577 lines
15 KiB
C
577 lines
15 KiB
C
// w 60 0 1 10 : w i2c_addr SetPWM enable duty_val
|
|
// w 60 5 12 8 32 : w i2c_addr write addrFl|src coarse_val
|
|
// w 60 4 0 5 : w i2c_addr read src read_addr (set the read address to register 5)
|
|
// r 60 4 3 : r i2c_addr <dum> cnt (read the first 3 reg's beginning w/ 5)
|
|
/*
|
|
AT TINY 85
|
|
+--\/--+
|
|
RESET _| 1 8 |_ +5V
|
|
~OC1B HOLD PINB3 _| 2 7 |_ SCL yellow
|
|
OC1B ONSET PINB4 _| 3 6 |_ PINB1 LED
|
|
GND _| 4 5 |_ SDA orange
|
|
+------+
|
|
* = Serial and/or programming pins on Arduino as ISP
|
|
*/
|
|
|
|
|
|
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
|
|
#define F_CPU 16000000L
|
|
|
|
#include <stdio.h>
|
|
#include <avr/io.h>
|
|
#include <util/delay.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
#include "usiTwiSlave.h"
|
|
|
|
#define HOLD_DIR DDB3
|
|
#define ATTK_DIR DDB4
|
|
#define LED_DIR DDB1
|
|
|
|
#define HOLD_PIN PINB3
|
|
#define ATTK_PIN PINB4
|
|
#define LED_PIN PINB1
|
|
|
|
// Opcodes
|
|
enum
|
|
{
|
|
kSetPwm_Op = 0, // Set PWM duty/hz/div 0 {<duty> {<freq> {<div>}}} div:2=2,3=4,4=8,5=16,6=32,7=64,8=128,9=256,10=512,11=1024,12=2048,13=4096,14=8192,15=16384
|
|
kNoteOnVel_Op = 1, // Turn on note 3 {<vel>}
|
|
kNoteOnUsec_Op = 2, // Turn on note 4 {<coarse> {<fine> {<prescale>}}}
|
|
kNoteOff_Op = 3, // Turn off note 5
|
|
kSetReadAddr_Op = 4, // Set a read addr. 6 {<src>} {<addr>} } src: 0=reg 1=table 2=eeprom
|
|
kWrite_Op = 5, // Set write 7 {<addrfl|src> {addr} {<value0> ... {<valueN>}} addrFl:0x80 src: 4=reg 5=table 6=eeprom
|
|
kWriteTable_Op = 6, // Write table to EEprom 9
|
|
kInvalid_Op = 7 //
|
|
};
|
|
|
|
|
|
enum
|
|
{
|
|
kReg_Rd_Addr_idx = 0, // Next Reg Address to read
|
|
kTable_Rd_Addr_idx = 1, // Next Table Address to read
|
|
kEE_Rd_Addr_idx = 2, // Next EEPROM address to read
|
|
kRead_Src_idx = 3, // kReg_Rd_Addr_idx=reg, kTable_Rd_Addr_idx=table, kEE_Rd_Addr_idx=eeprom
|
|
|
|
kReg_Wr_Addr_idx = 4, // Next Reg Address to write
|
|
kTable_Wr_Addr_idx = 5, // Next Table Address to write
|
|
kEE_Wr_Addr_idx = 6, // Next EEPROM address to write
|
|
kWrite_Dst_idx = 7, // kReg_Wr_Addr_idx=reg, kTable_Wr_Addr_idx=table, kEE_Wr_Addr_idx=eeprom
|
|
|
|
kTmr_Coarse_idx = 8, //
|
|
kTmr_Fine_idx = 9, //
|
|
kTmr_Prescale_idx = 10, // Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024 Default: 4 (16us)
|
|
|
|
kPwm_Duty_idx = 11, //
|
|
kPwm_Freq_idx = 12, //
|
|
kPwm_Div_idx = 13, //
|
|
|
|
kState_idx = 14, // 1=attk 2=hold
|
|
kError_Code_idx = 15, // Error Code
|
|
kMax_Coarse_Tmr_idx = 16, // Max. allowable coarse timer value
|
|
kMax_idx
|
|
};
|
|
|
|
enum
|
|
{
|
|
kState_Attk_Fl = 1,
|
|
kState_Hold_Fl = 2
|
|
};
|
|
|
|
|
|
volatile uint8_t ctl_regs[] =
|
|
{
|
|
0, // 0 (0-(kMax_idx-1)) Reg Read Addr
|
|
0, // 1 (0-255) Table Read Addr
|
|
0, // 2 (0-255) EE Read Addr
|
|
kReg_Rd_Addr_idx, // 3 (0-2) Read source
|
|
|
|
0, // 4 (0-(kMax_idx-1)) Reg Write Addr
|
|
0, // 5 (0-255) Table Write Addr
|
|
0, // 6 (0-255) EE Write Addr
|
|
kReg_Wr_Addr_idx, // 7 (0-2) Write source
|
|
|
|
5, // 8 (0-255) Timer 0 Coarse Value (20400 us)
|
|
0, // 9 (0-255) Timer 0 Fine Value
|
|
4, // 10 (1-5) 4=16us per tick
|
|
|
|
127, // 11 (0-255) Pwm Duty cycle
|
|
254, // 12 (0-255) Pwm Frequency (123 Hz)
|
|
10, // 13 (0-15) Pwm clock div
|
|
|
|
0, // 14 state flags 1=attk 2=hold (read/only)
|
|
0, // 15 (0-255) Error bit field
|
|
14, // 16 (0-255) Max allowable coarse timer count
|
|
};
|
|
|
|
// These registers are saved to Eeprom
|
|
uint8_t eeprom_addr[] =
|
|
{
|
|
kTmr_Prescale_idx,
|
|
kPwm_Duty_idx,
|
|
kPwm_Freq_idx,
|
|
kPwm_Div_idx
|
|
};
|
|
|
|
|
|
|
|
#define tableN 256
|
|
uint8_t table[ tableN ]; // [ coarse_0,fine_0, coarse_1, fine_1, .... coarse_127,fine_127]
|
|
|
|
|
|
enum
|
|
{
|
|
kInvalid_Read_Src_ErrFl = 0x01,
|
|
kInvalid_Write_Dst_ErrFl = 0x02,
|
|
kInvalid_Coarse_Tmr_ErrFl = 0x04
|
|
};
|
|
|
|
#define set_error( flag ) ctl_regs[ kError_Code_idx ] |= (flag)
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// EEPROM
|
|
//
|
|
|
|
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
|
|
{
|
|
// Wait for completion of previous write
|
|
while(EECR & (1<<EEPE))
|
|
{}
|
|
|
|
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
|
|
EEAR = ucAddress; // Set up address and data registers
|
|
EEDR = ucData;
|
|
EECR |= (1<<EEMPE); // Write logical one to EEMPE
|
|
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
|
|
}
|
|
|
|
uint8_t EEPROM_read(uint8_t ucAddress)
|
|
{
|
|
// Wait for completion of previous write
|
|
while(EECR & (1<<EEPE))
|
|
{}
|
|
|
|
EEAR = ucAddress; // Set up address register
|
|
EECR |= (1<<EERE); // Start eeprom read by writing EERE
|
|
return EEDR; // Return data from data register
|
|
}
|
|
|
|
void write_table()
|
|
{
|
|
uint8_t i;
|
|
uint8_t regN = sizeof(eeprom_addr);
|
|
|
|
// write the persistent registers
|
|
for(i=0; i<regN; ++i)
|
|
EEPROM_write( i, ctl_regs[ eeprom_addr[i] ] );
|
|
|
|
// write the table
|
|
for(i=0; i<tableN; ++i)
|
|
EEPROM_write( regN+i, table[i] );
|
|
}
|
|
|
|
void load_table()
|
|
{
|
|
uint8_t i;
|
|
uint8_t regN = sizeof(eeprom_addr);
|
|
|
|
// read the persistent registers
|
|
for(i=0; i<regN; ++i)
|
|
ctl_regs[ eeprom_addr[i] ] = EEPROM_read(i);
|
|
|
|
// read the tabke
|
|
for(i=0; i<tableN; ++i)
|
|
table[i] = EEPROM_read(regN + i);
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// Timer0
|
|
//
|
|
|
|
volatile uint8_t tmr0_state = 0; // current timer mode: 0=disabled 1=coarse mode, 2=fine mode
|
|
volatile uint8_t tmr0_coarse_cur = 0;
|
|
|
|
#define set_attack() do { ctl_regs[kState_idx] |= kState_Attk_Fl; PORTB |= _BV(ATTK_PIN); } while(0)
|
|
#define clear_attack() do { PORTB &= ~_BV(ATTK_PIN); ctl_regs[kState_idx] &= ~kState_Attk_Fl; } while(0)
|
|
|
|
volatile uint8_t hold_state = 0; // state=0 hold should not be set, state=1 hold can be set
|
|
#define clear_hold() PORTB &= ~(_BV(HOLD_PIN))
|
|
#define set_hold() PORTB |= _BV(HOLD_PIN)
|
|
|
|
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
|
|
void tmr0_reset()
|
|
{
|
|
tmr0_coarse_cur = 0; // clear the coarse time counter
|
|
ctl_regs[kState_idx] |= kState_Attk_Fl; // set the attack state
|
|
PORTB |= _BV(ATTK_PIN); // set the attack pin
|
|
clear_hold(); // clear the hold pin
|
|
hold_state = 0;
|
|
|
|
// if a coarse count exists then go into coarse mode
|
|
if( ctl_regs[kTmr_Coarse_idx] > 0 )
|
|
{
|
|
tmr0_state = 1;
|
|
OCR0A = 0xff;
|
|
}
|
|
else // otherwise go into fine mode
|
|
{
|
|
tmr0_state = 2;
|
|
OCR0A = ctl_regs[kTmr_Fine_idx];
|
|
}
|
|
|
|
TCNT0 = 0;
|
|
TIMSK |= _BV(OCIE0A); // enable the timer interrupt
|
|
}
|
|
|
|
ISR(TIMER0_COMPA_vect)
|
|
{
|
|
switch( tmr0_state )
|
|
{
|
|
case 0:
|
|
// timer is disabled
|
|
break;
|
|
|
|
case 1:
|
|
// coarse mode
|
|
if( ++tmr0_coarse_cur >= ctl_regs[kTmr_Coarse_idx] )
|
|
{
|
|
tmr0_state = 2;
|
|
OCR0A = ctl_regs[kTmr_Fine_idx];
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
// fine mode
|
|
|
|
// This marks the end of a timer period
|
|
|
|
clear_attack();
|
|
|
|
TCNT1 = 0; // reset the PWM counter to 0
|
|
hold_state = 1; // enable the hold output
|
|
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // PWM interupt Enable interrupts
|
|
TIMSK &= ~_BV(OCIE0A); // clear timer interrupt
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void tmr0_init()
|
|
{
|
|
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF
|
|
TCCR0A |= 0x02; // CTC mode
|
|
TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler
|
|
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// Pwm
|
|
//
|
|
// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B
|
|
// but since these pins are not available this code uses
|
|
// ISR's to redirect the output to PIN3
|
|
|
|
void pwm1_update()
|
|
{
|
|
OCR1B = ctl_regs[kPwm_Duty_idx]; // control duty cycle
|
|
OCR1C = ctl_regs[kPwm_Freq_idx]; // PWM frequency pre-scaler
|
|
}
|
|
|
|
|
|
// Called when TCNT1 == OCR1C.
|
|
// At this point TCNT1 is reset to 0, new OCR1B values are latched from temp. loctaion to OCR1B
|
|
ISR(TIMER1_OVF_vect)
|
|
{
|
|
clear_hold();
|
|
}
|
|
|
|
// Called when TCNT1 == OCR1B
|
|
ISR(TIMER1_COMPB_vect)
|
|
{
|
|
if(hold_state)
|
|
set_hold();
|
|
}
|
|
|
|
|
|
void pwm1_init()
|
|
{
|
|
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
|
|
|
|
DDRB |= _BV(HOLD_DIR); // setup PB3 as output
|
|
|
|
TCCR1 |= ctl_regs[ kPwm_Div_idx]; // 32us period (512 divider) prescaler
|
|
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
|
|
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
|
|
|
|
pwm1_update();
|
|
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
|
|
// Tracks the current register pointer position
|
|
volatile uint8_t reg_position = 0;
|
|
const uint8_t reg_size = sizeof(ctl_regs);
|
|
|
|
//
|
|
// Read Request Handler
|
|
//
|
|
// This is called for each read request we receive, never put more
|
|
// than one byte of data (with TinyWireS.send) to the send-buffer when
|
|
// using this callback
|
|
//
|
|
|
|
void on_request()
|
|
{
|
|
uint8_t val = 0;
|
|
|
|
switch( ctl_regs[ kRead_Src_idx ] )
|
|
{
|
|
case kReg_Rd_Addr_idx:
|
|
val = ctl_regs[ ctl_regs[kReg_Rd_Addr_idx] ];
|
|
break;
|
|
|
|
case kTable_Rd_Addr_idx:
|
|
val = table[ ctl_regs[kTable_Rd_Addr_idx] ];
|
|
break;
|
|
|
|
case kEE_Rd_Addr_idx:
|
|
val = EEPROM_read(ctl_regs[kEE_Rd_Addr_idx]);
|
|
break;
|
|
|
|
default:
|
|
set_error( kInvalid_Read_Src_ErrFl );
|
|
return;
|
|
}
|
|
|
|
usiTwiTransmitByte(val);
|
|
|
|
ctl_regs[ ctl_regs[ kRead_Src_idx ] ] += 1;
|
|
|
|
}
|
|
|
|
|
|
void _write_op( uint8_t* stack, uint8_t stackN )
|
|
{
|
|
uint8_t stack_idx = 0;
|
|
|
|
if( stackN > 0 )
|
|
{
|
|
uint8_t src = stack[0] & 0x07;
|
|
uint8_t addr_fl = stack[0] & 0x08;
|
|
|
|
// verify the source value
|
|
if( src < kReg_Wr_Addr_idx || src > kEE_Wr_Addr_idx )
|
|
{
|
|
set_error( kInvalid_Write_Dst_ErrFl );
|
|
return;
|
|
}
|
|
|
|
// set the write source
|
|
stack_idx = 1;
|
|
ctl_regs[ kWrite_Dst_idx ] = src;
|
|
|
|
// if an address value was passed also ....
|
|
if( addr_fl && stackN > 1 )
|
|
{
|
|
stack_idx = 2;
|
|
ctl_regs[ src ] = stack[1];
|
|
}
|
|
}
|
|
|
|
//
|
|
for(; stack_idx<stackN; ++stack_idx)
|
|
{
|
|
uint8_t addr_idx = ctl_regs[ ctl_regs[kWrite_Dst_idx] ]++;
|
|
uint8_t val = stack[ stack_idx ];
|
|
|
|
switch( ctl_regs[ kWrite_Dst_idx ] )
|
|
{
|
|
case kReg_Wr_Addr_idx: ctl_regs[ addr_idx ] = val; break;
|
|
case kTable_Wr_Addr_idx: table[ addr_idx ] = val; break;
|
|
case kEE_Wr_Addr_idx: EEPROM_write( table[ addr_idx ], val); break;
|
|
|
|
default:
|
|
set_error( kInvalid_Write_Dst_ErrFl );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// The I2C data received -handler
|
|
//
|
|
// This needs to complete before the next incoming transaction (start,
|
|
// data, restart/stop) on the bus does so be quick, set flags for long
|
|
// running tasks to be called from the mainloop instead of running
|
|
// them directly,
|
|
//
|
|
|
|
void on_receive( uint8_t byteN )
|
|
{
|
|
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
|
|
|
|
const uint8_t stackN = 16;
|
|
uint8_t stack_idx = 0;
|
|
uint8_t stack[ stackN ];
|
|
uint8_t i;
|
|
|
|
if (byteN < 1 || byteN > TWI_RX_BUFFER_SIZE)
|
|
{
|
|
// Sanity-check
|
|
return;
|
|
}
|
|
|
|
// get the register index to read/write
|
|
uint8_t op_id = usiTwiReceiveByte();
|
|
|
|
byteN--;
|
|
|
|
// If only one byte was received then this was a read request
|
|
// and the buffer pointer (reg_position) is now set to return the byte
|
|
// at this location on the subsequent call to on_request() ...
|
|
if(byteN)
|
|
{
|
|
while( byteN-- )
|
|
{
|
|
stack[stack_idx] = usiTwiReceiveByte();
|
|
++stack_idx;
|
|
}
|
|
}
|
|
|
|
switch( op_id )
|
|
{
|
|
case kSetPwm_Op:
|
|
for(i=0; i<stack_idx && i<3; ++i)
|
|
ctl_regs[ kPwm_Duty_idx + i ] = stack[i];
|
|
|
|
// if the PWM prescaler was changed
|
|
if( i == 3 )
|
|
{
|
|
cli();
|
|
pwm1_init();
|
|
sei();
|
|
}
|
|
|
|
pwm1_update();
|
|
break;
|
|
|
|
|
|
case kNoteOnUsec_Op:
|
|
for(i=0; i<stack_idx && i<3; ++i)
|
|
ctl_regs[ kTmr_Coarse_idx + i ] = stack[i];
|
|
|
|
// validate the coarse error value
|
|
if( ctl_regs[ kTmr_Coarse_idx ] > ctl_regs[ kMax_Coarse_Tmr_idx ])
|
|
{
|
|
ctl_regs[ kTmr_Coarse_idx ] = ctl_regs[ kMax_Coarse_Tmr_idx ];
|
|
set_error( kInvalid_Coarse_Tmr_ErrFl );
|
|
}
|
|
// if a prescaler was included then the timer needs to be re-initialized
|
|
if( i == 3 )
|
|
{
|
|
cli();
|
|
tmr0_init();
|
|
sei();
|
|
}
|
|
|
|
tmr0_reset();
|
|
break;
|
|
|
|
case kNoteOff_Op:
|
|
TIMSK &= ~_BV(OCIE0A); // clear timer interrupt (shouldn't be necessary)
|
|
//TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // PWM interupt disable interrupts
|
|
hold_state = 0;
|
|
break;
|
|
|
|
case kSetReadAddr_Op:
|
|
if( stack_idx > 0 )
|
|
{
|
|
ctl_regs[ kRead_Src_idx ] = stack[0];
|
|
|
|
if( stack_idx > 1 )
|
|
ctl_regs[ ctl_regs[ kRead_Src_idx ] ] = stack[1];
|
|
}
|
|
break;
|
|
|
|
case kWrite_Op:
|
|
_write_op( stack, stack_idx );
|
|
break;
|
|
|
|
case kWriteTable_Op:
|
|
write_table();
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
int main(void)
|
|
{
|
|
cli(); // mask all interupts
|
|
|
|
DDRB |= _BV(ATTK_DIR) + _BV(HOLD_DIR) + _BV(LED_DIR); // setup PB4,PB3,PB1 as output
|
|
PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN) + _BV(LED_PIN)); // clear output pins
|
|
|
|
tmr0_init();
|
|
pwm1_init();
|
|
|
|
// setup i2c library
|
|
usi_onReceiverPtr = on_receive;
|
|
usi_onRequestPtr = on_request;
|
|
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
|
|
|
|
sei();
|
|
|
|
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
|
|
_delay_ms(1000);
|
|
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
|
|
|
|
|
|
while(1)
|
|
{
|
|
|
|
if (!usi_onReceiverPtr)
|
|
{
|
|
// no onReceive callback, nothing to do...
|
|
continue;
|
|
}
|
|
|
|
if (!(USISR & ( 1 << USIPF )))
|
|
{
|
|
// Stop not detected
|
|
continue;
|
|
}
|
|
|
|
|
|
uint8_t amount = usiTwiAmountDataInReceiveBuffer();
|
|
if (amount == 0)
|
|
{
|
|
// no data in buffer
|
|
continue;
|
|
}
|
|
|
|
|
|
usi_onReceiverPtr(amount);
|
|
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
|