405 lines
8.7 KiB
C++
405 lines
8.7 KiB
C++
#include "cwCommon.h"
|
|
#include "cwLog.h"
|
|
#include "cwCommonImpl.h"
|
|
#include "cwMath.h"
|
|
#include "cwMem.h"
|
|
#include <algorithm>
|
|
|
|
|
|
// TODO: rewrite to avoid copying
|
|
// this code comes via csound source ...
|
|
double cw::math::x80ToDouble( unsigned char rate[10] )
|
|
{
|
|
char sign;
|
|
short exp = 0;
|
|
unsigned long mant1 = 0;
|
|
unsigned long mant0 = 0;
|
|
double val;
|
|
unsigned char* p = (unsigned char*)rate;
|
|
|
|
exp = *p++;
|
|
exp <<= 8;
|
|
exp |= *p++;
|
|
sign = (exp & 0x8000) ? 1 : 0;
|
|
exp &= 0x7FFF;
|
|
|
|
mant1 = *p++;
|
|
mant1 <<= 8;
|
|
mant1 |= *p++;
|
|
mant1 <<= 8;
|
|
mant1 |= *p++;
|
|
mant1 <<= 8;
|
|
mant1 |= *p++;
|
|
|
|
mant0 = *p++;
|
|
mant0 <<= 8;
|
|
mant0 |= *p++;
|
|
mant0 <<= 8;
|
|
mant0 |= *p++;
|
|
mant0 <<= 8;
|
|
mant0 |= *p++;
|
|
|
|
/* special test for all bits zero meaning zero
|
|
- else pow(2,-16383) bombs */
|
|
if (mant1 == 0 && mant0 == 0 && exp == 0 && sign == 0)
|
|
return 0.0;
|
|
else {
|
|
val = ((double)mant0) * pow(2.0,-63.0);
|
|
val += ((double)mant1) * pow(2.0,-31.0);
|
|
val *= pow(2.0,((double) exp) - 16383.0);
|
|
return sign ? -val : val;
|
|
}
|
|
}
|
|
|
|
// TODO: rewrite to avoid copying
|
|
/*
|
|
* Convert double to IEEE 80 bit floating point
|
|
* Should be portable to all C compilers.
|
|
* 19aug91 aldel/dpwe covered for MSB bug in Ultrix 'cc'
|
|
*/
|
|
|
|
void cw::math::doubleToX80(double val, unsigned char rate[10])
|
|
{
|
|
char sign = 0;
|
|
short exp = 0;
|
|
unsigned long mant1 = 0;
|
|
unsigned long mant0 = 0;
|
|
unsigned char* p = (unsigned char*)rate;
|
|
|
|
if (val < 0.0) { sign = 1; val = -val; }
|
|
|
|
if (val != 0.0) /* val identically zero -> all elements zero */
|
|
{
|
|
exp = (short)(std::log(val)/std::log(2.0) + 16383.0);
|
|
val *= pow(2.0, 31.0+16383.0-(double)exp);
|
|
mant1 =((unsigned)val);
|
|
val -= ((double)mant1);
|
|
val *= pow(2.0, 32.0);
|
|
mant0 =((double)val);
|
|
}
|
|
|
|
*p++ = ((sign<<7)|(exp>>8));
|
|
*p++ = (u_char)(0xFF & exp);
|
|
*p++ = (u_char)(0xFF & (mant1>>24));
|
|
*p++ = (u_char)(0xFF & (mant1>>16));
|
|
*p++ = (u_char)(0xFF & (mant1>> 8));
|
|
*p++ = (u_char)(0xFF & (mant1));
|
|
*p++ = (u_char)(0xFF & (mant0>>24));
|
|
*p++ = (u_char)(0xFF & (mant0>>16));
|
|
*p++ = (u_char)(0xFF & (mant0>> 8));
|
|
*p++ = (u_char)(0xFF & (mant0));
|
|
|
|
}
|
|
|
|
bool cw::math::isPowerOfTwo( unsigned x )
|
|
{
|
|
return x==1 || (!( (x < 2) || (x & (x-1)) ));
|
|
}
|
|
|
|
unsigned cw::math::nextPowerOfTwo( unsigned val )
|
|
{
|
|
unsigned i;
|
|
unsigned mask = 1;
|
|
unsigned msb = 0;
|
|
unsigned cnt = 0;
|
|
|
|
// if val is a power of two return it
|
|
if( isPowerOfTwo(val) )
|
|
return val;
|
|
|
|
// next pow of zero is 2
|
|
if( val == 0 )
|
|
return 2;
|
|
|
|
// if the next power of two can't be represented in 32 bits
|
|
if( val > 0x80000000)
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
// find most sig. bit that is set - the number with only the next msb set is next pow 2
|
|
for(i=0; i<31; i++,mask<<=1)
|
|
if( mask & val )
|
|
{
|
|
msb = i;
|
|
cnt++;
|
|
}
|
|
|
|
|
|
return 1 << (msb + 1);
|
|
}
|
|
|
|
unsigned cw::math::nearPowerOfTwo( unsigned i )
|
|
{
|
|
unsigned vh = nextPowerOfTwo(i);
|
|
|
|
if( vh == 2 )
|
|
return vh;
|
|
|
|
unsigned vl = vh / 2;
|
|
|
|
if( vh - i < i - vl )
|
|
return vh;
|
|
return vl;
|
|
}
|
|
|
|
bool cw::math::isOddU( unsigned v ) { return v % 2 == 1; }
|
|
bool cw::math::isEvenU( unsigned v ) { return !isOddU(v); }
|
|
unsigned cw::math::nextOddU( unsigned v ) { return isOddU(v) ? v : v+1; }
|
|
unsigned cw::math::prevOddU( unsigned v ) { return isOddU(v) ? v : v-1; }
|
|
unsigned cw::math::nextEvenU( unsigned v ) { return isEvenU(v) ? v : v+1; }
|
|
unsigned cw::math::prevEvenU( unsigned v ) { return isEvenU(v) ? v : v-1; }
|
|
|
|
unsigned cw::math::modIncr(int idx, int delta, int maxN )
|
|
{
|
|
int sum = idx + delta;
|
|
|
|
if( sum >= maxN )
|
|
return sum - maxN;
|
|
|
|
if( sum < 0 )
|
|
return maxN + sum;
|
|
|
|
return sum;
|
|
}
|
|
|
|
|
|
unsigned cw::math::hzToMidi( double hz )
|
|
{
|
|
|
|
float midi = 12.0 * std::log2(hz/13.75) + 9;
|
|
|
|
if( midi < 0 )
|
|
midi = 0;
|
|
if( midi > 127 )
|
|
midi = 127;
|
|
|
|
return (unsigned)lround(midi);
|
|
}
|
|
|
|
float cw::math::midiToHz( unsigned midi )
|
|
{
|
|
double m = midi <= 127 ? midi : 127;
|
|
|
|
return (float)( 13.75 * pow(2.0,(m - 9.0)/12.0));
|
|
}
|
|
|
|
|
|
|
|
//=================================================================
|
|
// Random numbers
|
|
|
|
int cw::math::randInt( int min, int max )
|
|
{
|
|
assert( min <= max );
|
|
int range = max - min;
|
|
return min + std::max(0,std::min(range,(int)round(range * (double)rand() / RAND_MAX)));
|
|
}
|
|
|
|
unsigned cw::math::randUInt( unsigned min, unsigned max )
|
|
{
|
|
assert( min <= max );
|
|
unsigned range = max - min;
|
|
unsigned val = (unsigned)round(range * (double)rand() / RAND_MAX);
|
|
return min + std::max((unsigned)0,std::min(range,val));
|
|
}
|
|
|
|
float cw::math::randFloat( float min, float max )
|
|
{
|
|
assert( min <= max );
|
|
float range = max - min;
|
|
float val = (float)(range * (double)rand() / RAND_MAX);
|
|
return min + std::max(0.0f,std::min(range,val));
|
|
}
|
|
|
|
double cw::math::randDouble( double min, double max )
|
|
{
|
|
assert( min <= max );
|
|
double range = max - min;
|
|
double val = range * (double)rand() / RAND_MAX;
|
|
return min + std::max(0.0,std::min(range,val));
|
|
}
|
|
|
|
|
|
//=================================================================
|
|
// Base on: http://stackoverflow.com/questions/3874627/floating-point-comparison-functions-for-c-sharp
|
|
|
|
bool cw::math::isCloseD( double x0, double x1, double eps )
|
|
{
|
|
double d = fabs(x0-x1);
|
|
|
|
if( x0 == x1 )
|
|
return true;
|
|
|
|
if( x0==0 || x1==0 || d<DBL_MIN )
|
|
return d < (eps * DBL_MIN);
|
|
|
|
return (d / std::min( fabs(x0) + fabs(x1), DBL_MAX)) < eps;
|
|
}
|
|
|
|
bool cw::math::isCloseF( float x0, float x1, double eps_d )
|
|
{
|
|
float eps = (float)eps_d;
|
|
float d = fabsf(x0-x1);
|
|
|
|
if( x0 == x1 )
|
|
return true;
|
|
|
|
if( x0==0 || x1==0 || d<FLT_MIN )
|
|
return d < (eps * FLT_MIN);
|
|
|
|
return (d / std::min( fabsf(x0) + fabsf(x1), FLT_MAX)) < eps;
|
|
}
|
|
|
|
bool cw::math::isCloseI( int x0, int x1, double eps )
|
|
{
|
|
if( x0 == x1 )
|
|
return true;
|
|
|
|
return abs(x0-x1)/(abs(x0)+abs(x1)) < eps;
|
|
}
|
|
|
|
|
|
bool cw::math::isCloseU( unsigned x0, unsigned x1, double eps )
|
|
{
|
|
if( x0 == x1 )
|
|
return true;
|
|
if( x0 > x1 )
|
|
return (x0-x1)/(x0+x1) < eps;
|
|
else
|
|
return (x1-x0)/(x0+x1) < eps;
|
|
}
|
|
|
|
//=================================================================
|
|
|
|
// lFSR() implementation based on note at bottom of:
|
|
// http://www.ece.u.edu/~koopman/lfsr/index.html
|
|
void cw::math::lFSR( unsigned lfsrN, unsigned tapMask, unsigned seed, unsigned* yV, unsigned yN )
|
|
{
|
|
assert( 0 < lfsrN && lfsrN < 32 );
|
|
|
|
unsigned i;
|
|
for(i=0; i<yN; ++i)
|
|
{
|
|
if( (yV[i] = seed & 1)==1 )
|
|
seed = (seed >> 1) ^ tapMask;
|
|
else
|
|
seed = (seed >> 1);
|
|
|
|
}
|
|
}
|
|
|
|
namespace cw
|
|
{
|
|
namespace math
|
|
{
|
|
bool mLS_IsBalanced( const unsigned* xV, int xN)
|
|
{
|
|
int a = 0;
|
|
int i;
|
|
|
|
for(i=0; i<xN; ++i)
|
|
if( xV[i] == 1 )
|
|
++a;
|
|
|
|
return abs(a - (xN-a)) == 1;
|
|
}
|
|
}
|
|
|
|
unsigned _genGoldCopy( int* y, unsigned yi, unsigned yN, unsigned* x, unsigned xN)
|
|
{
|
|
unsigned i;
|
|
for(i=0; i<xN; ++i,++yi)
|
|
y[yi] = x[i]==1 ? -1 : 1;
|
|
|
|
assert(yi <= yN);
|
|
return yi;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
bool cw::math::genGoldCodes( unsigned lfsrN, unsigned poly_coeff0, unsigned poly_coeff1, unsigned goldN, int* yM, unsigned mlsN )
|
|
{
|
|
bool retFl = true;
|
|
unsigned yi = 0;
|
|
unsigned yN = goldN * mlsN;
|
|
unsigned* mls0V = mem::allocZ<unsigned>(mlsN);
|
|
unsigned* mls1V = mem::allocZ<unsigned>(mlsN);
|
|
unsigned* xorV = mem::allocZ<unsigned>(mlsN);
|
|
|
|
unsigned i,j;
|
|
|
|
lFSR(lfsrN, poly_coeff0, 1 << (lfsrN-1), mls0V, mlsN);
|
|
|
|
lFSR(lfsrN, poly_coeff1, 1 << (lfsrN-1), mls1V, mlsN);
|
|
|
|
if( mLS_IsBalanced(mls0V,mlsN) )
|
|
yi = _genGoldCopy(yM, yi, yN, mls0V, mlsN);
|
|
|
|
if( yi<yN && mLS_IsBalanced(mls1V,mlsN) )
|
|
yi = _genGoldCopy(yM, yi, yN, mls1V, mlsN);
|
|
|
|
|
|
for(i=0; yi < yN && i<mlsN-1; ++i )
|
|
{
|
|
for(j=0; j<mlsN; ++j)
|
|
xorV[j] = (mls0V[j] + mls1V[ (i+j) % mlsN ]) % 2;
|
|
|
|
if( mLS_IsBalanced(xorV,mlsN) )
|
|
yi = _genGoldCopy(yM,yi,yN,xorV,mlsN);
|
|
}
|
|
|
|
if(yi < yN )
|
|
{
|
|
//rc = errMsg(err,kOpFailAtRC,"Gold code generation failed. Insuffient balanced pairs.");
|
|
retFl = false;
|
|
}
|
|
|
|
mem::release(mls0V);
|
|
mem::release(mls1V);
|
|
mem::release(xorV);
|
|
|
|
return retFl;
|
|
|
|
}
|
|
|
|
bool cw::math::lFSR_Test()
|
|
{
|
|
// lfsrN = 5; % 5 6 7;
|
|
// poly_coeff0 = 0x12; % 0x12 0x21 0x41;
|
|
// poly_coeff1 = 0x1e; % 0x1e 0x36 0x72;
|
|
|
|
unsigned lfsrN = 7;
|
|
unsigned pc0 = 0x41;
|
|
unsigned pc1 = 0x72;
|
|
unsigned mlsN = (1 << lfsrN)-1;
|
|
|
|
unsigned yN = mlsN*2;
|
|
unsigned yV[ yN ];
|
|
unsigned i;
|
|
|
|
lFSR( lfsrN, pc0, 1 << (lfsrN-1), yV, yN );
|
|
|
|
for(i=0; i<mlsN; ++i)
|
|
if( yV[i] != yV[i+mlsN] )
|
|
return false;
|
|
|
|
//atVOU_PrintL(NULL,"0x12",yV,mlsN,2);
|
|
|
|
lFSR( lfsrN, pc1, 1 << (lfsrN-1), yV, yN );
|
|
|
|
//atVOU_PrintL(NULL,"0x17",yV,mlsN,2);
|
|
|
|
for(i=0; i<mlsN; ++i)
|
|
if( yV[i] != yV[i+mlsN] )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|