Added earlier and extended versions of picadae/tiny/i2c_timer_pwn*.c in the folder picadae/tiny/versions

This commit is contained in:
kevin.larke 2019-09-01 13:11:21 -04:00
parent 0719427eb5
commit 766dc5d6a6
5 changed files with 2515 additions and 0 deletions

View File

@ -0,0 +1,394 @@
/*
AT TINY 85
+--\/--+
RESET _| 1 8 |_ +5V
HOLD DDB3 _| 2 7 |_ SCL
ONSET DDB4 _| 3 6 |_ DDB1 LED
GND _| 4 5 |_ SDA
+------+
* = Serial and/or programming pins on Arduino as ISP
*/
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
#define F_CPU 8000000L
#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include "usiTwiSlave.h"
#define I2C_SLAVE_ADDRESS 0x8 // the 7-bit address (remember to change this when adapting this example)
enum
{
kCS13_10_idx = 0, // Timer 1 Prescalar (CS13,CS12,CS11,CS10) from Table 12-5 pg 89 (0-15) prescaler = pow(2,val-1), 0=stop,1=1,2=2,3=4,4=8,....14=8192,15=16384 pre_scaled_hz = clock_hz/value
kTmr0_Coarse_idx = 1, // count of times timer0 count to 255 before OCR1C is set to Tmr0_Fine
kTmr0_Fine_idx = 2, // OCR1C timer match value
kPWM_Duty_idx = 3, //
kPWM_Freq_idx = 4, // 1-4 = clock divider=1=1,2=8,3=64,4=256,5=1024
kTable_Addr_idx = 5, // Next table address to write
kTable_Coarse_idx= 6, // Next table coarse value to write
kTable_Fine_idx = 7, // Next table fine value to write
kMax_idx
};
volatile uint8_t ctl_regs[] =
{
9, // 0 9=32 us period w/ 8Mhz clock (timer tick rate)
123, // 1 (0-255) Tmr0_Coarse count of times timer count to 255 before loading Tmr0_Minor for final count.
8, // 2 (0-254) Tmr0_Fine OCR1C value on final phase before triggering timer
127, // 3 (0-255) Duty cycle
4, // 4 (1-4) PWM Frequency (clock pre-scaler)
0, // 7 (0-127) Next table addr to read/write
0, // 5 (0-255) Next table coarse value to write
0, // 6 (0-255) Next table fine value to write
};
#define tableN 256
uint8_t table[ tableN ];
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// EEPROM
//
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
EEAR = ucAddress; // Set up address and data registers
EEDR = ucData;
EECR |= (1<<EEMPE); // Write logical one to EEMPE
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
}
uint8_t EEPROM_read(uint8_t ucAddress)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EEAR = ucAddress; // Set up address register
EECR |= (1<<EERE); // Start eeprom read by writing EERE
return EEDR; // Return data from data register
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Read/Write table
//
#define eeprom_addr( addr ) (kMax_idx + (addr))
void table_write( void )
{
uint8_t addr = ctl_regs[ kTable_Addr_idx ] * 2;
table[ addr+0 ] = ctl_regs[ kTable_Coarse_idx ];
table[ addr+1 ] = ctl_regs[ kTable_Fine_idx ];
EEPROM_write( eeprom_addr( addr+0 ), ctl_regs[ kTable_Coarse_idx ] );
EEPROM_write( eeprom_addr( addr+1 ), ctl_regs[ kTable_Fine_idx ]);
}
void table_load( void )
{
uint8_t i = 0;
for(; i<128; ++i)
{
uint8_t addr = i*2;
table[addr+0] = EEPROM_read( eeprom_addr(addr) );
table[addr+1] = EEPROM_read( eeprom_addr(addr) );
}
}
void restore_memory_from_eeprom( void )
{
uint8_t i;
for(i=0; i<kMax_idx; ++i)
{
ctl_regs[i] = eeprom_read( eeprom_addr( i ) );
}
table_load();
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// PWM (Timer0)
//
void pwm0_update()
{
OCR0B = ctl_regs[kPWM_Duty_idx]; // 50% duty cycle
TCCR0B |= ctl_regs[kPWM_Freq_idx]; // PWM frequency pre-scaler
}
void pwm0_init()
{
// WGM[1:0] = 3 (TOP=255)
// OCR0B = duty cycle (0-100%)
// COM0A[1:0] = 2 non-inverted
//
TCCR0A |= 0x20 + 3; // 0x20=non-inverting 3=WGM bits Fast-PWM mode (0=Bot 255=Top)
TCCR0B |= 0x00 + 4; // 3=256 pre-scaler 122Hz=1Mghz/(v*256) where v=64
pwm0_update();
DDRB |= _BV(DDB1);
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Timer1
//
volatile uint8_t tmr_state = 0;
volatile uint8_t tmr_coarse_cur = 0;
void tmr_reset()
{
if( ctl_regs[kTmr0_Coarse_idx] > 0 )
{
tmr_state = 1;
OCR1C = 254;
}
else
{
tmr_state = 2;
OCR1C = ctl_regs[kTmr0_Fine_idx];
}
tmr_coarse_cur = 0;
}
ISR(TIMER1_OVF_vect)
{
switch( tmr_state )
{
case 0:
break;
case 1:
if( ++tmr_coarse_cur >= ctl_regs[kTmr0_Coarse_idx] )
{
tmr_state = 2;
OCR1C = ctl_regs[kTmr0_Fine_idx];
}
break;
case 2:
PINB = _BV(PINB4) + _BV(PINB1); // writes to PINB toggle the pins
tmr_reset();
break;
}
}
void timer1_init()
{
TIMSK &= ~_BV(TOIE1); // Disable interrupt TIMER1_OVF
OCR1A = 255; // Set to anything greater than OCR1C (the counter never gets here.)
TCCR1 |= _BV(CTC1); // Reset TCNT1 to 0 when TCNT1==OCR1C
TCCR1 |= _BV(PWM1A); // Enable PWM A
TCCR1 |= ctl_regs[kCS13_10_idx] & 0x0f; //
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
tmr_reset();
TIMSK |= _BV(TOIE1); // Enable interrupt TIMER1_OVF
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Tracks the current register pointer position
volatile uint8_t reg_position = 0;
const uint8_t reg_size = sizeof(ctl_regs);
//
// Read Request Handler
//
// This is called for each read request we receive, never put more
// than one byte of data (with TinyWireS.send) to the send-buffer when
// using this callback
//
void on_request()
{
uint8_t val = 0;
switch( reg_position )
{
case kTable_Coarse_idx:
val = table[ reg_position*2 + 0 ];
break;
case kTable_Fine_idx:
val = table[ reg_position*2 + 1 ];
break;
default:
// read and transmit the requestd position
val = ctl_regs[reg_position];
}
usiTwiTransmitByte(val);
// Increment the reg position on each read, and loop back to zero
reg_position++;
if (reg_position >= reg_size)
{
reg_position = 0;
}
}
//
// The I2C data received -handler
//
// This needs to complete before the next incoming transaction (start,
// data, restart/stop) on the bus does so be quick, set flags for long
// running tasks to be called from the mainloop instead of running
// them directly,
//
void on_receive( uint8_t byteN )
{
if (byteN < 1)
{
// Sanity-check
return;
}
if (byteN > TWI_RX_BUFFER_SIZE)
{
// Also insane number
return;
}
// get the register index to read/write
reg_position = usiTwiReceiveByte();
byteN--;
// If only one byte was received then this was a read request
// and the buffer pointer (reg_position) is now set to return the byte
// at this location on the subsequent call to on_request() ...
if (!byteN)
{
return;
}
// ... otherwise this was a write request and the buffer
// pointer is now pointing to the first byte to write to
while(byteN--)
{
ctl_regs[reg_position] = usiTwiReceiveByte();
// Set timer
if( kCS13_10_idx <= reg_position && reg_position <= kTmr0_Fine_idx )
{ timer1_init(); }
else
// Set PWM
if( kPWM_Duty_idx <= reg_position && reg_position <= kPWM_Freq_idx )
{ pwm0_update(); }
else
// Write table
if( reg_position == kTable_Fine_idx )
{ table_write(); }
reg_position++;
if (reg_position >= reg_size)
{
reg_position = 0;
}
}
}
int main(void)
{
cli(); // mask all interupts
DDRB |= _BV(DDB4) + _BV(DDB1); // setup PB4 as output
PORTB &= ~(_BV(PINB4) + _BV(PINB1));
timer1_init();
pwm0_init();
// setup i2c library
usi_onReceiverPtr = on_receive; //on_receive;
usi_onRequestPtr = on_request;
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
sei();
PINB = _BV(PINB4); // writes to PINB toggle the pins
_delay_ms(1000);
PINB = _BV(PINB4); // writes to PINB toggle the pins
while(1)
{
//_delay_ms(1000);
if (!usi_onReceiverPtr)
{
// no onReceive callback, nothing to do...
continue;
}
if (!(USISR & ( 1 << USIPF )))
{
// Stop not detected
continue;
}
uint8_t amount = usiTwiAmountDataInReceiveBuffer();
if (amount == 0)
{
// no data in buffer
continue;
}
usi_onReceiverPtr(amount);
}
return 0;
}

View File

@ -0,0 +1,566 @@
/*
AT TINY 85
+--\/--+
RESET _| 1 8 |_ +5V
~OC1B HOLD DDB3 _| 2 7 |_ SCL
OC1B ONSET DDB4 _| 3 6 |_ DDB1 LED
GND _| 4 5 |_ SDA
+------+
* = Serial and/or programming pins on Arduino as ISP
*/
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
#define F_CPU 8000000L
#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include "usiTwiSlave.h"
#define I2C_SLAVE_ADDRESS 0x8 // the 7-bit address (remember to change this when adapting this example)
enum
{
kTmr0_Prescale_idx = 0, // Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024
kTmr0_Coarse_idx = 1, //
kTmr0_Fine_idx = 2, //
kPWM0_Duty_idx = 3, //
kPWM0_Freq_idx = 4, // 1-4 = clock divider=1=1,2=8,3=64,4=256,5=1024
kCS13_10_idx = 5, // Timer 1 Prescalar (CS13,CS12,CS11,CS10) from Table 12-5 pg 89 (0-15) prescaler = pow(2,val-1), 0=stop,1=1,2=2,3=4,4=8,....14=8192,15=16384 pre_scaled_hz = clock_hz/value
kTmr1_Coarse_idx = 6, // count of times timer0 count to 255 before OCR1C is set to Tmr0_Fine
kTmr1_Fine_idx = 7, // OCR1C timer match value
kPWM1_Duty_idx = 8, //
kPWM1_Freq_idx = 9, //
kTable_Addr_idx = 10, // Next table address to read/write
kTable_Coarse_idx = 11, // Next table coarse value to read/write
kTable_Fine_idx = 12, // Next table fine value to read/write
kMax_idx
};
volatile uint8_t ctl_regs[] =
{
4, // 0 (1-5) 4=32us per tick
123, // 1 (0-255) Timer 0 Coarse Value
8, // 2 (0-255) Timer 0 Fine Value
127, // 3 (0-255) Duty cycle
4, // 4 (1-4) PWM Frequency (clock pre-scaler)
9, // 5 9=32 us period w/ 8Mhz clock (timer tick rate)
123, // 6 (0-255) Tmr1_Coarse count of times timer count to 255 before loading Tmr0_Minor for final count.
8, // 7 (0-254) Tmr1_Fine OCR1C value on final phase before triggering timer
127, // 8 (0-255) PWM1 Duty cycle
254, // 9 (0-255) PWM1 Frequency (123 hz)
0, // 10 (0-127) Next table addr to read/write
0, // 11 (0-255) Next table coarse value to write
0, // 12 (0-255) Next table fine value to write
};
#define tableN 256
uint8_t table[ tableN ];
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// EEPROM
//
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
EEAR = ucAddress; // Set up address and data registers
EEDR = ucData;
EECR |= (1<<EEMPE); // Write logical one to EEMPE
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
}
uint8_t EEPROM_read(uint8_t ucAddress)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EEAR = ucAddress; // Set up address register
EECR |= (1<<EERE); // Start eeprom read by writing EERE
return EEDR; // Return data from data register
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Read/Write table
//
// To write table value 42 to 127 (coarse) 64 (fine)
//
// w 8 kTable_Addr_idx 42
// w 8 kTable_Coarse_idx 127
// w 8 kTable_fine_idx 64
//
// TO read table value 42
// w 8 kTable_Addr_idx 42
// r 8 kTable_Coarse_idx -> 127
// r 8 kTable_Fine_idx -> 64
#define eeprom_addr( addr ) (kMax_idx + (addr))
void table_write_cur_value( void )
{
uint8_t tbl_addr = ctl_regs[ kTable_Addr_idx ] * 2;
table[ tbl_addr+0 ] = ctl_regs[ kTable_Coarse_idx ];
table[ tbl_addr+1 ] = ctl_regs[ kTable_Fine_idx ];
EEPROM_write( eeprom_addr( tbl_addr+0 ), ctl_regs[ kTable_Coarse_idx ] );
EEPROM_write( eeprom_addr( tbl_addr+1 ), ctl_regs[ kTable_Fine_idx ]);
}
void table_load( void )
{
uint8_t i = 0;
for(; i<128; ++i)
{
uint8_t tbl_addr = i*2;
table[tbl_addr+0] = EEPROM_read( eeprom_addr(tbl_addr+0) );
table[tbl_addr+1] = EEPROM_read( eeprom_addr(tbl_addr+1) );
}
}
void restore_memory_from_eeprom( void )
{
/*
uint8_t i;
for(i=0; i<kMax_idx; ++i)
{
ctl_regs[i] = EEPROM_read( eeprom_addr( i ) );
}
*/
table_load();
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Timer0
//
volatile uint8_t tmr0_state = 0; // 0=disabled 1=coarse mode, 2=fine mode
volatile uint8_t tmr0_coarse_cur = 0;
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
void tmr0_reset()
{
// if a coarse count exists then go into coarse mode
if( ctl_regs[kTmr0_Coarse_idx] > 0 )
{
tmr0_state = 1;
OCR0A = 0xff;
}
else // otherwise go into fine mode
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr0_Fine_idx];
}
tmr0_coarse_cur = 0;
}
ISR(TIMER0_COMPA_vect)
{
switch( tmr0_state )
{
case 0:
// disabled
break;
case 1:
// coarse mode
if( ++tmr0_coarse_cur >= ctl_regs[kTmr0_Coarse_idx] )
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr0_Fine_idx];
}
break;
case 2:
// fine mode
PINB = _BV(PINB4); // writes to PINB toggle the pins
tmr0_reset(); // restart the timer
break;
}
}
void timer0_init()
{
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF
TCCR0A |= 0x02; // CTC mode
TCCR0B |= ctl_regs[kTmr0_Prescale_idx]; // set the prescaler
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
tmr0_reset(); // set the timers starting state
TIMSK |= _BV(OCIE0A); // Enable interrupt TIMER1_OVF
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// PWM (Timer0)
//
void pwm0_update()
{
OCR0B = ctl_regs[kPWM0_Duty_idx]; // 50% duty cycle
TCCR0B |= ctl_regs[kPWM0_Freq_idx]; // PWM frequency pre-scaler
}
void pwm0_init()
{
// WGM[1:0] = 3 (TOP=255)
// OCR0B = duty cycle (0-100%)
// COM0A[1:0] = 2 non-inverted
//
TCCR0A |= 0x20 + 3; // 0x20=non-inverting 3=WGM bits Fast-PWM mode (0=Bot 255=Top)
TCCR0B |= 0x00 + 4; // 3=256 pre-scaler 122Hz=1Mghz/(v*256) where v=64
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
pwm0_update();
DDRB |= _BV(DDB1); // set direction on
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Timer1
//
volatile uint8_t tmr1_state = 0;
volatile uint8_t tmr1_coarse_cur = 0;
static uint8_t tmr1_init_fl = 0;
void tmr1_reset()
{
if( ctl_regs[kTmr1_Coarse_idx] > 0 )
{
tmr1_state = 1;
OCR1C = 254;
}
else
{
tmr1_state = 2;
OCR1C = ctl_regs[kTmr1_Fine_idx];
}
tmr1_coarse_cur = 0;
}
ISR(TIMER1_OVF_vect)
{
if( !tmr1_init_fl )
{
PORTB |= _BV(PINB3); // set PWM pin
}
else
{
switch( tmr1_state )
{
case 0:
// disabled
break;
case 1:
// coarse mode
if( ++tmr1_coarse_cur >= ctl_regs[kTmr1_Coarse_idx] )
{
tmr1_state = 2;
OCR1C = ctl_regs[kTmr1_Fine_idx];
}
break;
case 2:
// fine mode
PINB = _BV(PINB4); // writes to PINB toggle the pins
tmr1_reset();
break;
}
}
}
void timer1_init()
{
TIMSK &= ~_BV(TOIE1); // Disable interrupt TIMER1_OVF
OCR1A = 255; // Set to anything greater than OCR1C (the counter never gets here.)
TCCR1 |= _BV(CTC1); // Reset TCNT1 to 0 when TCNT1==OCR1C
TCCR1 |= _BV(PWM1A); // Enable PWM A (to generate overflow interrupts)
TCCR1 |= ctl_regs[kCS13_10_idx] & 0x0f; //
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
tmr1_reset();
tmr1_init_fl = 1;
TIMSK |= _BV(TOIE1); // Enable interrupt TIMER1_OVF
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// PWM1
//
// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B but this code
// but since these pins are not available this code uses
// ISR's to redirect the output to PIN3
void pwm1_update()
{
OCR1B = ctl_regs[kPWM1_Duty_idx]; // control duty cycle
OCR1C = ctl_regs[kPWM1_Freq_idx]; // PWM frequency pre-scaler
}
ISR(TIMER1_COMPB_vect)
{
PORTB &= ~(_BV(PINB3)); // clear PWM pin
}
void pwm1_init()
{
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
DDRB |= _BV(DDB3); // setup PB3 as output
// set on TCNT1 == 0 // happens when TCNT1 matches OCR1C
// clr on OCR1B == TCNT // happens when TCNT1 matches OCR1B
// // COM1B1=1 COM1B0=0 (enable output on ~OC1B)
TCCR1 |= 9; // 32us period (256 divider) prescaler
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
pwm1_update();
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // Enable interrupts
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Tracks the current register pointer position
volatile uint8_t reg_position = 0;
const uint8_t reg_size = sizeof(ctl_regs);
//
// Read Request Handler
//
// This is called for each read request we receive, never put more
// than one byte of data (with TinyWireS.send) to the send-buffer when
// using this callback
//
void on_request()
{
uint8_t val = 0;
switch( reg_position )
{
case kTable_Coarse_idx:
val = table[ ctl_regs[kTable_Addr_idx]*2 + 0 ];
break;
case kTable_Fine_idx:
val = table[ ctl_regs[kTable_Addr_idx]*2 + 1 ];
break;
default:
// read and transmit the requestd position
val = ctl_regs[reg_position];
}
usiTwiTransmitByte(val);
// Increment the reg position on each read, and loop back to zero
reg_position++;
if (reg_position >= reg_size)
{
reg_position = 0;
}
}
//
// The I2C data received -handler
//
// This needs to complete before the next incoming transaction (start,
// data, restart/stop) on the bus does so be quick, set flags for long
// running tasks to be called from the mainloop instead of running
// them directly,
//
void on_receive( uint8_t byteN )
{
if (byteN < 1)
{
// Sanity-check
return;
}
if (byteN > TWI_RX_BUFFER_SIZE)
{
// Also insane number
return;
}
// get the register index to read/write
reg_position = usiTwiReceiveByte();
byteN--;
// If only one byte was received then this was a read request
// and the buffer pointer (reg_position) is now set to return the byte
// at this location on the subsequent call to on_request() ...
if (!byteN)
{
return;
}
// ... otherwise this was a write request and the buffer
// pointer is now pointing to the first byte to write to
while(byteN--)
{
// write the value
ctl_regs[reg_position] = usiTwiReceiveByte();
// Set timer 1
if( kTmr0_Prescale_idx <= reg_position && reg_position <= kTmr0_Fine_idx )
{ timer0_init(); }
else
// Set PWM 0
if( kPWM0_Duty_idx <= reg_position && reg_position <= kPWM0_Freq_idx )
{ pwm0_update(); }
else
// Set timer 1
if( kCS13_10_idx <= reg_position && reg_position <= kTmr1_Fine_idx )
{ timer1_init(); }
else
// Set PWM 1
if( kPWM1_Duty_idx <= reg_position && reg_position <= kPWM1_Freq_idx )
{ pwm1_update(); }
else
// Write table
if( reg_position == kTable_Fine_idx )
{ table_write_cur_value(); }
reg_position++;
if (reg_position >= reg_size)
{
reg_position = 0;
}
}
}
int main(void)
{
cli(); // mask all interupts
restore_memory_from_eeprom();
DDRB |= _BV(DDB4) + _BV(DDB3) + _BV(DDB1); // setup PB4,PB3,PB1 as output
PORTB &= ~(_BV(PINB4) + _BV(PINB3) + _BV(PINB1)); // clear output pins
timer0_init();
pwm1_init();
// setup i2c library
usi_onReceiverPtr = on_receive;
usi_onRequestPtr = on_request;
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
sei();
PINB = _BV(PINB4); // writes to PINB toggle the pins
_delay_ms(1000);
PINB = _BV(PINB4); // writes to PINB toggle the pins
while(1)
{
//_delay_ms(1000);
if (!usi_onReceiverPtr)
{
// no onReceive callback, nothing to do...
continue;
}
if (!(USISR & ( 1 << USIPF )))
{
// Stop not detected
continue;
}
uint8_t amount = usiTwiAmountDataInReceiveBuffer();
if (amount == 0)
{
// no data in buffer
continue;
}
usi_onReceiverPtr(amount);
}
return 0;
}

View File

@ -0,0 +1,444 @@
/*
AT TINY 85
+--\/--+
RESET _| 1 8 |_ +5V
~OC1B HOLD DDB3 _| 2 7 |_ SCL
OC1B ONSET DDB4 _| 3 6 |_ DDB1 LED
GND _| 4 5 |_ SDA
+------+
* = Serial and/or programming pins on Arduino as ISP
*/
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
#define F_CPU 8000000L
#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include "usiTwiSlave.h"
enum
{
kTmr0_Prescale_idx = 0, // Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024
kTmr0_Coarse_idx = 1, //
kTmr0_Fine_idx = 2, //
kPWM1_Duty_idx = 3, //
kPWM1_Freq_idx = 4, //
kTable_Addr_idx = 5, // Next table address to read/write
kTable_Coarse_idx = 6, // Next table coarse value to read/write
kTable_Fine_idx = 7, // Next table fine value to read/write
kMax_idx
};
volatile uint8_t ctl_regs[] =
{
4, // 0 (1-5) 4=32us per tick
123, // 1 (0-255) Timer 0 Coarse Value
8, // 2 (0-255) Timer 0 Fine Value
127, // 3 (0-255) PWM1 Duty cycle
254, // 4 (0-255) PWM1 Frequency (123 hz)
0, // 5 (0-127) Next table addr to read/write
0, // 6 (0-255) Next table coarse value to write
0, // 7 (0-255) Next table fine value to write
};
#define tableN 256
uint8_t table[ tableN ];
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// EEPROM
//
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
EEAR = ucAddress; // Set up address and data registers
EEDR = ucData;
EECR |= (1<<EEMPE); // Write logical one to EEMPE
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
}
uint8_t EEPROM_read(uint8_t ucAddress)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EEAR = ucAddress; // Set up address register
EECR |= (1<<EERE); // Start eeprom read by writing EERE
return EEDR; // Return data from data register
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Read/Write table
//
// To write table value 42 to 127 (coarse) 64 (fine)
//
// w 8 kTable_Addr_idx 42
// w 8 kTable_Coarse_idx 127
// w 8 kTable_fine_idx 64
//
// TO read table value 42
// w 8 kTable_Addr_idx 42
// r 8 kTable_Coarse_idx -> 127
// r 8 kTable_Fine_idx -> 64
#define eeprom_addr( addr ) (kMax_idx + (addr))
void table_write_cur_value( void )
{
uint8_t tbl_addr = ctl_regs[ kTable_Addr_idx ] * 2;
table[ tbl_addr+0 ] = ctl_regs[ kTable_Coarse_idx ];
table[ tbl_addr+1 ] = ctl_regs[ kTable_Fine_idx ];
EEPROM_write( eeprom_addr( tbl_addr+0 ), ctl_regs[ kTable_Coarse_idx ] );
EEPROM_write( eeprom_addr( tbl_addr+1 ), ctl_regs[ kTable_Fine_idx ]);
}
void table_load( void )
{
uint8_t i = 0;
for(; i<128; ++i)
{
uint8_t tbl_addr = i*2;
table[tbl_addr+0] = EEPROM_read( eeprom_addr(tbl_addr+0) );
table[tbl_addr+1] = EEPROM_read( eeprom_addr(tbl_addr+1) );
}
}
void restore_memory_from_eeprom( void )
{
/*
uint8_t i;
for(i=0; i<kMax_idx; ++i)
{
ctl_regs[i] = EEPROM_read( eeprom_addr( i ) );
}
*/
table_load();
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Timer0
//
volatile uint8_t tmr0_state = 0; // 0=disabled 1=coarse mode, 2=fine mode
volatile uint8_t tmr0_coarse_cur = 0;
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
void tmr0_reset()
{
// if a coarse count exists then go into coarse mode
if( ctl_regs[kTmr0_Coarse_idx] > 0 )
{
tmr0_state = 1;
OCR0A = 0xff;
}
else // otherwise go into fine mode
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr0_Fine_idx];
}
tmr0_coarse_cur = 0;
}
ISR(TIMER0_COMPA_vect)
{
switch( tmr0_state )
{
case 0:
// disabled
break;
case 1:
// coarse mode
if( ++tmr0_coarse_cur >= ctl_regs[kTmr0_Coarse_idx] )
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr0_Fine_idx];
}
break;
case 2:
// fine mode
PINB = _BV(PINB4); // writes to PINB toggle the pins
tmr0_reset(); // restart the timer
break;
}
}
void timer0_init()
{
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF
TCCR0A |= 0x02; // CTC mode
TCCR0B |= ctl_regs[kTmr0_Prescale_idx]; // set the prescaler
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
tmr0_reset(); // set the timers starting state
TIMSK |= _BV(OCIE0A); // Enable interrupt TIMER1_OVF
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// PWM1
//
// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B but this code
// but since these pins are not available this code uses
// ISR's to redirect the output to PIN3
void pwm1_update()
{
OCR1B = ctl_regs[kPWM1_Duty_idx]; // control duty cycle
OCR1C = ctl_regs[kPWM1_Freq_idx]; // PWM frequency pre-scaler
}
ISR(TIMER1_OVF_vect)
{
PORTB |= _BV(PINB3); // set PWM pin
}
ISR(TIMER1_COMPB_vect)
{
PORTB &= ~(_BV(PINB3)); // clear PWM pin
}
void pwm1_init()
{
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
DDRB |= _BV(DDB3); // setup PB3 as output
// set on TCNT1 == 0 // happens when TCNT1 matches OCR1C
// clr on OCR1B == TCNT // happens when TCNT1 matches OCR1B
// // COM1B1=1 COM1B0=0 (enable output on ~OC1B)
TCCR1 |= 9; // 32us period (256 divider) prescaler
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
pwm1_update();
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // Enable interrupts
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Tracks the current register pointer position
volatile uint8_t reg_position = 0;
const uint8_t reg_size = sizeof(ctl_regs);
//
// Read Request Handler
//
// This is called for each read request we receive, never put more
// than one byte of data (with TinyWireS.send) to the send-buffer when
// using this callback
//
void on_request()
{
uint8_t val = 0;
switch( reg_position )
{
case kTable_Coarse_idx:
val = table[ ctl_regs[kTable_Addr_idx]*2 + 0 ];
break;
case kTable_Fine_idx:
val = table[ ctl_regs[kTable_Addr_idx]*2 + 1 ];
break;
default:
// read and transmit the requestd position
val = ctl_regs[reg_position];
}
usiTwiTransmitByte(val);
// Increment the reg position on each read, and loop back to zero
reg_position++;
if (reg_position >= reg_size)
{
reg_position = 0;
}
}
//
// The I2C data received -handler
//
// This needs to complete before the next incoming transaction (start,
// data, restart/stop) on the bus does so be quick, set flags for long
// running tasks to be called from the mainloop instead of running
// them directly,
//
void on_receive( uint8_t byteN )
{
PINB = _BV(PINB1); // writes to PINB toggle the pins
if (byteN < 1)
{
// Sanity-check
return;
}
if (byteN > TWI_RX_BUFFER_SIZE)
{
// Also insane number
return;
}
// get the register index to read/write
reg_position = usiTwiReceiveByte();
byteN--;
// If only one byte was received then this was a read request
// and the buffer pointer (reg_position) is now set to return the byte
// at this location on the subsequent call to on_request() ...
if (!byteN)
{
return;
}
// ... otherwise this was a write request and the buffer
// pointer is now pointing to the first byte to write to
while(byteN--)
{
// write the value
ctl_regs[reg_position] = usiTwiReceiveByte();
// Set timer 1
if( kTmr0_Prescale_idx <= reg_position && reg_position <= kTmr0_Fine_idx )
{ timer0_init(); }
else
// Set PWM 1
if( kPWM1_Duty_idx <= reg_position && reg_position <= kPWM1_Freq_idx )
{ pwm1_update(); }
else
// Write table
if( reg_position == kTable_Fine_idx )
{ table_write_cur_value(); }
reg_position++;
if (reg_position >= reg_size)
{
reg_position = 0;
}
}
}
int main(void)
{
cli(); // mask all interupts
restore_memory_from_eeprom();
DDRB |= _BV(DDB4) + _BV(DDB3) + _BV(DDB1); // setup PB4,PB3,PB1 as output
PORTB &= ~(_BV(PINB4) + _BV(PINB3) + _BV(PINB1)); // clear output pins
timer0_init();
pwm1_init();
// setup i2c library
usi_onReceiverPtr = on_receive;
usi_onRequestPtr = on_request;
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
sei();
PINB = _BV(PINB1); // writes to PINB toggle the pins
_delay_ms(1000);
PINB = _BV(PINB1); // writes to PINB toggle the pins
while(1)
{
//_delay_ms(1000);
if (!usi_onReceiverPtr)
{
// no onReceive callback, nothing to do...
continue;
}
if (!(USISR & ( 1 << USIPF )))
{
// Stop not detected
continue;
}
uint8_t amount = usiTwiAmountDataInReceiveBuffer();
if (amount == 0)
{
// no data in buffer
continue;
}
usi_onReceiverPtr(amount);
}
return 0;
}

View File

@ -0,0 +1,502 @@
/*
AT TINY 85
+--\/--+
RESET _| 1 8 |_ +5V
~OC1B HOLD DDB3 _| 2 7 |_ SCL
OC1B ONSET DDB4 _| 3 6 |_ DDB1 LED
GND _| 4 5 |_ SDA
+------+
* = Serial and/or programming pins on Arduino as ISP
*/
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
#define F_CPU 8000000L
#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include "usiTwiSlave.h"
#define HOLD_DIR DDB3
#define ATTK_DIR DDB4
#define LED_DIR DDB1
#define HOLD_PIN PINB3
#define ATTK_PIN PINB4
#define LED_PIN PINB1
// Opcodes
enum
{
kSetReg_Op = 0, // Set register <hi_addr> <lo_addr> <value0> ... <valueN>
kSetPwm_Op = 1, // Set PWM registers <enable> <duty> <freq>
kNoteOnVel_Op = 2, // Turn on note <vel>
kNoteOnUsec_Op = 3, // Turn on note <coarse> <fine>
kNoteOff_Op = 4, // Turn off note
kRead_Op = 5, // Read a value {{ <src>} <addr> }
kInvalid_Op = 6
};
// Register addresses
enum
{
kTmr_Coarse_idx = 0, // Current Timer 0 coarse count
kTmr_Fine_idx = 1, // Current Timer 0 fine count
kTmr_Prescale_idx = 2, // Current Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024
kPwm_Enable_idx = 3, // Current PWM 1 enable flag
kPwm_Duty_idx = 4, // Current PWM 1 duty cycle
kPwm_Freq_idx = 5, // Current PWM 1 frequency
kRead_Src_idx = 6, // 0=reg, 1=table, 2=eeprom
kReg_Addr_idx = 7, // Next Reg Address to read
kTable_Addr_idx = 8, // Next Table Address to read
kEE_Addr_idx = 9, // Next EEPROM address to read
kError_Code_idx = 10, // Error Code
kMax_idx
};
// Regster memory
volatile uint8_t ctl_regs[] =
{
123, // 1 (0-255) Timer 0 Coarse Value
8, // 2 (0-255) Timer 0 Fine Value
4, // 0 (1-5) 4=32us per tick
1, // 5 (0-1) PWM1 Enable
127, // 3 (0-255) PWM1 Duty cycle (0-100%)
254, // 4 (0-255) PWM1 Frequency (123 hz)
0, // 6 (0-255) Read Source
0, // 7 (0-255) Reg addr
0, // 8 (0-255) Table addr
0, // 9 (0-255) EEPROM addr
0, // 10 (0-255) Error code
};
volatile uint8_t table[128];
#define stackN 16
volatile uint8_t stack[ stackN ];
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// EEPROM
//
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
EEARH = 0; // Set up address and data registers
EEARL = ucAddress;
EEDR = ucData;
EECR |= (1<<EEMPE); // Write logical one to EEMPE
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
}
uint8_t EEPROM_read(uint8_t ucAddress)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EEARH = 0; // Set up address and data registers
EEARL = ucAddress;
EECR |= (1<<EERE); // Start eeprom read by writing EERE
return EEDR; // Return data from data register
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Read/Write table
//
#define eeprom_addr( addr ) (addr)
void table_load( void )
{
uint8_t i = 0;
for(; i<64; ++i)
{
uint16_t tbl_addr = i*2;
table[tbl_addr+0] = EEPROM_read( eeprom_addr(tbl_addr+0) );
table[tbl_addr+1] = EEPROM_read( eeprom_addr(tbl_addr+1) );
}
}
void restore_memory_from_eeprom( void )
{
/*
uint8_t i;
for(i=0; i<kMax_idx; ++i)
{
ctl_regs[i] = EEPROM_read( eeprom_addr( i ) );
}
*/
table_load();
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Timer0
//
volatile uint8_t tmr0_state = 0; // 0=disabled 1=coarse mode, 2=fine mode
volatile uint8_t tmr0_coarse_cur = 0;
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
void tmr0_reset()
{
// if a coarse count exists then go into coarse mode
if( ctl_regs[kTmr_Coarse_idx] > 0 )
{
tmr0_state = 1;
OCR0A = 0xff;
}
else // otherwise go into fine mode
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx];
}
tmr0_coarse_cur = 0;
}
ISR(TIMER0_COMPA_vect)
{
switch( tmr0_state )
{
case 0:
// disabled
break;
case 1:
// coarse mode
if( ++tmr0_coarse_cur >= ctl_regs[kTmr_Coarse_idx] )
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx];
}
break;
case 2:
// fine mode
PINB = _BV(ATTK_PIN); // writes to PINB toggle the pins
tmr0_reset(); // restart the timer
break;
}
}
void timer0_init()
{
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER0_COMPA_vect
TCCR0A |= 0x02; // CTC mode
TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
tmr0_reset(); // set the timers starting state
TIMSK |= _BV(OCIE0A); // Enable interrupt TIMER0_COMPA_vect
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// PWM1
//
// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B but this code
// but since these pins are not available this code uses
// ISR's to redirect the output to PIN3
void pwm1_update()
{
OCR1B = ctl_regs[kPwm_Duty_idx]; // control duty cycle
OCR1C = ctl_regs[kPwm_Freq_idx]; // PWM frequency pre-scaler
}
ISR(TIMER1_OVF_vect)
{
PORTB |= _BV(HOLD_PIN); // set PWM pin
}
ISR(TIMER1_COMPB_vect)
{
PORTB &= ~(_BV(HOLD_PIN)); // clear PWM pin
}
void pwm1_init()
{
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
DDRB |= _BV(HOLD_DIR); // setup PB3 as output
// set on TCNT1 == 0 // happens when TCNT1 matches OCR1C
// clr on OCR1B == TCNT // happens when TCNT1 matches OCR1B
// // COM1B1=1 COM1B0=0 (enable output on ~OC1B)
TCCR1 |= 9; // 32us period (256 divider) prescaler
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
pwm1_update();
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // Enable interrupts
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Read Request Handler
//
// This is called for each read request we receive, never put more
// than one byte of data (with TinyWireS.send) to the send-buffer when
// using this callback
//
void on_request()
{
uint8_t val = 0;
switch( ctl_regs[ kRead_Src_idx ] )
{
case 0:
val = table[ ctl_regs[ kReg_Addr_idx ] ];
ctl_regs[ kReg_Addr_idx ] += 1;
break;
case 1:
val = table[ ctl_regs[ kTable_Addr_idx ] ];
ctl_regs[ kTable_Addr_idx ] += 1;
break;
case 2:
val = EEPROM_read(ctl_regs[ kEE_Addr_idx]);
ctl_regs[ kEE_Addr_idx ] += 1;
}
usiTwiTransmitByte(val);
}
//
// The I2C data received -handler
//
// This needs to complete before the next incoming transaction (start,
// data, restart/stop) on the bus does so be quick, set flags for long
// running tasks to be called from the mainloop instead of running
// them directly,
//
void on_receive( uint8_t byteN )
{
uint8_t stack_idx = 0;
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
// Sanity-check
if( byteN < 1 || byteN > TWI_RX_BUFFER_SIZE)
{
// TODO: signal an error
return;
}
// get the command byte
uint8_t cur_op_id = usiTwiReceiveByte();
--byteN;
// verify that cur_op_id is valid
if( cur_op_id < kInvalid_Op )
{
// TODO: signal an error
return;
}
// get the command arguments
while(byteN--)
{
// write the value
stack[stack_idx] = usiTwiReceiveByte();
++stack_idx;
if(stack_idx >= stackN)
{
// TODO: signal an error
break;
}
}
// execute the operation
switch( cur_op_id )
{
case kSetReg_Op: // Set register <reg> <value0> ... <valueN>
if( stack_idx > 1 )
{
uint8_t addr = stack[0];
uint8_t i = 2;
for(; i<stack_idx; ++i,++addr)
ctl_regs[ addr ] = stack[i];
}
break;
case kSetPwm_Op: // Set pwm <enable>,<duty>,<freq>
{
uint8_t addr = kPwm_Enable_idx;
uint8_t i = 0;
for(; i<stack_idx; ++i,++addr)
ctl_regs[ addr ] = stack[i];
pwm1_update();
}
break;
case kNoteOnVel_Op: // Turn on note <vel>
if( stack_idx == 1 )
{
uint8_t addr = stack[0] >> 2; // divide by 2 (we have only 64 entries in the table)
ctl_regs[ kTmr_Coarse_idx ] = table[ addr ];
ctl_regs[ kTmr_Fine_idx ] = table[ addr+1 ];
}
tmr0_reset();
break;
case kNoteOnUsec_Op: // Turn on note <coarse> <fine>
if( stack_idx == 2 )
{
ctl_regs[ kTmr_Coarse_idx ] = stack[0];
ctl_regs[ kTmr_Fine_idx ] = stack[1];
}
tmr0_reset();
break;
case kNoteOff_Op: // Turn off note
PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN));
break;
case kRead_Op: // Read a value {{ <src>} <addr> }
if( stack_idx > 0)
{
ctl_regs[ kRead_Src_idx ] = stack[0];
}
if( stack_idx > 1 )
{
uint8_t reg_addr = 4;
switch( ctl_regs[ kRead_Src_idx ] )
{
case 0: reg_addr = kReg_Addr_idx; break;
case 1: reg_addr = kTable_Addr_idx; break;
case 2: reg_addr = kEE_Addr_idx; break;
default:
// TODO: signal error
break;
}
if( reg_addr <= 2 )
ctl_regs[ reg_addr ] = stack[1];
}
}
}
int main(void)
{
cli(); // mask all interupts
DDRB |= _BV(ATTK_DIR) + _BV(HOLD_DIR) + _BV(LED_DIR); // setup PB4,PB3,PB1 as output
PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN) + _BV(LED_PIN)); // clear output pins
timer0_init();
pwm1_init();
// setup i2c library
usi_onReceiverPtr = on_receive;
usi_onRequestPtr = on_request;
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
sei();
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
_delay_ms(1000);
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
while(1)
{
//_delay_ms(1000);
if (!usi_onReceiverPtr)
{
// no onReceive callback, nothing to do...
continue;
}
if (!(USISR & ( 1 << USIPF )))
{
// Stop not detected
continue;
}
uint8_t amount = usiTwiAmountDataInReceiveBuffer();
if (amount == 0)
{
// no data in buffer
continue;
}
usi_onReceiverPtr(amount);
}
return 0;
}

View File

@ -0,0 +1,609 @@
// w 60 0 1 10 : w i2c_addr SetPWM enable duty_val
// w 60 5 12 8 32 : w i2c_addr write addrFl|src coarse_val
// w 60 4 0 5 : w i2c_addr read src read_addr (set the read address to register 5)
// r 60 4 3 : r i2c_addr <dum> cnt (read the first 3 reg's beginning w/ 5)
/*
AT TINY 85
+--\/--+
RESET _| 1 8 |_ +5V
~OC1B HOLD DDB3 _| 2 7 |_ SCL yellow
OC1B ONSET DDB4 _| 3 6 |_ DDB1 LED
GND _| 4 5 |_ SDA orange
+------+
* = Serial and/or programming pins on Arduino as ISP
*/
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
#define F_CPU 16000000L
#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include "usiTwiSlave.h"
#define HOLD_DIR DDB3
#define ATTK_DIR DDB4
#define LED_DIR DDB1
#define HOLD_PIN PINB3
#define ATTK_PIN PINB4
#define LED_PIN PINB1
// Opcodes
enum
{
kSetPwm_Op = 0, // Set PWM duty/hz/div 0 {<duty> {<freq> {<div>}}} div:2=2,3=4,4=8,5=16,6=32,7=64,8=128,9=256,10=512,11=1024,12=2048,13=4096,14=8192,15=16384
kNoteOnVel_Op = 1, // Turn on note 3 {<vel>}
kNoteOnUsec_Op = 2, // Turn on note 4 {<coarse> {<fine> {<prescale>}}}
kNoteOff_Op = 3, // Turn off note 5
kSetReadAddr_Op = 4, // Set a read addr. 6 {<src>} {<addr>} } src: 0=reg 1=table 2=eeprom
kWrite_Op = 5, // Set write 7 {<addrfl|src> {addr} {<value0> ... {<valueN>}} addrFl:0x80 src: 4=reg 5=table 6=eeprom
kSetMode_Op = 6, // Set the mode flags 8 {<mode>} 1=repeat 2=pwm
kWriteTable_Op = 7, // Write table to EEprom 9
kInvalid_Op = 8 //
};
enum
{
kReg_Rd_Addr_idx = 0, // Next Reg Address to read
kTable_Rd_Addr_idx = 1, // Next Table Address to read
kEE_Rd_Addr_idx = 2, // Next EEPROM address to read
kRead_Src_idx = 3, // kReg_Rd_Addr_idx=reg, kTable_Rd_Addr_idx=table, kEE_Rd_Addr_idx=eeprom
kReg_Wr_Addr_idx = 4, // Next Reg Address to write
kTable_Wr_Addr_idx = 5, // Next Table Address to write
kEE_Wr_Addr_idx = 6, // Next EEPROM address to write
kWrite_Dst_idx = 7, // kReg_Wr_Addr_idx=reg, kTable_Wr_Addr_idx=table, kEE_Wr_Addr_idx=eeprom
kTmr_Coarse_idx = 8, //
kTmr_Fine_idx = 9, //
kTmr_Prescale_idx = 10, // Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024 Default: 4 (16us)
kPwm_Duty_idx = 11, //
kPwm_Freq_idx = 12, //
kPwm_Div_idx = 13, //
kMode_idx = 14, // 1=repeat 2=pwm
kState_idx = 15, // 1=attk 2=hold
kError_Code_idx = 16, // Error Code
kMax_idx
};
enum
{
kMode_Repeat_Fl = 1,
kMode_Pwm_Fl = 2,
kState_Attk_Fl = 1,
kState_Hold_Fl = 2
};
#define isInRepeatMode() ctl_regs[ kMode_idx ] & kMode_Repeat_Fl
#define isInPwmMode() ctl_regs[ kMode_idx ] & kMode_Pwm_Fl
// Flags:
// 1=Repeat: 1=Timer and PWM are free running. This allows testing with LED's. 0=Timer triggers does not reset on time out.
// 2=PWM: On timer timeout 1=PWM HOLD 0=Set HOLD
volatile uint8_t ctl_regs[] =
{
0, // 0 (0-(kMax_idx-1)) Reg Read Addr
0, // 1 (0-255) Table Read Addr
0, // 2 (0-255) EE Read Addr
kReg_Rd_Addr_idx, // 3 (0-2) Read source
0, // 4 (0-(kMax_idx-1)) Reg Write Addr
0, // 5 (0-255) Table Write Addr
0, // 6 (0-255) EE Write Addr
kReg_Wr_Addr_idx, // 7 (0-2) Write source
245, // 8 (0-255) Timer 0 Coarse Value
25, // 9 (0-255) Timer 0 Fine Value
4, // 10 (1-5) 4=16us per tick
127, // 11 (0-255) Pwm Duty cycle
254, // 12 (0-255) Pwm Frequency (123 Hz)
10, // 13 (0-15) Pwm clock div
kMode_Repeat_Fl, // 14 mode flags 1=Repeat 2=PWM
0, // 15 state flags 1=attk 2=hold (read/only)
0, // 16 (0-255) Error bit field
};
// These registers are saved to Eeprom
uint8_t eeprom_addr[] =
{
kTmr_Prescale_idx,
kPwm_Duty_idx,
kPwm_Freq_idx,
kPwm_Div_idx
};
#define tableN 256
uint8_t table[ tableN ]; // [ coarse_0,fine_0, coarse_1, fine_1, .... coarse_127,fine_127]
enum
{
kInvalid_Read_Src_ErrFl = 0x01,
kInvalid_Write_Dst_ErrFl = 0x02
};
#define set_error( flag ) ctl_regs[ kError_Code_idx ] |= (flag)
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// EEPROM
//
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
EEAR = ucAddress; // Set up address and data registers
EEDR = ucData;
EECR |= (1<<EEMPE); // Write logical one to EEMPE
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
}
uint8_t EEPROM_read(uint8_t ucAddress)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EEAR = ucAddress; // Set up address register
EECR |= (1<<EERE); // Start eeprom read by writing EERE
return EEDR; // Return data from data register
}
void write_table()
{
uint8_t i;
uint8_t regN = sizeof(eeprom_addr);
// write the persistent registers
for(i=0; i<regN; ++i)
EEPROM_write( i, ctl_regs[ eeprom_addr[i] ] );
// write the table
for(i=0; i<tableN; ++i)
EEPROM_write( regN+i, table[i] );
}
void load_table()
{
uint8_t i;
uint8_t regN = sizeof(eeprom_addr);
// read the persistent registers
for(i=0; i<regN; ++i)
ctl_regs[ eeprom_addr[i] ] = EEPROM_read(i);
// read the tabke
for(i=0; i<tableN; ++i)
table[i] = EEPROM_read(regN + i);
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Timer0
//
volatile uint8_t tmr0_state = 0; // current timer mode: 0=disabled 1=coarse mode, 2=fine mode
volatile uint8_t tmr0_coarse_cur = 0;
#define set_attack() do { ctl_regs[kState_idx] |= kState_Attk_Fl; PORTB |= _BV(ATTK_PIN); } while(0)
#define clear_attack() do { PORTB &= ~_BV(ATTK_PIN); ctl_regs[kState_idx] &= ~kState_Attk_Fl; } while(0)
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
void tmr0_reset()
{
tmr0_coarse_cur = 0; // clear the coarse time counter
ctl_regs[kState_idx] |= kState_Attk_Fl; // set the attack state
PORTB |= _BV(ATTK_PIN); // set the attack pin
// if a coarse count exists then go into coarse mode
if( ctl_regs[kTmr_Coarse_idx] > 0 )
{
tmr0_state = 1;
OCR0A = 0xff;
}
else // otherwise go into fine mode
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx];
}
TIMSK |= _BV(OCIE0A); // enable the timer interrupt
}
ISR(TIMER0_COMPA_vect)
{
switch( tmr0_state )
{
case 0:
// timer is disabled
break;
case 1:
// coarse mode
if( ++tmr0_coarse_cur >= ctl_regs[kTmr_Coarse_idx] )
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx];
}
break;
case 2:
// fine mode
// This marks the end of a timer period
// If in repeat mode ...
if(ctl_regs[kMode_idx] & kMode_Repeat_Fl)
{
// store the current state of the attack flag
uint8_t fl = ctl_regs[kState_idx] & kState_Attk_Fl;
tmr0_reset(); // ... restart the timer
// ATTK_PIN is always set after tmr0_reset() but we need to toggle in 'repeat' mode
if( fl )
{
clear_attack();
}
// In repeat mode we always run the PWM output continuously.
// This guarantees that no matter how the modes may be changing that PWM will be enabled.
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // Enable PWM interrupts
}
else // ... not in repeat mode
{
clear_attack();
if( ctl_regs[kMode_idx] & kMode_Pwm_Fl)
{
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // PWM interupt Enable interrupts
}
else
{
PORTB |= _BV(HOLD_PIN); // set the HOLD pin
}
TIMSK &= ~_BV(OCIE0A); // clear timer interrupt
}
break;
}
}
void tmr0_init()
{
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER1_OVF
TCCR0A |= 0x02; // CTC mode
TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Pwm
//
// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B
// but since these pins are not available this code uses
// ISR's to redirect the output to PIN3
void pwm1_update()
{
OCR1B = ctl_regs[kPwm_Duty_idx]; // control duty cycle
OCR1C = ctl_regs[kPwm_Freq_idx]; // PWM frequency pre-scaler
}
ISR(TIMER1_OVF_vect)
{
PORTB |= _BV(HOLD_PIN); // set PWM pin
}
ISR(TIMER1_COMPB_vect)
{
PORTB &= ~(_BV(HOLD_PIN)); // clear PWM pin
}
void pwm1_init()
{
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
DDRB |= _BV(HOLD_DIR); // setup PB3 as output
// set on TCNT1 == 0 // happens when TCNT1 matches OCR1C
// clr on OCR1B == TCNT // happens when TCNT1 matches OCR1B
// // COM1B1=1 COM1B0=0 (enable output on ~OC1B)
TCCR1 |= ctl_regs[ kPwm_Div_idx]; // 32us period (512 divider) prescaler
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
pwm1_update();
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Tracks the current register pointer position
volatile uint8_t reg_position = 0;
const uint8_t reg_size = sizeof(ctl_regs);
//
// Read Request Handler
//
// This is called for each read request we receive, never put more
// than one byte of data (with TinyWireS.send) to the send-buffer when
// using this callback
//
void on_request()
{
uint8_t val = 0;
switch( ctl_regs[ kRead_Src_idx ] )
{
case kReg_Rd_Addr_idx:
val = ctl_regs[ ctl_regs[kReg_Rd_Addr_idx] ];
break;
case kTable_Rd_Addr_idx:
val = table[ ctl_regs[kTable_Rd_Addr_idx] ];
break;
case kEE_Rd_Addr_idx:
val = EEPROM_read(ctl_regs[kEE_Rd_Addr_idx]);
break;
default:
set_error( kInvalid_Read_Src_ErrFl );
return;
}
usiTwiTransmitByte(val);
ctl_regs[ ctl_regs[ kRead_Src_idx ] ] += 1;
}
void _write_op( uint8_t* stack, uint8_t stackN )
{
uint8_t stack_idx = 0;
if( stackN > 0 )
{
uint8_t src = stack[0] & 0x07;
uint8_t addr_fl = stack[0] & 0x08;
// verify the source value
if( src < kReg_Wr_Addr_idx || src > kEE_Wr_Addr_idx )
{
set_error( kInvalid_Write_Dst_ErrFl );
return;
}
// set the write source
stack_idx = 1;
ctl_regs[ kWrite_Dst_idx ] = src;
// if an address value was passed also ....
if( addr_fl && stackN > 1 )
{
stack_idx = 2;
ctl_regs[ src ] = stack[1];
}
}
//
for(; stack_idx<stackN; ++stack_idx)
{
uint8_t addr_idx = ctl_regs[ ctl_regs[kWrite_Dst_idx] ]++;
uint8_t val = stack[ stack_idx ];
switch( ctl_regs[ kWrite_Dst_idx ] )
{
case kReg_Wr_Addr_idx: ctl_regs[ addr_idx ] = val; break;
case kTable_Wr_Addr_idx: table[ addr_idx ] = val; break;
case kEE_Wr_Addr_idx: EEPROM_write( table[ addr_idx ], val); break;
default:
set_error( kInvalid_Write_Dst_ErrFl );
break;
}
}
}
//
// The I2C data received -handler
//
// This needs to complete before the next incoming transaction (start,
// data, restart/stop) on the bus does so be quick, set flags for long
// running tasks to be called from the mainloop instead of running
// them directly,
//
void on_receive( uint8_t byteN )
{
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
const uint8_t stackN = 16;
uint8_t stack_idx = 0;
uint8_t stack[ stackN ];
uint8_t i;
if (byteN < 1 || byteN > TWI_RX_BUFFER_SIZE)
{
// Sanity-check
return;
}
// get the register index to read/write
uint8_t op_id = usiTwiReceiveByte();
byteN--;
// If only one byte was received then this was a read request
// and the buffer pointer (reg_position) is now set to return the byte
// at this location on the subsequent call to on_request() ...
if(byteN)
{
while( byteN-- )
{
stack[stack_idx] = usiTwiReceiveByte();
++stack_idx;
}
}
switch( op_id )
{
case kSetPwm_Op:
for(i=0; i<stack_idx && i<3; ++i)
ctl_regs[ kPwm_Duty_idx + i ] = stack[i];
// if the PWM prescaler was changed
if( i == 3 )
pwm1_init();
pwm1_update();
break;
case kNoteOnUsec_Op:
for(i=0; i<stack_idx && i<3; ++i)
ctl_regs[ kTmr_Coarse_idx + i ] = stack[i];
// if a prescaler was included then the timer needs to be re-initialized
if( i == 3 )
tmr0_init();
tmr0_reset();
break;
case kNoteOff_Op:
TIMSK &= ~_BV(OCIE0A); // clear timer interrupt (shouldn't be necessary)
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // PWM interupt disable interrupts
PORTB &= ~_BV(HOLD_PIN); // clear the HOLD pin
break;
case kSetReadAddr_Op:
if( stack_idx > 0 )
{
ctl_regs[ kRead_Src_idx ] = stack[0];
if( stack_idx > 1 )
ctl_regs[ ctl_regs[ kRead_Src_idx ] ] = stack[1];
}
break;
case kWrite_Op:
_write_op( stack, stack_idx );
break;
case kSetMode_Op:
if( stack_idx > 0)
{
ctl_regs[ kMode_idx ] = stack[0];
// if repeat mode was enabled
if( ctl_regs[ kMode_idx ] & kMode_Repeat_Fl )
tmr0_reset();
pwm1_init(); // the state of PWM may have been changed
}
break;
case kWriteTable_Op:
write_table();
break;
}
}
int main(void)
{
cli(); // mask all interupts
DDRB |= _BV(ATTK_DIR) + _BV(HOLD_DIR) + _BV(LED_DIR); // setup PB4,PB3,PB1 as output
PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN) + _BV(LED_PIN)); // clear output pins
tmr0_init();
pwm1_init();
// setup i2c library
usi_onReceiverPtr = on_receive;
usi_onRequestPtr = on_request;
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
sei();
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
_delay_ms(1000);
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
// if in repeat mode
if( ctl_regs[ kMode_idx ] & kMode_Repeat_Fl)
tmr0_reset();
while(1)
{
if (!usi_onReceiverPtr)
{
// no onReceive callback, nothing to do...
continue;
}
if (!(USISR & ( 1 << USIPF )))
{
// Stop not detected
continue;
}
uint8_t amount = usiTwiAmountDataInReceiveBuffer();
if (amount == 0)
{
// no data in buffer
continue;
}
usi_onReceiverPtr(amount);
}
return 0;
}