picadae/control/tiny/versions/i2c_timer_pwm_2.c

503 lines
12 KiB
C
Raw Normal View History

/*
AT TINY 85
+--\/--+
RESET _| 1 8 |_ +5V
~OC1B HOLD DDB3 _| 2 7 |_ SCL
OC1B ONSET DDB4 _| 3 6 |_ DDB1 LED
GND _| 4 5 |_ SDA
+------+
* = Serial and/or programming pins on Arduino as ISP
*/
// This program acts as the device (slave) for the control program i2c/a2a/c_ctl
#define F_CPU 8000000L
#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include "usiTwiSlave.h"
#define HOLD_DIR DDB3
#define ATTK_DIR DDB4
#define LED_DIR DDB1
#define HOLD_PIN PINB3
#define ATTK_PIN PINB4
#define LED_PIN PINB1
// Opcodes
enum
{
kSetReg_Op = 0, // Set register <hi_addr> <lo_addr> <value0> ... <valueN>
kSetPwm_Op = 1, // Set PWM registers <enable> <duty> <freq>
kNoteOnVel_Op = 2, // Turn on note <vel>
kNoteOnUsec_Op = 3, // Turn on note <coarse> <fine>
kNoteOff_Op = 4, // Turn off note
kRead_Op = 5, // Read a value {{ <src>} <addr> }
kInvalid_Op = 6
};
// Register addresses
enum
{
kTmr_Coarse_idx = 0, // Current Timer 0 coarse count
kTmr_Fine_idx = 1, // Current Timer 0 fine count
kTmr_Prescale_idx = 2, // Current Timer 0 clock divider: 1=1,2=8,3=64,4=256,5=1024
kPwm_Enable_idx = 3, // Current PWM 1 enable flag
kPwm_Duty_idx = 4, // Current PWM 1 duty cycle
kPwm_Freq_idx = 5, // Current PWM 1 frequency
kRead_Src_idx = 6, // 0=reg, 1=table, 2=eeprom
kReg_Addr_idx = 7, // Next Reg Address to read
kTable_Addr_idx = 8, // Next Table Address to read
kEE_Addr_idx = 9, // Next EEPROM address to read
kError_Code_idx = 10, // Error Code
kMax_idx
};
// Regster memory
volatile uint8_t ctl_regs[] =
{
123, // 1 (0-255) Timer 0 Coarse Value
8, // 2 (0-255) Timer 0 Fine Value
4, // 0 (1-5) 4=32us per tick
1, // 5 (0-1) PWM1 Enable
127, // 3 (0-255) PWM1 Duty cycle (0-100%)
254, // 4 (0-255) PWM1 Frequency (123 hz)
0, // 6 (0-255) Read Source
0, // 7 (0-255) Reg addr
0, // 8 (0-255) Table addr
0, // 9 (0-255) EEPROM addr
0, // 10 (0-255) Error code
};
volatile uint8_t table[128];
#define stackN 16
volatile uint8_t stack[ stackN ];
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// EEPROM
//
void EEPROM_write(uint8_t ucAddress, uint8_t ucData)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EECR = (0<<EEPM1)|(0<<EEPM0); // Set Programming mode
EEARH = 0; // Set up address and data registers
EEARL = ucAddress;
EEDR = ucData;
EECR |= (1<<EEMPE); // Write logical one to EEMPE
EECR |= (1<<EEPE); // Start eeprom write by setting EEPE
}
uint8_t EEPROM_read(uint8_t ucAddress)
{
// Wait for completion of previous write
while(EECR & (1<<EEPE))
{}
EEARH = 0; // Set up address and data registers
EEARL = ucAddress;
EECR |= (1<<EERE); // Start eeprom read by writing EERE
return EEDR; // Return data from data register
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Read/Write table
//
#define eeprom_addr( addr ) (addr)
void table_load( void )
{
uint8_t i = 0;
for(; i<64; ++i)
{
uint16_t tbl_addr = i*2;
table[tbl_addr+0] = EEPROM_read( eeprom_addr(tbl_addr+0) );
table[tbl_addr+1] = EEPROM_read( eeprom_addr(tbl_addr+1) );
}
}
void restore_memory_from_eeprom( void )
{
/*
uint8_t i;
for(i=0; i<kMax_idx; ++i)
{
ctl_regs[i] = EEPROM_read( eeprom_addr( i ) );
}
*/
table_load();
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Timer0
//
volatile uint8_t tmr0_state = 0; // 0=disabled 1=coarse mode, 2=fine mode
volatile uint8_t tmr0_coarse_cur = 0;
// Use the current tmr0 ctl_reg[] values to set the timer to the starting state.
void tmr0_reset()
{
// if a coarse count exists then go into coarse mode
if( ctl_regs[kTmr_Coarse_idx] > 0 )
{
tmr0_state = 1;
OCR0A = 0xff;
}
else // otherwise go into fine mode
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx];
}
tmr0_coarse_cur = 0;
}
ISR(TIMER0_COMPA_vect)
{
switch( tmr0_state )
{
case 0:
// disabled
break;
case 1:
// coarse mode
if( ++tmr0_coarse_cur >= ctl_regs[kTmr_Coarse_idx] )
{
tmr0_state = 2;
OCR0A = ctl_regs[kTmr_Fine_idx];
}
break;
case 2:
// fine mode
PINB = _BV(ATTK_PIN); // writes to PINB toggle the pins
tmr0_reset(); // restart the timer
break;
}
}
void timer0_init()
{
TIMSK &= ~_BV(OCIE0A); // Disable interrupt TIMER0_COMPA_vect
TCCR0A |= 0x02; // CTC mode
TCCR0B |= ctl_regs[kTmr_Prescale_idx]; // set the prescaler
GTCCR |= _BV(PSR0); // Set the pre-scaler to the selected value
tmr0_reset(); // set the timers starting state
TIMSK |= _BV(OCIE0A); // Enable interrupt TIMER0_COMPA_vect
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// PWM1
//
// PWM is optimized to use pins OC1A ,~OC1A, OC1B, ~OC1B but this code
// but since these pins are not available this code uses
// ISR's to redirect the output to PIN3
void pwm1_update()
{
OCR1B = ctl_regs[kPwm_Duty_idx]; // control duty cycle
OCR1C = ctl_regs[kPwm_Freq_idx]; // PWM frequency pre-scaler
}
ISR(TIMER1_OVF_vect)
{
PORTB |= _BV(HOLD_PIN); // set PWM pin
}
ISR(TIMER1_COMPB_vect)
{
PORTB &= ~(_BV(HOLD_PIN)); // clear PWM pin
}
void pwm1_init()
{
TIMSK &= ~(_BV(OCIE1B) + _BV(TOIE1)); // Disable interrupts
DDRB |= _BV(HOLD_DIR); // setup PB3 as output
// set on TCNT1 == 0 // happens when TCNT1 matches OCR1C
// clr on OCR1B == TCNT // happens when TCNT1 matches OCR1B
// // COM1B1=1 COM1B0=0 (enable output on ~OC1B)
TCCR1 |= 9; // 32us period (256 divider) prescaler
GTCCR |= _BV(PWM1B); // Enable PWM B and disconnect output pins
GTCCR |= _BV(PSR1); // Set the pre-scaler to the selected value
pwm1_update();
TIMSK |= _BV(OCIE1B) + _BV(TOIE1); // Enable interrupts
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//
// Read Request Handler
//
// This is called for each read request we receive, never put more
// than one byte of data (with TinyWireS.send) to the send-buffer when
// using this callback
//
void on_request()
{
uint8_t val = 0;
switch( ctl_regs[ kRead_Src_idx ] )
{
case 0:
val = table[ ctl_regs[ kReg_Addr_idx ] ];
ctl_regs[ kReg_Addr_idx ] += 1;
break;
case 1:
val = table[ ctl_regs[ kTable_Addr_idx ] ];
ctl_regs[ kTable_Addr_idx ] += 1;
break;
case 2:
val = EEPROM_read(ctl_regs[ kEE_Addr_idx]);
ctl_regs[ kEE_Addr_idx ] += 1;
}
usiTwiTransmitByte(val);
}
//
// The I2C data received -handler
//
// This needs to complete before the next incoming transaction (start,
// data, restart/stop) on the bus does so be quick, set flags for long
// running tasks to be called from the mainloop instead of running
// them directly,
//
void on_receive( uint8_t byteN )
{
uint8_t stack_idx = 0;
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
// Sanity-check
if( byteN < 1 || byteN > TWI_RX_BUFFER_SIZE)
{
// TODO: signal an error
return;
}
// get the command byte
uint8_t cur_op_id = usiTwiReceiveByte();
--byteN;
// verify that cur_op_id is valid
if( cur_op_id < kInvalid_Op )
{
// TODO: signal an error
return;
}
// get the command arguments
while(byteN--)
{
// write the value
stack[stack_idx] = usiTwiReceiveByte();
++stack_idx;
if(stack_idx >= stackN)
{
// TODO: signal an error
break;
}
}
// execute the operation
switch( cur_op_id )
{
case kSetReg_Op: // Set register <reg> <value0> ... <valueN>
if( stack_idx > 1 )
{
uint8_t addr = stack[0];
uint8_t i = 2;
for(; i<stack_idx; ++i,++addr)
ctl_regs[ addr ] = stack[i];
}
break;
case kSetPwm_Op: // Set pwm <enable>,<duty>,<freq>
{
uint8_t addr = kPwm_Enable_idx;
uint8_t i = 0;
for(; i<stack_idx; ++i,++addr)
ctl_regs[ addr ] = stack[i];
pwm1_update();
}
break;
case kNoteOnVel_Op: // Turn on note <vel>
if( stack_idx == 1 )
{
uint8_t addr = stack[0] >> 2; // divide by 2 (we have only 64 entries in the table)
ctl_regs[ kTmr_Coarse_idx ] = table[ addr ];
ctl_regs[ kTmr_Fine_idx ] = table[ addr+1 ];
}
tmr0_reset();
break;
case kNoteOnUsec_Op: // Turn on note <coarse> <fine>
if( stack_idx == 2 )
{
ctl_regs[ kTmr_Coarse_idx ] = stack[0];
ctl_regs[ kTmr_Fine_idx ] = stack[1];
}
tmr0_reset();
break;
case kNoteOff_Op: // Turn off note
PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN));
break;
case kRead_Op: // Read a value {{ <src>} <addr> }
if( stack_idx > 0)
{
ctl_regs[ kRead_Src_idx ] = stack[0];
}
if( stack_idx > 1 )
{
uint8_t reg_addr = 4;
switch( ctl_regs[ kRead_Src_idx ] )
{
case 0: reg_addr = kReg_Addr_idx; break;
case 1: reg_addr = kTable_Addr_idx; break;
case 2: reg_addr = kEE_Addr_idx; break;
default:
// TODO: signal error
break;
}
if( reg_addr <= 2 )
ctl_regs[ reg_addr ] = stack[1];
}
}
}
int main(void)
{
cli(); // mask all interupts
DDRB |= _BV(ATTK_DIR) + _BV(HOLD_DIR) + _BV(LED_DIR); // setup PB4,PB3,PB1 as output
PORTB &= ~(_BV(ATTK_PIN) + _BV(HOLD_PIN) + _BV(LED_PIN)); // clear output pins
timer0_init();
pwm1_init();
// setup i2c library
usi_onReceiverPtr = on_receive;
usi_onRequestPtr = on_request;
usiTwiSlaveInit(I2C_SLAVE_ADDRESS);
sei();
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
_delay_ms(1000);
PINB = _BV(LED_PIN); // writes to PINB toggle the pins
while(1)
{
//_delay_ms(1000);
if (!usi_onReceiverPtr)
{
// no onReceive callback, nothing to do...
continue;
}
if (!(USISR & ( 1 << USIPF )))
{
// Stop not detected
continue;
}
uint8_t amount = usiTwiAmountDataInReceiveBuffer();
if (amount == 0)
{
// no data in buffer
continue;
}
usi_onReceiverPtr(amount);
}
return 0;
}