#include "cwCommon.h" #include "cwLog.h" #include "cwCommonImpl.h" #include "cwTest.h" #include "cwMem.h" #include "cwTime.h" #include "cwText.h" #include "cwTextBuf.h" #include "cwThread.h" #include "cwAudioDevice.h" #include "cwAudioDeviceAlsa.h" #include "alsa/asoundlib.h" #include <unistd.h> // usleep namespace cw { namespace audio { namespace device { namespace alsa { enum { kDfltPeriodsPerBuf = 2, kPollfdsArrayCnt=2 }; enum { kInFl=0x01, kOutFl=0x02 }; struct alsa_str; typedef struct devRecd_str { struct alsa_str* rootPtr; unsigned devIdx; char* nameStr; char* descStr; unsigned flags; unsigned framesPerCycle; // samples per sub-buffer unsigned periodsPerBuf; // sub-buffers per buffer snd_async_handler_t* ahandler; unsigned srate; // device sample rate unsigned iChCnt; // ch count unsigned oChCnt; unsigned iBits; // bits per sample unsigned oBits; bool iSignFl; // sample type is signed bool oSignFl; bool iSwapFl; // swap the sample bytes bool oSwapFl; bool iEnableFl; // enable the device bool oEnableFl; unsigned iSigBits; // significant bits in each sample beginning unsigned oSigBits; // with the most sig. bit. device::sample_t* iBuf; // iBuf[ iFpc * iChCnt ] device::sample_t* oBuf; // oBuf[ oFpc * oChCnt ] unsigned oBufCnt; // count of buffers written unsigned iFpC; // buffer frames per cycle (in ALSA this is call period_size) unsigned oFpC; snd_pcm_t* iPcmH; // device handle snd_pcm_t* oPcmH; unsigned iCbCnt; // callback count unsigned oCbCnt; unsigned iErrCnt; // error count unsigned oErrCnt; device::cbFunc_t cbFunc; // user callback void* cbArg; unsigned cbDevIdx; } devRecd_t; typedef struct poll_str { devRecd_t* devPtr; bool inputFl; unsigned fdsCnt; } pollfdsDesc_t; typedef struct alsa_str { driver_t driver; devRecd_t* devArray = nullptr; // array of device records unsigned devCnt = 0; // count of actual dev recds in devArray[] unsigned devAllocCnt = 0; // count of dev recds allocated in devArray[] bool asyncFl = false; // true=use async callback false=use polling thread thread::handle_t thH; // polling thread unsigned pollfdsAllocCnt = 0; // 2*devCnt (max possible in+out handles) struct pollfd* pollfds = nullptr; // pollfds[ pollfdsAllocCnt ] pollfdsDesc_t *pollfdsDesc = nullptr; // pollfdsDesc[ pollfdsAllocCnt ] unsigned pollfdsCnt = 0; // count of active recds in pollfds[] and pollfdsDesc[] } alsa_t; alsa_t* _handleToPtr( handle_t h) { return handleToPtr<handle_t,alsa_t>(h); } rc_t _alsaErrorImpl( int alsaRC, const char* func, const char* fn, int lineNumb, const char* fmt, ... ) { rc_t rc = kOkRC; va_list vl0; va_start(vl0,fmt); if( alsaRC == 0 ) { rc = log::msg( log::globalHandle(), log::kError_LogLevel, func, fn, lineNumb, 0, kOpFailRC, fmt, vl0 ); } else { va_list vl1; va_copy(vl1,vl0); int n = vsnprintf(NULL,0,fmt,vl0); char msg0[n+1]; int m = vsnprintf(msg0,n+1,fmt,vl1); cwAssert(n==m); va_end(vl1); const char* fmt1 = "%s ALSA Error:%s"; n = snprintf(NULL,0,fmt1,msg0,snd_strerror(alsaRC)); char msg1[n+1]; m = snprintf(msg1,n+1,fmt1,msg0,snd_strerror(alsaRC)); rc = log::msg( log::globalHandle(), log::kError_LogLevel, func, fn, lineNumb, 0, kOpFailRC, "%s", msg1 ); } va_end(vl0); return rc; } #define _alsaError( alsaRC, fmt, ...) _alsaErrorImpl( alsaRC, __FUNCTION__, __FILE__, __LINE__, fmt, ##__VA_ARGS__ ) rc_t _alsaSetupErrorImpl( int alsaRC, bool inputFl, const devRecd_t* drp, const char* func, const char* fn, int lineNumb, const char* fmt, ... ) { va_list vl0,vl1; va_start(vl0,fmt); va_copy(vl1,vl0); int n = vsnprintf(NULL,0,fmt,vl0); char msg[n+1]; int m = vsnprintf(msg,n+1,fmt,vl1); cwAssert(m==n); return _alsaErrorImpl( alsaRC, func, fn, lineNumb, "%s for %s '%s' : '%s'.",msg,inputFl ? "INPUT" : "OUTPUT", drp->nameStr, drp->descStr ); } #define _alsaSetupError( alsaRC, inputFl, drp, fmt, ...) _alsaSetupErrorImpl( alsaRC, inputFl, drp, __FUNCTION__, __FILE__, __LINE__, fmt, ##__VA_ARGS__ ) const char* _pcmStateToString( snd_pcm_state_t state ) { switch( state ) { case SND_PCM_STATE_OPEN: return "open"; case SND_PCM_STATE_SETUP: return "setup"; case SND_PCM_STATE_PREPARED: return "prepared"; case SND_PCM_STATE_RUNNING: return "running"; case SND_PCM_STATE_XRUN: return "xrun"; case SND_PCM_STATE_DRAINING: return "draining"; case SND_PCM_STATE_PAUSED: return "paused"; case SND_PCM_STATE_SUSPENDED: return "suspended"; case SND_PCM_STATE_DISCONNECTED: return "disconnected"; case SND_PCM_STATE_PRIVATE1: return "private1"; } return "<invalid>"; } // Print a report of the audio signal formats this described in this 'snd_pcm_hw_params_t' record. void _devReportFormats( snd_pcm_hw_params_t* hwParams ) { snd_pcm_format_mask_t* mask; snd_pcm_format_t fmt[] = { SND_PCM_FORMAT_S8, SND_PCM_FORMAT_U8, SND_PCM_FORMAT_S16_LE, SND_PCM_FORMAT_S16_BE, SND_PCM_FORMAT_U16_LE, SND_PCM_FORMAT_U16_BE, SND_PCM_FORMAT_S24_LE, SND_PCM_FORMAT_S24_BE, SND_PCM_FORMAT_U24_LE, SND_PCM_FORMAT_U24_BE, SND_PCM_FORMAT_S32_LE, SND_PCM_FORMAT_S32_BE, SND_PCM_FORMAT_U32_LE, SND_PCM_FORMAT_U32_BE, SND_PCM_FORMAT_FLOAT_LE, SND_PCM_FORMAT_FLOAT_BE, SND_PCM_FORMAT_FLOAT64_LE, SND_PCM_FORMAT_FLOAT64_BE, SND_PCM_FORMAT_IEC958_SUBFRAME_LE, SND_PCM_FORMAT_IEC958_SUBFRAME_BE, SND_PCM_FORMAT_MU_LAW, SND_PCM_FORMAT_A_LAW, SND_PCM_FORMAT_IMA_ADPCM, SND_PCM_FORMAT_MPEG, SND_PCM_FORMAT_GSM, SND_PCM_FORMAT_SPECIAL, SND_PCM_FORMAT_S24_3LE, SND_PCM_FORMAT_S24_3BE, SND_PCM_FORMAT_U24_3LE, SND_PCM_FORMAT_U24_3BE, SND_PCM_FORMAT_S20_3LE, SND_PCM_FORMAT_S20_3BE, SND_PCM_FORMAT_U20_3LE, SND_PCM_FORMAT_U20_3BE, SND_PCM_FORMAT_S18_3LE, SND_PCM_FORMAT_S18_3BE, SND_PCM_FORMAT_U18_3LE, SND_PCM_FORMAT_U18_3BE, SND_PCM_FORMAT_G723_24, SND_PCM_FORMAT_G723_24_1B, SND_PCM_FORMAT_G723_40, SND_PCM_FORMAT_G723_40_1B, SND_PCM_FORMAT_DSD_U8, //SND_PCM_FORMAT_DSD_U16_LE, //SND_PCM_FORMAT_DSD_U32_LE, //SND_PCM_FORMAT_DSD_U16_BE, //SND_PCM_FORMAT_DSD_U32_BE, SND_PCM_FORMAT_UNKNOWN }; snd_pcm_format_mask_alloca(&mask); snd_pcm_hw_params_get_format_mask(hwParams,mask); cwLogInfo("Formats: " ); int i; for(i=0; fmt[i]!=SND_PCM_FORMAT_UNKNOWN; ++i) if( snd_pcm_format_mask_test(mask, fmt[i] )) cwLogInfo("%s%s",snd_pcm_format_name(fmt[i]), snd_pcm_format_cpu_endian(fmt[i]) ? " " : " (swap) "); } void _devReport( devRecd_t* drp ) { bool inputFl = true; snd_pcm_t* pcmH; int err; unsigned i; cwLogInfo("%s %s Device:%s Desc:%s", drp->flags & kInFl ? "IN ":"", drp->flags & kOutFl ? "OUT ":"", drp->nameStr, drp->descStr); for(i=0; i<2; i++,inputFl=!inputFl) { if( ((inputFl==true) && (drp->flags&kInFl)) || (((inputFl==false) && (drp->flags&kOutFl)))) { const char* ioLabel = inputFl ? "In " : "Out"; // attempt to open the sub-device if((err = snd_pcm_open(&pcmH,drp->nameStr,inputFl ? SND_PCM_STREAM_CAPTURE : SND_PCM_STREAM_PLAYBACK,0)) < 0 ) _alsaSetupError(err,inputFl,drp,"Attempt to open the PCM handle failed"); else { snd_pcm_hw_params_t* hwParams; snd_pcm_hw_params_alloca(&hwParams); memset(hwParams,0,snd_pcm_hw_params_sizeof()); // load the parameter record if((err = snd_pcm_hw_params_any(pcmH,hwParams)) < 0 ) _alsaSetupError(err,inputFl,drp,"Error obtaining hw param record"); else { unsigned minChCnt=0,maxChCnt=0,minSrate=0,maxSrate=0; snd_pcm_uframes_t minPeriodFrmCnt=0,maxPeriodFrmCnt=0,minBufFrmCnt=0,maxBufFrmCnt=0; int dir; // extract the min channel count if((err = snd_pcm_hw_params_get_channels_min(hwParams, &minChCnt )) < 0 ) _alsaSetupError(err,inputFl,drp,"Error getting min. channel count."); // extract the max channel count if((err = snd_pcm_hw_params_get_channels_max(hwParams, &maxChCnt )) < 0 ) _alsaSetupError(err,inputFl,drp,"Error getting max. channel count."); // extract the min srate if((err = snd_pcm_hw_params_get_rate_min(hwParams, &minSrate,&dir )) < 0 ) _alsaSetupError(err,inputFl,drp,"Error getting min. sample rate."); // extract the max srate if((err = snd_pcm_hw_params_get_rate_max(hwParams, &maxSrate,&dir )) < 0 ) _alsaSetupError(err,inputFl,drp,"Error getting max. sample rate."); // extract the min period if((err = snd_pcm_hw_params_get_period_size_min(hwParams, &minPeriodFrmCnt,&dir )) < 0 ) _alsaSetupError(err,inputFl,drp,"Error getting min. period frame count."); // extract the max period if((err = snd_pcm_hw_params_get_period_size_max(hwParams, &maxPeriodFrmCnt,&dir )) < 0 ) _alsaSetupError(err,inputFl,drp,"Error getting max. period frame count."); // extract the min buf if((err = snd_pcm_hw_params_get_buffer_size_min(hwParams, &minBufFrmCnt )) < 0 ) _alsaSetupError(err,inputFl,drp,"Error getting min. period frame count."); // extract the max buffer if((err = snd_pcm_hw_params_get_buffer_size_max(hwParams, &maxBufFrmCnt )) < 0 ) _alsaSetupError(err,inputFl,drp,"Error getting max. period frame count."); cwLogInfo("%s chs:%i - %i srate:%i - %i period:%i - %i buf:%i - %i half duplex only:%s joint duplex:%s", ioLabel,minChCnt,maxChCnt,minSrate,maxSrate,minPeriodFrmCnt,maxPeriodFrmCnt,minBufFrmCnt,maxBufFrmCnt, (snd_pcm_hw_params_is_half_duplex(hwParams) ? "yes" : "no"), (snd_pcm_hw_params_is_joint_duplex(hwParams) ? "yes" : "no")); _devReportFormats( hwParams ); } if((err = snd_pcm_close(pcmH)) < 0) _alsaSetupError(err,inputFl,drp,"Error closing PCM handle"); } } } } // Called by create() to append a devRecd to the alsa_t.devArray[]. void _devAppend( alsa_t* p, devRecd_t* drp ) { const int reallocN = 5; if( p->devCnt == p->devAllocCnt ) { p->devArray = mem::resizeZ<devRecd_t>( p->devArray, p->devAllocCnt + reallocN ); p->devAllocCnt += reallocN; } drp->devIdx = p->devCnt; // set the device index drp->rootPtr = p; // set the pointer back to the root memcpy(p->devArray + p->devCnt, drp, sizeof(devRecd_t)); ++p->devCnt; } rc_t _devShutdown( alsa_t* p, devRecd_t* drp, bool inputFl ) { int err; snd_pcm_t** pcmH = inputFl ? &drp->iPcmH : &drp->oPcmH; if( *pcmH != NULL ) { if((err = snd_pcm_close(*pcmH)) < 0 ) { return _alsaSetupError(err,inputFl,drp,"Error closing device handle."); } *pcmH = NULL; } return kOkRC; } int _devOpen( snd_pcm_t** pcmHPtr, const char* devNameStr, bool inputFl ) { int cnt = 0; int err; do { if((err = snd_pcm_open(pcmHPtr,devNameStr,inputFl ? SND_PCM_STREAM_CAPTURE : SND_PCM_STREAM_PLAYBACK,0)) < 0 ) { cnt++; usleep(10000); // sleep for 10 milliseconds } }while(cnt<100 && err == -EBUSY ); return err; } rc_t _destroy( alsa_t* p ) { unsigned i; rc_t rc = kOkRC; if( p->asyncFl==false ) if((rc = thread::destroy(p->thH)) != kOkRC ) { rc = cwLogError(rc,"Thread destroy failed."); } for(i=0; i<p->devCnt; ++i) { _devShutdown(p,p->devArray+i,true); _devShutdown(p,p->devArray+i,false); mem::release(p->devArray[i].iBuf); mem::release(p->devArray[i].oBuf); mem::release(p->devArray[i].nameStr); mem::release(p->devArray[i].descStr); } mem::release(p->pollfds); mem::release(p->pollfdsDesc); mem::release(p->devArray); p->devAllocCnt = 0; p->devCnt = 0; //https://stackoverflow.com/questions/13478861/alsa-mem-leak snd_config_update_free_global(); mem::release(p); return rc; } void _devXrun_recover( snd_pcm_t* pcmH, int err, devRecd_t* drp, bool inputFl, int line ) { char dirCh = inputFl ? 'I' : 'O'; inputFl ? drp->iErrCnt++ : drp->oErrCnt++; // -EPIPE signals and over/underrun (see pcm.c example xrun_recovery()) switch( err ) { case -EPIPE: { int silentFl = 1; if((err = snd_pcm_recover( pcmH, err, silentFl )) < 0 ) _alsaSetupError(err,inputFl,drp,"recover failed."); if( inputFl ) { if((err= snd_pcm_prepare(pcmH)) < 0 ) _alsaSetupError(err,inputFl,drp,"re-prepare failed."); else if((err = snd_pcm_start(pcmH)) < 0 ) _alsaSetupError(err,inputFl,drp,"restart failed."); } cwLogInfo("EPIPE %c %i %i %i",dirCh,drp->devIdx,drp->oCbCnt,line); break; } case -ESTRPIPE: { int silentFl = 1; if((err = snd_pcm_recover( pcmH, err, silentFl )) < 0 ) _alsaSetupError(err,inputFl,drp,"recover failed."); cwLogInfo("audio port impl ESTRPIPE:%c",dirCh); break; } case -EBADFD: { _alsaSetupError(err,inputFl,drp,"%s failed.",inputFl ? "Read" : "Write" ); break; } default: _alsaSetupError(err,inputFl,drp,"Unknown rd/wr error.\n"); } // switch } void _devStateRecover( snd_pcm_t* pcmH, devRecd_t* drp, bool inputFl ) { int err = 0; switch( snd_pcm_state(pcmH)) { case SND_PCM_STATE_XRUN: err = -EPIPE; break; case SND_PCM_STATE_SUSPENDED: err = -ESTRPIPE; break; case SND_PCM_STATE_OPEN: case SND_PCM_STATE_SETUP: case SND_PCM_STATE_PREPARED: case SND_PCM_STATE_RUNNING: case SND_PCM_STATE_DRAINING: case SND_PCM_STATE_PAUSED: case SND_PCM_STATE_DISCONNECTED: case SND_PCM_STATE_PRIVATE1: //case SND_PCM_STATE_LAST: break; } if( err < 0 ) _devXrun_recover( pcmH, err, drp, inputFl, __LINE__ ); } void _devS24_3BE_to_Float( const char* x, device::sample_t* y, unsigned n ) { unsigned i; for(i=0; i<n; ++i,x+=3) { int s = (((int)x[0])<<16) + (((int)x[1])<<8) + (((int)x[2])); y[i] = ((device::sample_t)s)/0x7fffff; } } void _devS24_3BE_from_Float( const device::sample_t* x, char* y, unsigned n ) { unsigned i; for(i=0; i<n; ++i) { int s = x[i] * 0x7fffff; y[i*3+2] = (char)((s & 0x7f0000) >> 16); y[i*3+1] = (char)((s & 0x00ff00) >> 8); y[i*3+0] = (char)((s & 0x0000ff) >> 0); } } int NNN = 0; void _rms( const char* devNameStr, const device::sample_t* s0p, const int* s1p, unsigned n ) { double facc = 0.0; int iacc = 0; unsigned normN = 0; unsigned zeroN = 0; for(unsigned i=0; i<n; i+=2) { facc += s0p[i] * s0p[i]; iacc += s1p[i] * s1p[i]; if( s0p[i] == 0.0 ) zeroN += 1; else if( std::isnormal(s0p[i]) ) normN += 1; } cwLogInfo("%i z:%i n:%i : %f %i : %s", n, zeroN, normN, facc/(n/2), iacc/(n/2), devNameStr); } // Returns count of frames written on success or < 0 on error; // set smpPtr to NULL to write a buffer of silence int _devWriteBuf( devRecd_t* drp, snd_pcm_t* pcmH, const device::sample_t* sp, unsigned chCnt, unsigned frmCnt, unsigned bits, unsigned sigBits ) { int err = 0; unsigned bytesPerSmp = (bits==24 ? 32 : bits)/8; unsigned smpCnt = chCnt * frmCnt; unsigned byteCnt = bytesPerSmp * smpCnt; const device::sample_t* ep = sp + smpCnt; char obuf[ byteCnt ]; //const device::sample_t* rms = sp; // if no output was given then fill the device buffer with zeros if( sp == NULL || drp->oEnableFl == false) memset(obuf,0,byteCnt); else { // otherwise convert the floating point samples to integers switch( bits ) { case 8: { char* dp = (char*)obuf; while( sp < ep ) *dp++ = (char)(*sp++ * 0x7f); } break; case 16: { short* dp = (short*)obuf; while( sp < ep ) *dp++ = (short)(*sp++ * 0x7fff); } break; case 24: { // for use w/ MBox //_devS24_3BE_from_Float(sp, obuf, ep-sp ); int* dp = (int*)obuf; while( sp < ep ) *dp++ = (int)(*sp++ * 0x7fffff); } break; case 32: { int* dp = (int*)obuf; while( sp < ep ) { device::sample_t v = *sp++; v = ((v > 1 ? 1 : v) < -1 ? -1 : v); *dp++ = (int)(v * 0x7fffffff); } //*dp++ = (rand() - (RAND_MAX/2)) * 2; } break; } } /* NNN+=1; if( NNN % 100 == 0) { _rms(drp->nameStr,rms,(const int*)obuf,smpCnt); } */ // send the bytes to the device err = snd_pcm_writei( pcmH, obuf, frmCnt ); ++drp->oBufCnt; if( err < 0 ) { _alsaSetupError( err, false, drp, "ALSA write error" ); } else if( err > 0 && ((unsigned)err) != frmCnt ) { _alsaSetupError( 0, false, drp, "Actual count of bytes written did not match the count provided." ); } return err; } // Returns frames read on success or < 0 on error. // Set smpPtr to NULL to read the incoming buffer and discard it int _devReadBuf( devRecd_t* drp, snd_pcm_t* pcmH, device::sample_t* smpPtr, unsigned chCnt, unsigned frmCnt, unsigned bits, unsigned sigBits ) { int err = 0; unsigned bytesPerSmp = (bits==24 ? 32 : bits)/8; unsigned smpCnt = chCnt * frmCnt; unsigned byteCnt = smpCnt * bytesPerSmp; char buf[ byteCnt ]{0}; // get the incoming samples into buf[] ... err = snd_pcm_readi(pcmH,buf,frmCnt); // if a read error occurred if( err < 0 ) { _alsaSetupError( err, false, drp, "ALSA read error" ); } else if( err > 0 && ((unsigned)err) != frmCnt ) { _alsaSetupError( 0, false, drp, "Actual count of bytes read did not match the count requested." ); } // if no buffer was given then there is nothing else to do if( smpPtr == NULL ) return err; if( !drp->iEnableFl ) { memset(smpPtr,0,smpCnt*sizeof(sample_t)); } else { // setup the return buffer device::sample_t* dp = smpPtr; device::sample_t* ep = dp + std::min(smpCnt,err*chCnt); switch(bits) { case 8: { char* sp = buf; while(dp < ep) *dp++ = ((device::sample_t)*sp++) / 0x7f; } break; case 16: { short* sp = (short*)buf; while(dp < ep) *dp++ = ((device::sample_t)*sp++) / 0x7fff; } break; case 24: { // For use with MBox //_devS24_3BE_to_Float(buf, dp, ep-dp ); int* sp = (int*)buf; while(dp < ep) *dp++ = ((device::sample_t)*sp++) / 0x7fffff; } break; case 32: { int* sp = (int*)buf; // The delta1010 (ICE1712) uses only the 24 highest bits according to // // http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html // <snip> The example: ICE1712 chips support 32-bit sample processing, // but low byte is ignored (playback) or zero (capture). // int mv = sigBits==24 ? 0x7fffff00 : 0x7fffffff; while(dp < ep) *dp++ = ((device::sample_t)*sp++) / mv; } break; default: { cwAssert(0); } } } return err; } void _staticAsyncHandler( snd_async_handler_t* ahandler ) { int err; snd_pcm_sframes_t avail; devRecd_t* drp = (devRecd_t*)snd_async_handler_get_callback_private(ahandler); snd_pcm_t* pcmH = snd_async_handler_get_pcm(ahandler); bool inputFl = snd_pcm_stream(pcmH) == SND_PCM_STREAM_CAPTURE; device::sample_t* b = inputFl ? drp->iBuf : drp->oBuf; unsigned chCnt = inputFl ? drp->iChCnt : drp->oChCnt; unsigned frmCnt = inputFl ? drp->iFpC : drp->oFpC; device::audioPacket_t pkt; inputFl ? drp->iCbCnt++ : drp->oCbCnt++; pkt.devIdx = drp->devIdx; pkt.begChIdx = 0; pkt.chCnt = chCnt; pkt.audioFramesCnt = frmCnt; pkt.bitsPerSample = 32; pkt.flags = kInterleavedApFl | kFloatApFl; pkt.audioBytesPtr = b; pkt.cbArg = drp->cbArg; _devStateRecover( pcmH, drp, inputFl ); while( (avail = snd_pcm_avail_update(pcmH)) >= (snd_pcm_sframes_t)frmCnt ) { // Handle input if( inputFl ) { // read samples from the device if((err = _devReadBuf(drp,pcmH,drp->iBuf,chCnt,frmCnt,drp->iBits,drp->oBits)) > 0 ) { pkt.audioFramesCnt = err; drp->cbFunc(drp->cbArg,&pkt,1,NULL,0 ); // send the samples to the application } } // Handle output else { // callback to fill the buffer drp->cbFunc(drp->cbArg,NULL,0,&pkt,1); // note that the application may return fewer samples than were requested err = _devWriteBuf(drp, pcmH, pkt.audioFramesCnt < frmCnt ? NULL : drp->oBuf,chCnt,frmCnt,drp->oBits,drp->oSigBits); } // Handle read/write errors if( err < 0 ) { inputFl ? drp->iErrCnt++ : drp->oErrCnt++; _devXrun_recover( pcmH, err, drp, inputFl, __LINE__ ); } } // while } bool _threadFunc(void* param) { alsa_t* p = static_cast<alsa_t*>(param); int result; bool retFl = true; switch( result = poll(p->pollfds, p->pollfdsCnt, 250) ) { case 0: // time out break; case -1: _alsaError(errno,"Poll fail."); break; default: { cwAssert( result > 0 ); unsigned i; // for each i/o stream for(i=0; i<p->pollfdsCnt; ++i) { devRecd_t* drp = p->pollfdsDesc[i].devPtr; bool inputFl = p->pollfdsDesc[i].inputFl; snd_pcm_t* pcmH = inputFl ? drp->iPcmH : drp->oPcmH; unsigned chCnt = inputFl ? drp->iChCnt : drp->oChCnt; unsigned frmCnt = inputFl ? drp->iFpC : drp->oFpC; device::sample_t* b = inputFl ? drp->iBuf : drp->oBuf; unsigned short revents = 0; int err; device::audioPacket_t pkt; snd_pcm_uframes_t avail_frames; inputFl ? drp->iCbCnt++ : drp->oCbCnt++; pkt.devIdx = drp->cbDevIdx; pkt.begChIdx = 0; pkt.chCnt = chCnt; pkt.audioFramesCnt = frmCnt; pkt.bitsPerSample = 32; pkt.flags = kInterleavedApFl | kFloatApFl; pkt.audioBytesPtr = b; pkt.cbArg = drp->cbArg; inputFl ? drp->iCbCnt++ : drp->oCbCnt++; // get the timestamp for this buffer if((err = snd_pcm_htimestamp(pcmH,&avail_frames,&pkt.timeStamp)) != 0 ) { _alsaSetupError( err, p->pollfdsDesc[i].inputFl, drp, "Get timestamp error."); pkt.timeStamp.tv_sec = 0; pkt.timeStamp.tv_nsec = 0; } // Note that based on experimenting with the timestamp and the current // clock_gettime(CLOCK_MONOTONIC) time it appears that the time stamp // marks the end of the current buffer - so in fact the time stamp should // be backed up by the availble sample count period to get the time of the // first sample in the buffer /* unsigned avail_nano_secs = (unsigned)(avail_frames * (1000000000.0/drp->srate)); if( pkt.timeStamp.tv_nsec > avail_nano_secs ) pkt.timeStamp.tv_nsec -= avail_nano_secs; else { pkt.timeStamp.tv_sec -= 1; pkt.timeStamp.tv_nsec = 1000000000 - avail_nano_secs; } */ //printf("AUDI: %ld %ld\n",pkt.timeStamp.tv_sec,pkt.timeStamp.tv_nsec); //cmTimeSpec_t t; //clock_gettime(CLOCK_PROCESS_CPUTIME_ID,&t); //printf("AUDI: %ld %ld\n",t.tv_sec,t.tv_nsec); switch( snd_pcm_state(pcmH) ) { case SND_PCM_STATE_OPEN: case SND_PCM_STATE_SETUP: case SND_PCM_STATE_PREPARED: case SND_PCM_STATE_DRAINING: case SND_PCM_STATE_PAUSED: case SND_PCM_STATE_DISCONNECTED: case SND_PCM_STATE_PRIVATE1: continue; case SND_PCM_STATE_RUNNING: case SND_PCM_STATE_XRUN: case SND_PCM_STATE_SUSPENDED: break; } if(( err = snd_pcm_poll_descriptors_revents(pcmH, p->pollfds + i, 1 , &revents)) != 0 ) { _alsaSetupError( err, p->pollfdsDesc[i].inputFl, drp, "Return poll events failed."); retFl = false; goto errLabel; } if(revents & POLLERR) { _alsaSetupError( err, p->pollfdsDesc[i].inputFl, drp, "Poll error."); _devStateRecover( pcmH, drp, inputFl ); //goto errLabel; } if( inputFl && (revents & POLLIN) ) { if((err = _devReadBuf(drp,pcmH,drp->iBuf,chCnt,frmCnt,drp->iBits,drp->oBits)) > 0 ) { pkt.audioFramesCnt = err; drp->cbFunc(drp->cbArg,&pkt,1,NULL,0 ); // send the samples to the application } } if( !inputFl && (revents & POLLOUT) ) { // callback to fill the buffer drp->cbFunc(drp->cbArg,NULL,0,&pkt,1); // note that the application may return fewer samples than were requested err = _devWriteBuf(drp, pcmH, pkt.audioFramesCnt < frmCnt ? NULL : drp->oBuf,chCnt,frmCnt,drp->oBits,drp->oSigBits); } } } } errLabel: return retFl; } rc_t _devSetup( devRecd_t *drp, unsigned srate, unsigned framesPerCycle, unsigned periodsPerBuf ) { int err; int dir; unsigned i; rc_t rc = kOkRC; bool inputFl = true; snd_pcm_uframes_t periodFrameCnt = framesPerCycle; snd_pcm_uframes_t bufferFrameCnt = 0; unsigned bits = 0; int sig_bits = 0; bool signFl = true; bool swapFl = false; alsa_t* p = drp->rootPtr; snd_pcm_format_t fmt[] = { SND_PCM_FORMAT_S32_LE, SND_PCM_FORMAT_S32_BE, SND_PCM_FORMAT_S24_LE, SND_PCM_FORMAT_S24_BE, SND_PCM_FORMAT_S24_3LE, SND_PCM_FORMAT_S24_3BE, SND_PCM_FORMAT_S16_LE, SND_PCM_FORMAT_S16_BE, }; // setup input, then output device for(i=0; i<2; i++,inputFl=!inputFl) { unsigned chCnt = inputFl ? drp->iChCnt : drp->oChCnt; snd_pcm_uframes_t actFpC = 0; // if this is the in/out pass and the in/out flag is set if( ((inputFl==true) && (drp->flags & kInFl)) || ((inputFl==false) && (drp->flags & kOutFl)) ) { snd_pcm_t* pcmH = NULL; rc_t rc0; if((rc0 = _devShutdown(p, drp, inputFl )) != kOkRC ) rc = rc0; // attempt to open the sub-device if((err = snd_pcm_open(&pcmH,drp->nameStr, inputFl ? SND_PCM_STREAM_CAPTURE : SND_PCM_STREAM_PLAYBACK, 0)) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"Unable to open the PCM handle"); else { snd_pcm_hw_params_t* hwParams; snd_pcm_sw_params_t* swParams; // prepare the hwParam recd snd_pcm_hw_params_alloca(&hwParams); memset(hwParams,0,snd_pcm_hw_params_sizeof()); // load the hw parameter record if((err = snd_pcm_hw_params_any(pcmH,hwParams)) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"Error obtaining hw param record"); else { if((err = snd_pcm_hw_params_set_rate_resample(pcmH,hwParams,0)) < 0 ) rc = _alsaSetupError(err,inputFl, drp,"Unable to disable the ALSA sample rate converter."); if((err = snd_pcm_hw_params_set_channels(pcmH,hwParams,chCnt)) < 0 ) rc = _alsaSetupError(err,inputFl, drp,"Unable to set channel count to: %i",chCnt); if((err = snd_pcm_hw_params_set_rate(pcmH,hwParams,srate,0)) < 0 ) rc = _alsaSetupError(err,inputFl, drp, "Unable to set sample rate to: %i",srate); if((err = snd_pcm_hw_params_set_access(pcmH,hwParams,SND_PCM_ACCESS_RW_INTERLEAVED )) < 0 ) rc = _alsaSetupError(err,inputFl, drp, "Unable to set access to: RW Interleaved"); // select the format width int j; int fmtN = sizeof(fmt)/sizeof(fmt[0]); for(j=0; j<fmtN; ++j) if((err = snd_pcm_hw_params_set_format(pcmH,hwParams,fmt[j])) >= 0 ) break; if( j == fmtN ) rc = _alsaSetupError(err,inputFl, drp, "Unable to set format to: S16"); else { bits = snd_pcm_format_width(fmt[j]); // bits per sample signFl = snd_pcm_format_signed(fmt[j]); swapFl = !snd_pcm_format_cpu_endian(fmt[j]); } sig_bits = snd_pcm_hw_params_get_sbits(hwParams); snd_pcm_uframes_t ps_min,ps_max; if((err = snd_pcm_hw_params_get_period_size_min(hwParams,&ps_min,NULL)) < 0 ) rc = _alsaSetupError(err,inputFl, drp, "Unable to get the minimum period size."); if((err = snd_pcm_hw_params_get_period_size_max(hwParams,&ps_max,NULL)) < 0 ) rc = _alsaSetupError(err,inputFl, drp, "Unable to get the maximum period size."); if( periodFrameCnt < ps_min ) periodFrameCnt = ps_min; else if( periodFrameCnt > ps_max ) periodFrameCnt = ps_max; if((err = snd_pcm_hw_params_set_period_size_near(pcmH,hwParams,&periodFrameCnt,NULL)) < 0 ) rc = _alsaSetupError(err,inputFl, drp, "Unable to set period to %i.",periodFrameCnt); bufferFrameCnt = periodFrameCnt * periodsPerBuf + 1; if((err = snd_pcm_hw_params_set_buffer_size_near(pcmH,hwParams,&bufferFrameCnt)) < 0 ) rc = _alsaSetupError(err,inputFl, drp, "Unable to set buffer to %i.",bufferFrameCnt); // Note: snd_pcm_hw_params() automatically calls snd_pcm_prepare() if((err = snd_pcm_hw_params(pcmH,hwParams)) < 0 ) rc = _alsaSetupError(err,inputFl, drp, "Parameter application failed."); } // prepare the sw param recd snd_pcm_sw_params_alloca(&swParams); memset(swParams,0,snd_pcm_sw_params_sizeof()); // load the sw param recd if((err = snd_pcm_sw_params_current(pcmH,swParams)) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"Error obtaining sw param record."); else { if((err = snd_pcm_sw_params_set_start_threshold(pcmH,swParams, inputFl ? 0x7fffffff : periodFrameCnt)) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"Error seting the start threshold."); // setting the stop-threshold to twice the buffer frame count is intended to stop spurious // XRUN states - it will also mean that there will have no direct way of knowing about a // in/out buffer over/under run. if((err = snd_pcm_sw_params_set_stop_threshold(pcmH,swParams,bufferFrameCnt*2)) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"Error setting the stop threshold."); if((err = snd_pcm_sw_params_set_avail_min(pcmH,swParams,periodFrameCnt)) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"Error setting the avail. min. setting."); if((err = snd_pcm_sw_params_set_tstamp_mode(pcmH,swParams,SND_PCM_TSTAMP_MMAP)) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"Error setting the time samp mode."); if((err = snd_pcm_sw_params(pcmH,swParams)) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"Error applying sw params."); } // setup the callback if( p->asyncFl ) if((err = snd_async_add_pcm_handler(&drp->ahandler,pcmH,_staticAsyncHandler, drp )) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"Error assigning callback handler."); // get the actual frames per cycle if((err = snd_pcm_hw_params_get_period_size(hwParams,&actFpC,&dir)) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"Unable to get the actual period."); // store the device handle if( inputFl ) { drp->iBits = bits; drp->iSigBits = sig_bits; drp->iSignFl = signFl; drp->iSwapFl = swapFl; drp->iPcmH = pcmH; drp->iBuf = mem::resizeZ<device::sample_t>( drp->iBuf, actFpC * drp->iChCnt ); drp->iFpC = actFpC; drp->iEnableFl= true; } else { drp->oBits = bits; drp->oSigBits = sig_bits; drp->oSignFl = signFl; drp->oSwapFl = swapFl; drp->oPcmH = pcmH; drp->oBuf = mem::resizeZ<device::sample_t>( drp->oBuf, actFpC * drp->oChCnt ); drp->oFpC = actFpC; drp->oEnableFl= true; } if( p->asyncFl == false ) { cwAssert( p->pollfdsCnt < p->pollfdsAllocCnt ); unsigned incrFdsCnt = 0; unsigned fdsCnt = 0; // locate the pollfd associated with this device/direction unsigned j; for(j=0; j<p->pollfdsCnt; j+=p->pollfdsDesc[j].fdsCnt) if( p->pollfdsDesc[j].devPtr == drp && inputFl == p->pollfdsDesc[j].inputFl ) break; // get the count of descriptors for this device/direction fdsCnt = snd_pcm_poll_descriptors_count(pcmH); // if the device was not found if( j == p->pollfdsCnt ) { j = p->pollfdsCnt; incrFdsCnt = fdsCnt; // if the pollfds[] needs more memroy if( p->pollfdsCnt + fdsCnt > p->pollfdsAllocCnt ) { p->pollfds = mem::resizeZ<struct pollfd>( p->pollfds, p->pollfdsCnt + fdsCnt ); p->pollfdsDesc = mem::resizeZ<pollfdsDesc_t>( p->pollfdsDesc, p->pollfdsCnt + fdsCnt ); p->pollfdsAllocCnt += fdsCnt; } } // get the poll descriptors for this device/dir if( snd_pcm_poll_descriptors(pcmH,p->pollfds + j,fdsCnt) != 1 ) rc = _alsaSetupError(0,inputFl,drp,"Poll descriptor assignment failed."); else { // store the desc. record assicoated with the poll descriptor p->pollfdsDesc[ j ].fdsCnt = fdsCnt; p->pollfdsDesc[ j ].devPtr = drp; p->pollfdsDesc[ j ].inputFl = inputFl; } p->pollfdsCnt += incrFdsCnt; } cwLogInfo("%s %s period:%i %i buffer:%i bits:%i sig_bits:%i",inputFl?"in ":"out",drp->nameStr,(unsigned)periodFrameCnt,(unsigned)actFpC,(unsigned)bufferFrameCnt,bits,sig_bits); } // end if async } // end if } // end for return rc; } } // alsa } // device } // audio } // cw cw::rc_t cw::audio::device::alsa::create( handle_t& hRef, struct driver_str*& drvRef ) { rc_t rc = kOkRC; int cardNum = -1; int err; if((rc = destroy(hRef)) != kOkRC ) return rc; alsa_t* p = mem::allocZ<alsa_t>(); // for each sound card while(1) { snd_ctl_t* cardH = NULL; char* cardNamePtr = NULL; char* cardLongNamePtr = NULL; int devNum = -1; int devStrN = 31; char devStr[devStrN+1]; // get the next card handle if((err = snd_card_next(&cardNum)) < 0 ) return _alsaError(err,"Error getting sound card handle"); // if no more card's to get if( cardNum < 0 ) break; // get the card short name (and free() when done) if(((err = snd_card_get_name(cardNum,&cardNamePtr)) < 0) || (cardNamePtr == NULL)) { _alsaError(err,"Unable to get card name for card number %i",cardNum); goto releaseCard; } // get the card long name (and free() when done) if((err = snd_card_get_longname(cardNum,&cardLongNamePtr)) < 0 || cardLongNamePtr == NULL ) { _alsaError(err,"Unable to get long card name for card number %i",cardNum); goto releaseCard; } // form the device name for this card if(snprintf(devStr,devStrN,"hw:%i",cardNum) > devStrN ) { _alsaError(0,"Device name is too long for buffer."); goto releaseCard; } // open the card device driver if((err = snd_ctl_open(&cardH, devStr, 0)) < 0 ) { _alsaError(err,"Error opening sound card %i.",cardNum); goto releaseCard; } // for each device on this card while(1) { snd_pcm_info_t* info; int subDevCnt = 1; int i,j; // get the next device on this card if((err = snd_ctl_pcm_next_device(cardH,&devNum)) < 0 ) { _alsaError(err,"Error gettign next device on card %i",cardNum); break; } // if no more devices to get if( devNum < 0 ) break; // allocate a pcmInfo record snd_pcm_info_alloca(&info); memset(info, 0, snd_pcm_info_sizeof()); // set the device to query snd_pcm_info_set_device(info, devNum ); for(i=0; i<subDevCnt; i++) { devRecd_t dr; bool inputFl = false; memset(&dr,0,sizeof(dr)); for(j=0; j<2; j++,inputFl=!inputFl) { snd_pcm_t* pcmH = NULL; dr.devIdx = -1; // set the subdevice and I/O direction to query snd_pcm_info_set_subdevice(info,i); snd_pcm_info_set_stream(info,inputFl ? SND_PCM_STREAM_CAPTURE : SND_PCM_STREAM_PLAYBACK); // if this device does not use this sub-device if((err = snd_ctl_pcm_info(cardH,info)) < 0 ) continue; // get the count of subdevices this device uses if(i == 0 ) subDevCnt = snd_pcm_info_get_subdevices_count(info); // if this device has no sub-devices if(subDevCnt == 0 ) continue; // form the device name and desc. string dr.nameStr = mem::printf(dr.nameStr,"hw:%i,%i,%i",cardNum,devNum,i); dr.descStr = mem::printf(dr.descStr,"%s %s",cardNamePtr,snd_pcm_info_get_name(info)); // it's possible that trailing whitespace is left in the desc removeTrailingWhitespace( dr.descStr ); // attempt to open the sub-device if((err = _devOpen(&pcmH,dr.nameStr,inputFl)) < 0 ) _alsaSetupError(err,inputFl,&dr,"Unable to open the PCM handle"); else { snd_pcm_hw_params_t* hwParams; // allocate the parameter record snd_pcm_hw_params_alloca(&hwParams); memset( hwParams,0,snd_pcm_hw_params_sizeof()); // load the parameter record if((err = snd_pcm_hw_params_any(pcmH,hwParams)) < 0 ) _alsaSetupError(err,inputFl,&dr,"Error obtaining hw param record"); else { unsigned* chCntPtr = inputFl ? &dr.iChCnt : &dr.oChCnt; snd_pcm_hw_params_get_rate_max(hwParams,&dr.srate,NULL); // extract the channel count if((err = snd_pcm_hw_params_get_channels_max(hwParams, chCntPtr )) < 0 ) _alsaSetupError(err,inputFl,&dr,"Error getting channel count."); else // this device uses this subdevice in the current direction dr.flags += inputFl ? kInFl : kOutFl; } // close the sub-device snd_pcm_close(pcmH); } } // in/out loop // insert the device in the device array if( dr.flags != 0 ) _devAppend(p,&dr); else { mem::release(dr.nameStr); mem::release(dr.descStr); } } // sub-dev loop } // device loop releaseCard: snd_ctl_close(cardH); free(cardNamePtr); free(cardLongNamePtr); } // card loop //https://stackoverflow.com/questions/13478861/alsa-mem-leak snd_config_update_free_global(); if( rc == kOkRC && p->asyncFl==false ) { p->pollfdsCnt = 0; p->pollfdsAllocCnt = 2*p->devCnt; p->pollfds = mem::allocZ<struct pollfd>( p->pollfdsAllocCnt ); p->pollfdsDesc = mem::allocZ<pollfdsDesc_t>(p->pollfdsAllocCnt ); if((rc = thread::create(p->thH,_threadFunc,p,"alsa_audio")) != kOkRC ) { rc = cwLogError(rc,"Thread create failed."); } } if( rc != kOkRC ) _destroy(p); else { p->driver.drvArg = p; p->driver.deviceCount = deviceCount; p->driver.deviceLabel = deviceLabel; p->driver.deviceChannelCount = deviceChannelCount; p->driver.deviceSampleRate = deviceSampleRate; p->driver.deviceFramesPerCycle = deviceFramesPerCycle; p->driver.deviceSetup = deviceSetup; p->driver.deviceStart = deviceStart; p->driver.deviceStop = deviceStop; p->driver.deviceIsStarted = deviceIsStarted; p->driver.deviceExecute = deviceExecute; p->driver.deviceEnable = deviceEnable; p->driver.deviceSeek = deviceSeek; p->driver.deviceRealTimeReport = deviceRealTimeReport; hRef.set(p); drvRef = &p->driver; } return rc; } cw::rc_t cw::audio::device::alsa::destroy( handle_t& hRef ) { rc_t rc = kOkRC; if( !hRef.isValid() ) return rc; alsa_t* p = _handleToPtr(hRef); if((rc = _destroy(p)) != kOkRC ) return rc; hRef.clear(); return rc; } unsigned cw::audio::device::alsa::deviceCount( struct driver_str* drv) { alsa_t* p = static_cast<alsa_t*>(drv->drvArg); return p->devCnt; } const char* cw::audio::device::alsa::deviceLabel( struct driver_str* drv, unsigned devIdx ) { alsa_t* p = static_cast<alsa_t*>(drv->drvArg); cwAssert( devIdx < deviceCount(drv)); return p->devArray[devIdx].descStr; } unsigned cw::audio::device::alsa::deviceChannelCount(struct driver_str* drv, unsigned devIdx, bool inputFl ) { alsa_t* p = static_cast<alsa_t*>(drv->drvArg); cwAssert( devIdx < deviceCount(drv)); return inputFl ? p->devArray[devIdx].iChCnt : p->devArray[devIdx].oChCnt; } double cw::audio::device::alsa::deviceSampleRate( struct driver_str* drv, unsigned devIdx ) { alsa_t* p = static_cast<alsa_t*>(drv->drvArg); cwAssert( devIdx < deviceCount(drv)); return (double)p->devArray[devIdx].srate; } unsigned cw::audio::device::alsa::deviceFramesPerCycle( struct driver_str* drv, unsigned devIdx, bool inputFl ) { alsa_t* p = static_cast<alsa_t*>(drv->drvArg); cwAssert( devIdx < deviceCount(drv)); return p->devArray[devIdx].framesPerCycle; } cw::rc_t cw::audio::device::alsa::deviceSetup( struct driver_str* drv, unsigned devIdx, double srate, unsigned framesPerCycle, cbFunc_t cbFunc, void* cbArg, unsigned cbDevIdx ) { alsa_t* p = static_cast<alsa_t*>(drv->drvArg); cwAssert( devIdx < deviceCount(drv)); rc_t rc = kOkRC; devRecd_t* drp = p->devArray + devIdx; unsigned periodsPerBuf = kDfltPeriodsPerBuf; if( p->asyncFl == false ) if((rc = thread::pause(p->thH,thread::kWaitFl | thread::kPauseFl)) != kOkRC ) return cwLogError(rc,"Audio thread pause failed."); if((rc = _devSetup(drp, srate, framesPerCycle, periodsPerBuf )) == kOkRC ) { drp->srate = srate; drp->framesPerCycle = framesPerCycle; drp->periodsPerBuf = periodsPerBuf; drp->cbFunc = cbFunc; drp->cbArg = cbArg; drp->cbDevIdx = cbDevIdx; } return rc; } cw::rc_t cw::audio::device::alsa::deviceStart( struct driver_str* drv, unsigned devIdx ) { cwAssert( devIdx < deviceCount(drv)); alsa_t* p = static_cast<alsa_t*>(drv->drvArg); int err; devRecd_t* drp = p->devArray + devIdx; rc_t rc = kOkRC; bool inputFl = true; unsigned i; for(i=0; i<2; ++i,inputFl=!inputFl) { snd_pcm_t* pcmH = inputFl ? drp->iPcmH : drp->oPcmH; if( pcmH != NULL ) { snd_pcm_state_t state = snd_pcm_state(pcmH); if( state != SND_PCM_STATE_RUNNING ) { unsigned chCnt = inputFl ? drp->iChCnt : drp->oChCnt; unsigned frmCnt = inputFl ? drp->iFpC : drp->oFpC; const char* ioLabel = inputFl ? "Input" : "Output"; //printf("%i %s state:%s %i %i\n",drp->devIdx, ioLabel,_pcmStateToString(snd_pcm_state(pcmH)),chCnt,frmCnt); // preparing may not always be necessary because the earlier call to snd_pcm_hw_params() // may have left the device prepared - the redundant call however doesn't seem to hurt if((err= snd_pcm_prepare(pcmH)) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"Error preparing the %i device.",ioLabel); else { if( inputFl == false ) { int j; for(j=0; j<1; ++j) if((err = _devWriteBuf( drp, pcmH, NULL, chCnt, frmCnt, drp->oBits, drp->oSigBits )) < 0 ) { rc = _alsaSetupError(err,inputFl,drp,"Write before start failed."); break; } } else { if((err = snd_pcm_start(pcmH)) < 0 ) rc = _alsaSetupError(err,inputFl,drp,"'%s' start failed.",ioLabel); } // wait 500 microseconds between starting and stopping - this prevents // input and output and other device callbacks from landing on top of // each other - when this happens callbacks are dropped. if( p->asyncFl ) usleep(500); } //printf("%i %s state:%s %i %i\n",drp->devIdx, ioLabel,_cmApPcmStateToString(snd_pcm_state(pcmH)),chCnt,frmCnt); } } } if( p->asyncFl == false ) { rc_t rc0 = kOkRC; if((rc0 = thread::unpause(p->thH)) != kOkRC ) rc = _alsaError(rc0,"Audio thread start failed."); } return rc; } cw::rc_t cw::audio::device::alsa::deviceStop( struct driver_str* drv, unsigned devIdx ) { cwAssert( devIdx < deviceCount(drv)); alsa_t* p = static_cast<alsa_t*>(drv->drvArg); devRecd_t* drp = p->devArray + devIdx; rc_t rc = kOkRC; int err; if( drp->iPcmH != NULL ) if((err = snd_pcm_drop(drp->iPcmH)) < 0 ) rc = _alsaSetupError(err,true,drp,"Input stop failed."); if( drp->oPcmH != NULL ) if((err = snd_pcm_drop(drp->oPcmH)) < 0 ) rc = _alsaSetupError(err,false,drp,"Output stop failed."); if( p->asyncFl == false ) { rc_t rc0; if((rc0 = thread::pause(p->thH,thread::kPauseFl)) != kOkRC ) rc =_alsaError(rc0,"Audio thread pause failed."); } return rc; } bool cw::audio::device::alsa::deviceIsStarted(struct driver_str* drv, unsigned devIdx ) { cwAssert( devIdx < deviceCount(drv)); alsa_t* p = static_cast<alsa_t*>(drv->drvArg); bool iFl = false; bool oFl = false; const devRecd_t* drp = p->devArray + devIdx; if( drp->iPcmH != NULL ) iFl = snd_pcm_state(drp->iPcmH) == SND_PCM_STATE_RUNNING; if( drp->oPcmH != NULL ) oFl = snd_pcm_state(drp->oPcmH) == SND_PCM_STATE_RUNNING; return iFl || oFl; } cw::rc_t cw::audio::device::alsa::deviceExecute(struct driver_str* drv, unsigned devIdx ) { return kOkRC; } cw::rc_t cw::audio::device::alsa::deviceEnable( struct driver_str* drv, unsigned devIdx, bool inputFl, bool enableFl ) { cwAssert(devIdx < deviceCount(drv)); alsa_t* p = static_cast<alsa_t*>(drv->drvArg); devRecd_t* drp = p->devArray + devIdx; if( inputFl ) drp->iEnableFl = enableFl; else drp->oEnableFl = enableFl; return kOkRC; } cw::rc_t cw::audio::device::alsa::deviceSeek( struct driver_str* drv, unsigned devIdx, bool inputFl, unsigned frameOffset ) { return kOkRC; } void cw::audio::device::alsa::deviceRealTimeReport(struct driver_str* drv, unsigned devIdx ) { alsa_t* p = static_cast<alsa_t*>(drv->drvArg); devRecd_t* drp = p->devArray + devIdx; const char* iState = drp->iPcmH == NULL ? "<not-used>" : _pcmStateToString(snd_pcm_state(drp->iPcmH)); const char* oState = drp->oPcmH == NULL ? "<not-used>" : _pcmStateToString(snd_pcm_state(drp->oPcmH)); cwLogInfo("ALSA cb i:%i o:%i err i:%i o:%i state: i:%s o:%s",drp->iCbCnt,drp->oCbCnt,drp->iErrCnt,drp->oErrCnt,iState,oState); } //{ { label:alsaDevRpt } //( // Here's an example of generating a report of available // ALSA devices. //) //[ cw::rc_t cw::audio::device::alsa::report( handle_t h ) { alsa_t* p = _handleToPtr(h); unsigned i; for(i=0; i<p->devCnt; i++) { cwLogInfo(" "); cwLogInfo("%i : ",i); _devReport(p->devArray + i ); } //https://stackoverflow.com/questions/13478861/alsa-mem-leak snd_config_update_free_global(); return kOkRC; } cw::rc_t cw::audio::device::alsa::report() { rc_t rc = kOkRC; handle_t h; driver_t* d; if( create(h,d) == kOkRC ) { rc = report(h); destroy(h); } return rc; } //] //}