picadae_cmd.py : changed serial output to show all received data in integer format.

ctrl/main.c : write commands now send as many data bytes as received rather than just 2.
tiny/main.c : Added timer0 and PCM1 options. Added table and EEPROM reading/writing.
tiny/Makefile: Enabled 'brown-out-detection'.
This commit is contained in:
kevin.larke 2019-07-20 19:25:06 -04:00
parent 61758bb9de
commit ffd46bf3b6
4 changed files with 435 additions and 100 deletions

View File

@ -190,6 +190,7 @@ class App:
coarse = int(value/(32*254))
fine = int((value - coarse*32*254)/32)
print(coarse,fine)
dataL = [ coarse, fine ]
elif opcode == 'd':
@ -272,7 +273,6 @@ class App:
op_byteN = len(dataL)
# form the command into a byte array
cmd_bV = bytearray( [ ord(op_code), i2c_addr, reg_addr, op_byteN ] + dataL )
@ -293,7 +293,7 @@ class App:
if (i):
s = sys.stdin.readline().strip()
if s == 'quit':
if s == 'quit' or s == 'q':
break
cmd_bV,err_msg = self.parse_cmd(s)
@ -310,7 +310,11 @@ class App:
# if a serial msg was received
if msg is not None and msg[0] == DATA_MSG:
print("ser:",msg[1],int(msg[1][0]))
str = ""
for i in range(len(msg[1])):
str += "{} ".format(int(msg[1][i]))
print("ser:",str)
self.serialProc.quit()

View File

@ -20,7 +20,7 @@ volatile int ser_buf_i_idx = 0; // receive buffer input index
int ser_buf_o_idx = 0; // receive buffer output index
// Receive buffer
char buf[ SER_BUF_N ];
char ser_buf[ SER_BUF_N ];
void uart_init(void)
@ -105,7 +105,7 @@ void i2c_init()
ISR(USART_RX_vect)
{
// receive the incoming byte
buf[ ser_buf_i_idx ] = uart_getchar();
ser_buf[ ser_buf_i_idx ] = uart_getchar();
// advance the buffer input index
ser_buf_i_idx = (ser_buf_i_idx + 1) % SER_BUF_N;
@ -141,13 +141,16 @@ int main (void)
const uint8_t kWaitFl = 1;
const uint8_t kSendStopFl = 1;
const uint8_t kNoSendStopFl = 0;
const uint8_t data_bufN = 0xff;
char c;
uint8_t state = kWait_for_cmd;
char cmd;
uint8_t i2c_addr;
uint8_t dev_reg_addr;
uint8_t op_byte_cnt;
uint8_t state = kWait_for_cmd; // parser state
char cmd; // 'r' or 'w'
uint8_t i2c_addr; // remote i2c address
uint8_t dev_reg_addr; // remote device register address
uint8_t op_byte_cnt; // count of data bytes to send or recv
uint8_t data_buf[ data_bufN ]; // hold data during parsing
uint8_t data_buf_idx = 0; // next avail slot in the data buffer
cli(); // mask all interupts
@ -173,14 +176,14 @@ int main (void)
if( ser_buf_o_idx != ser_buf_i_idx )
{
// get the waiting byte
c = buf[ser_buf_o_idx];
c = ser_buf[ser_buf_o_idx];
// advance the buffer output index
ser_buf_o_idx = (ser_buf_o_idx+1) % SER_BUF_N;
// Serial Protocol
// 'r', reg-idx, cnt, -> i2c_read_from()
// 'w', reg-idx, cnt, value0, ... valueN -> i2c_xmit()
// 'r', i2c-addr, reg-idx, cnt, -> i2c_read_from()
// 'w', i2c-addr, reg-idx, cnt, value0, ... valueN -> i2c_xmit()
switch(state)
{
@ -191,7 +194,7 @@ int main (void)
state = kWait_for_i2c;
}
else
uart_putchar('E');
uart_putchar('E'); // indicate a protocol error
break;
case kWait_for_i2c:
@ -215,16 +218,30 @@ int main (void)
else
{
state = kWait_for_value;
data_buf[0] = dev_reg_addr; // make 'dev_reg_addr' the first data value to write
data_buf_idx = 1; //
op_byte_cnt += 1; // incr op_byte_cnt to account for 'dev_reg_addr' as first byte
}
break;
case kWait_for_value:
if( data_buf_idx >= data_bufN )
{
uint8_t buf[] = { dev_reg_addr, c };
i2c_xmit( I2C_REMOTE_ADDR, buf, 2, kSendStopFl);
uart_putchar('F'); // indicate a buffer overrun
state = kWait_for_cmd;
}
else
{
data_buf[ data_buf_idx++ ] = c;
if(data_buf_idx == op_byte_cnt )
{
i2c_xmit( I2C_REMOTE_ADDR, data_buf, op_byte_cnt, kSendStopFl);
state = kWait_for_cmd;
}
}
break;
}

View File

@ -22,7 +22,7 @@ all:
$(OBJ2HEX) -R .eeprom -O ihex $(TARGET) $(TARGET).hex
burn:
$(AVRDUDE) -p $(MCU) -P $(TTY) -C/etc/avrdude/avrdude.conf -v -c avrisp -b 19200 -U flash:w:$(TARGET).hex -U lfuse:w:0xe2:m -U hfuse:w:0xdf:m -U efuse:w:0xff:m
$(AVRDUDE) -p $(MCU) -P $(TTY) -C/etc/avrdude/avrdude.conf -v -c avrisp -b 19200 -U flash:w:$(TARGET).hex -U lfuse:w:0xe2:m -U hfuse:w:0xdd:m -U efuse:w:0xff:m
clean:
rm -f *.hex *.obj *.o

View File

@ -1,3 +1,15 @@
/*
AT TINY 85
+--\/--+
RESET _| 1 8 |_ +5V
~OC1B HOLD DDB3 _| 2 7 |_ SCL
OC1B ONSET DDB4 _| 3 6 |_ DDB1 LED
GND _| 4 5 |_ SDA
+------+
* = Serial and/or programming pins on Arduino as ISP
*/
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
#define F_CPU 8000000L
#include <stdio.h>
@ -7,100 +19,226 @@
#include "usiTwiSlave.h"
#define I2C_SLAVE_ADDRESS 0x8 // the 7-bit address (remember to change this when adapting this example)
enum
{
kCS13_10_idx = 0, // Timer 1 Prescalar (CS13,CS12,CS11,CS10) from Table 12-5 pg 89 (0-15) prescaler = pow(2,val-1), 0=stop,1=1,2=2,3=4,4=8,....14=8192,15=16384 pre_scaled_hz = clock_hz/value
kTmr0_Coarse_idx = 1, // count of times timer0 count to 255 before OCR1C is set to Tmr0_Fine
kTmr0_Fine_idx = 2, // OCR1C timer match value
kPWM_Duty_idx = 3, //
kPWM_Freq_idx = 4, // 1-4 = clock divider=1=1,2=8,3=64,4=256,5=1024
kTmr0_Prescale_idx = 0, // Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024
kTmr0_Coarse_idx = 1, //
kTmr0_Fine_idx = 2, //
kPWM0_Duty_idx = 3, //
kPWM0_Freq_idx = 4, // 1-4 = clock divider=1=1,2=8,3=64,4=256,5=1024
kCS13_10_idx = 5, // Timer 1 Prescalar (CS13,CS12,CS11,CS10) from Table 12-5 pg 89 (0-15) prescaler = pow(2,val-1), 0=stop,1=1,2=2,3=4,4=8,....14=8192,15=16384 pre_scaled_hz = clock_hz/value
kTmr1_Coarse_idx = 6, // count of times timer0 count to 255 before OCR1C is set to Tmr0_Fine
kTmr1_Fine_idx = 7, // OCR1C timer match value
kPWM1_Duty_idx = 8, //
kPWM1_Freq_idx = 9, //
kTable_Addr_idx = 10, // Next table address to read/write
kTable_Coarse_idx = 11, // Next table coarse value to read/write
kTable_Fine_idx = 12, // Next table fine value to read/write
kMax_idx
};
volatile uint8_t ctl_regs[] =
{
9, // 0 9=32 us period w/ 8Mhz clock (timer tick rate)
123, // 1 (0-255) Tmr0_Coarse count of times timer count to 255 before loading Tmr0_Minor for final count.
8, // 2 (0-254) Tmr0_Fine OCR1C value on final phase before triggering timer
4, // 0 (1-5) 4=32us per tick
123, // 1 (0-255) Timer 0 Coarse Value
8, // 2 (0-255) Timer 0 Fine Value
127, // 3 (0-255) Duty cycle
4, // 4 (1-4) PWM Frequency (clock pre-scaler)
9, // 5 9=32 us period w/ 8Mhz clock (timer tick rate)
123, // 6 (0-255) Tmr1_Coarse count of times timer count to 255 before loading Tmr0_Minor for final count.
8, // 7 (0-254) Tmr1_Fine OCR1C value on final phase before triggering timer
127, // 8 (0-255) PWM1 Duty cycle
254, // 9 (0-255) PWM1 Frequency (123 hz)
0, // 10 (0-127) Next table addr to read/write
0, // 11 (0-255) Next table coarse value to write
0, // 12 (0-255) Next table fine value to write
};
// Tracks the current register pointer position
volatile uint8_t reg_position = 0;
const uint8_t reg_size = sizeof(ctl_regs);
#define tableN 256
uint8_t table[ tableN ];
volatile uint8_t tmr_state = 0;
volatile uint8_t tmr_coarse_cur = 0;
void tmr_reset()
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// EEPROM
//
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
{
if( ctl_regs[kTmr0_Coarse_idx] > 0 )
{
tmr_state = 1;
OCR1C = 254;
}
else
{
tmr_state = 2;
OCR1C = ctl_regs[kTmr0_Fine_idx];
}
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
tmr_coarse_cur = 0;
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
EEAR = ucAddress; // Set up address and data registers
EEDR = ucData;
EECR |= (1<<EEMPE); // Write logical one to EEMPE
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
}
ISR(TIMER1_OVF_vect)
uint8_t EEPROM_read(uint8_t ucAddress)
{
switch( tmr_state )
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EEAR = ucAddress; // Set up address register
EECR |= (1<<EERE); // Start eeprom read by writing EERE
return EEDR; // Return data from data register
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Read/Write table
//
// To write table value 42 to 127 (coarse) 64 (fine)
//
// w 8 kTable_Addr_idx 42
// w 8 kTable_Coarse_idx 127
// w 8 kTable_fine_idx 64
//
// TO read table value 42
// w 8 kTable_Addr_idx 42
// r 8 kTable_Coarse_idx -> 127
// r 8 kTable_Fine_idx -> 64
#define eeprom_addr( addr ) (kMax_idx + (addr))
void table_write_cur_value( void )
{
uint8_t tbl_addr = ctl_regs[ kTable_Addr_idx ] * 2;
table[ tbl_addr+0 ] = ctl_regs[ kTable_Coarse_idx ];
table[ tbl_addr+1 ] = ctl_regs[ kTable_Fine_idx ];
EEPROM_write( eeprom_addr( tbl_addr+0 ), ctl_regs[ kTable_Coarse_idx ] );
EEPROM_write( eeprom_addr( tbl_addr+1 ), ctl_regs[ kTable_Fine_idx ]);
}
void table_load( void )
{
uint8_t i = 0;
for(; i<128; ++i)
{
uint8_t tbl_addr = i*2;
table[tbl_addr+0] = EEPROM_read( eeprom_addr(tbl_addr+0) );
table[tbl_addr+1] = EEPROM_read( eeprom_addr(tbl_addr+1) );
}
}
void restore_memory_from_eeprom( void )
{
/*
uint8_t i;
for(i=0; i<kMax_idx; ++i)
{
ctl_regs[i] = EEPROM_read( eeprom_addr( i ) );
}
*/
table_load();
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Timer0
//
volatile uint8_t tmr0_state = 0; // 0=disabled 1=coarse mode, 2=fine mode
volatile uint8_t tmr0_coarse_cur = 0;
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
void tmr0_reset()
{
// if a coarse count exists then go into coarse mode
if( ctl_regs[kTmr0_Coarse_idx] > 0 )
{
tmr0_state = 1;
OCR0A = 0xff;
}
else // otherwise go into fine mode
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr0_Fine_idx];
}
tmr0_coarse_cur = 0;
}
ISR(TIMER0_COMPA_vect)
{
switch( tmr0_state )
{
case 0:
// disabled
break;
case 1:
if( ++tmr_coarse_cur >= ctl_regs[kTmr0_Coarse_idx] )
// coarse mode
if( ++tmr0_coarse_cur >= ctl_regs[kTmr0_Coarse_idx] )
{
tmr_state = 2;
OCR1C = ctl_regs[kTmr0_Fine_idx];
tmr0_state = 2;
OCR0A = ctl_regs[kTmr0_Fine_idx];
}
break;
case 2:
PINB = _BV(PINB4) + _BV(PINB1); // writes to PINB toggle the pins
// fine mode
PINB = _BV(PINB4); // writes to PINB toggle the pins
tmr_reset();
tmr0_reset(); // restart the timer
break;
}
}
void timer1_init()
void timer0_init()
{
TIMSK &= ~_BV(TOIE1); // Disable interrupt TIMER1_OVF
OCR1A = 255; // Set to anything greater than OCR1C (the counter never gets here.)
TCCR1 |= _BV(CTC1); // Reset TCNT1 to 0 when TCNT1==OCR1C
TCCR1 |= _BV(PWM1A); // Enable PWM A
TCCR1 |= ctl_regs[kCS13_10_idx] & 0x0f; //
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF
TCCR0A |= 0x02; // CTC mode
TCCR0B |= ctl_regs[kTmr0_Prescale_idx]; // set the prescaler
tmr_reset();
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
TIMSK |= _BV(TOIE1); // Enable interrupt TIMER1_OVF
tmr0_reset(); // set the timers starting state
TIMSK |= _BV(OCIE0A); // Enable interrupt TIMER1_OVF
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// PWM (Timer0)
//
void pwm0_update()
{
OCR0B = ctl_regs[kPWM_Duty_idx]; // 50% duty cycle
TCCR0B |= ctl_regs[kPWM_Freq_idx]; // PWM frequency pre-scaler
OCR0B = ctl_regs[kPWM0_Duty_idx]; // 50% duty cycle
TCCR0B |= ctl_regs[kPWM0_Freq_idx]; // PWM frequency pre-scaler
}
void pwm0_init()
{
//WGM[1:0] = 3 (TOP=255)
// WGM[1:0] = 3 (TOP=255)
// OCR0B = duty cycle (0-100%)
// COM0A[1:0] = 2 non-inverted
//
@ -108,22 +246,170 @@ void pwm0_init()
TCCR0A |= 0x20 + 3; // 0x20=non-inverting 3=WGM bits Fast-PWM mode (0=Bot 255=Top)
TCCR0B |= 0x00 + 4; // 3=256 pre-scaler 122Hz=1Mghz/(v*256) where v=64
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
pwm0_update();
DDRB |= _BV(DDB1);
DDRB |= _BV(DDB1); // set direction on
}
/**
* This is called for each read request we receive, never put more
* than one byte of data (with TinyWireS.send) to the send-buffer when
* using this callback
*/
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Timer1
//
volatile uint8_t tmr1_state = 0;
volatile uint8_t tmr1_coarse_cur = 0;
static uint8_t tmr1_init_fl = 0;
void tmr1_reset()
{
if( ctl_regs[kTmr1_Coarse_idx] > 0 )
{
tmr1_state = 1;
OCR1C = 254;
}
else
{
tmr1_state = 2;
OCR1C = ctl_regs[kTmr1_Fine_idx];
}
tmr1_coarse_cur = 0;
}
ISR(TIMER1_OVF_vect)
{
if( !tmr1_init_fl )
{
PORTB |= _BV(PINB3); // set PWM pin
}
else
{
switch( tmr1_state )
{
case 0:
// disabled
break;
case 1:
// coarse mode
if( ++tmr1_coarse_cur >= ctl_regs[kTmr1_Coarse_idx] )
{
tmr1_state = 2;
OCR1C = ctl_regs[kTmr1_Fine_idx];
}
break;
case 2:
// fine mode
PINB = _BV(PINB4); // writes to PINB toggle the pins
tmr1_reset();
break;
}
}
}
void timer1_init()
{
TIMSK &= ~_BV(TOIE1); // Disable interrupt TIMER1_OVF
OCR1A = 255; // Set to anything greater than OCR1C (the counter never gets here.)
TCCR1 |= _BV(CTC1); // Reset TCNT1 to 0 when TCNT1==OCR1C
TCCR1 |= _BV(PWM1A); // Enable PWM A (to generate overflow interrupts)
TCCR1 |= ctl_regs[kCS13_10_idx] & 0x0f; //
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
tmr1_reset();
tmr1_init_fl = 1;
TIMSK |= _BV(TOIE1); // Enable interrupt TIMER1_OVF
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// PWM1
//
// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B but this code
// but since these pins are not available this code uses
// ISR's to redirect the output to PIN3
void pwm1_update()
{
OCR1B = ctl_regs[kPWM1_Duty_idx]; // control duty cycle
OCR1C = ctl_regs[kPWM1_Freq_idx]; // PWM frequency pre-scaler
}
ISR(TIMER1_COMPB_vect)
{
PORTB &= ~(_BV(PINB3)); // clear PWM pin
}
void pwm1_init()
{
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
DDRB |= _BV(DDB3); // setup PB3 as output
// set on TCNT1 == 0 // happens when TCNT1 matches OCR1C
// clr on OCR1B == TCNT // happens when TCNT1 matches OCR1B
// // COM1B1=1 COM1B0=0 (enable output on ~OC1B)
TCCR1 |= 9; // 32us period (256 divider) prescaler
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
pwm1_update();
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // Enable interrupts
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Tracks the current register pointer position
volatile uint8_t reg_position = 0;
const uint8_t reg_size = sizeof(ctl_regs);
//
// Read Request Handler
//
// This is called for each read request we receive, never put more
// than one byte of data (with TinyWireS.send) to the send-buffer when
// using this callback
//
void on_request()
{
// read and transmit the requestd position
usiTwiTransmitByte(ctl_regs[reg_position]);
uint8_t val = 0;
switch( reg_position )
{
case kTable_Coarse_idx:
val = table[ ctl_regs[kTable_Addr_idx]*2 + 0 ];
break;
case kTable_Fine_idx:
val = table[ ctl_regs[kTable_Addr_idx]*2 + 1 ];
break;
default:
// read and transmit the requestd position
val = ctl_regs[reg_position];
}
usiTwiTransmitByte(val);
// Increment the reg position on each read, and loop back to zero
reg_position++;
@ -135,14 +421,14 @@ void on_request()
}
/**
* The I2C data received -handler
*
* This needs to complete before the next incoming transaction (start,
* data, restart/stop) on the bus does so be quick, set flags for long
* running tasks to be called from the mainloop instead of running
* them directly,
*/
//
// The I2C data received -handler
//
// This needs to complete before the next incoming transaction (start,
// data, restart/stop) on the bus does so be quick, set flags for long
// running tasks to be called from the mainloop instead of running
// them directly,
//
void on_receive( uint8_t byteN )
{
@ -174,22 +460,46 @@ void on_receive( uint8_t byteN )
// pointer is now pointing to the first byte to write to
while(byteN--)
{
// write the value
ctl_regs[reg_position] = usiTwiReceiveByte();
if( kCS13_10_idx <= reg_position && reg_position <= kTmr0_Fine_idx )
timer1_init();
// Set timer 1
if( kTmr0_Prescale_idx <= reg_position && reg_position <= kTmr0_Fine_idx )
{ timer0_init(); }
else
if( kPWM_Duty_idx <= reg_position && reg_position <= kPWM_Freq_idx )
pwm0_update();
// Set PWM 0
if( kPWM0_Duty_idx <= reg_position && reg_position <= kPWM0_Freq_idx )
{ pwm0_update(); }
else
// Set timer 1
if( kCS13_10_idx <= reg_position && reg_position <= kTmr1_Fine_idx )
{ timer1_init(); }
else
// Set PWM 1
if( kPWM1_Duty_idx <= reg_position && reg_position <= kPWM1_Freq_idx )
{ pwm1_update(); }
else
// Write table
if( reg_position == kTable_Fine_idx )
{ table_write_cur_value(); }
reg_position++;
if (reg_position >= reg_size)
{
reg_position = 0;
}
}
}
@ -198,14 +508,18 @@ int main(void)
{
cli(); // mask all interupts
DDRB |= _BV(DDB4) + _BV(DDB1); // setup PB4 as output
PORTB &= ~(_BV(PINB4) + _BV(PINB1));
timer1_init();
pwm0_init();
restore_memory_from_eeprom();
DDRB |= _BV(DDB4) + _BV(DDB3) + _BV(DDB1); // setup PB4,PB3,PB1 as output
PORTB &= ~(_BV(PINB4) + _BV(PINB3) + _BV(PINB1)); // clear output pins
timer0_init();
pwm1_init();
// setup i2c library
usi_onReceiverPtr = on_receive; //on_receive;
usi_onReceiverPtr = on_receive;
usi_onRequestPtr = on_request;
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);