libcw/py/gen_wavetables/multiproc.py

183 lines
6.1 KiB
Python
Raw Normal View History

2024-09-05 15:17:08 +00:00
import os,subprocess,logging,multiprocessing,queue,yaml,types,time
class processor(multiprocessing.Process):
def __init__(self,procId,iQ,oQ,procArgs,procFunc):
super(processor,self).__init__()
self.procId = procId # the id of this process
self.iQ = iQ # process input queue (shared by all processes)
self.oQ = oQ # process output queue (shared by all processes)
self.cycleIdx = 0 # count of times the user function has been called
self.procArgs = procArgs # arguments to the user defined function (procFunc) that are used for the life of the process
self.procFunc = procFunc # user defined function this process will execute
def run(self):
super(processor,self).run()
self.cycleIdx = 0
# loop until the user process returns false
while True:
# if no msg is available
if self.iQ.empty():
time.sleep(0.1)
# attempt to get the message
try:
msg = self.iQ.get(block=False)
except queue.Empty:
continue # the dequeue attempt failed
# if the message is 'None' then end the process
if msg == None:
break
# run the user function
r = self._func(msg)
# send the result of the function back to the main process
self.oQ.put(r)
self.cycleIdx += 1
def _func(self,taskArgs):
resultD = self.procFunc( self.procId, self.procArgs, taskArgs )
return resultD
def _local_distribute_dispatcher( inQ, outQ, processN, taskArgsL, procArgs, processArgsFunc, processResultFunc, verboseLevel ):
bestScore = None
iterN = 0 # total count of jobs completed and pending
pendingN = 0 # total count of jobs pending
nextSrcIdx = 0
resultL = []
t0 = time.time()
while len(resultL) < len(taskArgsL):
# if available processes exist and all source files have not been sent for processing already
if pendingN < processN and nextSrcIdx < len(taskArgsL):
# if a args processing function was given
args = taskArgsL[nextSrcIdx]
if processArgsFunc is not None:
args = processArgsFunc(procArgs,args)
inQ.put( args )
nextSrcIdx += 1
pendingN += 1
t0 = time.time()
if verboseLevel>=3:
print(f"Send: remaining:{len(taskArgsL)-nextSrcIdx} pend:{pendingN} result:{len(resultL)}")
# if a process completed
elif not outQ.empty():
# attempt to get the message
try:
resultD = outQ.get(block=False)
except queue.Empty:
if verboseLevel > 0:
print("********* A message dequeue attempt failed.")
continue # the dequeue attempt failed
# if a result processing function was given
if processResultFunc is not None:
resultD = processResultFunc( procArgs, resultD )
resultL.append(resultD)
pendingN -= 1
t0 = time.time()
if verboseLevel>=3:
print(f"Recv: remaining:{len(taskArgsL)-nextSrcIdx} pend:{pendingN} result:{len(resultL)}")
# nothing to do - sleep
else:
time.sleep(0.1)
t1 = time.time()
if t1 - t0 > 60:
if verboseLevel >= 2:
print(f"Wait: remaining:{len(taskArgsL)-nextSrcIdx} pend:{pendingN} result:{len(resultL)}")
t0 = t1
return resultL
def local_distribute_main(processN, procFunc, procArgs, taskArgsL, processArgsFunc=None, processResultFunc=None, verboseLevel=3):
""" Distribute the function 'procFunc' to 'procN' local processes.
This function will call procFunc(procArgs,taskArgsL[i]) len(taskArgsL) times
and return the result of each call in the list resultL[].
The function will be run in processN parallel processes.
Input:
:processN: Count of processes to run in parallel.
:procFunc: A python function of the form: myProc(procId,procArgs,taskArgsL[i]).
This function is run in a remote process.
:procArgs: A data structure holding read-only arguments which are fixed accross all processes.
This data structure is duplicated on all remote processes.
:taskArgsL: A list of data structures holding the per-call arguments to 'procFunc()'.
Note that taskArgsL[i] may never be 'None' because None is used by the
processes control system to indicate that the process should be shutdown.
:processArgsFunc: A function of the form args = processArgsFunc(procArgs,args)
which can be used to modify the arg. record from taskArgssL[] prior to the call
to 'procFunc()'. This function runs locally in the calling functions process.
:processResultFunc: A function of the form result = processResulftFunc(procArgs,result).
which is called on the result of procFunc() prior to the result being store in the
return result list. This function runs locally in the calling functions process.
"""
processN = processN
mgr = multiprocessing.Manager()
inQ = mgr.Queue()
outQ = mgr.Queue()
processL = []
# create and start the processes
for i in range(processN):
pr = processor(i,inQ,outQ,procArgs,procFunc)
processL.append( pr )
pr.start()
# service the processes
resultL = _local_distribute_dispatcher(inQ, outQ, processN, taskArgsL, procArgs, processArgsFunc, processResultFunc, verboseLevel)
# tell the processes to stop
for pr in processL:
inQ.put(None)
# join the processes
for pr in processL:
while True:
pr.join(1.0)
if pr.is_alive():
time.sleep(1)
else:
break
return resultL