libcw/py/gen_wavetables/old/low_hz_loops.py

239 lines
6.0 KiB
Python
Raw Normal View History

2024-09-05 15:17:08 +00:00
import wt_util
import math
import numpy as np
import matplotlib.pyplot as plt
import audiofile as af
def sign(x):
return x<0
def find_zero_crossing( xV, si, inc ):
# find the next zero crossing before/after si
while si > 0:
if sign(xV[si-1])==False and sign(xV[si])==True:
break;
si += inc
return si
def plot_xfades( zV, zL ):
fig,ax = plt.subplots(1,1)
ax.plot(zV)
for bi,ei in zL:
ax.vlines([bi,ei],-0.5,0.5)
plt.show()
def decay_compensation( xV, smp_per_cyc ):
def _calc_rms( sV, rmsN ):
bi = 0
ei = rmsN
rmsL = []
while ei < len(sV):
rms = np.pow(np.mean( np.pow( sV[bi:ei], 2 )),0.5)
rmsL.append(rms)
bi += 1
ei += 1
return rmsL
# calc the RMS env
rmsN = int(round(smp_per_cyc))
rmsL = _calc_rms( xV, rmsN)
# fit a line to the RMS env
x = np.arange(len(rmsL))
A = np.array( [x, np.ones((len(rmsL),))] ).T
m, c = np.linalg.lstsq(A, rmsL)[0]
# use the slope of the line to boost
# to progressively boost the gain
# of the signal over time
yV = np.copy(xV)
yi = rmsN
for i,r in enumerate(rmsL):
if yi < len(yV):
c = r + i*(-m)
g = c/r
yV[yi] *= g
yi += 1
if False:
# calc. the RMS env of the compensated signal
c_rmsL = _calc_rms(yV,rmsN)
db0 = 20.0*math.log10(rmsL[0])
db1 = 20.0*math.log10(rmsL[-1])
print(db0-db1, m*len(rmsL), len(rmsL))
#c_rmsL = [ r + i*(-m) for i,r in enumerate(rmsL) ]
fig,ax = plt.subplots(1,1)
ax.plot(rmsL)
ax.plot(x,m*x+c,'r')
ax.plot(c_rmsL)
plt.show()
return yV
def apply_gain( xxV,bi,ei,g, g_coeff ):
i = bi
while i < ei:
n = min(ei-i,64)
for j in range(n):
xxV[i+j] *= g
g *= g_coeff
i += n
return g
def gen_note( xV, xbi, xei, loop_dur_smp, y_dur_smp, xfade_smp, smp_per_cyc, g_coeff, bli=None ):
hannV = np.hanning( xfade_smp*2 + 1 )
fin_env = hannV[0:xfade_smp+1]
fout_env = hannV[xfade_smp:]
env_smp_cnt = len(fin_env)
assert( len(fout_env) == env_smp_cnt)
#print(fin_env[-1],fout_env[0],len(fin_env),len(fout_env))
if bli is None:
bli = find_zero_crossing( xV, xei - loop_dur_smp, -1 )
aN = (bli - xbi) + env_smp_cnt
aV = np.copy(xV[xbi:xbi+aN])
aV[-env_smp_cnt:] *= fout_env
lV = np.copy(xV[bli:bli+loop_dur_smp])
if False:
# compensate for loop period decay
lV = decay_compensation(lV,smp_per_cyc)
zV = np.zeros((y_dur_smp,))
zV[0:aN] = aV
zbi = aN-env_smp_cnt
zei = zbi + len(lV)
zL = []
g = 1.0
while(zei < len(zV)):
zL.append((zbi,zei))
elV = np.copy(lV)
elV[0:env_smp_cnt] *= fin_env
elV[-env_smp_cnt:] *= fout_env
zV[zbi:zei] += elV
g = apply_gain(zV,zbi,zei-env_smp_cnt,g,g_coeff)
zbi = zei - env_smp_cnt
zei = zbi + len(elV)
lV = np.flip(lV)
return zV,zL,bli,xV[bli:bli+loop_dur_smp]
def main( i_audio_fname, mark_tsv_fname, midi_pitch, loop_secs, note_dur_secs, xfade_ms, inter_note_sec, g_coeff, o_audio_fname, o_mark_tsv_fname ):
i_markL = wt_util.parse_marker_file(mark_tsv_fname)
xM,srate = wt_util.parse_audio_file(i_audio_fname)
chN = xM.shape[1]
fund_hz = wt_util.midi_pitch_to_hz(midi_pitch)
smp_per_cyc = srate / fund_hz
loop_dur_fsmp = loop_secs * srate
cyc_per_loop = int(loop_dur_fsmp / smp_per_cyc)
loop_dur_fsmp = cyc_per_loop * smp_per_cyc
loop_dur_smp = int(math.floor(loop_dur_fsmp))
xfade_smp = int(round(srate * xfade_ms / 1000.0))
inter_note_smp = int(round(srate*inter_note_sec))
note_dur_smp = int(round(srate*note_dur_secs))
note_cnt = len(i_markL)
print(f"{smp_per_cyc:.3f} smps/cyc {smp_per_cyc/srate:.3f} secs/cyc")
print(f"loop {cyc_per_loop} cycles dur: {loop_dur_fsmp/srate:.3f} secs")
print(f"xfade: {xfade_ms} ms {xfade_smp} smp")
yN = note_cnt * (note_dur_smp + inter_note_smp)
yM = np.zeros((yN,chN))
yi = 0;
o_markL = []
for beg_sec,end_sec,vel_label in i_markL:
vel = int(vel_label)
bsi = int(round(beg_sec * srate))
esi = int(round(end_sec * srate))
bli = None
for ch_i in range(chN):
zV,zL,bli,lV = gen_note( xM[:,ch_i], bsi, esi, loop_dur_smp, note_dur_smp, xfade_smp, smp_per_cyc, g_coeff, bli )
if vel > 70:
#plot_xfades(zV,zL)
pass
yM[yi:yi+len(zV),ch_i] = zV
if ch_i == 0:
o_markL.append( (yi/srate, (yi+len(zV))/srate, vel ))
yi += len(zV) + inter_note_smp
if False:
fig,ax = plt.subplots(2,1)
ax[0].plot(yM[:,0])
ax[1].plot(yM[:,1])
plt.show();
wt_util.write_audio_file( yM, srate, o_audio_fname )
wt_util.write_mark_tsv_file( o_markL, o_mark_tsv_fname )
def test_scipy(audio_fname):
samplerate = 44100.0
fs = 100
t = np.linspace(0., 1., int(samplerate))
data = np.sin(2. * np.pi * fs * t)
data = np.array([data,data])
wt_util.write_audio_file(data.T, samplerate, audio_fname)
if __name__ == "__main__":
midi_pitch = 21
loop_secs = 0.4
note_dur_secs = 7.0
xfade_ms = 2
inter_note_sec = 0.1
g_coeff = 0.9995
i_audio_fname = "/home/kevin/temp/wt3/wav/21_samples.wav"
mark_tsv_fname = "/home/kevin/temp/wt3/21_marker.txt"
o_audio_fname = "/home/kevin/temp/temp.wav"
o_mark_tsv_fname = "/home/kevin/temp/temp_mark.txt"
main( i_audio_fname, mark_tsv_fname, midi_pitch, loop_secs, note_dur_secs, xfade_ms, inter_note_sec, g_coeff, o_audio_fname, o_mark_tsv_fname )
if False:
test_scipy(o_audio_fname)