506 lines
12 KiB
C
506 lines
12 KiB
C
//| Copyright: (C) 2018-2020 Kevin Larke <contact AT larke DOT org>
|
|
//| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
|
|
|
|
/*
|
|
AT TINY 85
|
|
+--\/--+
|
|
RESET _| 1 8 |_ +5V
|
|
~OC1B HOLD DDB3 _| 2 7 |_ SCL
|
|
OC1B ONSET DDB4 _| 3 6 |_ DDB1 LED
|
|
GND _| 4 5 |_ SDA
|
|
+------+
|
|
* = Serial and/or programming pins on Arduino as ISP
|
|
*/
|
|
|
|
|
|
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
|
|
|
|
#define F_CPU 8000000L
|
|
#include <stdio.h>
|
|
#include <avr/io.h>
|
|
#include <util/delay.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
#include "usiTwiSlave.h"
|
|
|
|
#define HOLD_DIR DDB3
|
|
#define ATTK_DIR DDB4
|
|
#define LED_DIR DDB1
|
|
|
|
#define HOLD_PIN PINB3
|
|
#define ATTK_PIN PINB4
|
|
#define LED_PIN PINB1
|
|
|
|
// Opcodes
|
|
enum
|
|
{
|
|
kSetReg_Op = 0, // Set register <hi_addr> <lo_addr> <value0> ... <valueN>
|
|
kSetPwm_Op = 1, // Set PWM registers <enable> <duty> <freq>
|
|
kNoteOnVel_Op = 2, // Turn on note <vel>
|
|
kNoteOnUsec_Op = 3, // Turn on note <coarse> <fine>
|
|
kNoteOff_Op = 4, // Turn off note
|
|
kRead_Op = 5, // Read a value {{ <src>} <addr> }
|
|
kInvalid_Op = 6
|
|
};
|
|
|
|
|
|
// Register addresses
|
|
enum
|
|
{
|
|
kTmr_Coarse_idx = 0, // Current Timer 0 coarse count
|
|
kTmr_Fine_idx = 1, // Current Timer 0 fine count
|
|
kTmr_Prescale_idx = 2, // Current Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024
|
|
kPwm_Enable_idx = 3, // Current PWM 1 enable flag
|
|
kPwm_Duty_idx = 4, // Current PWM 1 duty cycle
|
|
kPwm_Freq_idx = 5, // Current PWM 1 frequency
|
|
kRead_Src_idx = 6, // 0=reg, 1=table, 2=eeprom
|
|
kReg_Addr_idx = 7, // Next Reg Address to read
|
|
kTable_Addr_idx = 8, // Next Table Address to read
|
|
kEE_Addr_idx = 9, // Next EEPROM address to read
|
|
kError_Code_idx = 10, // Error Code
|
|
kMax_idx
|
|
};
|
|
|
|
// Regster memory
|
|
volatile uint8_t ctl_regs[] =
|
|
{
|
|
|
|
123, // 1 (0-255) Timer 0 Coarse Value
|
|
8, // 2 (0-255) Timer 0 Fine Value
|
|
4, // 0 (1-5) 4=32us per tick
|
|
|
|
1, // 5 (0-1) PWM1 Enable
|
|
127, // 3 (0-255) PWM1 Duty cycle (0-100%)
|
|
254, // 4 (0-255) PWM1 Frequency (123 hz)
|
|
|
|
0, // 6 (0-255) Read Source
|
|
0, // 7 (0-255) Reg addr
|
|
0, // 8 (0-255) Table addr
|
|
0, // 9 (0-255) EEPROM addr
|
|
|
|
0, // 10 (0-255) Error code
|
|
|
|
};
|
|
|
|
volatile uint8_t table[128];
|
|
|
|
|
|
|
|
#define stackN 16
|
|
volatile uint8_t stack[ stackN ];
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// EEPROM
|
|
//
|
|
|
|
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
|
|
{
|
|
// Wait for completion of previous write
|
|
while(EECR & (1<<EEPE))
|
|
{}
|
|
|
|
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
|
|
EEARH = 0; // Set up address and data registers
|
|
EEARL = ucAddress;
|
|
EEDR = ucData;
|
|
EECR |= (1<<EEMPE); // Write logical one to EEMPE
|
|
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
|
|
}
|
|
|
|
|
|
uint8_t EEPROM_read(uint8_t ucAddress)
|
|
{
|
|
// Wait for completion of previous write
|
|
while(EECR & (1<<EEPE))
|
|
{}
|
|
|
|
EEARH = 0; // Set up address and data registers
|
|
EEARL = ucAddress;
|
|
EECR |= (1<<EERE); // Start eeprom read by writing EERE
|
|
return EEDR; // Return data from data register
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// Read/Write table
|
|
//
|
|
|
|
#define eeprom_addr( addr ) (addr)
|
|
|
|
|
|
void table_load( void )
|
|
{
|
|
uint8_t i = 0;
|
|
|
|
for(; i<64; ++i)
|
|
{
|
|
uint16_t tbl_addr = i*2;
|
|
table[tbl_addr+0] = EEPROM_read( eeprom_addr(tbl_addr+0) );
|
|
table[tbl_addr+1] = EEPROM_read( eeprom_addr(tbl_addr+1) );
|
|
}
|
|
}
|
|
|
|
void restore_memory_from_eeprom( void )
|
|
{
|
|
/*
|
|
uint8_t i;
|
|
for(i=0; i<kMax_idx; ++i)
|
|
{
|
|
ctl_regs[i] = EEPROM_read( eeprom_addr( i ) );
|
|
}
|
|
*/
|
|
|
|
table_load();
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// Timer0
|
|
//
|
|
|
|
volatile uint8_t tmr0_state = 0; // 0=disabled 1=coarse mode, 2=fine mode
|
|
volatile uint8_t tmr0_coarse_cur = 0;
|
|
|
|
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
|
|
void tmr0_reset()
|
|
{
|
|
// if a coarse count exists then go into coarse mode
|
|
if( ctl_regs[kTmr_Coarse_idx] > 0 )
|
|
{
|
|
tmr0_state = 1;
|
|
OCR0A = 0xff;
|
|
}
|
|
else // otherwise go into fine mode
|
|
{
|
|
tmr0_state = 2;
|
|
OCR0A = ctl_regs[kTmr_Fine_idx];
|
|
}
|
|
|
|
tmr0_coarse_cur = 0;
|
|
}
|
|
|
|
ISR(TIMER0_COMPA_vect)
|
|
{
|
|
switch( tmr0_state )
|
|
{
|
|
case 0:
|
|
// disabled
|
|
break;
|
|
|
|
case 1:
|
|
// coarse mode
|
|
if( ++tmr0_coarse_cur >= ctl_regs[kTmr_Coarse_idx] )
|
|
{
|
|
tmr0_state = 2;
|
|
OCR0A = ctl_regs[kTmr_Fine_idx];
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
// fine mode
|
|
PINB = _BV(ATTK_PIN); // writes to PINB toggle the pins
|
|
|
|
tmr0_reset(); // restart the timer
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void timer0_init()
|
|
{
|
|
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER0_COMPA_vect
|
|
TCCR0A |= 0x02; // CTC mode
|
|
TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler
|
|
|
|
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
|
|
|
|
tmr0_reset(); // set the timers starting state
|
|
|
|
TIMSK |= _BV(OCIE0A); // Enable interrupt TIMER0_COMPA_vect
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// PWM1
|
|
//
|
|
// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B but this code
|
|
// but since these pins are not available this code uses
|
|
// ISR's to redirect the output to PIN3
|
|
|
|
void pwm1_update()
|
|
{
|
|
OCR1B = ctl_regs[kPwm_Duty_idx]; // control duty cycle
|
|
OCR1C = ctl_regs[kPwm_Freq_idx]; // PWM frequency pre-scaler
|
|
}
|
|
|
|
ISR(TIMER1_OVF_vect)
|
|
{
|
|
PORTB |= _BV(HOLD_PIN); // set PWM pin
|
|
}
|
|
|
|
ISR(TIMER1_COMPB_vect)
|
|
{
|
|
PORTB &= ~(_BV(HOLD_PIN)); // clear PWM pin
|
|
}
|
|
|
|
|
|
void pwm1_init()
|
|
{
|
|
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
|
|
|
|
DDRB |= _BV(HOLD_DIR); // setup PB3 as output
|
|
|
|
// set on TCNT1 == 0 // happens when TCNT1 matches OCR1C
|
|
// clr on OCR1B == TCNT // happens when TCNT1 matches OCR1B
|
|
// // COM1B1=1 COM1B0=0 (enable output on ~OC1B)
|
|
TCCR1 |= 9; // 32us period (256 divider) prescaler
|
|
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
|
|
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
|
|
|
|
pwm1_update();
|
|
|
|
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // Enable interrupts
|
|
|
|
|
|
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
//
|
|
// Read Request Handler
|
|
//
|
|
// This is called for each read request we receive, never put more
|
|
// than one byte of data (with TinyWireS.send) to the send-buffer when
|
|
// using this callback
|
|
//
|
|
|
|
void on_request()
|
|
{
|
|
uint8_t val = 0;
|
|
|
|
switch( ctl_regs[ kRead_Src_idx ] )
|
|
{
|
|
case 0:
|
|
val = table[ ctl_regs[ kReg_Addr_idx ] ];
|
|
ctl_regs[ kReg_Addr_idx ] += 1;
|
|
break;
|
|
|
|
case 1:
|
|
val = table[ ctl_regs[ kTable_Addr_idx ] ];
|
|
ctl_regs[ kTable_Addr_idx ] += 1;
|
|
break;
|
|
|
|
case 2:
|
|
val = EEPROM_read(ctl_regs[ kEE_Addr_idx]);
|
|
ctl_regs[ kEE_Addr_idx ] += 1;
|
|
}
|
|
|
|
usiTwiTransmitByte(val);
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// The I2C data received -handler
|
|
//
|
|
// This needs to complete before the next incoming transaction (start,
|
|
// data, restart/stop) on the bus does so be quick, set flags for long
|
|
// running tasks to be called from the mainloop instead of running
|
|
// them directly,
|
|
//
|
|
|
|
void on_receive( uint8_t byteN )
|
|
{
|
|
uint8_t stack_idx = 0;
|
|
|
|
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
|
|
|
|
// Sanity-check
|
|
if( byteN < 1 || byteN > TWI_RX_BUFFER_SIZE)
|
|
{
|
|
// TODO: signal an error
|
|
return;
|
|
}
|
|
|
|
// get the command byte
|
|
uint8_t cur_op_id = usiTwiReceiveByte();
|
|
|
|
--byteN;
|
|
|
|
// verify that cur_op_id is valid
|
|
if( cur_op_id < kInvalid_Op )
|
|
{
|
|
// TODO: signal an error
|
|
return;
|
|
}
|
|
|
|
// get the command arguments
|
|
while(byteN--)
|
|
{
|
|
// write the value
|
|
stack[stack_idx] = usiTwiReceiveByte();
|
|
|
|
++stack_idx;
|
|
|
|
if(stack_idx >= stackN)
|
|
{
|
|
// TODO: signal an error
|
|
break;
|
|
}
|
|
}
|
|
|
|
// execute the operation
|
|
switch( cur_op_id )
|
|
{
|
|
case kSetReg_Op: // Set register <reg> <value0> ... <valueN>
|
|
if( stack_idx > 1 )
|
|
{
|
|
uint8_t addr = stack[0];
|
|
uint8_t i = 2;
|
|
for(; i<stack_idx; ++i,++addr)
|
|
ctl_regs[ addr ] = stack[i];
|
|
}
|
|
break;
|
|
|
|
case kSetPwm_Op: // Set pwm <enable>,<duty>,<freq>
|
|
{
|
|
uint8_t addr = kPwm_Enable_idx;
|
|
uint8_t i = 0;
|
|
for(; i<stack_idx; ++i,++addr)
|
|
ctl_regs[ addr ] = stack[i];
|
|
pwm1_update();
|
|
}
|
|
break;
|
|
|
|
case kNoteOnVel_Op: // Turn on note <vel>
|
|
if( stack_idx == 1 )
|
|
{
|
|
uint8_t addr = stack[0] >> 2; // divide by 2 (we have only 64 entries in the table)
|
|
|
|
ctl_regs[ kTmr_Coarse_idx ] = table[ addr ];
|
|
ctl_regs[ kTmr_Fine_idx ] = table[ addr+1 ];
|
|
}
|
|
tmr0_reset();
|
|
break;
|
|
|
|
case kNoteOnUsec_Op: // Turn on note <coarse> <fine>
|
|
if( stack_idx == 2 )
|
|
{
|
|
ctl_regs[ kTmr_Coarse_idx ] = stack[0];
|
|
ctl_regs[ kTmr_Fine_idx ] = stack[1];
|
|
}
|
|
tmr0_reset();
|
|
break;
|
|
|
|
case kNoteOff_Op: // Turn off note
|
|
PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN));
|
|
break;
|
|
|
|
case kRead_Op: // Read a value {{ <src>} <addr> }
|
|
if( stack_idx > 0)
|
|
{
|
|
ctl_regs[ kRead_Src_idx ] = stack[0];
|
|
}
|
|
|
|
if( stack_idx > 1 )
|
|
{
|
|
uint8_t reg_addr = 4;
|
|
|
|
switch( ctl_regs[ kRead_Src_idx ] )
|
|
{
|
|
case 0: reg_addr = kReg_Addr_idx; break;
|
|
case 1: reg_addr = kTable_Addr_idx; break;
|
|
case 2: reg_addr = kEE_Addr_idx; break;
|
|
default:
|
|
// TODO: signal error
|
|
break;
|
|
}
|
|
|
|
if( reg_addr <= 2 )
|
|
ctl_regs[ reg_addr ] = stack[1];
|
|
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
int main(void)
|
|
{
|
|
cli(); // mask all interupts
|
|
|
|
|
|
DDRB |= _BV(ATTK_DIR) + _BV(HOLD_DIR) + _BV(LED_DIR); // setup PB4,PB3,PB1 as output
|
|
PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN) + _BV(LED_PIN)); // clear output pins
|
|
|
|
|
|
timer0_init();
|
|
pwm1_init();
|
|
|
|
// setup i2c library
|
|
usi_onReceiverPtr = on_receive;
|
|
usi_onRequestPtr = on_request;
|
|
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
|
|
|
|
sei();
|
|
|
|
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
|
|
_delay_ms(1000);
|
|
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
|
|
|
|
|
|
while(1)
|
|
{
|
|
//_delay_ms(1000);
|
|
|
|
if (!usi_onReceiverPtr)
|
|
{
|
|
// no onReceive callback, nothing to do...
|
|
continue;
|
|
}
|
|
|
|
if (!(USISR & ( 1 << USIPF )))
|
|
{
|
|
// Stop not detected
|
|
continue;
|
|
}
|
|
|
|
|
|
uint8_t amount = usiTwiAmountDataInReceiveBuffer();
|
|
if (amount == 0)
|
|
{
|
|
// no data in buffer
|
|
continue;
|
|
}
|
|
|
|
|
|
usi_onReceiverPtr(amount);
|
|
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
|