255 lines
5.2 KiB
C++
255 lines
5.2 KiB
C++
#include "cwCommon.h"
|
|
#include "cwLog.h"
|
|
#include "cwCommonImpl.h"
|
|
#include "cwTime.h"
|
|
|
|
#ifdef OS_OSX
|
|
|
|
#include <mach/mach.h>
|
|
#include <mach/mach_time.h>
|
|
#include <unistd.h>
|
|
|
|
void cw::time::get( spec_t& t )
|
|
{
|
|
static uint64_t t0 = 0;
|
|
static mach_timebase_info_data_t tbi;
|
|
static struct timespec ts;
|
|
|
|
if( t0 == 0 )
|
|
{
|
|
mach_timebase_info(&tbi);
|
|
t0 = mach_absolute_time();
|
|
ts.tv_sec = time(NULL);
|
|
ts.tv_nsec = 0; // accept 1/2 second error vs. wall-time.
|
|
}
|
|
|
|
// get the current time
|
|
uint64_t t1 = mach_absolute_time();
|
|
|
|
// calc the elapsed time since the last call in nanosecs
|
|
uint64_t dt = (t1-t0) * tbi.numer / tbi.denom;
|
|
|
|
// calc the elapsed time since the first call in secs
|
|
uint32_t s = (uint32_t)(dt / 2^9);
|
|
|
|
// calc the current time in secs, and nanosecs
|
|
t.tv_sec = ts.tv_sec + s;
|
|
t.tv_nsec = dt - (s * 2^9);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef OS_LINUX
|
|
void cw::time::get( spec_t& t )
|
|
{ clock_gettime(CLOCK_REALTIME,&t); }
|
|
#endif
|
|
|
|
// this assumes that the seconds have been normalized to a recent start time
|
|
// so as to avoid overflow
|
|
unsigned cw::time::elapsedMicros( const spec_t& t0, const spec_t& t1 )
|
|
{
|
|
// convert seconds to usecs
|
|
long u0 = t0.tv_sec * 1000000;
|
|
long u1 = t1.tv_sec * 1000000;
|
|
|
|
// convert nanoseconds to usec
|
|
u0 += t0.tv_nsec / 1000;
|
|
u1 += t1.tv_nsec / 1000;
|
|
|
|
// take diff between t1 and t0
|
|
return u1 - u0;
|
|
}
|
|
|
|
unsigned cw::time::elapsedMicros( const spec_t& t0 )
|
|
{
|
|
spec_t t1;
|
|
get(t1);
|
|
return elapsedMicros(t0,t1);
|
|
}
|
|
|
|
unsigned cw::time::elapsedMs( const spec_t& t0, const spec_t& t1 )
|
|
{ return elapsedMicros(t0,t1)/1000; }
|
|
|
|
unsigned cw::time::elapsedMs( const spec_t& t0 )
|
|
{
|
|
spec_t t1;
|
|
get(t1);
|
|
return elapsedMs(t0,t1);
|
|
}
|
|
|
|
unsigned cw::time::absElapsedMicros( const spec_t& t0, const spec_t& t1 )
|
|
{
|
|
if( isLTE(t0,t1) )
|
|
return elapsedMicros(t0,t1);
|
|
|
|
return elapsedMicros(t1,t0);
|
|
}
|
|
|
|
int cw::time::diffMicros( const spec_t& t0, const spec_t& t1 )
|
|
{
|
|
if( isLTE(t0,t1) )
|
|
return elapsedMicros(t0,t1);
|
|
|
|
return -((int)elapsedMicros(t1,t0));
|
|
}
|
|
|
|
bool cw::time::isLTE( const spec_t& t0, const spec_t& t1 )
|
|
{
|
|
if( t0.tv_sec < t1.tv_sec )
|
|
return true;
|
|
|
|
if( t0.tv_sec == t1.tv_sec )
|
|
return t0.tv_nsec <= t1.tv_nsec;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool cw::time::isGTE( const spec_t& t0, const spec_t& t1 )
|
|
{
|
|
if( t0.tv_sec > t1.tv_sec )
|
|
return true;
|
|
|
|
if( t0.tv_sec == t1.tv_sec )
|
|
return t0.tv_nsec >= t1.tv_nsec;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool cw::time::isEqual( const spec_t& t0, const spec_t& t1 )
|
|
{ return t0.tv_sec==t1.tv_sec && t0.tv_nsec==t1.tv_nsec; }
|
|
|
|
bool cw::time::isZero( const spec_t& t0 )
|
|
{ return t0.tv_sec==0 && t0.tv_nsec==0; }
|
|
|
|
void cw::time::setZero( spec_t& t0 )
|
|
{
|
|
t0.tv_sec = 0;
|
|
t0.tv_nsec = 0;
|
|
}
|
|
|
|
|
|
cw::rc_t cw::time::now( spec_t& ts )
|
|
{
|
|
rc_t rc = kOkRC;
|
|
int errRC;
|
|
|
|
memset(&ts,0,sizeof(ts));
|
|
|
|
if((errRC = clock_gettime(CLOCK_REALTIME, &ts)) != 0 )
|
|
rc = cwLogSysError(kInvalidOpRC,errRC,"Unable to obtain system time.");
|
|
|
|
return rc;
|
|
}
|
|
|
|
void cw::time::subtractMicros( spec_t& ts, unsigned micros )
|
|
{
|
|
|
|
unsigned rem_us = micros % 1000000; // fractional seconds in microseconds
|
|
unsigned rem_ns = rem_us * 1000; // fractional seconds in nanoseconds
|
|
|
|
// if the fractional micros is greater than the fractional nano's
|
|
if( rem_ns > ts.tv_nsec )
|
|
{
|
|
// subtract the fractional nano's from the fractional micros
|
|
// (this sets the fractional nano's to 0)
|
|
rem_ns -= ts.tv_nsec;
|
|
|
|
// convert the remaining fractional micros to the fractional nano's
|
|
ts.tv_nsec = 1000000000 - rem_ns;
|
|
|
|
// subtract the carry
|
|
ts.tv_sec -= 1;
|
|
}
|
|
else
|
|
{
|
|
ts.tv_nsec -= rem_ns;
|
|
}
|
|
|
|
assert( ts.tv_sec > micros / 1000000 );
|
|
|
|
ts.tv_sec -= micros / 1000000;
|
|
|
|
}
|
|
|
|
void cw::time::advanceMs( spec_t& ts, unsigned ms )
|
|
{
|
|
// strip off whole seconds from ms
|
|
unsigned sec = ms / 1000;
|
|
|
|
// find the remaining fractional second in milliseconds
|
|
ms = (ms - sec*1000);
|
|
|
|
ts.tv_sec += sec;
|
|
ts.tv_nsec += ms * 1000000; // convert millisconds to nanoseconds
|
|
|
|
// stip off whole seconds from tv_nsec
|
|
while( ts.tv_nsec > 1e9 )
|
|
{
|
|
ts.tv_nsec -= 1e9;
|
|
ts.tv_sec +=1;
|
|
}
|
|
}
|
|
|
|
cw::rc_t cw::time::futureMs( spec_t& ts, unsigned ms )
|
|
{
|
|
rc_t rc;
|
|
if((rc = now(ts)) == kOkRC )
|
|
advanceMs(ts,ms);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void cw::time::secondsToSpec( spec_t& ts, unsigned sec )
|
|
{
|
|
ts.tv_sec = sec;
|
|
ts.tv_nsec = 0;
|
|
}
|
|
|
|
void cw::time::millisecondsToSpec( spec_t& ts, unsigned ms )
|
|
{
|
|
unsigned sec = ms/1000;
|
|
unsigned ns = (ms - (sec*1000)) * 1000000;
|
|
|
|
ts.tv_sec = sec;
|
|
ts.tv_nsec = ns;
|
|
}
|
|
|
|
void cw::time::microsecondsToSpec( spec_t& ts, unsigned us )
|
|
{
|
|
unsigned sec = us/1000000;
|
|
unsigned ns = (us - (sec*1000000)) * 1000;
|
|
|
|
ts.tv_sec = sec;
|
|
ts.tv_nsec = ns;
|
|
}
|
|
|
|
cw::rc_t cw::time::test()
|
|
{
|
|
|
|
spec_t t0,t1;
|
|
|
|
get(t0);
|
|
|
|
futureMs(t1,1000);
|
|
|
|
unsigned dMs = elapsedMs(t0,t1);
|
|
|
|
printf("dMs:%i : GTE:%i LTE:%i\n",dMs, isGTE(t0,t1), isLTE(t0,t1) );
|
|
|
|
|
|
microsecondsToSpec( t0, 2500000 ); // 2.5 seconds
|
|
printf("%li %li\n",t0.tv_sec,t0.tv_nsec);
|
|
subtractMicros( t0, 750000 ); // subtract .75 seconds
|
|
printf("%li %li\n",t0.tv_sec,t0.tv_nsec);
|
|
subtractMicros( t0, 500000 ); // subtract .5 seconds
|
|
printf("%li %li\n",t0.tv_sec,t0.tv_nsec);
|
|
|
|
|
|
|
|
return kOkRC;
|
|
|
|
}
|
|
|
|
|