//| Copyright: (C) 2018-2020 Kevin Larke //| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file. // w 60 0 1 10 : w i2c_addr SetPWM enable duty_val // w 60 5 12 8 32 : w i2c_addr write addrFl|src coarse_val // w 60 4 0 5 : w i2c_addr read src read_addr (set the read address to register 5) // r 60 4 3 : r i2c_addr cnt (read the first 3 reg's beginning w/ 5) /* AT TINY 85 +--\/--+ RESET _| 1 8 |_ +5V ~OC1B HOLD PINB3 _| 2 7 |_ SCL yellow OC1B ONSET PINB4 _| 3 6 |_ PINB1 LED GND _| 4 5 |_ SDA orange +------+ * = Serial and/or programming pins on Arduino as ISP */ // This program acts as the device (slave) for the control program i2c/a2a/c_ctl #define F_CPU 16000000L #include #include #include #include #include "usiTwiSlave.h" #define HOLD_DIR DDB3 #define ATTK_DIR DDB4 #define LED_DIR DDB1 #define HOLD_PIN PINB3 #define ATTK_PIN PINB4 #define LED_PIN PINB1 // Opcodes enum { kSetPwm_Op = 0, // Set PWM duty/hz/div 0 { { {
}}} div:2=2,3=4,4=8,5=16,6=32,7=64,8=128,9=256,10=512,11=1024,12=2048,13=4096,14=8192,15=16384 kNoteOnVel_Op = 1, // Turn on note 3 {} kNoteOnUsec_Op = 2, // Turn on note 4 { { {}}} kNoteOff_Op = 3, // Turn off note 5 kSetReadAddr_Op = 4, // Set a read addr. 6 {} {} } src: 0=reg 1=table 2=eeprom kWrite_Op = 5, // Set write 7 { {addr} { ... {}} addrFl:0x80 src: 4=reg 5=table 6=eeprom kWriteTable_Op = 6, // Write table to EEprom 9 kHoldDelay_Op = 7, // Set hold delay { {}} kFlags_Op = 8, // Set flags variable kInvalid_Op = 9 // }; enum { kReg_Rd_Addr_idx = 0, // Next Reg Address to read kTable_Rd_Addr_idx = 1, // Next Table Address to read kEE_Rd_Addr_idx = 2, // Next EEPROM address to read kRead_Src_idx = 3, // kReg_Rd_Addr_idx=reg, kTable_Rd_Addr_idx=table, kEE_Rd_Addr_idx=eeprom kReg_Wr_Addr_idx = 4, // Next Reg Address to write kTable_Wr_Addr_idx = 5, // Next Table Address to write kEE_Wr_Addr_idx = 6, // Next EEPROM address to write kWrite_Dst_idx = 7, // kReg_Wr_Addr_idx=reg, kTable_Wr_Addr_idx=table, kEE_Wr_Addr_idx=eeprom kTmr_Coarse_idx = 8, // kTmr_Fine_idx = 9, // kTmr_Prescale_idx = 10, // Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024 Default: 4 (16us) kPwm_Duty_idx = 11, // kPwm_Freq_idx = 12, // kPwm_Div_idx = 13, // kState_idx = 14, // 1=attk 2=hold kError_Code_idx = 15, // Error Code kMax_Coarse_Tmr_idx = 16, // Max. allowable coarse timer value kDelay_Coarse_idx = 17, // (17,18)=2000 (0,6)=100 kDelay_Fine_idx = 18, kFlags_idx = 19, kMax_idx }; enum { kState_Attk_Fl = 1, kState_Hold_Fl = 2 }; // ctl_regs[kFlags_idx] bits enum { kHoldOnAttk_Fl = 0x01 }; volatile uint8_t ctl_regs[] = { 0, // 0 (0-(kMax_idx-1)) Reg Read Addr 0, // 1 (0-255) Table Read Addr 0, // 2 (0-255) EE Read Addr kReg_Rd_Addr_idx, // 3 (0-2) Read source 0, // 4 (0-(kMax_idx-1)) Reg Write Addr 0, // 5 (0-255) Table Write Addr 0, // 6 (0-255) EE Write Addr kReg_Wr_Addr_idx, // 7 (0-2) Write source 5, // 8 (0-255) Timer 0 Coarse Value (20400 us) 0, // 9 (0-255) Timer 0 Fine Value 4, // 10 (1-5) 4=16us per tick 127, // 11 (0-255) Pwm Duty cycle 255, // 12 (0-255) Pwm Frequency (123 Hz) 5, // 13 (0-15) Pwm clock div 0, // 14 state flags 1=attk 2=hold (read/only) 0, // 15 (0-255) Error bit field 14, // 16 (0-255) Max allowable coarse timer count 0, // 17 (0-255) Hold coarse delay 250, // 18 (0-255) Hold fine delay 0,6=100us 0,124=2000us w/ 16us Tmr0 tick 0 // 19 (0-255) Flags 1=hold-on-attack }; // These registers are saved to Eeprom uint8_t eeprom_addr[] = { kTmr_Prescale_idx, kPwm_Duty_idx, kPwm_Freq_idx, kPwm_Div_idx }; #define tableN 256 uint8_t table[ tableN ]; // [ coarse_0,fine_0, coarse_1, fine_1, .... coarse_127,fine_127] enum { kInvalid_Read_Src_ErrFl = 0x01, kInvalid_Write_Dst_ErrFl = 0x02, kInvalid_Coarse_Tmr_ErrFl = 0x04 }; #define set_error( flag ) ctl_regs[ kError_Code_idx ] |= (flag) //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // // EEPROM // void EEPROM_write(uint8_t ucAddress, uint8_t ucData) { // Wait for completion of previous write while(EECR & (1< delayCnt ) { stage1_cnt = attkCnt - delayCnt; stage2_cnt = delayCnt; hold_beg_first_fl = 1; } else { stage1_cnt = attkCnt; stage2_cnt = delayCnt - attkCnt; hold_beg_first_fl = 0; } stage1_coarse_cnt = stage1_cnt >> 8; stage1_fine_cnt = stage1_cnt & 0xff; stage2_coarse_cnt = stage2_cnt >> 8; stage2_fine_cnt = stage2_cnt & 0xff; tmr0_coarse_cur = 0; // clear the coarse time counter // always start in mode=1 because even if coarse count==0 // because a COMPA interrupt will be fired immediately when the // timer starts tmr0_state = 1; OCR0A = 0xff; TCNT0 = 0; clear_hold(); // clear the hold pin set_attack(); // set the attack pin TIMSK |= _BV(OCIE0A); // enable the timer interrupt //if( ctl_regs[ kFlags_idx ] & kHoldOnAttk_Fl ) // hold_begin(); } ISR(TIMER0_COMPA_vect) { switch( tmr0_state ) { case 0: // timer disabled break; case 1: // stage1 coarse mode // Note: the '+1' here is necessary to absorb an interrupt which is occurring // for an unknown reason. It must have something to do with resetting the // OCIE0A interrupt because it doesn't occur on the hold delay coarse timing. if( ++tmr0_coarse_cur >= stage1_coarse_cnt+1 ) { tmr0_state = 2; OCR0A = stage1_fine_cnt; } break; case 2: // stage1 fine mode complete // if a coarse delay count exists then go into stage2 coarse mode if( stage2_coarse_cnt > 0 ) { tmr0_state = 3; tmr0_coarse_cur = 0; OCR0A = 0xff; } else // otherwise go into fine mode { tmr0_state = 4; OCR0A = stage2_fine_cnt; } if( hold_beg_first_fl ) hold_begin(); // start hold PWM else clear_attack(); break; case 3: // stage2 coarse mode if( ++tmr0_coarse_cur >= stage2_coarse_cnt ) { tmr0_state = 4; OCR0A = stage2_fine_cnt; } break; case 4: // stage2 fine mode complete TIMSK &= ~_BV(OCIE0A); // clear timer interrupt tmr0_state = 0; if( hold_beg_first_fl ) clear_attack(); else hold_begin(); //if( !(ctl_regs[ kFlags_idx ] & kHoldOnAttk_Fl) ) // hold_begin(); break; } } void tmr0_init() { TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF TCCR0A = 0; // Set the timer control registers to their default value TCCR0B = 0; TCCR0A |= 0x02; // CTC mode TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler GTCCR |= _BV(PSR0); // Trigger the pre-scaler to be reset to the selected value } //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // // Pwm // // PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B // but since these pins are not available this code uses // ISR's to redirect the output to PIN3 void pwm1_update() { OCR1B = ctl_regs[kPwm_Duty_idx]; // control duty cycle OCR1C = ctl_regs[kPwm_Freq_idx]; // PWM frequency pre-scaler } // Called when TCNT1 == OCR1C. // At this point TCNT1 is reset to 0, new OCR1B values are latched from temp. loctaion to OCR1B ISR(TIMER1_OVF_vect) { set_hold(); } // Called when TCNT1 == OCR1B ISR(TIMER1_COMPB_vect) { clear_hold(); } void pwm1_init() { DDRB |= _BV(HOLD_DIR); // setup PB3 as output TCCR1 = 0; // Set the control registers to their default GTCCR = 0; GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins pwm1_update(); } //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // Tracks the current register pointer position volatile uint8_t reg_position = 0; const uint8_t reg_size = sizeof(ctl_regs); // // Read Request Handler // // This is called for each read request we receive, never put more // than one byte of data (with TinyWireS.send) to the send-buffer when // using this callback // void on_request() { uint8_t val = 0; switch( ctl_regs[ kRead_Src_idx ] ) { case kReg_Rd_Addr_idx: val = ctl_regs[ ctl_regs[kReg_Rd_Addr_idx] ]; break; case kTable_Rd_Addr_idx: val = table[ ctl_regs[kTable_Rd_Addr_idx] ]; break; case kEE_Rd_Addr_idx: val = EEPROM_read(ctl_regs[kEE_Rd_Addr_idx]); break; default: set_error( kInvalid_Read_Src_ErrFl ); return; } usiTwiTransmitByte(val); ctl_regs[ ctl_regs[ kRead_Src_idx ] ] += 1; } void _write_op( uint8_t* stack, uint8_t stackN ) { uint8_t stack_idx = 0; if( stackN > 0 ) { uint8_t src = stack[0] & 0x07; uint8_t addr_fl = stack[0] & 0x08; // verify the source value if( src < kReg_Wr_Addr_idx || src > kEE_Wr_Addr_idx ) { set_error( kInvalid_Write_Dst_ErrFl ); return; } // set the write source stack_idx = 1; ctl_regs[ kWrite_Dst_idx ] = src; // if an address value was passed also .... if( addr_fl && stackN > 1 ) { stack_idx = 2; ctl_regs[ src ] = stack[1]; } } // for(; stack_idx TWI_RX_BUFFER_SIZE) { // Sanity-check return; } // get the register index to read/write uint8_t op_id = usiTwiReceiveByte(); byteN--; // If only one byte was received then this was a read request // and the buffer pointer (reg_position) is now set to return the byte // at this location on the subsequent call to on_request() ... if(byteN) { while( byteN-- ) { stack[stack_idx] = usiTwiReceiveByte(); ++stack_idx; } } switch( op_id ) { case kSetPwm_Op: for(i=0; i ctl_regs[ kMax_Coarse_Tmr_idx ]) { ctl_regs[ kTmr_Coarse_idx ] = ctl_regs[ kMax_Coarse_Tmr_idx ]; set_error( kInvalid_Coarse_Tmr_ErrFl ); } // if a prescaler was included then the timer needs to be re-initialized if( i == 3 ) { cli(); tmr0_init(); sei(); } tmr0_reset(); break; case kNoteOff_Op: hold_end(); break; case kSetReadAddr_Op: if( stack_idx > 0 ) { ctl_regs[ kRead_Src_idx ] = stack[0]; if( stack_idx > 1 ) ctl_regs[ ctl_regs[ kRead_Src_idx ] ] = stack[1]; } break; case kWrite_Op: _write_op( stack, stack_idx ); break; case kWriteTable_Op: write_table(); break; case kHoldDelay_Op: for(i=0; i