libcw/cwVectOps.h

589 lines
14 KiB
C++

#ifndef cwVectOps_h
#define cwVectOps_h
namespace cw
{
namespace vop
{
//==================================================================================================================
// Input / Output
//
template< typename T0 >
void print( const T0* v0, unsigned n, const char* fmt, const char* label=nullptr, unsigned colN=0 )
{
bool newline_fl = false;
if( label != nullptr )
{
cwLogPrint("%s : ",label);
if( colN && n > colN )
{
cwLogPrint("\n");
newline_fl = true;
}
}
if( colN == 0 )
colN = n;
for(unsigned i=0; i<n; ++i)
{
cwLogPrint(fmt,v0[i]);
newline_fl = false;
if( (i+1) % colN == 0 )
{
cwLogPrint("\n");
newline_fl = true;
}
}
if( !newline_fl )
cwLogPrint("\n");
}
//==================================================================================================================
// Move,fill,copy
//
template< typename T0, typename T1 >
void copy( T0* v0, const T1* v1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] = (T0)v1[i]; // Note: copy with convert - not the same as memcpy.
}
template< typename T0, typename T1 >
void fill( T0* v, unsigned n, const T1& value, unsigned dst_offset )
{
for(unsigned i=0,j=0; i<n; ++i,j+=dst_offset)
v[j] = value;
}
template< typename T0, typename T1 >
void fill( T0* v, unsigned n, const T1& value=0 )
{ fill(v,n,value,1); }
template< typename T >
void zero( T* v, unsigned n )
{ fill(v,n,0); }
template< typename T >
void ones( T* v, unsigned n )
{ fill(v,n,1); }
//==================================================================================================================
// Compare
//
template< typename T0, typename T1 >
bool is_equal( const T0* v0, const T1* v1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
if( v0[i] != v1[i] )
return false;
return true;
}
//==================================================================================================================
// Min,max
//
template< typename T >
unsigned arg_max( const T* v, unsigned n )
{
if( n == 0 )
return kInvalidIdx;
unsigned mi = 0;
for(unsigned i=1; i<n; ++i)
if( v[i] > v[mi])
mi = i;
return mi;
}
template< typename T >
unsigned arg_min( const T* v, unsigned n )
{
if( n == 0 )
return kInvalidIdx;
unsigned mi = 0;
for(unsigned i=1; i<n; ++i)
if( v[i] < v[mi])
mi = i;
return mi;
}
template< typename T >
const T max( const T* v, unsigned n )
{
unsigned mi;
if((mi = arg_max(v,n)) == kInvalidIdx )
return std::numeric_limits<T>::max();
return v[mi];
}
template< typename T >
const T min( const T* v, unsigned n )
{
unsigned mi;
if((mi = arg_min(v,n)) == kInvalidIdx )
return std::numeric_limits<T>::max();
return v[mi];
}
//==================================================================================================================
// misc
//
template< typename T0, typename T1 >
T0 mac( const T0* v0, const T1* v1, unsigned n )
{
T0 acc = 0;
for(unsigned i=0; i<n; ++i)
acc += v0[i] * v1[i];
return acc;
}
template< typename T0, typename T1 >
T0* scale_add( T0* v0, T0 scale_0, const T1* v1, T1 scale_1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] = (v0[i] * scale_0) + (v1[i] * scale_1);
return v0;
}
template< typename T0, typename T1, typename T2 >
T0* scale_add( T0* v0, const T1* v1, T1 scale_1, const T2* v2, T2 scale_2, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] = (v1[i] * scale_1) + (v2[i] * scale_2);
return v0;
}
//==================================================================================================================
// find, count
//
template< typename T0, typename T1 >
unsigned find( const T0* v, unsigned n, const T1& m )
{
for(unsigned i=0; i<n; ++i)
if( v[i] == m )
return i;
return kInvalidIdx;
}
template< typename T0, typename T1 >
unsigned count( const T0* v, unsigned n, const T1& m )
{
unsigned cnt = 0;
for(unsigned i=0; i<n; ++i)
if( v[i] == m )
cnt += 1;
return cnt;
}
//==================================================================================================================
// absolute value
//
template<typename T>
T* abs( T* v, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v[i] = abs(v[i]);
return v;
}
template<typename T0, typename T1>
T0* abs( T0* v0, const T1* v1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] = abs(v1[i]);
return v0;
}
//==================================================================================================================
// Arithmetic
//
template< typename T0, typename T1 >
void mul( T0* v0, const T1* v1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] = v0[i] * (T1)v1[i];
}
template< typename T0, typename T1 >
void mul( T0* y0, const T0* v0, const T1* v1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
y0[i] = v0[i] * v1[i];
}
template< typename T0, typename T1 >
void mul( T0* v0, const T1& scalar, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] *= scalar;
}
template< typename T0, typename T1, typename T2 >
void mul( T0* y0, const T1* v0, const T2& scalar, unsigned n )
{
for(unsigned i=0; i<n; ++i)
y0[i] = v0[i] * scalar;
}
template< typename T0, typename T1 >
void add( T0* v0, const T1* v1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] += v1[i];
}
template< typename T0, typename T1 >
void add( T0* y0, const T0* v0, const T1* v1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
y0[i] = v0[i] + v1[i];
}
template< typename T0, typename T1 >
void add( T0* v0, const T1& scalar, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] += scalar;
}
template< typename T0, typename T1 >
void add( T0* y0, const T0* v0, const T1& scalar, unsigned n )
{
for(unsigned i=0; i<n; ++i)
y0[i] = v0[i] + scalar;
}
template< typename T0, typename T1 >
void div( T0* v0, const T1* v1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] /= v1[i];
}
template< typename T0, typename T1 >
void div( T0* y0, const T0* v0, const T1* v1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
y0[i] = v0[i] / v1[i];
}
template< typename T0, typename T1 >
void div( T0* v0, const T1& denom, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] /= denom;
}
template< typename T0, typename T1 >
void div( T0* y0, const T0* v0, const T1& denom, unsigned n )
{
for(unsigned i=0; i<n; ++i)
y0[i] = v0[i] / denom;
}
template< typename T0, typename T1 >
void sub( T0* v0, const T1* v1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] -= v1[i];
}
template< typename T0, typename T1 >
void sub( T0* y0, const T0* v0, const T1* v1, unsigned n )
{
for(unsigned i=0; i<n; ++i)
y0[i] = v0[i] / v1[i];
}
template< typename T0, typename T1 >
void sub( T0* v0, const T1& scalar, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] -= scalar;
}
template< typename T0, typename T1 >
void sub( const T0& scalar, T1* v0, unsigned n )
{
for(unsigned i=0; i<n; ++i)
v0[i] = scalar - v0[i];
}
template< typename T0, typename T1 >
void sub( T0* y0, const T0* v0, const T1& scalar, unsigned n )
{
for(unsigned i=0; i<n; ++i)
y0[i] = v0[i] / scalar;
}
//==================================================================================================================
// Sequence generators
//
// Fill y[0:min(n,cnt)] with values {beg,beg+step,beg+2*step .... beg+(cnt-1)*step}}
template< typename T >
void seq( T* y, unsigned n, const T& beg, const T& cnt, const T& step )
{
if( cnt < n )
n = cnt;
T v = beg;
for(unsigned i=0; i<n; ++i, v+=step)
y[i] = v;
}
// Same as Matlab linspace() v[i] = i * (limit-1)/n
template< typename T >
T* linspace( T* y, unsigned yN, T base, T limit )
{
unsigned i = 0;
for(; i<yN; ++i)
y[i] = base + i*(limit-base)/(yN-1);
return y;
}
// Fill y[0:dn] with [beg+0,beg+1, ... beg+dn]
template< typename T >
T seq( T* dbp, unsigned dn, const T& beg, const T& incr )
{
const T* dep = dbp + dn;
unsigned i = 0;
for(; dbp<dep; ++i)
*dbp++ = beg + (incr*i);
return beg + (incr*i);
}
template< typename T >
T sum( const T* v, unsigned n )
{
T y = 0;
for(unsigned i=0; i<n; ++i)
y += v[i];
return y;
}
template< typename T >
T prod( const T* v, unsigned n )
{
T y = 1;
for(unsigned i=0; i<n; ++i)
y *= v[i];
return y;
}
template< typename T0, typename T1 >
T0 sum_sq_diff( const T0* v0, const T1* v1, unsigned n )
{
T0 sum = 0;
for(unsigned i=0; i<n; ++i)
sum += (v0[i]-v1[i]) * (v0[i]-v1[i]);
return sum;
}
//==================================================================================================================
// Statistics
//
template< typename T >
T mean( const T* v, unsigned n )
{
if( n == 0 )
return 0;
return sum(v,n)/n;
}
template< typename T >
double std( const T* v, unsigned n )
{
if( n < 2 )
return 0;
double u = mean(v,n);
double dsum = 0;
for(unsigned i=0; i<n; ++i)
{
double d = v[i] - u;
dsum += d*d;
}
return sqrt(dsum/n);
}
//==================================================================================================================
// Signal Processing
//
template< typename T0, typename T1 >
void interleave( T0* v0, const T1* v1, unsigned frameN, unsigned dstChCnt )
{
// v0[] = { LRLRLRLR ], v1[] = [ LLLLRRRR ]
for(unsigned k=0; k<dstChCnt; ++k)
{
unsigned n = k*frameN;
for(unsigned i=0,j=k; i<frameN; ++i,j+=dstChCnt)
v0[j] = (T0)v1[i+n];
}
}
template< typename T0, typename T1 >
void deinterleave( T0* v0, const T1* v1, unsigned frameN, unsigned srcChCnt )
{
// v0[] = [ LLLLRRRR ], v1[] = { LRLRLRLR ]
for(unsigned k=0; k<srcChCnt; ++k)
{
unsigned n = k*frameN;
for(unsigned i=0,j=k; i<frameN; ++i,j+=srcChCnt)
v0[i+n] = (T0)v1[j];
}
}
template< typename T0, typename T1, typename T2 >
unsigned phasor( T0* y, unsigned n, T1 srate, T2 hz, unsigned init_idx=0 )
{
for(unsigned i=init_idx; i<n; ++i)
y[i] = (M_PI*2*hz*i) / srate;
return init_idx + n;
}
template< typename T0, typename T1, typename T2 >
unsigned sine( T0* y, unsigned n, T1 srate, T2 hz, unsigned init_idx=0 )
{
init_idx = phasor(y,n,srate,hz,init_idx);
for(unsigned i=0; i<n; ++i)
y[i] = sin(y[i]);
return init_idx;
}
template< typename T0, typename T1 >
T0* ampl_to_db( T0* dbp, const T1* sbp, unsigned dn, T0 minDb=-1000 )
{
T0 minVal = pow(10.0,minDb/20.0);
T0* dp = dbp;
T0* ep = dp + dn;
for(; dp<ep; ++dp,++sbp)
*dp = (T0)(*sbp<minVal ? minDb : 20.0 * log10(*sbp));
return dbp;
}
template< typename T >
T* db_to_ampl( T* dbp, const T* sbp, unsigned dn, T minDb=-1000 )
{
T* dp = dbp;
T* ep = dp + dn;
for(; dp<ep; ++dp,++sbp)
*dp = pow(10.0,*sbp/20.0);
return dbp;
}
template< typename T >
T rms( const T* x, unsigned xN )
{
T rms = 0;
if( xN > 0 )
{
T x0[ xN ];
mul(x0,x,x,xN);
rms = std::sqrt(sum(x0,xN)/(T)xN);
}
return rms;
}
// Direct form II algorithm based on the MATLAB implmentation
// http://www.mathworks.com/access/helpdesk/help/techdoc/ref/filter.html#f83-1015962
// The only difference between this function and the equivalent MATLAB filter() function
// is that the first feedforward coeff is given as a seperate value. The first b coefficient
// in this function is therefore the same as the second coefficient in the MATLAB function.
// and the first a[] coefficient (which is generally set to 1.0) is skipped.
// Example:
// Matlab: b=[.5 .4 .3] a=[1 .2 .1]
// Equiv: b0 = .5 b=[ .4 .3] a=[ .2 .1];
//
// y[yn] - output vector
// x[xn] - input vector. xn must be <= yn. if xn < yn then the end of y[] is set to zero.
// b0 - signal scale. This can also be seen as b[0] (which is not included in b[])
// b[dn] - feedforward coeff's b[1..dn-1]
// a[dn] - feedback coeff's a[1..dn-1]
// d[dn+1] - delay registers - note that this array must be one element longer than the coeff arrays.
//
template< typename S, typename T >
S* filter( S* y,
unsigned yn,
const S* x,
unsigned xn,
T b0,
const T* b,
const T* a,
T* d,
unsigned dn )
{
unsigned i,j;
S y0 = 0;
unsigned n = yn<xn ? yn : xn;
for(i=0; i<n; ++i)
{
y[i] = (x[i] * b0) + d[0];
y0 = y[i];
for(j=0; j<dn; ++j)
d[j] = (b[j] * x[i]) - (a[j] * y0) + d[j+1];
}
// if fewer input samples than output samples - zero the end of the output buffer
if( yn > xn )
fill(y+i,yn-i,0);
return y;
}
rc_t test( const test::test_args_t& args );
}
}
#endif