tiny/i2c_timer_pwm.c : Added hold delay and other changes to validate operation after logic analyzer analysis.

This commit is contained in:
kevin 2020-11-22 07:42:00 -05:00
parent 8be49f95d0
commit 78e533a61f

View File

@ -44,8 +44,9 @@ enum
kNoteOff_Op = 3, // Turn off note 5
kSetReadAddr_Op = 4, // Set a read addr. 6 {<src>} {<addr>} } src: 0=reg 1=table 2=eeprom
kWrite_Op = 5, // Set write 7 {<addrfl|src> {addr} {<value0> ... {<valueN>}} addrFl:0x80 src: 4=reg 5=table 6=eeprom
kWriteTable_Op = 6, // Write table to EEprom 9
kInvalid_Op = 7 //
kWriteTable_Op = 6, // Write table to EEprom 9
kHoldDelay_Op = 7, // Set hold delay {<coarse> {<fine>}}
kInvalid_Op = 8 //
};
@ -72,6 +73,10 @@ enum
kState_idx = 14, // 1=attk 2=hold
kError_Code_idx = 15, // Error Code
kMax_Coarse_Tmr_idx = 16, // Max. allowable coarse timer value
kDelay_Coarse_idx = 17, // (17,18)=2000 (0,6)=100
kDelay_Fine_idx = 18,
kMax_idx
};
@ -99,12 +104,16 @@ volatile uint8_t ctl_regs[] =
4, // 10 (1-5) 4=16us per tick
127, // 11 (0-255) Pwm Duty cycle
254, // 12 (0-255) Pwm Frequency (123 Hz)
10, // 13 (0-15) Pwm clock div
255, // 12 (0-255) Pwm Frequency (123 Hz)
5, // 13 (0-15) Pwm clock div
0, // 14 state flags 1=attk 2=hold (read/only)
0, // 15 (0-255) Error bit field
14, // 16 (0-255) Max allowable coarse timer count
0, // 17 (0-255) Hold coarse delay
6 // 18 (0-255) Hold fine delay 0,6=100us 0,124=2000us w/ 16us Tmr0 tick
};
// These registers are saved to Eeprom
@ -208,6 +217,34 @@ volatile uint8_t hold_state = 0; // state=0 hold should not be set, state=1 hol
#define clear_hold() PORTB &= ~(_BV(HOLD_PIN))
#define set_hold() PORTB |= _BV(HOLD_PIN)
void hold_begin()
{
hold_state = 1;
// Reset the PWM counter to to OCR1C (PWM TOP) so that it immediately triggers
// set_hold() and latches any new value for OCR1B (See: 12.2.2 Timer/Counter1 in PWM Mode)
// If this is not done and OCR1B was modified the first pulse will have the incorrect length.
TCNT1 = ctl_regs[kPwm_Freq_idx];
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // PWM interupt Enable interrupts
TCCR1 |= ctl_regs[ kPwm_Div_idx]; // 32us period (512 divider) prescaler
GTCCR |= _BV(PSR1); // Force the pre-scale to be latched by setting PSR1
}
void hold_end()
{
clear_hold();
TIMSK &= ~_BV(OCIE0A); // Clear timer interrupt (shouldn't be necessary but doesn't hurt on during note-off message)
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // PWM interupt disable interrupts
TCCR1 = 0; // Stop the PWM timer by setting the pre-scale to 0
GTCCR |= _BV(PSR1); // Force the pre-scale to be latched by setting PSR1
hold_state = 0;
}
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
void tmr0_reset()
{
@ -216,7 +253,11 @@ void tmr0_reset()
PORTB |= _BV(ATTK_PIN); // set the attack pin
clear_hold(); // clear the hold pin
hold_state = 0;
tmr0_state = 1;
OCR0A = 0xff;
/*
// if a coarse count exists then go into coarse mode
if( ctl_regs[kTmr_Coarse_idx] > 0 )
{
@ -228,6 +269,7 @@ void tmr0_reset()
tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx];
}
*/
TCNT0 = 0;
TIMSK |= _BV(OCIE0A); // enable the timer interrupt
@ -237,32 +279,50 @@ ISR(TIMER0_COMPA_vect)
{
switch( tmr0_state )
{
case 0:
// timer is disabled
case 0: // timer disabled
break;
case 1:
// coarse mode
if( ++tmr0_coarse_cur >= ctl_regs[kTmr_Coarse_idx] )
case 1: // attack coarse mode
// Note: the '+1' here is necessary to absorb an interrupt which is occurring
// for an unknown reason. It must have something to do with resetting the
// OCIE0A interrupt because it doesn't occur on the hold delay coarse timing.
if( ++tmr0_coarse_cur >= ctl_regs[kTmr_Coarse_idx]+1 )
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx];
tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx];
}
break;
case 2:
// fine mode
// This marks the end of a timer period
case 2: // attack fine mode
clear_attack();
TCNT1 = 0; // reset the PWM counter to 0
hold_state = 1; // enable the hold output
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // PWM interupt Enable interrupts
TIMSK &= ~_BV(OCIE0A); // clear timer interrupt
// if a coarse delay count exists then go into coarse mode
if( ctl_regs[kDelay_Coarse_idx] > 0 )
{
tmr0_state = 3;
tmr0_coarse_cur = 0;
OCR0A = 0xff;
}
else // otherwise go into fine mode
{
tmr0_state = 4;
OCR0A = ctl_regs[kDelay_Fine_idx];
}
break;
case 3: // coarse hold delay
if( ++tmr0_coarse_cur >= ctl_regs[kDelay_Coarse_idx] )
{
tmr0_state = 4;
OCR0A = ctl_regs[kDelay_Fine_idx];
}
break;
case 4: // hold delay end
TIMSK &= ~_BV(OCIE0A); // clear timer interrupt
tmr0_state = 0;
hold_begin();
break;
}
}
@ -270,9 +330,11 @@ ISR(TIMER0_COMPA_vect)
void tmr0_init()
{
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF
TCCR0A = 0; // Set the timer control registers to their default value
TCCR0B = 0;
TCCR0A |= 0x02; // CTC mode
TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
GTCCR |= _BV(PSR0); // Trigger the pre-scaler to be reset to the selected value
}
@ -297,27 +359,24 @@ void pwm1_update()
// At this point TCNT1 is reset to 0, new OCR1B values are latched from temp. loctaion to OCR1B
ISR(TIMER1_OVF_vect)
{
clear_hold();
set_hold();
}
// Called when TCNT1 == OCR1B
ISR(TIMER1_COMPB_vect)
{
if(hold_state)
set_hold();
clear_hold();
}
void pwm1_init()
{
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
DDRB |= _BV(HOLD_DIR); // setup PB3 as output
TCCR1 |= ctl_regs[ kPwm_Div_idx]; // 32us period (512 divider) prescaler
TCCR1 = 0; // Set the control registers to their default
GTCCR = 0;
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
pwm1_update();
}
@ -462,14 +521,6 @@ void on_receive( uint8_t byteN )
for(i=0; i<stack_idx && i<3; ++i)
ctl_regs[ kPwm_Duty_idx + i ] = stack[i];
// if the PWM prescaler was changed
if( i == 3 )
{
cli();
pwm1_init();
sei();
}
pwm1_update();
break;
@ -496,9 +547,7 @@ void on_receive( uint8_t byteN )
break;
case kNoteOff_Op:
TIMSK &= ~_BV(OCIE0A); // clear timer interrupt (shouldn't be necessary)
//TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // PWM interupt disable interrupts
hold_state = 0;
hold_end();
break;
case kSetReadAddr_Op:
@ -518,6 +567,11 @@ void on_receive( uint8_t byteN )
case kWriteTable_Op:
write_table();
break;
case kHoldDelay_Op:
for(i=0; i<stack_idx && i<2; ++i)
ctl_regs[ kDelay_Coarse_idx + i ] = stack[i];
}
}