#ifndef cwDsp_H #define cwDsp_H #ifdef cwFFTW #include <fftw3.h> #else #include "cwFFT.h" #endif #include <type_traits> namespace cw { namespace dsp { typedef std::complex<double> complex_d_t; typedef std::complex<float> complex_f_t; template< typename T > T ampl_to_db( T ampl, T ref=1.0, T minDb=-200.0 ) { return ampl<1e-10 ? minDb : 20.0 * log10(ampl/ref); } template< typename T > T db_to_ampl( T db ) { return pow(10.0,db/20.0); } //--------------------------------------------------------------------------------------------------------------------------------- // Window functions // template< typename T > T kaiser_beta_from_sidelobe_reject( const T& sidelobeRejectDb ) { double beta; T slrDb = sidelobeRejectDb; if( slrDb < 13.26 ) slrDb = 13.26; else if( slrDb > 120.0) slrDb = 120.0; if( slrDb < 60.0 ) beta = (0.76609 * pow(slrDb - 13.26,0.4)) + (0.09834*(slrDb-13.26)); else beta = 0.12438 * (slrDb + 6.3); return beta; } template< typename T > T kaiser_freq_resolution_factor( const T& sidelobeRejectDb ) { return (6.0 * (sidelobeRejectDb + 12.0))/155.0; } template< typename T > T* kaiser( T* dbp, unsigned n, const T& beta ) { bool zeroFl = false; int M = 0; double den = math::bessel0<T>(beta); // wnd func denominator int cnt = n; int i; assert( n >= 3 ); // force ele cnt to be odd if( is_even(cnt) ) { cnt--; zeroFl = true; } // at this point cnt is odd and >= 3 // calc half the window length M = (int)((cnt - 1.0)/2.0); double Msqrd = M*M; for(i=0; i<cnt; i++) { double v0 = (double)(i - M); double num = math::bessel0(beta * sqrt(1.0 - ((v0*v0)/Msqrd))); dbp[i] = (T)(num/den); } if( zeroFl ) dbp[cnt] = 0.0; // zero the extra element in the output array return dbp; } template< typename T > T* gaussian( T* dbp, unsigned dn, double mean, double variance ) { int M = dn-1; double sqrt2pi = sqrt(2.0*M_PI); unsigned i; for(i=0; i<dn; i++) { double arg = ((((double)i/M) - 0.5) * M); arg = pow( (double)(arg-mean), 2.0); arg = exp( -arg / (2.0*variance)); dbp[i] = (T)(arg / (sqrt(variance) * sqrt2pi)); } return dbp; } template< typename T > T* hamming( T* dbp, unsigned dn ) { const T* dep = dbp + dn; T* dp = dbp; double fact = 2.0 * M_PI / (dn-1); unsigned i; for(i=0; dbp < dep; ++i ) *dbp++ = (T)(.54 - (.46 * cos(fact*i))); return dp; } template< typename T > T* hann( T* dbp, unsigned dn ) { const T* dep = dbp + dn; T* dp = dbp; double fact = 2.0 * M_PI / (dn-1); unsigned i; for(i=0; dbp < dep; ++i ) *dbp++ = (T)(.5 - (.5 * cos(fact*i))); return dp; } template< typename T > T* hann_matlab( T* dbp, unsigned dn ) { const T* dep = dbp + dn; T* dp = dbp; double fact = 2.0 * M_PI / (dn+1); unsigned i; for(i=0; dbp < dep; ++i ) *dbp++ = (T)(0.5*(1.0-cos(fact*(i+1)))); return dp; } template< typename T > T* triangle( T* dbp, unsigned dn ) { unsigned n = dn/2; T incr = 1.0/n; T v0 = 0; T v1 = 1; vop::seq(dbp,n,v0,incr); vop::seq(dbp+n,dn-n,v1,-incr); return dbp; } template< typename T > T* gauss_window( T* dbp, unsigned dn, double arg ) { const T* dep = dbp + dn; T* rp = dbp; int N = (dep - dbp) - 1; int n = -N/2; if( N == 0 ) *dbp = 1.0; else { while( dbp < dep ) { double a = (arg * n++) / (N/2); *dbp++ = (T)exp( -(a*a)/2 ); } } return rp; } //--------------------------------------------------------------------------------------------------------------------------------- // FFT // namespace fft { unsigned window_sample_count_to_bin_count( unsigned wndSmpN ); unsigned bin_count_to_window_sample_count( unsigned binN ); enum { kToPolarFl = 0x01, // convert to polar (magn./phase) kToRectFl = 0x02, // convert to rect (real/imag) }; template< typename T > struct obj_str { unsigned flags; T* inV; std::complex<T>* cplxV; T* magV; T* phsV; unsigned inN; unsigned binN; union { fftw_plan dplan; fftwf_plan fplan; } u; }; template< typename T > rc_t create( struct obj_str<T>*& p, unsigned xN, unsigned flags=kToPolarFl ) { p = mem::allocZ< obj_str<T> >(1); p->flags = flags; p->inN = xN; p->binN = window_sample_count_to_bin_count(xN); p->magV = mem::allocZ<T>(p->binN); p->phsV = mem::allocZ<T>(p->binN); if( std::is_same<T,float>::value ) { p->inV = (T*)fftwf_malloc( sizeof(T)*xN ); p->cplxV = (std::complex<T>*)fftwf_malloc( sizeof(std::complex<T>)*xN); p->u.fplan = fftwf_plan_dft_r2c_1d((int)xN, (float*)p->inV, reinterpret_cast<fftwf_complex*>(p->cplxV), FFTW_MEASURE ); } else { p->inV = (T*)fftw_malloc( sizeof(T)*xN ); p->cplxV = (std::complex<T>*)fftw_malloc( sizeof(std::complex<T>)*xN); p->u.dplan = fftw_plan_dft_r2c_1d((int)xN, (double*)p->inV, reinterpret_cast<fftw_complex*>(p->cplxV), FFTW_MEASURE ); } return kOkRC; } template< typename T > rc_t destroy( struct obj_str<T>*& p ) { if( p == nullptr ) return kOkRC; if( std::is_same<T,float>::value ) { fftwf_destroy_plan( p->u.fplan ); fftwf_free(p->inV); fftwf_free(p->cplxV); } else { fftw_destroy_plan( p->u.dplan ); fftw_free(p->inV); fftw_free(p->cplxV); } //p->u.dplan = nullptr; mem::release(p->magV); mem::release(p->phsV); mem::release(p); return kOkRC; } template< typename T > rc_t exec( struct obj_str<T>* p, const T* xV, unsigned xN ) { rc_t rc = kOkRC; assert( xN <= p->inN); // if the incoming vector size is less than the FT buffer size // then zero the extra values at the end of the buffer if( xN < p->inN ) memset(p->inV + xN, 0, sizeof(T) * (p->inN-xN) ); // copy the incoming samples into the input buffer memcpy(p->inV,xV,sizeof(T)*xN); // execute the FT if( std::is_same<T,float>::value ) fftwf_execute(p->u.fplan); else fftw_execute(p->u.dplan); // convert to polar if( cwIsFlag(p->flags,kToPolarFl) ) { for(unsigned i=0; i<p->binN; ++i) { p->magV[i] = std::abs(p->cplxV[i])/(p->inN/2); p->phsV[i] = std::arg(p->cplxV[i]); } } else // convert to rect if( cwIsFlag(p->flags,kToRectFl) ) { for(unsigned i=0; i<p->binN; ++i) { p->magV[i] = std::real(p->cplxV[i]); p->phsV[i] = std::imag(p->cplxV[i]); } } else { // do nothing - leave the result in p->cplxV[] } return rc; } template< typename T > unsigned bin_count( obj_str<T>* p ) { return p->binN; } template< typename T > const T* magn( obj_str<T>* p ) { return p->magV; } template< typename T > const T* phase( obj_str<T>* p ) { return p->phsV; } rc_t test(); } //--------------------------------------------------------------------------------------------------------------------------------- // IFFT // namespace ifft { template< typename T > struct obj_str { T *outV; std::complex<T> *cplxV; unsigned outN; unsigned binN; union { fftw_plan dplan; fftwf_plan fplan; } u; }; template< typename T > rc_t create( struct obj_str<T>*& p, unsigned binN ) { p = mem::allocZ< obj_str<T> >(1); p->binN = binN; p->outN = fft::bin_count_to_window_sample_count(binN); if( std::is_same<T,float>::value ) { p->outV = (T*)fftwf_malloc( sizeof(T)*p->outN ); p->cplxV = (std::complex<T>*)fftwf_malloc( sizeof(std::complex<T>)*p->outN); p->u.fplan = fftwf_plan_dft_c2r_1d((int)p->outN, reinterpret_cast<fftwf_complex*>(p->cplxV), (float*)p->outV, FFTW_BACKWARD | FFTW_MEASURE ); } else { p->outV = (T*)fftw_malloc( sizeof(T)*p->outN ); p->cplxV = (std::complex<T>*)fftw_malloc( sizeof(std::complex<T>)*p->outN); p->u.dplan = fftw_plan_dft_c2r_1d((int)p->outN, reinterpret_cast<fftw_complex*>(p->cplxV), (double*)p->outV, FFTW_BACKWARD | FFTW_MEASURE ); } return kOkRC;; } template< typename T > rc_t destroy( struct obj_str<T>*& p ) { if( p == nullptr ) return kOkRC; if( std::is_same<T,float>::value ) { fftwf_destroy_plan( p->u.fplan ); fftwf_free(p->outV); fftwf_free(p->cplxV); } else { fftw_destroy_plan( p->u.dplan ); fftw_free(p->outV); fftw_free(p->cplxV); } //p->u.dplan = nullptr; mem::release(p); return kOkRC; } template< typename T > rc_t exec_polar( struct obj_str<T>* p, const T* magV, const T* phsV ) { rc_t rc = kOkRC; if( magV != nullptr && phsV != nullptr ) { for(unsigned i=0; i<p->binN; ++i) p->cplxV[i] = std::polar( magV[i] / 2, phsV[i] ); for(unsigned i=p->outN-1,j=1; j<p->binN-1; --i,++j) p->cplxV[i] = std::polar( magV[j] / 2, phsV[j] ); } if( std::is_same<T,float>::value ) fftwf_execute(p->u.fplan); else fftw_execute(p->u.dplan); return rc; } template< typename T > rc_t exec_rect( struct obj_str<T>* p, const T* iV, const T* rV ) { rc_t rc = kOkRC; if( iV != nullptr && rV != nullptr ) { unsigned i,j; for(i=0; i<p->binN; ++i) p->cplxV[i] = std::complex(rV[i], iV[i]); for(i=p->outN-1,j=1; j<p->binN-1; --i,++j) p->cplxV[i] = std::complex(rV[j], iV[j]); if( std::is_same<T,float>::value ) fftwf_execute(p->u.fplan); else fftw_execute(p->u.dplan); } return rc; } template< typename T > unsigned out_count( struct obj_str<T>* p ) { return p->outN; } template< typename T > const T* out( struct obj_str<T>* p ) { return p->outV; } rc_t test(); } //--------------------------------------------------------------------------------------------------------------------------------- // Convolution // namespace convolve { template< typename T > struct obj_str { struct fft::obj_str<T>* ft; struct ifft::obj_str<T>* ift; std::complex<T>* hV; unsigned hN; T* olaV; // olaV[olaN] unsigned olaN; // olaN == cN - procSmpN T* outV; // outV[procSmpN] unsigned outN; // outN == procSmpN }; template< typename T > rc_t create(struct obj_str<T>*& p, const T* hV, unsigned hN, unsigned procSmpN, T hScale=1 ) { p = mem::allocZ<struct obj_str<T>>(1); unsigned cN = math::nextPowerOfTwo( hN + procSmpN - 1 ); fft::create<T>(p->ft,cN,0); unsigned binN = fft::bin_count( p->ft ); ifft::create<T>(p->ift, binN); p->hN = hN; p->hV = mem::allocZ< std::complex<T> >(binN); p->outV = mem::allocZ<T>( cN ); p->outN = procSmpN; p->olaV = p->outV + procSmpN; // olaV[] overlaps outV[] with an offset of procSmpN p->olaN = cN - procSmpN; fft::exec( p->ft, hV, hN ); for(unsigned i=0; i<binN; ++i) p->hV[i] = hScale * p->ft->cplxV[i] / ((T)cN); printf("procN:%i cN:%i hN:%i binN:%i outN:%i\n", procSmpN, cN, hN, binN, p->outN ); return kOkRC; } template< typename T > rc_t destroy( struct obj_str<T>*& pRef ) { if( pRef == nullptr ) return kOkRC; fft::destroy(pRef->ft); ifft::destroy(pRef->ift); mem::release(pRef->hV); mem::release(pRef->outV); mem::release(pRef); return kOkRC; } template< typename T > rc_t exec( struct obj_str<T>* p, const T* xV, unsigned xN ) { // take FT of input signal fft::exec( p->ft, xV, xN ); // multiply the signal spectra of the input signal and impulse response for(unsigned i=0; i<p->ft->binN; ++i) p->ift->cplxV[i] = p->hV[i] * p->ft->cplxV[i]; // take the IFFT of the convolved spectrum ifft::exec_polar<T>(p->ift,nullptr,nullptr); // sum with previous impulse response tail vop::add( p->outV, (const T*)p->olaV, (const T*)p->ift->outV, p->outN-1 ); // first sample of the impulse response tail is complete p->outV[p->outN-1] = p->ift->outV[p->outN-1]; // store the new impulse response tail vop::copy(p->olaV, p->ift->outV + p->outN, p->hN-1 ); return kOkRC; } template< typename T > rc_t apply( const T* xV, unsigned xN, const T* hV, unsigned hN, T* yV, unsigned yN, T hScale=1 ) { unsigned procSmpN = std::min(xN,hN); obj_str<T> *p = nullptr; unsigned yi = 0; create(p,hV,hN,procSmpN,hScale); //printf("procSmpN:%i\n",procSmpN); for(unsigned xi=0; xi<xN && yi<yN; xi+=procSmpN ) { exec<T>(p,xV+xi,std::min(procSmpN,xN-xi)); unsigned outN = std::min(yN-yi,p->outN); vop::copy(yV+yi, p->outV, outN ); //printf("xi:%i yi:%i outN:%i\n", xi, yi, outN ); //vop::print( yV+yi, outN, "%f ", "outV "); yi += outN; } //printf("yi:%i\n",yi); /* // if the tail of the hV[] is still in the OLA buffer if( yi < yN ) { unsigned outN = std::min(yN-yi, p->olaN); // fill yV[] with as much of OLA as is available vop::copy(yV + yi, p->olaV, outN); yi += outN; // zero any remaining space in yV[] vop::zero(yV + yi, yN-yi ); } */ destroy(p); return kOkRC; } rc_t test(); } } } #endif