cwFlowTypes.h/cpp : Added var_duplicate() and updated abuf_create()/duplicate() and fbuf_create()/duplicate() to avoid allocation when possible.

This commit is contained in:
kevin 2024-06-04 08:45:05 -04:00
parent dc3db0d8c4
commit 4e3100333d
2 changed files with 134 additions and 30 deletions

View File

@ -148,12 +148,12 @@ namespace cw
case kABufTFl: case kABufTFl:
dst.u.abuf = src.u.abuf == nullptr ? nullptr : abuf_duplicate(src.u.abuf); dst.u.abuf = src.u.abuf == nullptr ? nullptr : abuf_duplicate(dst.u.abuf,src.u.abuf);
dst.tflag = src.tflag; dst.tflag = src.tflag;
break; break;
case kFBufTFl: case kFBufTFl:
dst.u.fbuf = src.u.fbuf == nullptr ? nullptr : fbuf_duplicate(src.u.fbuf); dst.u.fbuf = src.u.fbuf == nullptr ? nullptr : fbuf_duplicate(dst.u.fbuf,src.u.fbuf);
dst.tflag = src.tflag; dst.tflag = src.tflag;
break; break;
@ -1062,7 +1062,7 @@ namespace cw
if( cwIsNotFlag(var->classVarDesc->type,kRuntimeTFl) ) if( cwIsNotFlag(var->classVarDesc->type,kRuntimeTFl) )
{ {
rc = cwLogError(kOpFailRC,"It is invalid to change the type of a statically (non-runtime) type variable."); rc = cwLogError(kOpFailRC,"It is invalid to change the type of a static (non-runtime) type variable.");
goto errLabel; goto errLabel;
} }
@ -1182,6 +1182,11 @@ namespace cw
} }
} }
void cw::flow::value_duplicate( value_t& dst, const value_t& src )
{
_value_duplicate(dst,src);
}
void cw::flow::value_print( const value_t* value, bool info_fl) void cw::flow::value_print( const value_t* value, bool info_fl)
{ {
_value_print(value,info_fl); _value_print(value,info_fl);
@ -1194,7 +1199,8 @@ cw::flow::abuf_t* cw::flow::abuf_create( srate_t srate, unsigned chN, unsigned f
a->srate = srate; a->srate = srate;
a->chN = chN; a->chN = chN;
a->frameN = frameN; a->frameN = frameN;
a->buf = mem::allocZ<sample_t>( chN*frameN ); a->bufAllocSmpN = chN*frameN;
a->buf = mem::allocZ<sample_t>(a->bufAllocSmpN);
return a; return a;
} }
@ -1208,9 +1214,21 @@ void cw::flow::abuf_destroy( abuf_t*& abuf )
mem::release(abuf); mem::release(abuf);
} }
cw::flow::abuf_t* cw::flow::abuf_duplicate( const abuf_t* src ) cw::flow::abuf_t* cw::flow::abuf_duplicate( abuf_t* dst, const abuf_t* src )
{ {
return abuf_create( src->srate, src->chN, src->frameN ); abuf_t* abuf = nullptr;
if( dst != nullptr && dst->bufAllocSmpN < src->bufAllocSmpN )
mem::release(dst->buf);
if( dst == nullptr || dst->buf == nullptr )
abuf = abuf_create( src->srate, src->chN, src->frameN );
else
abuf = dst;
vop::copy(abuf->buf,src->buf,src->chN*src->frameN);
return abuf;
} }
@ -1235,6 +1253,79 @@ const cw::flow::sample_t* cw::flow::abuf_get_channel( abuf_t* abuf, unsigned c
return abuf->buf + (chIdx*abuf->frameN); return abuf->buf + (chIdx*abuf->frameN);
} }
cw::flow::fbuf_t* cw::flow::fbuf_create( srate_t srate, unsigned chN, const unsigned* maxBinN_V, const unsigned* binN_V, const unsigned* hopSmpN_V, const fd_sample_t** magV, const fd_sample_t** phsV, const fd_sample_t** hzV )
{
for(unsigned i=0; i<chN; ++i)
if( binN_V[i] > maxBinN_V[i] )
{
cwLogError(kInvalidArgRC,"A channel bin count (%i) execeeds the max bin count (%i).",binN_V[i],maxBinN_V[i]);
return nullptr;;
}
fbuf_t* f = mem::allocZ<fbuf_t>();
bool proxy_fl = magV != nullptr || phsV != nullptr || hzV != nullptr;
// Calculate the total count of bins for each data vector.
unsigned maxTotalBinN = proxy_fl ? 0 : vop::sum(maxBinN_V, chN);
// calc the total size of memory required for all internal data structures
f->memByteN
= sizeof(unsigned) * chN*kFbufVectN // maxBinN_V[],binN_V[],hopSmpN_V[]
+ sizeof(fd_sample_t*) * chN*kFbufVectN // magV[],phsV[],hzV[] (pointer to bin buffers)
+ sizeof(bool) * chN*1 // readyFlV[]
+ sizeof(fd_sample_t) * maxTotalBinN*kFbufVectN; // bin buffer memory
// allocate mory
f->mem = mem::allocZ<uint8_t>(f->memByteN);
unsigned* base_maxBinV = (unsigned*)f->mem;
fd_sample_t** base_bufV = (fd_sample_t**)(base_maxBinV + kFbufVectN * chN);
bool* base_boolV = (bool*)(base_bufV + kFbufVectN * chN);
fd_sample_t* base_buf = (fd_sample_t*)(base_boolV + chN);
f->srate = srate;
f->chN = chN;
f->maxBinN_V = base_maxBinV;
f->binN_V = f->maxBinN_V + chN;
f->hopSmpN_V = f->binN_V + chN;
f->magV = base_bufV;
f->phsV = f->magV + chN;
f->hzV = f->phsV + chN;
f->readyFlV = base_boolV;
vop::copy( f->binN_V, binN_V, chN );
vop::copy( f->maxBinN_V, maxBinN_V, chN );
vop::copy( f->hopSmpN_V, hopSmpN_V, chN );
if( proxy_fl )
{
for(unsigned chIdx=0; chIdx<chN; ++chIdx)
{
f->magV[ chIdx ] = (fd_sample_t*)magV[chIdx];
f->phsV[ chIdx ] = (fd_sample_t*)phsV[chIdx];
f->hzV[ chIdx ] = (fd_sample_t*)hzV[chIdx];
}
}
else
{
fd_sample_t* m = base_buf;
for(unsigned chIdx=0; chIdx<chN; ++chIdx)
{
f->magV[chIdx] = m + 0 * f->binN_V[chIdx];
f->phsV[chIdx] = m + 1 * f->binN_V[chIdx];
f->hzV[ chIdx] = m + 2 * f->binN_V[chIdx];
m += f->maxBinN_V[chIdx];
assert( m <= base_buf + kFbufVectN * maxTotalBinN );
}
}
return f;
}
/*
cw::flow::fbuf_t* cw::flow::fbuf_create( srate_t srate, unsigned chN, const unsigned* maxBinN_V, const unsigned* binN_V, const unsigned* hopSmpN_V, const fd_sample_t** magV, const fd_sample_t** phsV, const fd_sample_t** hzV ) cw::flow::fbuf_t* cw::flow::fbuf_create( srate_t srate, unsigned chN, const unsigned* maxBinN_V, const unsigned* binN_V, const unsigned* hopSmpN_V, const fd_sample_t** magV, const fd_sample_t** phsV, const fd_sample_t** hzV )
{ {
for(unsigned i=0; i<chN; ++i) for(unsigned i=0; i<chN; ++i)
@ -1290,6 +1381,7 @@ cw::flow::fbuf_t* cw::flow::fbuf_create( srate_t srate, unsigned chN, const unsi
return f; return f;
} }
*/
cw::flow::fbuf_t* cw::flow::fbuf_create( srate_t srate, unsigned chN, unsigned maxBinN, unsigned binN, unsigned hopSmpN, const fd_sample_t** magV, const fd_sample_t** phsV, const fd_sample_t** hzV ) cw::flow::fbuf_t* cw::flow::fbuf_create( srate_t srate, unsigned chN, unsigned maxBinN, unsigned binN, unsigned hopSmpN, const fd_sample_t** magV, const fd_sample_t** phsV, const fd_sample_t** hzV )
{ {
@ -1308,20 +1400,21 @@ void cw::flow::fbuf_destroy( fbuf_t*& fbuf )
if( fbuf == nullptr ) if( fbuf == nullptr )
return; return;
mem::release( fbuf->maxBinN_V ); mem::release( fbuf->mem);
mem::release( fbuf->binN_V );
mem::release( fbuf->hopSmpN_V);
mem::release( fbuf->magV);
mem::release( fbuf->phsV);
mem::release( fbuf->hzV);
mem::release( fbuf->buf);
mem::release( fbuf->readyFlV);
mem::release( fbuf); mem::release( fbuf);
} }
cw::flow::fbuf_t* cw::flow::fbuf_duplicate( const fbuf_t* src ) cw::flow::fbuf_t* cw::flow::fbuf_duplicate( fbuf_t* dst, const fbuf_t* src )
{ {
fbuf_t* fbuf = fbuf_create( src->srate, src->chN, src->maxBinN_V, src->binN_V, src->hopSmpN_V ); fbuf_t* fbuf = nullptr;
if( dst != nullptr && dst->memByteN < src->memByteN )
fbuf_destroy(dst);
if( dst == nullptr )
fbuf = fbuf_create( src->srate, src->chN, src->maxBinN_V, src->binN_V, src->hopSmpN_V );
else
fbuf = dst;
for(unsigned i=0; i<fbuf->chN; ++i) for(unsigned i=0; i<fbuf->chN; ++i)
{ {

View File

@ -25,26 +25,29 @@ namespace cw
typedef struct abuf_str typedef struct abuf_str
{ {
srate_t srate; // signal sample rate srate_t srate; // Signal sample rate
unsigned chN; // count of channels unsigned chN; // Count of channels
unsigned frameN; // count of sample frames per channel unsigned frameN; // Count of sample frames per channel
unsigned bufAllocSmpN; // Size of allocated buf[] in samples.
sample_t* buf; // buf[ chN ][ frameN ] sample_t* buf; // buf[ chN ][ frameN ]
} abuf_t; } abuf_t;
typedef struct fbuf_str typedef struct fbuf_str
{ {
unsigned memByteN; // Count of bytes in mem[].
void* mem; // mem[ memByteN ] All dynamically allocated memory used by this fbuf.
srate_t srate; // signal sample rate srate_t srate; // signal sample rate
unsigned flags; // See kXXXFbufFl unsigned flags; // See kXXXFbufFl
unsigned chN; // count of channels unsigned chN; // count of channels
unsigned* maxBinN_V; // max value that binN_V[i] is allowed to take unsigned* maxBinN_V; // maxBinN_V[chN] max value that binN_V[i] is allowed to take
unsigned* binN_V; // binN_V[ chN ] count of sample frames per channel unsigned* binN_V; // binN_V[ chN ] count of sample frames per channel
unsigned* hopSmpN_V; // hopSmpN_V[ chN ] hop sample count unsigned* hopSmpN_V; // hopSmpN_V[ chN ] hop sample count
fd_sample_t** magV; // magV[ chN ][ binN ] fd_sample_t** magV; // magV[ chN ][ binN ]
fd_sample_t** phsV; // phsV[ chN ][ binN ] fd_sample_t** phsV; // phsV[ chN ][ binN ]
fd_sample_t** hzV; // hzV[ chN ][ binN ] fd_sample_t** hzV; // hzV[ chN ][ binN ]
bool* readyFlV; // readyFlV[chN] true if this channel is ready to be processed (used to sync. fbuf rate to abuf rate) bool* readyFlV; // readyFlV[chN] true if this channel is ready to be processed (used to sync. fbuf rate to abuf rate)
fd_sample_t* buf; // memory used by this buffer (or NULL if magV,phsV,hzV point are proxied to another buffer)
} fbuf_t; } fbuf_t;
typedef struct mbuf_str typedef struct mbuf_str
@ -373,14 +376,20 @@ namespace cw
abuf_t* abuf_create( srate_t srate, unsigned chN, unsigned frameN ); abuf_t* abuf_create( srate_t srate, unsigned chN, unsigned frameN );
void abuf_destroy( abuf_t*& buf ); void abuf_destroy( abuf_t*& buf );
abuf_t* abuf_duplicate( const abuf_t* src );
// If 'dst' is null then a new abuf is allocated, filled with the contents of 'src'.
// If 'dst' is non-null and there is enough space for the contents of 'src' then only a copy is executed.
// If there is not enough space then dst is reallocated.
abuf_t* abuf_duplicate( abuf_t* dst, const abuf_t* src );
rc_t abuf_set_channel( abuf_t* buf, unsigned chIdx, const sample_t* v, unsigned vN ); rc_t abuf_set_channel( abuf_t* buf, unsigned chIdx, const sample_t* v, unsigned vN );
const sample_t* abuf_get_channel( abuf_t* buf, unsigned chIdx ); const sample_t* abuf_get_channel( abuf_t* buf, unsigned chIdx );
fbuf_t* fbuf_create( srate_t srate, unsigned chN, const unsigned* maxBinN_V, const unsigned* binN_V, const unsigned* hopSmpN_V, const fd_sample_t** magV=nullptr, const fd_sample_t** phsV=nullptr, const fd_sample_t** hzV=nullptr ); fbuf_t* fbuf_create( srate_t srate, unsigned chN, const unsigned* maxBinN_V, const unsigned* binN_V, const unsigned* hopSmpN_V, const fd_sample_t** magV=nullptr, const fd_sample_t** phsV=nullptr, const fd_sample_t** hzV=nullptr );
fbuf_t* fbuf_create( srate_t srate, unsigned chN, unsigned maxBinN, unsigned binN, unsigned hopSmpN, const fd_sample_t** magV=nullptr, const fd_sample_t** phsV=nullptr, const fd_sample_t** hzV=nullptr ); fbuf_t* fbuf_create( srate_t srate, unsigned chN, unsigned maxBinN, unsigned binN, unsigned hopSmpN, const fd_sample_t** magV=nullptr, const fd_sample_t** phsV=nullptr, const fd_sample_t** hzV=nullptr );
void fbuf_destroy( fbuf_t*& buf ); void fbuf_destroy( fbuf_t*& buf );
fbuf_t* fbuf_duplicate( const fbuf_t* src );
// Memory allocation will only occur if dst is null, or the size of dst's internal buffer are too small.
fbuf_t* fbuf_duplicate( fbuf_t* dst, const fbuf_t* src );
mbuf_t* mbuf_create( const midi::ch_msg_t* msgA=nullptr, unsigned msgN=0 ); mbuf_t* mbuf_create( const midi::ch_msg_t* msgA=nullptr, unsigned msgN=0 );
void mbuf_destroy( mbuf_t*& buf ); void mbuf_destroy( mbuf_t*& buf );
@ -392,6 +401,8 @@ namespace cw
unsigned value_type_label_to_flag( const char* type_desc ); unsigned value_type_label_to_flag( const char* type_desc );
const char* value_type_flag_to_label( unsigned flag ); const char* value_type_flag_to_label( unsigned flag );
void value_duplicate( value_t& dst, const value_t& src );
void value_print( const value_t* value, bool info_fl=false); void value_print( const value_t* value, bool info_fl=false);
//------------------------------------------------------------------------------------------------------------------------ //------------------------------------------------------------------------------------------------------------------------