Compare commits

..

No commits in common. "5008c6700239f474ef8726d532a0c62e2ca685b4" and "8be49f95d03dcd9c7796f03afd4fa7891bf02028" have entirely different histories.

3 changed files with 65 additions and 148 deletions

View File

@ -16,8 +16,7 @@ class TinyOp(Enum):
setReadAddr = 4 setReadAddr = 4
writeOp = 5 writeOp = 5
writeTableOp = 6 writeTableOp = 6
holdDelayOp = 7 invalidOp = 7
invalidOp = 8
class TinyRegAddr(Enum): class TinyRegAddr(Enum):
@ -37,9 +36,6 @@ class TinyRegAddr(Enum):
kPwmDivAddr = 13 kPwmDivAddr = 13
kStateAddr = 14 kStateAddr = 14
kErrorCodeAddr = 15 kErrorCodeAddr = 15
kMaxAllowTmrAddr = 16
kDelayCoarseAddr = 17
kDelayFineAddr = 18
class TinyConst(Enum): class TinyConst(Enum):
kRdRegSrcId = TinyRegAddr.kRdRegAddrAddr.value # 0 kRdRegSrcId = TinyRegAddr.kRdRegAddrAddr.value # 0
@ -188,7 +184,6 @@ class Picadae:
return self.write_tiny_reg( self._pitch_to_i2c_addr( midi_pitch ), op_code, argL ) return self.write_tiny_reg( self._pitch_to_i2c_addr( midi_pitch ), op_code, argL )
def set_read_addr( self, i2c_addr, mem_id, addr ): def set_read_addr( self, i2c_addr, mem_id, addr ):
# mem_id: 0=reg_array 1=vel_table 2=eeprom
return self.write_tiny_reg(i2c_addr, TinyOp.setReadAddr.value,[ mem_id, addr ]) return self.write_tiny_reg(i2c_addr, TinyOp.setReadAddr.value,[ mem_id, addr ])
def read_request( self, i2c_addr, reg_addr, byteOutN ): def read_request( self, i2c_addr, reg_addr, byteOutN ):
@ -251,19 +246,6 @@ class Picadae:
return self.call_op( midi_pitch, TinyOp.noteOffOp.value, return self.call_op( midi_pitch, TinyOp.noteOffOp.value,
[0] ) # TODO: sending a dummy byte because we can't handle sending a command with no data bytes. [0] ) # TODO: sending a dummy byte because we can't handle sending a command with no data bytes.
def set_hold_delay( self, midi_pitch, pulse_usec ):
return self.call_op( midi_pitch, TinyOp.holdDelayOp.value, list(self._usec_to_coarse_and_fine(pulse_usec)) )
def get_hold_delay( self, midi_pitch, time_out_ms=250 ):
res = self.block_on_picadae_read_reg( midi_pitch, TinyRegAddr.kDelayCoarseAddr.value, byteOutN=2, time_out_ms=time_out_ms )
if len(res.value) == 2:
res.value = [ self.prescaler_usec*255*res.value[0] + self.prescaler_usec*res.value[1] ]
return res
def set_velocity_map( self, midi_pitch, midi_vel, pulse_usec ): def set_velocity_map( self, midi_pitch, midi_vel, pulse_usec ):
coarse,fine = self._usec_to_coarse_and_fine( pulse_usec ) coarse,fine = self._usec_to_coarse_and_fine( pulse_usec )
src = TinyConst.kWrAddrFl.value | TinyConst.kWrTableDstId.value src = TinyConst.kWrAddrFl.value | TinyConst.kWrTableDstId.value
@ -276,7 +258,7 @@ class Picadae:
def set_pwm_duty( self, midi_pitch, duty_cycle_pct ): def set_pwm_duty( self, midi_pitch, duty_cycle_pct ):
if 0 <= duty_cycle_pct and duty_cycle_pct <= 100: if 0 <= duty_cycle_pct and duty_cycle_pct <= 100:
# duty_cycle_pct = 100.0 - duty_cycle_pct duty_cycle_pct = 100.0 - duty_cycle_pct
return self.call_op( midi_pitch, TinyOp.setPwmOp.value, [ int( duty_cycle_pct * 255.0 /100.0 )]) return self.call_op( midi_pitch, TinyOp.setPwmOp.value, [ int( duty_cycle_pct * 255.0 /100.0 )])
else: else:
return Result(msg="Duty cycle (%f) out of range 0-100." % (duty_cycle_pct)) return Result(msg="Duty cycle (%f) out of range 0-100." % (duty_cycle_pct))
@ -297,15 +279,6 @@ class Picadae:
def get_pwm_div( self, midi_pitch, time_out_ms=250 ): def get_pwm_div( self, midi_pitch, time_out_ms=250 ):
return self.block_on_picadae_read_reg( midi_pitch, TinyRegAddr.kPwmDivAddr.value, time_out_ms=time_out_ms ) return self.block_on_picadae_read_reg( midi_pitch, TinyRegAddr.kPwmDivAddr.value, time_out_ms=time_out_ms )
def set_pwm_div( self, midi_pitch, div, time_out_ms=250 ):
res = self.get_pwm_duty( midi_pitch )
if res:
duty = res.value[0]
res = self.get_pwm_freq( midi_pitch )
if res:
res = self.call_op( midi_pitch, TinyOp.setPwmOp.value, [ int(duty), int(res.value[0]), int(div) ])
return res
def write_table( self, midi_pitch, time_out_ms=250 ): def write_table( self, midi_pitch, time_out_ms=250 ):
# TODO: sending a dummy byte because we can't handle sending a command with no data bytes. # TODO: sending a dummy byte because we can't handle sending a command with no data bytes.
return self.call_op( midi_pitch, TinyOp.writeTableOp.value,[0]) return self.call_op( midi_pitch, TinyOp.writeTableOp.value,[0])

View File

@ -10,27 +10,25 @@ class PicadaeShell:
def __init__( self, cfg ): def __init__( self, cfg ):
self.p = None self.p = None
self.parseD = { self.parseD = {
'q':{ "func":None, "minN":0, "maxN":0, "help":"quit"}, 'q':{ "func":None, "minN":0, "maxN":0, "help":"quit"},
'?':{ "func":"_help", "minN":0, "maxN":0, "help":"Print usage text."}, '?':{ "func":"_help", "minN":0, "maxN":0, "help":"Print usage text."},
'w':{ "func":"_write", "minN":-1, "maxN":-1,"help":"write <i2c_addr> <reg_addr> <data0> ... <dataN>"}, 'w':{ "func":"_write", "minN":-1, "maxN":-1,"help":"write <i2c_addr> <reg_addr> <data0> ... <dataN>"},
'r':{ "func":"_read", "minN":4, "maxN":4, "help":"read <i2c_addr> <src> <reg_addr> <byteN> src: 0=reg_array 1=vel_table 2=eeprom"}, 'r':{ "func":"_read", "minN":4, "maxN":4, "help":"read <i2c_addr> <src> <reg_addr> <byteN>"},
'v':{ "func":"note_on_vel", "minN":2, "maxN":2, "help":"note-on <pitch> <vel>"}, 'v':{ "func":"note_on_vel", "minN":2, "maxN":2, "help":"note-on <pitch> <vel>"},
'u':{ "func":"note_on_us", "minN":2, "maxN":3, "help":"note-on <pitch> <usec> <prescale> (1=1, 2=8 .5us, 3=64 4us,(4)=256 16us, 5=1024 64us)"}, 'u':{ "func":"note_on_us", "minN":2, "maxN":3, "help":"note-on <pitch> <usec> <prescale> (1=1, 2=8, 3=64,(4)=256 16us, 5=1024)"},
'o':{ "func":"note_off", "minN":1, "maxN":1, "help":"note-off <pitch>"}, 'o':{ "func":"note_off", "minN":1, "maxN":1, "help":"note-off <pitch>"},
'T':{ "func":"set_vel_map", "minN":3, "maxN":3, "help":"table <pitch> <vel> <usec>"}, 'T':{ "func":"set_vel_map", "minN":3, "maxN":3, "help":"table <pitch> <vel> <usec>"},
't':{ "func":"get_vel_map", "minN":2, "maxN":2, "help":"table <pitch> <vel>"}, 't':{ "func":"get_vel_map", "minN":2, "maxN":2, "help":"table <pitch> <vel>"},
'D':{ "func":"set_pwm_duty", "minN":2, "maxN":4, "help":"duty <pitch> <percent> {<hz> {<div>}} " }, 'D':{ "func":"set_pwm_duty", "minN":2, "maxN":4, "help":"duty <pitch> <percent> {<hz> {<div>}} " },
'd':{ "func":"get_pwm_duty", "minN":1, "maxN":1, "help":"duty <pitch>"}, 'd':{ "func":"get_pwm_duty", "minN":1, "maxN":1, "help":"duty <pitch>"},
'H':{ "func":"set_hold_delay", "minN":2, "maxN":2, "help":"hold delay <pitch> <usec>"}, 'F':{ "func":"set_pwm_freq", "minN":2, "maxN":2, "help":"freq <pitch> <hz> 254=~123Hz"},
'h':{ "func":"get_hold_delay", "minN":1, "maxN":1, "help":"hold delay <pitch>"}, 'f':{ "func":"get_pwm_freq", "minN":1, "maxN":1, "help":"freq <pitch>"},
'F':{ "func":"set_pwm_freq", "minN":2, "maxN":2, "help":"pwm freq <pitch> <hz> 254=~123Hz"}, 'I':{ "func":"set_pwm_div", "minN":2, "maxN":2, "help":"div <pitch> <div> div:2=2,3=4,4=8,5=16,6=32,7=64,8=128,9=256,(10)=512 32us, 11=1024,12=2048,13=4096,14=8192,15=16384"},
'f':{ "func":"get_pwm_freq", "minN":1, "maxN":1, "help":"pwm freq <pitch>"}, 'i':{ "func":"get_pwm_div", "minN":1, "maxN":1, "help":"div <pitch>"},
'I':{ "func":"set_pwm_div", "minN":2, "maxN":2, "help":"pwm div <pitch> <div> div:2=2,3=4,4=8,(5)=16 1us,6=32,7=64,8=128,9=256,10=512 32us, 11=1024,12=2048,13=4096,14=8192,15=16384"}, 'W':{ "func":"write_table", "minN":1, "maxN":1, "help":"write_table <pitch>"},
'i':{ "func":"get_pwm_div", "minN":1, "maxN":1, "help":"pwm div <pitch>"}, 'N':{ "func":"make_note", "minN":3, "maxN":3, "help":"note <pitch> <atkUs> <durMs>"},
'W':{ "func":"write_table", "minN":1, "maxN":1, "help":"write_table <pitch>"}, 'S':{ "func":"make_seq", "minN":5, "maxN":5, "help":"seq <pitch> <atkUs> <durMs> <deltaUs> <note_count>"},
'N':{ "func":"make_note", "minN":3, "maxN":3, "help":"note <pitch> <atkUs> <durMs>"}, 'L':{ "func":"set_log_level","minN":1, "maxN":1, "help":"log <level> (0-1)."}
'S':{ "func":"make_seq", "minN":5, "maxN":5, "help":"seq <pitch> <atkUs> <durMs> <deltaUs> <note_count>"},
'L':{ "func":"set_log_level", "minN":1, "maxN":1, "help":"log <level> (0-1)."}
} }
def _help( self, _=None ): def _help( self, _=None ):
@ -42,8 +40,8 @@ class PicadaeShell:
def _write( self, argL ): def _write( self, argL ):
return self.p.write(argL[0], argL[1], argL[2:]) return self.p.write(argL[0], argL[1], argL[2:])
def _read( self, i2c_addr, src_id, reg_addr, byteN ): def _read( self, argL ):
return self.p.block_on_picadae_read(i2c_addr, src_id, reg_addr, byteN) return self.p.block_on_picadae_read(argL[0], argL[1], argL[2], argL[3])
def _syntaxError( self, msg ): def _syntaxError( self, msg ):
print("Syntax Error: " + msg ) print("Syntax Error: " + msg )

View File

@ -44,9 +44,8 @@ enum
kNoteOff_Op = 3, // Turn off note 5 kNoteOff_Op = 3, // Turn off note 5
kSetReadAddr_Op = 4, // Set a read addr. 6 {<src>} {<addr>} } src: 0=reg 1=table 2=eeprom kSetReadAddr_Op = 4, // Set a read addr. 6 {<src>} {<addr>} } src: 0=reg 1=table 2=eeprom
kWrite_Op = 5, // Set write 7 {<addrfl|src> {addr} {<value0> ... {<valueN>}} addrFl:0x80 src: 4=reg 5=table 6=eeprom kWrite_Op = 5, // Set write 7 {<addrfl|src> {addr} {<value0> ... {<valueN>}} addrFl:0x80 src: 4=reg 5=table 6=eeprom
kWriteTable_Op = 6, // Write table to EEprom 9 kWriteTable_Op = 6, // Write table to EEprom 9
kHoldDelay_Op = 7, // Set hold delay {<coarse> {<fine>}} kInvalid_Op = 7 //
kInvalid_Op = 8 //
}; };
@ -73,10 +72,6 @@ enum
kState_idx = 14, // 1=attk 2=hold kState_idx = 14, // 1=attk 2=hold
kError_Code_idx = 15, // Error Code kError_Code_idx = 15, // Error Code
kMax_Coarse_Tmr_idx = 16, // Max. allowable coarse timer value kMax_Coarse_Tmr_idx = 16, // Max. allowable coarse timer value
kDelay_Coarse_idx = 17, // (17,18)=2000 (0,6)=100
kDelay_Fine_idx = 18,
kMax_idx kMax_idx
}; };
@ -104,16 +99,12 @@ volatile uint8_t ctl_regs[] =
4, // 10 (1-5) 4=16us per tick 4, // 10 (1-5) 4=16us per tick
127, // 11 (0-255) Pwm Duty cycle 127, // 11 (0-255) Pwm Duty cycle
255, // 12 (0-255) Pwm Frequency (123 Hz) 254, // 12 (0-255) Pwm Frequency (123 Hz)
5, // 13 (0-15) Pwm clock div 10, // 13 (0-15) Pwm clock div
0, // 14 state flags 1=attk 2=hold (read/only) 0, // 14 state flags 1=attk 2=hold (read/only)
0, // 15 (0-255) Error bit field 0, // 15 (0-255) Error bit field
14, // 16 (0-255) Max allowable coarse timer count 14, // 16 (0-255) Max allowable coarse timer count
0, // 17 (0-255) Hold coarse delay
6 // 18 (0-255) Hold fine delay 0,6=100us 0,124=2000us w/ 16us Tmr0 tick
}; };
// These registers are saved to Eeprom // These registers are saved to Eeprom
@ -217,34 +208,6 @@ volatile uint8_t hold_state = 0; // state=0 hold should not be set, state=1 hol
#define clear_hold() PORTB &= ~(_BV(HOLD_PIN)) #define clear_hold() PORTB &= ~(_BV(HOLD_PIN))
#define set_hold() PORTB |= _BV(HOLD_PIN) #define set_hold() PORTB |= _BV(HOLD_PIN)
void hold_begin()
{
hold_state = 1;
// Reset the PWM counter to to OCR1C (PWM TOP) so that it immediately triggers
// set_hold() and latches any new value for OCR1B (See: 12.2.2 Timer/Counter1 in PWM Mode)
// If this is not done and OCR1B was modified the first pulse will have the incorrect length.
TCNT1 = ctl_regs[kPwm_Freq_idx];
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // PWM interupt Enable interrupts
TCCR1 |= ctl_regs[ kPwm_Div_idx]; // 32us period (512 divider) prescaler
GTCCR |= _BV(PSR1); // Force the pre-scale to be latched by setting PSR1
}
void hold_end()
{
clear_hold();
TIMSK &= ~_BV(OCIE0A); // Clear timer interrupt (shouldn't be necessary but doesn't hurt on during note-off message)
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // PWM interupt disable interrupts
TCCR1 = 0; // Stop the PWM timer by setting the pre-scale to 0
GTCCR |= _BV(PSR1); // Force the pre-scale to be latched by setting PSR1
hold_state = 0;
}
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state. // Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
void tmr0_reset() void tmr0_reset()
{ {
@ -253,11 +216,7 @@ void tmr0_reset()
PORTB |= _BV(ATTK_PIN); // set the attack pin PORTB |= _BV(ATTK_PIN); // set the attack pin
clear_hold(); // clear the hold pin clear_hold(); // clear the hold pin
hold_state = 0; hold_state = 0;
tmr0_state = 1;
OCR0A = 0xff;
/*
// if a coarse count exists then go into coarse mode // if a coarse count exists then go into coarse mode
if( ctl_regs[kTmr_Coarse_idx] > 0 ) if( ctl_regs[kTmr_Coarse_idx] > 0 )
{ {
@ -269,7 +228,6 @@ void tmr0_reset()
tmr0_state = 2; tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx]; OCR0A = ctl_regs[kTmr_Fine_idx];
} }
*/
TCNT0 = 0; TCNT0 = 0;
TIMSK |= _BV(OCIE0A); // enable the timer interrupt TIMSK |= _BV(OCIE0A); // enable the timer interrupt
@ -279,50 +237,32 @@ ISR(TIMER0_COMPA_vect)
{ {
switch( tmr0_state ) switch( tmr0_state )
{ {
case 0: // timer disabled case 0:
// timer is disabled
break; break;
case 1: // attack coarse mode case 1:
// Note: the '+1' here is necessary to absorb an interrupt which is occurring // coarse mode
// for an unknown reason. It must have something to do with resetting the if( ++tmr0_coarse_cur >= ctl_regs[kTmr_Coarse_idx] )
// OCIE0A interrupt because it doesn't occur on the hold delay coarse timing.
if( ++tmr0_coarse_cur >= ctl_regs[kTmr_Coarse_idx]+1 )
{ {
tmr0_state = 2; tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx]; OCR0A = ctl_regs[kTmr_Fine_idx];
} }
break; break;
case 2: // attack fine mode case 2:
// fine mode
// This marks the end of a timer period
clear_attack(); clear_attack();
// if a coarse delay count exists then go into coarse mode TCNT1 = 0; // reset the PWM counter to 0
if( ctl_regs[kDelay_Coarse_idx] > 0 ) hold_state = 1; // enable the hold output
{ TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // PWM interupt Enable interrupts
tmr0_state = 3; TIMSK &= ~_BV(OCIE0A); // clear timer interrupt
tmr0_coarse_cur = 0;
OCR0A = 0xff;
}
else // otherwise go into fine mode
{
tmr0_state = 4;
OCR0A = ctl_regs[kDelay_Fine_idx];
}
break;
case 3: // coarse hold delay
if( ++tmr0_coarse_cur >= ctl_regs[kDelay_Coarse_idx] )
{
tmr0_state = 4;
OCR0A = ctl_regs[kDelay_Fine_idx];
}
break;
case 4: // hold delay end break;
TIMSK &= ~_BV(OCIE0A); // clear timer interrupt
tmr0_state = 0;
hold_begin();
break;
} }
} }
@ -330,11 +270,9 @@ ISR(TIMER0_COMPA_vect)
void tmr0_init() void tmr0_init()
{ {
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF
TCCR0A = 0; // Set the timer control registers to their default value
TCCR0B = 0;
TCCR0A |= 0x02; // CTC mode TCCR0A |= 0x02; // CTC mode
TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler
GTCCR |= _BV(PSR0); // Trigger the pre-scaler to be reset to the selected value GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
} }
@ -359,24 +297,27 @@ void pwm1_update()
// At this point TCNT1 is reset to 0, new OCR1B values are latched from temp. loctaion to OCR1B // At this point TCNT1 is reset to 0, new OCR1B values are latched from temp. loctaion to OCR1B
ISR(TIMER1_OVF_vect) ISR(TIMER1_OVF_vect)
{ {
set_hold(); clear_hold();
} }
// Called when TCNT1 == OCR1B // Called when TCNT1 == OCR1B
ISR(TIMER1_COMPB_vect) ISR(TIMER1_COMPB_vect)
{ {
clear_hold(); if(hold_state)
set_hold();
} }
void pwm1_init() void pwm1_init()
{ {
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
DDRB |= _BV(HOLD_DIR); // setup PB3 as output DDRB |= _BV(HOLD_DIR); // setup PB3 as output
TCCR1 = 0; // Set the control registers to their default TCCR1 |= ctl_regs[ kPwm_Div_idx]; // 32us period (512 divider) prescaler
GTCCR = 0;
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
pwm1_update(); pwm1_update();
} }
@ -521,6 +462,14 @@ void on_receive( uint8_t byteN )
for(i=0; i<stack_idx && i<3; ++i) for(i=0; i<stack_idx && i<3; ++i)
ctl_regs[ kPwm_Duty_idx + i ] = stack[i]; ctl_regs[ kPwm_Duty_idx + i ] = stack[i];
// if the PWM prescaler was changed
if( i == 3 )
{
cli();
pwm1_init();
sei();
}
pwm1_update(); pwm1_update();
break; break;
@ -547,7 +496,9 @@ void on_receive( uint8_t byteN )
break; break;
case kNoteOff_Op: case kNoteOff_Op:
hold_end(); TIMSK &= ~_BV(OCIE0A); // clear timer interrupt (shouldn't be necessary)
//TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // PWM interupt disable interrupts
hold_state = 0;
break; break;
case kSetReadAddr_Op: case kSetReadAddr_Op:
@ -567,11 +518,6 @@ void on_receive( uint8_t byteN )
case kWriteTable_Op: case kWriteTable_Op:
write_table(); write_table();
break; break;
case kHoldDelay_Op:
for(i=0; i<stack_idx && i<2; ++i)
ctl_regs[ kDelay_Coarse_idx + i ] = stack[i];
} }
} }