#include "cwCommon.h" #include "cwLog.h" #include "cwCommonImpl.h" #include "cwMath.h" #include "cwMem.h" #include <algorithm> // TODO: rewrite to avoid copying // this code comes via csound source ... double cw::math::x80ToDouble( unsigned char rate[10] ) { char sign; short exp = 0; unsigned long mant1 = 0; unsigned long mant0 = 0; double val; unsigned char* p = (unsigned char*)rate; exp = *p++; exp <<= 8; exp |= *p++; sign = (exp & 0x8000) ? 1 : 0; exp &= 0x7FFF; mant1 = *p++; mant1 <<= 8; mant1 |= *p++; mant1 <<= 8; mant1 |= *p++; mant1 <<= 8; mant1 |= *p++; mant0 = *p++; mant0 <<= 8; mant0 |= *p++; mant0 <<= 8; mant0 |= *p++; mant0 <<= 8; mant0 |= *p++; /* special test for all bits zero meaning zero - else pow(2,-16383) bombs */ if (mant1 == 0 && mant0 == 0 && exp == 0 && sign == 0) return 0.0; else { val = ((double)mant0) * pow(2.0,-63.0); val += ((double)mant1) * pow(2.0,-31.0); val *= pow(2.0,((double) exp) - 16383.0); return sign ? -val : val; } } // TODO: rewrite to avoid copying /* * Convert double to IEEE 80 bit floating point * Should be portable to all C compilers. * 19aug91 aldel/dpwe covered for MSB bug in Ultrix 'cc' */ void cw::math::doubleToX80(double val, unsigned char rate[10]) { char sign = 0; short exp = 0; unsigned long mant1 = 0; unsigned long mant0 = 0; unsigned char* p = (unsigned char*)rate; if (val < 0.0) { sign = 1; val = -val; } if (val != 0.0) /* val identically zero -> all elements zero */ { exp = (short)(std::log(val)/std::log(2.0) + 16383.0); val *= pow(2.0, 31.0+16383.0-(double)exp); mant1 =((unsigned)val); val -= ((double)mant1); val *= pow(2.0, 32.0); mant0 =((double)val); } *p++ = ((sign<<7)|(exp>>8)); *p++ = (u_char)(0xFF & exp); *p++ = (u_char)(0xFF & (mant1>>24)); *p++ = (u_char)(0xFF & (mant1>>16)); *p++ = (u_char)(0xFF & (mant1>> 8)); *p++ = (u_char)(0xFF & (mant1)); *p++ = (u_char)(0xFF & (mant0>>24)); *p++ = (u_char)(0xFF & (mant0>>16)); *p++ = (u_char)(0xFF & (mant0>> 8)); *p++ = (u_char)(0xFF & (mant0)); } bool cw::math::isPowerOfTwo( unsigned x ) { return !( (x < 2) || (x & (x-1)) ); } unsigned cw::math::nextPowerOfTwo( unsigned val ) { unsigned i; unsigned mask = 1; unsigned msb = 0; unsigned cnt = 0; // if val is a power of two return it if( isPowerOfTwo(val) ) return val; // next pow of zero is 2 if( val == 0 ) return 2; // if the next power of two can't be represented in 32 bits if( val > 0x80000000) { assert(0); return 0; } // find most sig. bit that is set - the number with only the next msb set is next pow 2 for(i=0; i<31; i++,mask<<=1) if( mask & val ) { msb = i; cnt++; } return 1 << (msb + 1); } unsigned cw::math::nearPowerOfTwo( unsigned i ) { unsigned vh = nextPowerOfTwo(i); if( vh == 2 ) return vh; unsigned vl = vh / 2; if( vh - i < i - vl ) return vh; return vl; } bool cw::math::isOddU( unsigned v ) { return v % 2 == 1; } bool cw::math::isEvenU( unsigned v ) { return !isOddU(v); } unsigned cw::math::nextOddU( unsigned v ) { return isOddU(v) ? v : v+1; } unsigned cw::math::prevOddU( unsigned v ) { return isOddU(v) ? v : v-1; } unsigned cw::math::nextEvenU( unsigned v ) { return isEvenU(v) ? v : v+1; } unsigned cw::math::prevEvenU( unsigned v ) { return isEvenU(v) ? v : v-1; } unsigned cw::math::modIncr(int idx, int delta, int maxN ) { int sum = idx + delta; if( sum >= maxN ) return sum - maxN; if( sum < 0 ) return maxN + sum; return sum; } unsigned cw::math::hzToMidi( double hz ) { float midi = 12.0 * std::log2(hz/13.75) + 9; if( midi < 0 ) midi = 0; if( midi > 127 ) midi = 127; return (unsigned)lround(midi); } float cw::math::midiToHz( unsigned midi ) { double m = midi <= 127 ? midi : 127; return (float)( 13.75 * pow(2.0,(m - 9.0)/12.0)); } //================================================================= // Random numbers int cw::math::randInt( int min, int max ) { assert( min <= max ); int range = max - min; return min + std::max(0,std::min(range,(int)round(range * (double)rand() / RAND_MAX))); } unsigned cw::math::randUInt( unsigned min, unsigned max ) { assert( min <= max ); unsigned range = max - min; unsigned val = (unsigned)round(range * (double)rand() / RAND_MAX); return min + std::max((unsigned)0,std::min(range,val)); } float cw::math::randFloat( float min, float max ) { assert( min <= max ); float range = max - min; float val = (float)(range * (double)rand() / RAND_MAX); return min + std::max(0.0f,std::min(range,val)); } double cw::math::randDouble( double min, double max ) { assert( min <= max ); double range = max - min; double val = range * (double)rand() / RAND_MAX; return min + std::max(0.0,std::min(range,val)); } //================================================================= // Base on: http://stackoverflow.com/questions/3874627/floating-point-comparison-functions-for-c-sharp bool cw::math::isCloseD( double x0, double x1, double eps ) { double d = fabs(x0-x1); if( x0 == x1 ) return true; if( x0==0 || x1==0 || d<DBL_MIN ) return d < (eps * DBL_MIN); return (d / std::min( fabs(x0) + fabs(x1), DBL_MAX)) < eps; } bool cw::math::isCloseF( float x0, float x1, double eps_d ) { float eps = (float)eps_d; float d = fabsf(x0-x1); if( x0 == x1 ) return true; if( x0==0 || x1==0 || d<FLT_MIN ) return d < (eps * FLT_MIN); return (d / std::min( fabsf(x0) + fabsf(x1), FLT_MAX)) < eps; } bool cw::math::isCloseI( int x0, int x1, double eps ) { if( x0 == x1 ) return true; return abs(x0-x1)/(abs(x0)+abs(x1)) < eps; } bool cw::math::isCloseU( unsigned x0, unsigned x1, double eps ) { if( x0 == x1 ) return true; if( x0 > x1 ) return (x0-x1)/(x0+x1) < eps; else return (x1-x0)/(x0+x1) < eps; } //================================================================= // lFSR() implementation based on note at bottom of: // http://www.ece.u.edu/~koopman/lfsr/index.html void cw::math::lFSR( unsigned lfsrN, unsigned tapMask, unsigned seed, unsigned* yV, unsigned yN ) { assert( 0 < lfsrN && lfsrN < 32 ); unsigned i; for(i=0; i<yN; ++i) { if( (yV[i] = seed & 1)==1 ) seed = (seed >> 1) ^ tapMask; else seed = (seed >> 1); } } namespace cw { namespace math { bool mLS_IsBalanced( const unsigned* xV, int xN) { int a = 0; int i; for(i=0; i<xN; ++i) if( xV[i] == 1 ) ++a; return abs(a - (xN-a)) == 1; } } unsigned _genGoldCopy( int* y, unsigned yi, unsigned yN, unsigned* x, unsigned xN) { unsigned i; for(i=0; i<xN; ++i,++yi) y[yi] = x[i]==1 ? -1 : 1; assert(yi <= yN); return yi; } } bool cw::math::genGoldCodes( unsigned lfsrN, unsigned poly_coeff0, unsigned poly_coeff1, unsigned goldN, int* yM, unsigned mlsN ) { bool retFl = true; unsigned yi = 0; unsigned yN = goldN * mlsN; unsigned* mls0V = mem::allocZ<unsigned>(mlsN); unsigned* mls1V = mem::allocZ<unsigned>(mlsN); unsigned* xorV = mem::allocZ<unsigned>(mlsN); unsigned i,j; lFSR(lfsrN, poly_coeff0, 1 << (lfsrN-1), mls0V, mlsN); lFSR(lfsrN, poly_coeff1, 1 << (lfsrN-1), mls1V, mlsN); if( mLS_IsBalanced(mls0V,mlsN) ) yi = _genGoldCopy(yM, yi, yN, mls0V, mlsN); if( yi<yN && mLS_IsBalanced(mls1V,mlsN) ) yi = _genGoldCopy(yM, yi, yN, mls1V, mlsN); for(i=0; yi < yN && i<mlsN-1; ++i ) { for(j=0; j<mlsN; ++j) xorV[j] = (mls0V[j] + mls1V[ (i+j) % mlsN ]) % 2; if( mLS_IsBalanced(xorV,mlsN) ) yi = _genGoldCopy(yM,yi,yN,xorV,mlsN); } if(yi < yN ) { //rc = errMsg(err,kOpFailAtRC,"Gold code generation failed. Insuffient balanced pairs."); retFl = false; } mem::release(mls0V); mem::release(mls1V); mem::release(xorV); return retFl; } bool cw::math::lFSR_Test() { // lfsrN = 5; % 5 6 7; // poly_coeff0 = 0x12; % 0x12 0x21 0x41; // poly_coeff1 = 0x1e; % 0x1e 0x36 0x72; unsigned lfsrN = 7; unsigned pc0 = 0x41; unsigned pc1 = 0x72; unsigned mlsN = (1 << lfsrN)-1; unsigned yN = mlsN*2; unsigned yV[ yN ]; unsigned i; lFSR( lfsrN, pc0, 1 << (lfsrN-1), yV, yN ); for(i=0; i<mlsN; ++i) if( yV[i] != yV[i+mlsN] ) return false; //atVOU_PrintL(NULL,"0x12",yV,mlsN,2); lFSR( lfsrN, pc1, 1 << (lfsrN-1), yV, yN ); //atVOU_PrintL(NULL,"0x17",yV,mlsN,2); for(i=0; i<mlsN; ++i) if( yV[i] != yV[i+mlsN] ) return false; return true; }