73 lines
152 KiB
Plaintext
73 lines
152 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"#%load_ext autoreload\n",
|
||
|
"%autoreload 2\n",
|
||
|
"\n",
|
||
|
"from plot_calibrate import plot_all_notes\n",
|
||
|
"from plot_calibrate import plot_by_pitch\n",
|
||
|
"\n",
|
||
|
"inDir = \"/home/kevin/temp/calib0/test/34\"\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {
|
||
|
"scrolled": false
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABC0AAAbfCAYAAACxSRwwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4nFd99//PmX1GM9qlkWzLlq3VTpw4ieJsTSAlJCVpCTtlX0IoD78+TdNCgDQFCrTloU/ZylVKWQptob+2hBIoBZI2LCEhCXIQSUhiWfK+aV9GGkmzneePGd2SLMmSHUmj5f3qNdfcc8+ZmXOnxtZ89D3fY6y1AgAAAAAAWG1c+Z4AAAAAAADAXAgtAAAAAADAqkRoAQAAAAAAViVCCwAAAAAAsCoRWgAAAAAAgFWJ0AIAAAAAAKxKhBYAAGBRjDHXGmP2n+drv2qM+dhSzwkAAKxvhBYAAGBRrLUPWWubJh8bYw4bY25Yjs/KvfeYMWYkd7v/jOfvNMacNsYMG2O+YozxL8c8AABAfhFaAACA1ep3rLXh3O3GyZPGmJskvV/SiyRtk7RD0p/laY4AAGAZEVoAAABHrsLhA8aYZ4wxA8aYfzDGBHLPvdAYczx3/E+Stkr6bq4S4q7c+d8wxjxijBk0xhwzxrx12tuXGGO+Z4yJGWMeM8bUnec03yLpy9baX1trByR9VNJbz/4SAACwFhFaAACAM71B0k2S6iQ1SrrnzAHW2jdJOqqpaohPGGO2Sfq+pL+RVCFpj6S2aS/7XWUrIkokdUj688knjDH/aYx5/xkf83VjTI8x5n5jzMXTzl8g6VfTHv9KUtQYU3ZeVwsAAFYtQgsAAHCmz1lrj1lr+5UNFl63yNe9XtJ/W2v/xVqbtNb2WWunhxb/Ya193FqbkvR1ZUMNSZK19rettR+fNvYNkmqVXf7xI0k/NMYU554LSxqaNnbyOLLIeQIAgDWC0AIAAJzp2LTjI5I2LfJ1NZI6z/L86WnHcWXDhzlZax+21o5Za+PW2r+UNCjp2tzTI5IKpw2fPI4tcp4AAGCNILQAAABnqpl2vFXSyXnG2TMeH1N2SclysJJM7vjXkqYvF7lYUpe1tm+ZPhsAAOQJoQUAADjT/2eM2WKMKZX0J5L+dZ5xXcru3DHp65JuMMa8xhjjMcaUGWP2zPPaeRljthpjrjHG+IwxAWPMeyWVS3o4N+QfJd1mjNmVWzJyj6SvnuvnAACA1Y/QAgAAnOkbku6XdFDZ5R4fm2fcX0q6J7dTyHustUcl3SzpjyX1K9uE8+J5XjuDMeb7xpi7cw8jkj4vaUDSCUm/Jeklk5UU1tofSPqEsr0ujiq7hOVD53qRAABg9TPWnlnZCQAANipjzGFJ77DW/ne+5wIAAEClBQAAAAAAWJUILQAAAAAAwKrE8hAAAAAAALAqUWkBAAAAAABWJc9Kflh5ebmtra1dyY8EAAAAAACrzL59+3qttRULjVvR0KK2tlatra0r+ZEAAAAAAGCVMcYcWcw4locAAAAAAIBVidACAAAAAACsSoQWAAAAAABgVSK0AAAAAAAAqxKhBQAAAAAAWJUILQAAAAAAwKpEaAEAAAAAAFYlQgsAAAAAALAqEVoAAAAAAIBVidACAAAAAACsSoQWAAAAAABgVSK0AAAAAAAAqxKhBQAAAAAAWJUILQAAAAAAwKpEaAEAAAAAAFYlQgsAAAAAALAqEVoAAAAAAIBVidACAAAAAACsSoQWAAAAAABgVSK0AAAAAIBVrK27TV966ktq627L91SAFefJ9wQAAAAAYCPK2IzGU+MaT49rIjWh8fS4xlPjmkhPaCw1pon0hJ7rf05fePILSmfS8rg8+sjVH9G1W65Voa9Qxph8XwKw7AgtAAAAACAnlUlpIj0xI0wYS49lQ4XJc9Oenyt0OFsIMf35RCZxTnNLZpL6wM8+IEkKuAOqCFWoIlihaCiqylClKkIzjytDlfK7/cvxnwlYMYQWAAAAAFa1ZCY588v/GYHArADhjHPO4/kChGnHqUzqvObocXkUcAcU8ATkd/sV9ATld/vld/tV6CtURbBCAc/U8wFPYMb4yeMZ5zwBHR46rA/9/ENKpVPyuDy6/aLbFfQE1R3vVk+8R13xLj3V+5R6xno0kZ6YNa9if7ETYERDUVUEp44nw43SQKlchs4BWJ0ILQAAAACcE2utkpnknNUD08ODuUKF6aHBjCqGs4xP2/R5zdPn8snv8SvoDsrvmQoK/G6/SgIlswKCgDswc/wcz08fN/15j2t5vlpdWH6htkS2qLWrVS3RFu2p3DPnOGuthhPD6op3qSfeo+5498zbWLf29+9X31ifrOyM13pcHlUEK2ZWauTCjclbNBRVyBtalmsEzsZYaxcetURaWlpsa2vrin0eAAAAsJa0dbct+OV0PtbaeasH5qxIODNAmGcJw3xLHs784rtYZ37hnysAmF6lMHk8owrBM09lwrRjv9svt8t9XnNcz5KZpPrG+maHGrlgY/J4NDk667UF3oKpICNYOSPUmLyVB8uXLcDB+mKM2WetbVloHH+aAAAAgDxLZpL64aEf6oOPfFCpTEou49INW29Qob9wUSHEZJhwPlzGNesL//SgoNhfvOiQYTEhBM0j88vr8qqqoEpVBVVnHTeaHJ0z2OgZyy5J+UXXL9Qb71XKzlxOY2RUFiw7a7BRGaqkkSgWjUoLAAAAYAXFEjHt79+v/QP7nfuOgY5ZTRm9Lq8ivsjclQZzhQyeuSsT5l3akDv2urx8ecR5ydiM+sf7Z/TXmB5sTJ4fnBic9VoaiYJKCwAAACCPrLU6OXoyG0z079dz/c9p/8B+nRg54Ywp8ZeoqbRJr9/5egU8AX3lqa8obdPyurz64o1fPOclIsBKchmXyoPlKg+WS2Xzj5tITzgBRne8e0bfja54l57ue1rdx7rPuZHo5Hkaia5vhBYAAADA85RIJ9Qx2OFUTjzX/5za+9sVS8YkZUvmtxVu04XlF+pVja9SY0mjmkubVRGsmFHlcM2ma867pwWwWvndftVEalQTqZl3zGQj0Tl7bSzUSNR4VB4qnxVs0Eh0fWB5CAAAAHAOBsYHsqHEQLue639Oz/U/p8NDh521/UFPUI0ljWoqaVJTafbWUNzAFyZgCaQyKfWO9S64JGUkOTLrtTQSXV1YHgIAAAA8Dxmb0dHho3puIFs1Mbm8ozve7YypDFWqqaRJ19dcnw0oSppUE6lh1wpgmXhcnnNqJHpmsDG5JKW1q1U98R4aia4BhBYAAADY8OLJuA4MHpjqPzHwnA4MHNBYakxStvx8e/F27a3aq+bSZiegKAmU5HnmAOZS4C3Q9qLt2l60fd4xk41EZ/TamBZsnBw9qbaeNhqJ5hmhBQAAADYMa616xnqyVRPTdvA4MnzEWScf8UbUVNqkVzS8Qk0lTWoubVZdcZ18bl+eZw9gKU1vJLqzbOe84ybSE06wMVevjXw2Ev3wh7O39YyeFgAAAFiXkpmkDg8dntF/Yn//fg1MDDhjNoc3ZysnpvWf2FSwibJvAOfkrI1Ex6aOl7KRaFt3my6J7tEvu9rWZONeeloAAABgwxhODKu9v92pnHiu/zl1DHYomUlKknwun+pL6nX91uudnTsaSxoV8UXyPHMA64ExRkX+IhX5i9RQ0jDvuIUaiXYOdurnJ3++YCNRj/Ho0VOPSmrT7fffvq63SKbSAgAAAGuGtVYnR09OLe/ILfE4MXLCGVMaKHWWdTSWNqq5pFm1RbXsCABgzYgn4051xvReG93xbv33F39DT33jFbNe86EPra2lIouttCC0AAAAwKo0kZ5Qx2DHjJ072vvbFUvGJGW7/G8r3DajMWZzabPKg+Us7wCwrrV1t+ltP3yb2t78S132Ty360o1fWnOVFiwPAQAAwJrRP94/Y+eO/f37dWjokNI2LUkKeoJqLGnUzTtudpZ31BfXz1rjDQAbwZ7KPXpd0+vUJulTL/zUmgsszgWhBQAAAFZMOpPW0djRGb0n2vvb1T3W7YypDFWqubRZ19dcr6bSbPV
|
||
|
"text/plain": [
|
||
|
"<Figure size 1332x2268 with 3 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"#plot_all_notes(inDir)\n",
|
||
|
"plot_by_pitch(inDir)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.7.5"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|