libcw/cwTime.cpp
2023-01-14 17:15:55 -05:00

323 lines
6.5 KiB
C++

#include "cwCommon.h"
#include "cwLog.h"
#include "cwCommonImpl.h"
#include "cwTime.h"
#ifdef OS_OSX
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <unistd.h>
void cw::time::get( spec_t& t )
{
static uint64_t t0 = 0;
static mach_timebase_info_data_t tbi;
static struct timespec ts;
if( t0 == 0 )
{
mach_timebase_info(&tbi);
t0 = mach_absolute_time();
ts.tv_sec = time(NULL);
ts.tv_nsec = 0; // accept 1/2 second error vs. wall-time.
}
// get the current time
uint64_t t1 = mach_absolute_time();
// calc the elapsed time since the last call in nanosecs
uint64_t dt = (t1-t0) * tbi.numer / tbi.denom;
// calc the elapsed time since the first call in secs
uint32_t s = (uint32_t)(dt / 2^9);
// calc the current time in secs, and nanosecs
t.tv_sec = ts.tv_sec + s;
t.tv_nsec = dt - (s * 2^9);
}
#endif
#ifdef OS_LINUX
void cw::time::get( spec_t& t )
{
// NOTcw::mutex::lock(h,timeout) relies on using
// CLOCK_REALTIME. If the source of this clock changes
// then change cw::mutex::loc(h,timeout) as well
clock_gettime(CLOCK_REALTIME,&t);
}
#endif
// this assumes that the seconds have been normalized to a recent start time
// so as to avoid overflow
unsigned cw::time::elapsedMicros( const spec_t& t0, const spec_t& t1 )
{
// convert seconds to usecs
long u0 = t0.tv_sec * 1000000;
long u1 = t1.tv_sec * 1000000;
// convert nanoseconds to usec
u0 += t0.tv_nsec / 1000;
u1 += t1.tv_nsec / 1000;
// take diff between t1 and t0
return u1 - u0;
}
unsigned cw::time::elapsedMicros( const spec_t& t0 )
{
spec_t t1;
get(t1);
return elapsedMicros(t0,t1);
}
unsigned cw::time::elapsedMs( const spec_t& t0, const spec_t& t1 )
{ return elapsedMicros(t0,t1)/1000; }
unsigned cw::time::elapsedMs( const spec_t& t0 )
{
spec_t t1;
get(t1);
return elapsedMs(t0,t1);
}
double cw::time::elapsedSecs( const spec_t& t0, const spec_t& t1 )
{
return elapsedMicros(t0,t1) / 1000000.0;
}
double cw::time::elapsedSecs( const spec_t& t0 )
{
spec_t t1;
get(t1);
return elapsedSecs(t0,t1);
}
unsigned cw::time::absElapsedMicros( const spec_t& t0, const spec_t& t1 )
{
if( isLTE(t0,t1) )
return elapsedMicros(t0,t1);
return elapsedMicros(t1,t0);
}
int cw::time::diffMicros( const spec_t& t0, const spec_t& t1 )
{
if( isLTE(t0,t1) )
return elapsedMicros(t0,t1);
return -((int)elapsedMicros(t1,t0));
}
bool cw::time::isLTE( const spec_t& t0, const spec_t& t1 )
{
if( t0.tv_sec < t1.tv_sec )
return true;
if( t0.tv_sec == t1.tv_sec )
return t0.tv_nsec <= t1.tv_nsec;
return false;
}
bool cw::time::isLT( const spec_t& t0, const spec_t& t1 )
{
if( t0.tv_sec < t1.tv_sec )
return true;
if( t0.tv_sec == t1.tv_sec )
return t0.tv_nsec < t1.tv_nsec;
return false;
}
bool cw::time::isGTE( const spec_t& t0, const spec_t& t1 )
{
if( t0.tv_sec > t1.tv_sec )
return true;
if( t0.tv_sec == t1.tv_sec )
return t0.tv_nsec >= t1.tv_nsec;
return false;
}
bool cw::time::isGT( const spec_t& t0, const spec_t& t1 )
{
if( t0.tv_sec > t1.tv_sec )
return true;
if( t0.tv_sec == t1.tv_sec )
return t0.tv_nsec > t1.tv_nsec;
return false;
}
bool cw::time::isEqual( const spec_t& t0, const spec_t& t1 )
{ return t0.tv_sec==t1.tv_sec && t0.tv_nsec==t1.tv_nsec; }
bool cw::time::isZero( const spec_t& t0 )
{ return t0.tv_sec==0 && t0.tv_nsec==0; }
void cw::time::setZero( spec_t& t0 )
{
t0.tv_sec = 0;
t0.tv_nsec = 0;
}
cw::rc_t cw::time::now( spec_t& ts )
{
rc_t rc = kOkRC;
int errRC;
memset(&ts,0,sizeof(ts));
if((errRC = clock_gettime(CLOCK_REALTIME, &ts)) != 0 )
rc = cwLogSysError(kInvalidOpRC,errRC,"Unable to obtain system time.");
return rc;
}
void cw::time::subtractMicros( spec_t& ts, unsigned micros )
{
unsigned rem_us = micros % 1000000; // fractional seconds in microseconds
unsigned rem_ns = rem_us * 1000; // fractional seconds in nanoseconds
// if the fractional micros is greater than the fractional nano's
if( rem_ns > ts.tv_nsec )
{
// subtract the fractional nano's from the fractional micros
// (this sets the fractional nano's to 0)
rem_ns -= ts.tv_nsec;
// convert the remaining fractional micros to the fractional nano's
ts.tv_nsec = 1000000000 - rem_ns;
// subtract the carry
ts.tv_sec -= 1;
}
else
{
ts.tv_nsec -= rem_ns;
}
assert( ts.tv_sec > micros / 1000000 );
ts.tv_sec -= micros / 1000000;
}
void cw::time::advanceMicros( spec_t& ts, unsigned us )
{
if( us > 1000000 )
{
// strip off whole seconds from usec
unsigned sec = us / 1000000;
// find the remaining fractional second in microseconds
us = (us - sec*1000000);
ts.tv_sec += sec;
}
ts.tv_nsec += us * 1000000000; // convert microseconds to nanoseconds
// stip off whole seconds from tv_nsec
while( ts.tv_nsec > 1e9 )
{
ts.tv_nsec -= 1e9;
ts.tv_sec +=1;
}
}
void cw::time::advanceMs( spec_t& ts, unsigned ms )
{
if( ms > 1000 )
{
// strip off whole seconds from ms
unsigned sec = ms / 1000;
// find the remaining fractional second in milliseconds
ms = (ms - sec*1000);
ts.tv_sec += sec;
}
ts.tv_nsec += ms * 1000000; // convert millisconds to nanoseconds
// stip off whole seconds from tv_nsec
while( ts.tv_nsec > 1e9 )
{
ts.tv_nsec -= 1e9;
ts.tv_sec +=1;
}
}
cw::rc_t cw::time::futureMs( spec_t& ts, unsigned ms )
{
rc_t rc;
if((rc = now(ts)) == kOkRC )
advanceMs(ts,ms);
return rc;
}
void cw::time::secondsToSpec( spec_t& ts, unsigned sec )
{
ts.tv_sec = sec;
ts.tv_nsec = 0;
}
void cw::time::millisecondsToSpec( spec_t& ts, unsigned ms )
{
unsigned sec = ms/1000;
unsigned ns = (ms - (sec*1000)) * 1000000;
ts.tv_sec = sec;
ts.tv_nsec = ns;
}
void cw::time::microsecondsToSpec( spec_t& ts, unsigned us )
{
unsigned sec = us/1000000;
unsigned ns = (us - (sec*1000000)) * 1000;
ts.tv_sec = sec;
ts.tv_nsec = ns;
}
cw::rc_t cw::time::test()
{
spec_t t0,t1;
get(t0);
futureMs(t1,1000);
unsigned dMs = elapsedMs(t0,t1);
printf("dMs:%i : GTE:%i LTE:%i\n",dMs, isGTE(t0,t1), isLTE(t0,t1) );
microsecondsToSpec( t0, 2500000 ); // 2.5 seconds
printf("%li %li\n",t0.tv_sec,t0.tv_nsec);
subtractMicros( t0, 750000 ); // subtract .75 seconds
printf("%li %li\n",t0.tv_sec,t0.tv_nsec);
subtractMicros( t0, 500000 ); // subtract .5 seconds
printf("%li %li\n",t0.tv_sec,t0.tv_nsec);
return kOkRC;
}