500, 24.23242421005611], [35000, 26.23142505715053]], "38": [[13750, 8.164785497364585], [13875, 10.187281707839611], [14075, 12.209777918314638], [14600, 14.232274128789664], [14750, 16.254770339264688], [15500, 18.277266549739714], [17750, 20.29976276021474], [21500, 22.322258970689766], [27500, 24.344755181164793], [37000, 26.36725139163982]], "39": [[11000, 8.089153561428414], [12500, 10.135145135284048], [12950, 12.181136709139682], [13700, 14.227128282995317], [14875, 16.273119856850947], [15500, 18.319111430706585], [16250, 20.365103004562215], [20000, 22.411094578417853], [26500, 24.457086152273483], [37000, 26.503077726129117]], "40": [[11525, 8.013521625492244], [11750, 10.083008562728484], [12125, 12.152495499964724], [12500, 14.221982437200964], [12875, 16.291469374437206], [13500, 18.360956311673448], [14625, 20.430443248909686], [18250, 22.499930186145924], [23500, 24.569417123382166], [29000, 26.638904060618408]], "41": [[11675, 7.937889689556072], [11750, 10.030871990172919], [12500, 12.123854290789769], [13000, 14.216836591406615], [13925, 16.309818892023465], [15250, 18.40280119264031], [17000, 20.495783493257157], [20000, 22.588765793874007], [26500, 24.681748094490857], [36000, 26.774730395107703]], "42": [[11875, 7.862257753619901], [12000, 9.978735417617356], [11975, 12.095213081614812], [12050, 14.211690745612266], [12275, 16.32816840960972], [13375, 18.444646073607174], [15000, 20.561123737604632], [17250, 22.677601401602082], [22000, 24.79407906559954], [29000, 26.910556729596994]], "43": [[11500, 7.7866258176837295], [11625, 9.926598845061791], [11750, 12.066571872439853], [11750, 14.206544899817915], [12625, 16.346517927195976], [12250, 18.486490954574037], [13625, 20.6264639819521], [16750, 22.76643700933016], [19500, 24.906410036708223], [25500, 27.046383064086285]], "44": [[12425, 7.710993881747559], [12500, 9.874462272506229], [12750, 12.037930663264897], [12650, 14.201399054023565], [13000, 16.364867444782234], [14000, 18.528335835540904], [15250, 20.691804226299574], [16500, 22.855272617058244], [20000, 25.01874100781691], [27000, 27.18220939857558]], "45": [[11250, 7.517008027575515], [11600, 9.717122217074333], [11875, 11.91723640657315], [12000, 14.117350596071969], [12250, 16.317464785570785], [13100, 18.517578975069604], [14750, 20.717693164568423], [15500, 22.91780735406724], [18250, 25.117921543566055], [25500, 27.318035733064875]], "46": [[11450, 7.32302217340347], [11525, 9.559782161642437], [11600, 11.796542149881404], [11625, 14.03330213812037], [11875, 16.270062126359335], [12250, 18.5068221145983], [14000, 20.74358210283727], [15750, 22.98034209107623], [17750, 25.2171020793152], [21500, 27.453862067554166]], "47": [[11900, 7.129036319231426], [11975, 9.402442106210541], [12125, 11.675847893189655], [12375, 13.94925368016877], [13125, 16.222659467147885], [14375, 18.496065254127], [15750, 20.769471041106115], [18750, 23.042876828085227], [22500, 25.316282615064345], [28500, 27.589688402043457]], "48": [[11750, 6.9350504650593825], [13100, 9.245102050778645], [13325, 11.55515363649791], [13625, 13.865205222217172], [14300, 16.175256807936435], [14975, 18.4853083936557], [15750, 20.79535997937496], [19000, 23.105411565094226], [24000, 25.415463150813487], [30000, 27.72551473653275]], "49": [[11975, 6.741064610887339], [12050, 9.087761995346751], [12500, 11.434459379806164], [12750, 13.781156764265575], [13125, 16.127854148724985], [14000, 18.474551533184396], [17000, 20.82124891764381], [20000, 23.16794630210322], [25500, 25.514643686562636], [40000, 27.861341071022046]], "50": [[11625, 6.547078756715294], [11525, 8.923605445027516], [11750, 11.300132133339737], [11825, 13.676658821651959], [12125, 16.05318550996418], [12375, 18.429712198276402], [14750, 20.806238886588623], [16250, 23.182765574900845], [19000, 25.559292263213067], [25500, 27.935818951525288]], "51": [[12050, 6.35309290254325], [12125, 8.759448894708282], [12125, 11.165804886873312], [12275, 13.572160879038343], [12350, 15.978516871203375], [12500, 18.384872863368404], [12875, 20.791228855533436], [16250, 23.197584847698465], [18500, 25.603940839863498], [22500, 28.01029683202853]], "52": [[12950, 6.223096364414411], [13025, 8.652171736427452], [13125, 11.08124710844049], [13175, 13.510322480453532], [13250, 15.93939785246657], [13500, 18.36847322447961], [13875, 20.79754859649265], [15750, 23.22662396850569], [18000, 25.65569934051873], [22000, 28.08477471253177]], "53": [[10600, 6.09309982628557], [10250, 8.54489457814662], [10350, 10.99668933000767], [10450, 13.448484081868719], [10900, 15.900278833729768], [11375, 18.352073585590816], [13025, 20.803868337451867], [14750, 23.255663089312915], [18250, 25.707457841173966], [26500, 28.159252593035013]], "54": [[12650, 5.963103288156731], [12625, 8.437617419865788], [12725, 10.912131551574847], [12800, 13.386645683283904], [13000, 15.861159814992963], [13625, 18.335673946702023], [16250, 20.810188078411077], [18500, 23.284702210120134], [23000, 25.759216341829195], [32000, 28.23373047353825]], "55": [[11875, 5.833106750027891], [12125, 8.330340261584958], [12250, 10.827573773142024], [12425, 13.32480728469909], [12875, 15.82204079625616], [13175, 18.319274307813224], [13750, 20.816507819370294], [17250, 23.313741330927357], [20000, 25.810974842484427], [26000, 28.308208354041493]], "56": [[11625, 5.703110211899052], [11750, 8.223063103304128], [12000, 10.743015994709204], [12200, 13.26296888611428], [12500, 15.782921777519356], [13125, 18.30287466892443], [14375, 20.822827560329507], [17000, 23.342780451734583], [20500, 25.86273334313966], [26500, 28.382686234544735]], "57": [[11625, 5.573113673770211], [11750, 8.115785945023296], [12125, 10.658458216276381], [12275, 13.201130487529467], [12750, 15.74380275878255], [14625, 18.286475030035636], [16750, 20.82914730128872], [20000, 23.371819572541806], [25500, 25.91449184379489], [39000, 28.457164115047977]], "58": [[12000, 5.443117135641372], [12500, 7.977817694607137], [12750, 10.512518253572903], [12875, 13.047218812538668], [13100, 15.581919371504434], [13375, 18.1166199304702], [15000, 20.651320489435964], [17750, 23.186021048401727], [21000, 25.720721607367494], [28000, 28.25542216633326]], "59": [[11625, 5.3131205975125315], [11525, 7.839849444190978], [12050, 10.366578290869425], [13375, 12.893307137547872], [13625, 15.420035984226319], [14150, 17.946764830904762], [16500, 20.473493677583214], [21000, 23.00022252426166], [24500, 25.526951370940104], [30000, 28.05368021761855]], "60": [[12250, 5.183124059383692], [12250, 7.701881193774819], [12375, 10.220638328165947], [12350, 12.739395462557072], [13000, 15.2581525969482], [13500, 17.77690973133933], [16000, 20.295666865730453], [17750, 22.814424000121583], [22000, 25.333181134512706], [29000, 27.851938268903837]], "61": [[11375, 5.0531275212548525], [11500, 7.56391294335866], [11625, 10.074698365462467], [11750, 12.585483787566275], [12000, 15.096269209670082], [12200, 17.607054631773888], [12725, 20.1178400538777], [13625, 22.628625475981508], [17500, 25.13941089808531], [21000, 27.650196320189117]], "62": [[11600, 4.935107017377191], [11675, 7.436590056721325], [11825, 9.93807309606546], [12125, 12.439556135409594], [12650, 14.94103917475373], [13375, 17.442522214097867], [14375, 19.944005253441997], [18500, 22.445488292786134], [24500, 24.94697133213027], [32000, 27.448454371474405]], "63": [[12125, 4.817086513499529], [12200, 7.3092671700839915], [12350, 9.801447826668454], [12500, 12.293628483252917], [13025, 14.785809139837378], [13625, 17.27798979642184], [16250, 19.770170453006305], [18750, 22.262351109590764], [24500, 24.754531766175226], [36000, 27.24671242275969]], "64": [[10550, 4.699066009621867], [10650, 7.181944283446657], [10850, 9.664822557271446], [11250, 12.147700831096238], [11875, 14.630579104921026], [12250, 17.113457378745817], [14000, 19.596335652570605], [16250, 22.079213926395397], [19500, 24.562092200220185], [26500, 27.044970474044977]], "65": [[12750, 4.581045505744205], [12800, 7.054621396809322], [12875, 9.52819728787444], [13175, 12.001773178939558], [13250, 14.475349070004674], [14625, 16.948924961069793], [14975, 19.42250085213491], [17500, 21.896076743200027], [20500, 24.369652634265144], [26000, 26.84322852533026]], "66": [[10750, 4.463025001866543], [11000, 6.927298510171989], [11250, 9.391572018477433], [11500, 11.855845526782879], [12000, 14.320119035088322], [12875, 16.784392543393768], [15375, 19.248666051699214], [17000, 21.71293956000466], [20500, 24.177213068310103], [28500, 26.64148657661555]], "67": [[10950, 4.3450044979888816], [11125, 6.799975623534654], [11250, 9.254946749080426], [11500, 11.709917874626198], [11875, 14.164889000171971], [13875, 16.619860125717743], [15750, 19.074831251263515], [17750, 21.52980237680929], [23000, 23.98477350235506], [37000, 26.439744627900833]], "68": [[10150, 4.226983994111219], [10300, 6.6985332235218795], [10550, 9.17008245293254], [10800, 11.641631682343201], [11125, 14.113180911753862], [11875, 16.58473014116452], [13000, 19.056279370575183], [16000, 21.527828599985842], [19000, 23.999377829396504], [25000, 26.470927058807163]], "69": [[11750, 4.108963490233558], [11875, 6.597090823509106], [12375, 9.085218156784654], [12500, 11.573345490060202], [12750, 14.06147282333575], [13500, 16.549600156611298], [16250, 19.037727489886848], [18250, 21.525854823162398], [23500, 24.01398215643794], [31000, 26.50210948971349]], "70": [[10700, 3.9909429863558956], [10850, 6.495648423496331], [10950, 9.000353860636768], [11125, 11.505059297777203], [11625, 14.009764734917638], [13875, 16.514470172058076], [14500, 19.019175609198513], [15750, 21.52388104633895], [18750, 24.028586483479383], [24500, 26.53329192061982]], "71": [[10200, 3.7920336271734865], [10700, 6.322304818768227], [11000, 8.852576010362966], [11250, 11.382847201957707], [11625, 13.913118393552448], [14000, 16.443389585147187], [14875, 18.97366077674193], [16250, 21.503931968336666], [22000, 24.03420315993141], [27000, 26.56447435152615]], "72": [[9800, 3.593124267991077], [10100, 6.1489612140401215], [10400, 8.704798160089165], [10550, 11.26063510613821], [11000, 13.816472052187255], [11625, 16.3723089982363], [13000, 18.928145944285344], [15500, 21.48398289033439], [17750, 24.039819836383433], [23000, 26.595656782432478]], "73": [[10750, 3.3942149088086677], [10900, 5.975617609312016], [11125, 8.557020309815364], [11375, 11.138423010318714], [11625, 13.719825710822061], [12750, 16.30122841132541], [14750, 18.88263111182876], [15500, 21.464033812332108], [18500, 24.045436512835455], [23000, 26.626839213338805]], "74": [[10300, 3.1953055496262586], [10450, 5.802274004583912], [10600, 8.409242459541565], [10850, 11.016210914499217], [11250, 13.62317936945687], [12000, 16.230147824414523], [14250, 18.837116279372175], [15000, 21.444084734329827], [17500, 24.051053189287483], [21000, 26.658021644245135]], "75": [[10600, 3.1561412691087964], [10750, 5.7709260253357595], [10900, 8.385710781562722], [11125, 11.000495537789686], [12500, 13.615280294016646], [14500, 16.23006505024361], [14750, 18.844849806470574], [15000, 21.459634562697538], [21000, 24.074419318924498], [31000, 26.689204075151462]], "76": [[10200, 3.116976988591334], [11625, 5.739578046087607], [12375, 8.36217910358388], [12875, 10.984780161080154], [13500, 13.607381218576428], [15750, 16.2299822760727], [19000, 18.852583333568973], [22500, 21.47518439106525], [27500, 24.09778544856152], [39000, 26.720386506057793]], "77": [[10500, 3.0778127080738718], [10700, 5.670614048915677], [11125, 8.263415389757483], [11375, 10.85621673059929], [11750, 13.449018071441095], [14000, 16.0418194122829], [14875, 18.634620753124707], [16500, 21.227422093966513], [20500, 23.82022343480832], [27000, 26.413024775650126]], "78": [[10450, 3.038648427556409], [10800, 5.601650051743748], [11000, 8.164651675931086], [11625, 10.727653300118426], [12000, 13.290654924305766], [13125, 15.853656548493106], [15500, 18.416658172680442], [18250, 20.979659796867782], [22000, 23.542661421055122], [34000, 26.105663045242462]], "79": [[12250, 2.999484147038947], [13500, 5.532686054571819], [14125, 8.065887962104691], [14750, 10.599089869637563], [16250, 13.132291777170435], [17500, 15.665493684703305], [19000, 18.198695592236177], [24500, 20.731897499769047], [31000, 23.265099407301925], [40000, 25.798301314834795]], "80": [[10400, 2.960319866521485], [10450, 5.46372205739989], [10750, 7.967124248278295], [11125, 10.4705264391567], [12125, 12.973928630035104], [13375, 15.477330820913508], [14750, 17.980733011791916], [17750, 20.48413520267032], [23000, 22.987537393548724], [39000, 25.490939584427128]], "81": [[10800, 2.9211555860040224], [10950, 5.39475806022796], [11125, 7.868360534451897], [11375, 10.341963008675835], [12625, 12.815565482899773], [13875, 15.289167957123711], [14875, 17.762770431347647], [16000, 20.23637290557159], [19000, 22.709975379795523], [23500, 25.18357785401946]], "82": [[12000, 2.4420216709865508], [12375, 4.934709943500467], [13750, 7.427398216014383], [13750, 9.920086488528298], [12625, 12.412774761042215], [14000, 14.905463033556131], [17000, 17.398151306070048], [19000, 19.890839578583968], [21000, 22.38352785109788], [24500, 24.876216123611798]], "83": [[12250, 1.9628877559690792], [12500, 4.474661826772974], [13625, 6.986435897576868], [13875, 9.498209968380763], [14375, 12.009984039184658], [16500, 14.521758109988554], [17750, 17.033532180792445], [20500, 19.545306251596344], [25000, 22.057080322400235], [35000, 24.56885439320413]], "84": [[11500, 1.4837538409516076], [12000, 4.006454985875648], [12250, 6.52915613079969], [12500, 9.05185727572373], [13125, 11.57455842064777], [14250, 14.097259565571811], [15375, 16.619960710495853], [16750, 19.14266185541989], [19500, 21.665363000343934], [25500, 24.188064145267976]], "85": [[10400, 1.004619925934136], [10500, 3.5382481449783234], [10600, 6.071876364022511], [11250, 8.605504583066697], [12250, 11.139132802110886], [13375, 13.672761021155074], [15000, 16.206389240199258], [16750, 18.740017459243447], [20000, 21.273645678287636], [26000, 23.80727389733182]], "86": [[11500, 0.5254860109166644], [11750, 3.0700413040809975], [11875, 5.614596597245331], [12000, 8.159151890409664], [12250, 10.703707183573997], [12500, 13.24826247673833], [13500, 15.792817769902662], [15000, 18.337373063066998], [20500, 20.88192835623133], [21000, 23.426483649395664]], "87": [[10650, 0.04635209589919276], [11500, 2.6018344631836725], [13125, 5.157316830468153], [13375, 7.7127991977526325], [13750, 10.268281565037112], [14500, 12.823763932321592], [16500, 15.379246299606072], [18000, 17.93472866689055], [20000, 20.49021103417503], [24000, 23.04569340145951]], "88": [[11375, -0.21231909009067257], [11375, 2.3295944925331082], [11500, 4.871508075156889], [12375, 7.41342165778067], [12000, 9.955335240404452], [13375, 12.497248823028233], [14500, 15.039162405652014], [16500, 17.581075988275792], [19000, 20.122989570899573], [23000, 22.664903153523355]], "89": [[9200, -0.4709902760805379], [10900, 2.057354521882544], [11500, 4.585699319845626], [12125, 7.114044117808709], [22000, 9.64238891577179], [12875, 12.170733713734872], [14125, 14.699078511697955], [16000, 17.227423309661035], [19000, 19.755768107624117], [26500, 22.2841129055872]], "91": [[9450, -0.9883326480602685], [9950, 1.5128745805814157], [10000, 4.0140818092231], [10150, 6.5152890378647825], [10600, 9.016496266506469], [11250, 11.517703495148153], [12125, 14.018910723789833], [13875, 16.52011795243152], [15250, 19.021325181073205], [19000, 21.522532409714888]], "92": [[9050, -1.247003834050134], [9500, 1.2406346099308514], [9600, 3.7282730539118365], [10100, 6.215911497892821], [10900, 8.703549941873808], [11875, 11.191188385854794], [13000, 13.678826829835778], [16000, 16.166465273816765], [20500, 18.65410371779775], [31000, 21.141742161778733]], "93": [[11250, -1.505675020039999], [11375, 0.9683946392802874], [12000, 3.442464298600574], [12375, 5.91653395792086], [12875, 8.390603617241148], [13625, 10.864673276561433], [14250, 13.338742935881719], [17500, 15.812812595202008], [21500, 18.286882254522293], [39000, 20.76095191384258]], "94": [[11125, -1.608451587505366], [11375, 0.8054166990564837], [11750, 3.2192849856183336], [13500, 5.633153272180184], [14000, 8.047021558742033], [14875, 10.460889845303882], [15750, 12.874758131865734], [17750, 15.288626418427585], [22000, 17.70249470498943], [25500, 20.11636299155128]], "95": [[10200, -1.711228154970733], [10350, 0.6424387588326799], [11500, 2.9961056726360926], [12250, 5.349772586439505], [12500, 7.703439500242919], [13125, 10.05710641404633], [13875, 12.410773327849743], [15250, 14.764440241653158], [19000, 17.11810715545657], [21000, 19.471774069259983]], "96": [[9050, -1.8140047224361], [9550, 0.4794608186088758], [10100, 2.7729263596538516], [13875, 5.066391900698828], [13000, 7.359857441743803], [14000, 9.65332298278878], [18500, 11.946788523833757], [22000, 14.24025406487873], [27000, 16.533719605923707], [39000, 18.827185146968684]], "97": [[11000, -3.104252139793393], [12500, -0.7390467659633067], [13250, 1.6261586078667798], [13000, 3.9913639816968662], [13750, 6.356569355526952], [15750, 8.721774729357039], [15000, 11.086980103187125], [18000, 13.452185477017212], [19000, 15.817390850847298], [22500, 18.182596224677386]], "98": [[10400, -4.394499557150686], [10850, -1.957554350535489], [12125, 0.479390856079708], [12125, 2.9163360626949046], [13250, 5.353281269310102], [13875, 7.790226475925298], [16000, 10.227171682540495], [18750, 12.664116889155691], [26500, 15.10106209577089], [37000, 17.538007302386085]], "99": [[11000, -5.684746974507979], [12625, -3.1760619351076715], [13125, -0.6673768957073642], [14000, 1.8413081436929444], [15500, 4.34999318309325], [16750, 6.858678222493557], [19000, 9.367363261893868], [21500, 11.876048301294174], [25000, 14.38473334069448], [36000, 16.893418380094786]], "100": [[9650, -6.974994391865272], [10450, -4.68095032949753], [11500, -2.3869062671297874], [12375, -0.09286220476204488], [12500, 2.2011818576056976], [12875, 4.49522591997344], [13500, 6.789269982341183], [15500, 9.083314044708924], [17500, 11.377358107076667], [21500, 13.67140216944441]], "101": [[10950, -8.265241809222566], [11250, -6.185838723887388], [11500, -4.1064356385522105], [11875, -2.0270325532170332], [12250, 0.05237053211814491], [12875, 2.1317736174533213], [13500, 4.211176702788499], [14375, 6.290579788123676], [22500, 8.369982873458856], [39000, 10.449385958794032]]} \ No newline at end of file diff --git a/velTableToDataStruct.py b/velTableToDataStruct.py new file mode 100644 index 0000000..497e5e1 --- /dev/null +++ b/velTableToDataStruct.py @@ -0,0 +1,53 @@ +import json +from common import parse_yaml_cfg + +ymlFn = 'p_ac.yml' +ifn = 'velMapD.json' +ofn = 'velMapD.h' + +with open(ofn,"wt") as f1: + + with open(ifn,"r") as f: + d = json.load(f) + + f1.write("{\n"); + for key,velL in d.items(): + f1.write("{ ") + f1.write( str(key) + ", { " ) + for us,x in velL: + f1.write("%5i, " % (us)) + f1.write("} },\n") + f1.write("}\n\n"); + + + + cfg = parse_yaml_cfg(ymlFn) + + d = cfg.calibrateArgs['holdDutyPctD'] + + n = 0 + for key,dutyL in d.items(): + n = max(n, len(dutyL)) + + f1.write("{\n") + + for key,dutyL in d.items(): + f1.write( str(key)+", {") + + for i,(us,duty) in enumerate(dutyL): + f1.write("{ %i, %i }, " % (us,duty)) + + for j in range(i,n): + f1.write("{ -1, -1 }, ") + + f1.write("},\n"); + + + + f1.write("}\n"); + + + + + +