570 lines
14 KiB
C
570 lines
14 KiB
C
//| Copyright: (C) 2018-2020 Kevin Larke <contact AT larke DOT org>
|
|
//| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
|
|
|
|
/*
|
|
AT TINY 85
|
|
+--\/--+
|
|
RESET _| 1 8 |_ +5V
|
|
~OC1B HOLD DDB3 _| 2 7 |_ SCL
|
|
OC1B ONSET DDB4 _| 3 6 |_ DDB1 LED
|
|
GND _| 4 5 |_ SDA
|
|
+------+
|
|
* = Serial and/or programming pins on Arduino as ISP
|
|
*/
|
|
|
|
|
|
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
|
|
#define F_CPU 8000000L
|
|
#include <stdio.h>
|
|
#include <avr/io.h>
|
|
#include <util/delay.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
#include "usiTwiSlave.h"
|
|
|
|
|
|
#define I2C_SLAVE_ADDRESS 0x8 // the 7-bit address (remember to change this when adapting this example)
|
|
|
|
|
|
enum
|
|
{
|
|
kTmr0_Prescale_idx = 0, // Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024
|
|
kTmr0_Coarse_idx = 1, //
|
|
kTmr0_Fine_idx = 2, //
|
|
kPWM0_Duty_idx = 3, //
|
|
kPWM0_Freq_idx = 4, // 1-4 = clock divider=1=1,2=8,3=64,4=256,5=1024
|
|
kCS13_10_idx = 5, // Timer 1 Prescalar (CS13,CS12,CS11,CS10) from Table 12-5 pg 89 (0-15) prescaler = pow(2,val-1), 0=stop,1=1,2=2,3=4,4=8,....14=8192,15=16384 pre_scaled_hz = clock_hz/value
|
|
kTmr1_Coarse_idx = 6, // count of times timer0 count to 255 before OCR1C is set to Tmr0_Fine
|
|
kTmr1_Fine_idx = 7, // OCR1C timer match value
|
|
kPWM1_Duty_idx = 8, //
|
|
kPWM1_Freq_idx = 9, //
|
|
kTable_Addr_idx = 10, // Next table address to read/write
|
|
kTable_Coarse_idx = 11, // Next table coarse value to read/write
|
|
kTable_Fine_idx = 12, // Next table fine value to read/write
|
|
kMax_idx
|
|
};
|
|
|
|
|
|
volatile uint8_t ctl_regs[] =
|
|
{
|
|
4, // 0 (1-5) 4=32us per tick
|
|
123, // 1 (0-255) Timer 0 Coarse Value
|
|
8, // 2 (0-255) Timer 0 Fine Value
|
|
127, // 3 (0-255) Duty cycle
|
|
4, // 4 (1-4) PWM Frequency (clock pre-scaler)
|
|
9, // 5 9=32 us period w/ 8Mhz clock (timer tick rate)
|
|
123, // 6 (0-255) Tmr1_Coarse count of times timer count to 255 before loading Tmr0_Minor for final count.
|
|
8, // 7 (0-254) Tmr1_Fine OCR1C value on final phase before triggering timer
|
|
127, // 8 (0-255) PWM1 Duty cycle
|
|
254, // 9 (0-255) PWM1 Frequency (123 hz)
|
|
0, // 10 (0-127) Next table addr to read/write
|
|
0, // 11 (0-255) Next table coarse value to write
|
|
0, // 12 (0-255) Next table fine value to write
|
|
};
|
|
|
|
#define tableN 256
|
|
uint8_t table[ tableN ];
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// EEPROM
|
|
//
|
|
|
|
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
|
|
{
|
|
// Wait for completion of previous write
|
|
while(EECR & (1<<EEPE))
|
|
{}
|
|
|
|
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
|
|
EEAR = ucAddress; // Set up address and data registers
|
|
EEDR = ucData;
|
|
EECR |= (1<<EEMPE); // Write logical one to EEMPE
|
|
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
|
|
}
|
|
|
|
|
|
uint8_t EEPROM_read(uint8_t ucAddress)
|
|
{
|
|
// Wait for completion of previous write
|
|
while(EECR & (1<<EEPE))
|
|
{}
|
|
|
|
EEAR = ucAddress; // Set up address register
|
|
EECR |= (1<<EERE); // Start eeprom read by writing EERE
|
|
return EEDR; // Return data from data register
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// Read/Write table
|
|
//
|
|
|
|
// To write table value 42 to 127 (coarse) 64 (fine)
|
|
//
|
|
// w 8 kTable_Addr_idx 42
|
|
// w 8 kTable_Coarse_idx 127
|
|
// w 8 kTable_fine_idx 64
|
|
//
|
|
// TO read table value 42
|
|
// w 8 kTable_Addr_idx 42
|
|
// r 8 kTable_Coarse_idx -> 127
|
|
// r 8 kTable_Fine_idx -> 64
|
|
|
|
|
|
#define eeprom_addr( addr ) (kMax_idx + (addr))
|
|
|
|
void table_write_cur_value( void )
|
|
{
|
|
uint8_t tbl_addr = ctl_regs[ kTable_Addr_idx ] * 2;
|
|
|
|
table[ tbl_addr+0 ] = ctl_regs[ kTable_Coarse_idx ];
|
|
table[ tbl_addr+1 ] = ctl_regs[ kTable_Fine_idx ];
|
|
|
|
EEPROM_write( eeprom_addr( tbl_addr+0 ), ctl_regs[ kTable_Coarse_idx ] );
|
|
EEPROM_write( eeprom_addr( tbl_addr+1 ), ctl_regs[ kTable_Fine_idx ]);
|
|
}
|
|
|
|
void table_load( void )
|
|
{
|
|
uint8_t i = 0;
|
|
|
|
for(; i<128; ++i)
|
|
{
|
|
uint8_t tbl_addr = i*2;
|
|
table[tbl_addr+0] = EEPROM_read( eeprom_addr(tbl_addr+0) );
|
|
table[tbl_addr+1] = EEPROM_read( eeprom_addr(tbl_addr+1) );
|
|
}
|
|
}
|
|
|
|
void restore_memory_from_eeprom( void )
|
|
{
|
|
/*
|
|
uint8_t i;
|
|
for(i=0; i<kMax_idx; ++i)
|
|
{
|
|
ctl_regs[i] = EEPROM_read( eeprom_addr( i ) );
|
|
}
|
|
*/
|
|
|
|
table_load();
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// Timer0
|
|
//
|
|
|
|
volatile uint8_t tmr0_state = 0; // 0=disabled 1=coarse mode, 2=fine mode
|
|
volatile uint8_t tmr0_coarse_cur = 0;
|
|
|
|
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
|
|
void tmr0_reset()
|
|
{
|
|
// if a coarse count exists then go into coarse mode
|
|
if( ctl_regs[kTmr0_Coarse_idx] > 0 )
|
|
{
|
|
tmr0_state = 1;
|
|
OCR0A = 0xff;
|
|
}
|
|
else // otherwise go into fine mode
|
|
{
|
|
tmr0_state = 2;
|
|
OCR0A = ctl_regs[kTmr0_Fine_idx];
|
|
}
|
|
|
|
tmr0_coarse_cur = 0;
|
|
}
|
|
|
|
ISR(TIMER0_COMPA_vect)
|
|
{
|
|
switch( tmr0_state )
|
|
{
|
|
case 0:
|
|
// disabled
|
|
break;
|
|
|
|
case 1:
|
|
// coarse mode
|
|
if( ++tmr0_coarse_cur >= ctl_regs[kTmr0_Coarse_idx] )
|
|
{
|
|
tmr0_state = 2;
|
|
OCR0A = ctl_regs[kTmr0_Fine_idx];
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
// fine mode
|
|
PINB = _BV(PINB4); // writes to PINB toggle the pins
|
|
|
|
tmr0_reset(); // restart the timer
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void timer0_init()
|
|
{
|
|
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF
|
|
TCCR0A |= 0x02; // CTC mode
|
|
TCCR0B |= ctl_regs[kTmr0_Prescale_idx]; // set the prescaler
|
|
|
|
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
|
|
|
|
tmr0_reset(); // set the timers starting state
|
|
|
|
TIMSK |= _BV(OCIE0A); // Enable interrupt TIMER1_OVF
|
|
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// PWM (Timer0)
|
|
//
|
|
|
|
void pwm0_update()
|
|
{
|
|
OCR0B = ctl_regs[kPWM0_Duty_idx]; // 50% duty cycle
|
|
TCCR0B |= ctl_regs[kPWM0_Freq_idx]; // PWM frequency pre-scaler
|
|
}
|
|
|
|
void pwm0_init()
|
|
{
|
|
// WGM[1:0] = 3 (TOP=255)
|
|
// OCR0B = duty cycle (0-100%)
|
|
// COM0A[1:0] = 2 non-inverted
|
|
//
|
|
|
|
TCCR0A |= 0x20 + 3; // 0x20=non-inverting 3=WGM bits Fast-PWM mode (0=Bot 255=Top)
|
|
TCCR0B |= 0x00 + 4; // 3=256 pre-scaler 122Hz=1Mghz/(v*256) where v=64
|
|
|
|
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
|
|
|
|
pwm0_update();
|
|
|
|
|
|
DDRB |= _BV(DDB1); // set direction on
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// Timer1
|
|
//
|
|
|
|
volatile uint8_t tmr1_state = 0;
|
|
volatile uint8_t tmr1_coarse_cur = 0;
|
|
static uint8_t tmr1_init_fl = 0;
|
|
|
|
void tmr1_reset()
|
|
{
|
|
if( ctl_regs[kTmr1_Coarse_idx] > 0 )
|
|
{
|
|
tmr1_state = 1;
|
|
OCR1C = 254;
|
|
}
|
|
else
|
|
{
|
|
tmr1_state = 2;
|
|
OCR1C = ctl_regs[kTmr1_Fine_idx];
|
|
}
|
|
|
|
tmr1_coarse_cur = 0;
|
|
}
|
|
|
|
ISR(TIMER1_OVF_vect)
|
|
{
|
|
if( !tmr1_init_fl )
|
|
{
|
|
PORTB |= _BV(PINB3); // set PWM pin
|
|
}
|
|
else
|
|
{
|
|
switch( tmr1_state )
|
|
{
|
|
|
|
case 0:
|
|
// disabled
|
|
break;
|
|
|
|
case 1:
|
|
// coarse mode
|
|
if( ++tmr1_coarse_cur >= ctl_regs[kTmr1_Coarse_idx] )
|
|
{
|
|
tmr1_state = 2;
|
|
OCR1C = ctl_regs[kTmr1_Fine_idx];
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
// fine mode
|
|
PINB = _BV(PINB4); // writes to PINB toggle the pins
|
|
|
|
tmr1_reset();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void timer1_init()
|
|
{
|
|
TIMSK &= ~_BV(TOIE1); // Disable interrupt TIMER1_OVF
|
|
OCR1A = 255; // Set to anything greater than OCR1C (the counter never gets here.)
|
|
TCCR1 |= _BV(CTC1); // Reset TCNT1 to 0 when TCNT1==OCR1C
|
|
TCCR1 |= _BV(PWM1A); // Enable PWM A (to generate overflow interrupts)
|
|
TCCR1 |= ctl_regs[kCS13_10_idx] & 0x0f; //
|
|
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
|
|
|
|
tmr1_reset();
|
|
tmr1_init_fl = 1;
|
|
TIMSK |= _BV(TOIE1); // Enable interrupt TIMER1_OVF
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// PWM1
|
|
//
|
|
// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B but this code
|
|
// but since these pins are not available this code uses
|
|
// ISR's to redirect the output to PIN3
|
|
|
|
void pwm1_update()
|
|
{
|
|
OCR1B = ctl_regs[kPWM1_Duty_idx]; // control duty cycle
|
|
OCR1C = ctl_regs[kPWM1_Freq_idx]; // PWM frequency pre-scaler
|
|
}
|
|
|
|
ISR(TIMER1_COMPB_vect)
|
|
{
|
|
PORTB &= ~(_BV(PINB3)); // clear PWM pin
|
|
}
|
|
|
|
|
|
void pwm1_init()
|
|
{
|
|
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
|
|
|
|
DDRB |= _BV(DDB3); // setup PB3 as output
|
|
|
|
// set on TCNT1 == 0 // happens when TCNT1 matches OCR1C
|
|
// clr on OCR1B == TCNT // happens when TCNT1 matches OCR1B
|
|
// // COM1B1=1 COM1B0=0 (enable output on ~OC1B)
|
|
TCCR1 |= 9; // 32us period (256 divider) prescaler
|
|
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
|
|
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
|
|
|
|
pwm1_update();
|
|
|
|
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // Enable interrupts
|
|
|
|
|
|
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
//------------------------------------------------------------------------------
|
|
|
|
// Tracks the current register pointer position
|
|
volatile uint8_t reg_position = 0;
|
|
const uint8_t reg_size = sizeof(ctl_regs);
|
|
|
|
//
|
|
// Read Request Handler
|
|
//
|
|
// This is called for each read request we receive, never put more
|
|
// than one byte of data (with TinyWireS.send) to the send-buffer when
|
|
// using this callback
|
|
//
|
|
void on_request()
|
|
{
|
|
uint8_t val = 0;
|
|
|
|
switch( reg_position )
|
|
{
|
|
case kTable_Coarse_idx:
|
|
val = table[ ctl_regs[kTable_Addr_idx]*2 + 0 ];
|
|
break;
|
|
|
|
case kTable_Fine_idx:
|
|
val = table[ ctl_regs[kTable_Addr_idx]*2 + 1 ];
|
|
break;
|
|
|
|
default:
|
|
// read and transmit the requestd position
|
|
val = ctl_regs[reg_position];
|
|
|
|
}
|
|
|
|
usiTwiTransmitByte(val);
|
|
|
|
// Increment the reg position on each read, and loop back to zero
|
|
reg_position++;
|
|
if (reg_position >= reg_size)
|
|
{
|
|
reg_position = 0;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// The I2C data received -handler
|
|
//
|
|
// This needs to complete before the next incoming transaction (start,
|
|
// data, restart/stop) on the bus does so be quick, set flags for long
|
|
// running tasks to be called from the mainloop instead of running
|
|
// them directly,
|
|
//
|
|
|
|
void on_receive( uint8_t byteN )
|
|
{
|
|
if (byteN < 1)
|
|
{
|
|
// Sanity-check
|
|
return;
|
|
}
|
|
if (byteN > TWI_RX_BUFFER_SIZE)
|
|
{
|
|
// Also insane number
|
|
return;
|
|
}
|
|
|
|
// get the register index to read/write
|
|
reg_position = usiTwiReceiveByte();
|
|
|
|
byteN--;
|
|
|
|
// If only one byte was received then this was a read request
|
|
// and the buffer pointer (reg_position) is now set to return the byte
|
|
// at this location on the subsequent call to on_request() ...
|
|
if (!byteN)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// ... otherwise this was a write request and the buffer
|
|
// pointer is now pointing to the first byte to write to
|
|
while(byteN--)
|
|
{
|
|
// write the value
|
|
ctl_regs[reg_position] = usiTwiReceiveByte();
|
|
|
|
// Set timer 1
|
|
if( kTmr0_Prescale_idx <= reg_position && reg_position <= kTmr0_Fine_idx )
|
|
{ timer0_init(); }
|
|
else
|
|
|
|
|
|
// Set PWM 0
|
|
if( kPWM0_Duty_idx <= reg_position && reg_position <= kPWM0_Freq_idx )
|
|
{ pwm0_update(); }
|
|
else
|
|
|
|
// Set timer 1
|
|
if( kCS13_10_idx <= reg_position && reg_position <= kTmr1_Fine_idx )
|
|
{ timer1_init(); }
|
|
else
|
|
|
|
// Set PWM 1
|
|
if( kPWM1_Duty_idx <= reg_position && reg_position <= kPWM1_Freq_idx )
|
|
{ pwm1_update(); }
|
|
else
|
|
|
|
|
|
// Write table
|
|
if( reg_position == kTable_Fine_idx )
|
|
{ table_write_cur_value(); }
|
|
|
|
reg_position++;
|
|
|
|
if (reg_position >= reg_size)
|
|
{
|
|
reg_position = 0;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(void)
|
|
{
|
|
cli(); // mask all interupts
|
|
|
|
|
|
restore_memory_from_eeprom();
|
|
|
|
DDRB |= _BV(DDB4) + _BV(DDB3) + _BV(DDB1); // setup PB4,PB3,PB1 as output
|
|
PORTB &= ~(_BV(PINB4) + _BV(PINB3) + _BV(PINB1)); // clear output pins
|
|
|
|
|
|
timer0_init();
|
|
pwm1_init();
|
|
|
|
// setup i2c library
|
|
usi_onReceiverPtr = on_receive;
|
|
usi_onRequestPtr = on_request;
|
|
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
|
|
|
|
sei();
|
|
|
|
PINB = _BV(PINB4); // writes to PINB toggle the pins
|
|
_delay_ms(1000);
|
|
PINB = _BV(PINB4); // writes to PINB toggle the pins
|
|
|
|
|
|
while(1)
|
|
{
|
|
//_delay_ms(1000);
|
|
|
|
if (!usi_onReceiverPtr)
|
|
{
|
|
// no onReceive callback, nothing to do...
|
|
continue;
|
|
}
|
|
|
|
if (!(USISR & ( 1 << USIPF )))
|
|
{
|
|
// Stop not detected
|
|
continue;
|
|
}
|
|
|
|
|
|
uint8_t amount = usiTwiAmountDataInReceiveBuffer();
|
|
if (amount == 0)
|
|
{
|
|
// no data in buffer
|
|
continue;
|
|
}
|
|
|
|
|
|
usi_onReceiverPtr(amount);
|
|
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
|