//| Copyright: (C) 2018-2020 Kevin Larke //| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file. /* AT TINY 85 +--\/--+ RESET _| 1 8 |_ +5V ~OC1B HOLD DDB3 _| 2 7 |_ SCL OC1B ONSET DDB4 _| 3 6 |_ DDB1 LED GND _| 4 5 |_ SDA +------+ * = Serial and/or programming pins on Arduino as ISP */ // This program acts as the device (slave) for the control program i2c/a2a/c_ctl #define F_CPU 8000000L #include #include #include #include #include "usiTwiSlave.h" #define HOLD_DIR DDB3 #define ATTK_DIR DDB4 #define LED_DIR DDB1 #define HOLD_PIN PINB3 #define ATTK_PIN PINB4 #define LED_PIN PINB1 // Opcodes enum { kSetReg_Op = 0, // Set register ... kSetPwm_Op = 1, // Set PWM registers kNoteOnVel_Op = 2, // Turn on note kNoteOnUsec_Op = 3, // Turn on note kNoteOff_Op = 4, // Turn off note kRead_Op = 5, // Read a value {{ } } kInvalid_Op = 6 }; // Register addresses enum { kTmr_Coarse_idx = 0, // Current Timer 0 coarse count kTmr_Fine_idx = 1, // Current Timer 0 fine count kTmr_Prescale_idx = 2, // Current Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024 kPwm_Enable_idx = 3, // Current PWM 1 enable flag kPwm_Duty_idx = 4, // Current PWM 1 duty cycle kPwm_Freq_idx = 5, // Current PWM 1 frequency kRead_Src_idx = 6, // 0=reg, 1=table, 2=eeprom kReg_Addr_idx = 7, // Next Reg Address to read kTable_Addr_idx = 8, // Next Table Address to read kEE_Addr_idx = 9, // Next EEPROM address to read kError_Code_idx = 10, // Error Code kMax_idx }; // Regster memory volatile uint8_t ctl_regs[] = { 123, // 1 (0-255) Timer 0 Coarse Value 8, // 2 (0-255) Timer 0 Fine Value 4, // 0 (1-5) 4=32us per tick 1, // 5 (0-1) PWM1 Enable 127, // 3 (0-255) PWM1 Duty cycle (0-100%) 254, // 4 (0-255) PWM1 Frequency (123 hz) 0, // 6 (0-255) Read Source 0, // 7 (0-255) Reg addr 0, // 8 (0-255) Table addr 0, // 9 (0-255) EEPROM addr 0, // 10 (0-255) Error code }; volatile uint8_t table[128]; #define stackN 16 volatile uint8_t stack[ stackN ]; //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // // EEPROM // void EEPROM_write(uint8_t ucAddress, uint8_t ucData) { // Wait for completion of previous write while(EECR & (1< 0 ) { tmr0_state = 1; OCR0A = 0xff; } else // otherwise go into fine mode { tmr0_state = 2; OCR0A = ctl_regs[kTmr_Fine_idx]; } tmr0_coarse_cur = 0; } ISR(TIMER0_COMPA_vect) { switch( tmr0_state ) { case 0: // disabled break; case 1: // coarse mode if( ++tmr0_coarse_cur >= ctl_regs[kTmr_Coarse_idx] ) { tmr0_state = 2; OCR0A = ctl_regs[kTmr_Fine_idx]; } break; case 2: // fine mode PINB = _BV(ATTK_PIN); // writes to PINB toggle the pins tmr0_reset(); // restart the timer break; } } void timer0_init() { TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER0_COMPA_vect TCCR0A |= 0x02; // CTC mode TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value tmr0_reset(); // set the timers starting state TIMSK |= _BV(OCIE0A); // Enable interrupt TIMER0_COMPA_vect } //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // // PWM1 // // PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B but this code // but since these pins are not available this code uses // ISR's to redirect the output to PIN3 void pwm1_update() { OCR1B = ctl_regs[kPwm_Duty_idx]; // control duty cycle OCR1C = ctl_regs[kPwm_Freq_idx]; // PWM frequency pre-scaler } ISR(TIMER1_OVF_vect) { PORTB |= _BV(HOLD_PIN); // set PWM pin } ISR(TIMER1_COMPB_vect) { PORTB &= ~(_BV(HOLD_PIN)); // clear PWM pin } void pwm1_init() { TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts DDRB |= _BV(HOLD_DIR); // setup PB3 as output // set on TCNT1 == 0 // happens when TCNT1 matches OCR1C // clr on OCR1B == TCNT // happens when TCNT1 matches OCR1B // // COM1B1=1 COM1B0=0 (enable output on ~OC1B) TCCR1 |= 9; // 32us period (256 divider) prescaler GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value pwm1_update(); TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // Enable interrupts } //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // // Read Request Handler // // This is called for each read request we receive, never put more // than one byte of data (with TinyWireS.send) to the send-buffer when // using this callback // void on_request() { uint8_t val = 0; switch( ctl_regs[ kRead_Src_idx ] ) { case 0: val = table[ ctl_regs[ kReg_Addr_idx ] ]; ctl_regs[ kReg_Addr_idx ] += 1; break; case 1: val = table[ ctl_regs[ kTable_Addr_idx ] ]; ctl_regs[ kTable_Addr_idx ] += 1; break; case 2: val = EEPROM_read(ctl_regs[ kEE_Addr_idx]); ctl_regs[ kEE_Addr_idx ] += 1; } usiTwiTransmitByte(val); } // // The I2C data received -handler // // This needs to complete before the next incoming transaction (start, // data, restart/stop) on the bus does so be quick, set flags for long // running tasks to be called from the mainloop instead of running // them directly, // void on_receive( uint8_t byteN ) { uint8_t stack_idx = 0; PINB = _BV(LED_PIN); // writes to PINB toggle the pins // Sanity-check if( byteN < 1 || byteN > TWI_RX_BUFFER_SIZE) { // TODO: signal an error return; } // get the command byte uint8_t cur_op_id = usiTwiReceiveByte(); --byteN; // verify that cur_op_id is valid if( cur_op_id < kInvalid_Op ) { // TODO: signal an error return; } // get the command arguments while(byteN--) { // write the value stack[stack_idx] = usiTwiReceiveByte(); ++stack_idx; if(stack_idx >= stackN) { // TODO: signal an error break; } } // execute the operation switch( cur_op_id ) { case kSetReg_Op: // Set register ... if( stack_idx > 1 ) { uint8_t addr = stack[0]; uint8_t i = 2; for(; i,, { uint8_t addr = kPwm_Enable_idx; uint8_t i = 0; for(; i if( stack_idx == 1 ) { uint8_t addr = stack[0] >> 2; // divide by 2 (we have only 64 entries in the table) ctl_regs[ kTmr_Coarse_idx ] = table[ addr ]; ctl_regs[ kTmr_Fine_idx ] = table[ addr+1 ]; } tmr0_reset(); break; case kNoteOnUsec_Op: // Turn on note if( stack_idx == 2 ) { ctl_regs[ kTmr_Coarse_idx ] = stack[0]; ctl_regs[ kTmr_Fine_idx ] = stack[1]; } tmr0_reset(); break; case kNoteOff_Op: // Turn off note PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN)); break; case kRead_Op: // Read a value {{ } } if( stack_idx > 0) { ctl_regs[ kRead_Src_idx ] = stack[0]; } if( stack_idx > 1 ) { uint8_t reg_addr = 4; switch( ctl_regs[ kRead_Src_idx ] ) { case 0: reg_addr = kReg_Addr_idx; break; case 1: reg_addr = kTable_Addr_idx; break; case 2: reg_addr = kEE_Addr_idx; break; default: // TODO: signal error break; } if( reg_addr <= 2 ) ctl_regs[ reg_addr ] = stack[1]; } } } int main(void) { cli(); // mask all interupts DDRB |= _BV(ATTK_DIR) + _BV(HOLD_DIR) + _BV(LED_DIR); // setup PB4,PB3,PB1 as output PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN) + _BV(LED_PIN)); // clear output pins timer0_init(); pwm1_init(); // setup i2c library usi_onReceiverPtr = on_receive; usi_onRequestPtr = on_request; usiTwiSlaveInit(I2C_SLAVE_ADDRESS); sei(); PINB = _BV(LED_PIN); // writes to PINB toggle the pins _delay_ms(1000); PINB = _BV(LED_PIN); // writes to PINB toggle the pins while(1) { //_delay_ms(1000); if (!usi_onReceiverPtr) { // no onReceive callback, nothing to do... continue; } if (!(USISR & ( 1 << USIPF ))) { // Stop not detected continue; } uint8_t amount = usiTwiAmountDataInReceiveBuffer(); if (amount == 0) { // no data in buffer continue; } usi_onReceiverPtr(amount); } return 0; }