piccal/plot_calibrate.py

154 lines
4.4 KiB
Python
Raw Normal View History

import sys,os,json,types
import numpy as np
import matplotlib.pyplot as plt
import matplotlib._color_data as mcd
from matplotlib.pyplot import figure
from rms_analysis import calibrate_recording_analysis
from rms_analysis import key_info_dictionary
def plot_by_pitch( inDir, keyInfoD, pitch=None ):
anlD = calibrate_recording_analysis( inDir )
jsonFn = os.path.join(inDir, "meas.json" )
audioFn = os.path.join(inDir, "audio.wav" )
with open(jsonFn,"r") as f:
r = json.load(f)
measD = r['measD']
cfg = types.SimpleNamespace(**r['cfg'])
axN = len(measD) if pitch is None else 1
fig,axL = plt.subplots(axN,1)
fig.set_size_inches(18.5, 10.5*axN)
# for each pitch
for axi,(midi_pitch,measL)in enumerate(measD.items()):
midi_pitch = int(midi_pitch)
if pitch is not None and pitch != midi_pitch:
continue
if pitch is not None:
axi = 0
axL = [ axL ]
targetDbS = set()
hmPulseDbL = []
tdPulseDbL = []
anPulseDbL = []
# for each measurement on this pitch
for mi,d in enumerate(measL):
m = types.SimpleNamespace(**d)
# form a list of pulse/db measurements associated with this pitch
hmPulseDbL.append( (m.pulse_us,m.hm['db'],m.matchFl,m.hm['durMs'],m.skipMeasFl) )
tdPulseDbL.append( (m.pulse_us,m.td['db'],m.matchFl,m.td['durMs'],m.skipMeasFl) )
ar = next(ad for ad in anlD[midi_pitch] if ad['meas_idx']==mi )
anPulseDbL.append( (m.pulse_us,ar['db'],m.matchFl,m.hm['durMs'],m.skipMeasFl))
# get the unique set of targets
targetDbS.add(m.targetDb)
# sort measurements on pulse length
hmPulseDbL = sorted(hmPulseDbL,key=lambda x: x[0])
tdPulseDbL = sorted(tdPulseDbL,key=lambda x: x[0])
anPulseDbL = sorted(anPulseDbL,key=lambda x: x[0])
# plot the re-analysis
pulseL,dbL,matchFlL,_,_ = zip(*anPulseDbL)
axL[axi].plot( pulseL, dbL, label="post", marker='.' )
# plot harmonic measurements
pulseL,dbL,matchFlL,durMsL,skipFlL = zip(*hmPulseDbL)
axL[axi].plot( pulseL, dbL, label="harm", marker='.' )
# plot time-domain based measuremented
pulseL,dbL,matchFlL,_,_ = zip(*tdPulseDbL)
axL[axi].plot( pulseL, dbL, label="td", marker='.' )
# plot target boundaries
for targetDb in targetDbS:
lwr = targetDb * ((100.0 - cfg.tolDbPct)/100.0)
upr = targetDb * ((100.0 + cfg.tolDbPct)/100.0 )
axL[axi].axhline(targetDb)
axL[axi].axhline(lwr,color='lightgray')
axL[axi].axhline(upr,color='gray')
# plot match and 'too-short' markers
for i,matchFl in enumerate(matchFlL):
if durMsL[i] < cfg.minMeasDurMs:
axL[axi].plot( pulseL[i], dbL[i], marker='x', color='black', linestyle='None')
if skipFlL[i]:
axL[axi].plot( pulseL[i], dbL[i], marker='+', color='blue', linestyle='None')
if matchFl:
axL[axi].plot( pulseL[i], dbL[i], marker='.', color='red', linestyle='None')
axL[axi].set_title("pitch:%i %s" % (midi_pitch,keyInfoD[midi_pitch].type))
plt.legend()
plt.show()
def plot_all_notes( inDir ):
jsonFn = os.path.join(inDir, "meas.json" )
audioFn = os.path.join(inDir, "audio.wav" )
with open(jsonFn,"r") as f:
r = json.load(f)
measD = r['measD']
axN = 0
for midi_pitch,measL in measD.items():
axN += len(measL)
print(axN)
fig,axL = plt.subplots(axN,1)
fig.set_size_inches(18.5, 10.5*axN)
i = 0
for midi_pitch,measL in measD.items():
for d in measL:
axL[i].plot(d['td']['rmsDbV'])
axL[i].plot(d['hm']['rmsDbV'])
axL[i].axvline(d['td']['pk_idx'],color='red')
axL[i].axvline(d['hm']['pk_idx'],color='green')
i += 1
plt.show()
if __name__ == "__main__":
pitch = None
inDir = sys.argv[1]
yamlFn = sys.argv[2]
if len(sys.argv) > 3:
2020-02-29 05:01:58 +00:00
pitch = int(sys.argv[3])
keyInfoD = key_info_dictionary( yamlCfgFn=yamlFn)
#plot_all_notes( inDir )
plot_by_pitch(inDir,keyInfoD,pitch)
#calibrate_recording_analysis( inDir )